[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019181877A - Laminate, coffee capsule, food container, and cosmetic container - Google Patents

Laminate, coffee capsule, food container, and cosmetic container Download PDF

Info

Publication number
JP2019181877A
JP2019181877A JP2018078506A JP2018078506A JP2019181877A JP 2019181877 A JP2019181877 A JP 2019181877A JP 2018078506 A JP2018078506 A JP 2018078506A JP 2018078506 A JP2018078506 A JP 2018078506A JP 2019181877 A JP2019181877 A JP 2019181877A
Authority
JP
Japan
Prior art keywords
acid
resin
biodegradable
layer
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018078506A
Other languages
Japanese (ja)
Other versions
JP7361456B2 (en
Inventor
裕斗 三澤
Yuto Misawa
裕斗 三澤
和俊 辻
Kazutoshi Tsuji
和俊 辻
雅彦 谷口
Masahiko Taniguchi
雅彦 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2018078506A priority Critical patent/JP7361456B2/en
Publication of JP2019181877A publication Critical patent/JP2019181877A/en
Application granted granted Critical
Publication of JP7361456B2 publication Critical patent/JP7361456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a biodegradable laminate having excellent moldability and gas barrier properties.SOLUTION: A laminate has a polyvinyl alcohol resin (C) layer placed on at least one side of a biodegradable resin (A) layer through a biodegradable acid-modified polyester resin (B) layer, the laminate having a thickness of 300-2000 μm.SELECTED DRAWING: None

Description

本発明は積層体に関し、更に詳しくは、生分解性であり、生産性に優れ、更にはガスバリア性の高い積層体に関する。   The present invention relates to a laminate, and more particularly to a laminate having biodegradability, excellent productivity, and high gas barrier properties.

プラスチックは、成形性、強度、耐水性、透明性などに優れることから、包装材料として広く使用されている。かかる包装材料に用いられるプラスチックとしては、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ポリスチレン、ポリ塩化ビニルなどのビニル系樹脂、ポリエチレンテレフタレートなどの芳香族ポリエステル系樹脂が挙げられるが、これらのプラスチックは生分解性に乏しく、使用後に自然界に投棄されると、長期間残存して景観を損ねたり、環境破壊の原因となる場合がある。   Plastics are widely used as packaging materials because they are excellent in moldability, strength, water resistance, transparency and the like. Examples of the plastic used for the packaging material include polyolefin resins such as polyethylene and polypropylene, vinyl resins such as polystyrene and polyvinyl chloride, and aromatic polyester resins such as polyethylene terephthalate. These plastics are biodegradable. When it is dumped into nature after use, it may remain for a long time and damage the landscape or cause environmental destruction.

これに対し、近年、土中や水中で生分解、あるいは加水分解され、環境汚染の防止に有用である生分解性樹脂が注目され、実用化が進められている。かかる生分解性樹脂としては、脂肪族ポリエステル系樹脂や酢酸セルロース、変性でんぷんなどが知られているが、包装材料としては透明性、耐熱性、強度に優れる脂肪族ポリエステル系樹脂が好適である。   On the other hand, in recent years, biodegradable resins that are biodegraded or hydrolyzed in soil or water and are useful for preventing environmental pollution have attracted attention and are being put to practical use. As such biodegradable resins, aliphatic polyester resins, cellulose acetate, modified starch, and the like are known, but aliphatic polyester resins that are excellent in transparency, heat resistance, and strength are suitable as packaging materials.

従来から生分解性の容器として脂肪族ポリエステル系樹脂の一つであるポリ乳酸の単層容器が用いられており、種々の成形方法が提案されている。例えば、結晶性のポリエステル系樹脂を主成分とする熱成形用シートを、成形時に加熱し、ポリエステル系樹脂の結晶化度を高めた後、成形物を挟持するように冷却部材を接触させて冷却し、且つ前記冷却部材が接触していない部分を空冷する成形品の製造方法が提案されている(例えば、特許文献1参照。)。   Conventionally, a single layer container of polylactic acid, which is one of aliphatic polyester resins, has been used as a biodegradable container, and various molding methods have been proposed. For example, a thermoforming sheet mainly composed of crystalline polyester resin is heated at the time of molding to increase the crystallinity of the polyester resin, and then cooled by contacting a cooling member so as to sandwich the molded product. And the manufacturing method of the molded article which air-cools the part which the said cooling member is not contacting is proposed (for example, refer patent document 1).

また、他にもガスバリア層としてポリビニルアルコール系樹脂(以下、PVA系樹脂という。)を設けた生分解性積層体が提案されている。(例えば、特許文献2参照。)   In addition, biodegradable laminates having a polyvinyl alcohol resin (hereinafter referred to as PVA resin) as a gas barrier layer have been proposed. (For example, see Patent Document 2.)

特開2017−071111号公報JP 2017-071111 A 特開2013−212682号公報JP 2013-212682 A

しかしながら、近年、ガスバリア性を要する用途にはポリ乳酸の単層容器ではガスバリア性が不十分であり、ガスバリア層を設けて積層体とすることが検討されているが、積層体とすると二次成形の際に、層と層の界面での熱の伝導がうまくいかないことがあり、改善が求められていた。
しかしながら、特許文献2に記載の積層体では、熱伝導速度が速すぎ、成形することができないものであった。そこで、ポリ乳酸単層体のように成形することができ、更にガスバリア性に優れる積層体が求められている。
However, in recent years, polylactic acid single-layer containers have insufficient gas barrier properties for applications that require gas barrier properties, and it has been studied to provide a gas barrier layer to form a laminate. At this time, heat conduction at the interface between layers sometimes fails, and improvement has been demanded.
However, the laminate described in Patent Document 2 has a too high heat conduction speed and cannot be molded. Therefore, there is a demand for a laminate that can be molded like a polylactic acid monolayer and that is further excellent in gas barrier properties.

本発明者らは、上記事情に鑑み、鋭意検討した結果、生分解性樹脂層(A)の少なくとも一方の面に生分解性酸変性ポリエステル系樹脂(B)層を介してポリビニルアルコール系樹脂(C)層が積層されてなる積層体であって、
該積層体の厚みが300〜2000μmであることを特徴とする積層体によって本発明の目的が達成されることを見出し、本発明を完成した。
As a result of intensive studies in view of the above circumstances, the present inventors have determined that a polyvinyl alcohol resin (B) via a biodegradable acid-modified polyester resin (B) layer on at least one surface of the biodegradable resin layer (A). C) A laminate in which layers are laminated,
The inventors have found that the object of the present invention can be achieved by a laminate having a thickness of 300 to 2000 μm, and thus completed the present invention.

本発明の積層体は、生分解性を有しており、ポリ乳酸単層体よりも昇温速度が速く、成形可能温度までの到達時間が短いため、生産効率が高く、更にはPVA系樹脂層を有するため、ガスバリア性に優れる生分解性積層体が得られる。   The laminate of the present invention has biodegradability, has a higher heating rate than a polylactic acid monolayer, and has a short time to reach a moldable temperature, so that the production efficiency is high, and further, a PVA resin. Since it has a layer, a biodegradable laminate having excellent gas barrier properties can be obtained.

ポリ乳酸単層体よりも昇温速度が速く、短時間で成形可能となった理由としては、PVA系樹脂の水酸基が熱伝導を促進するからであると推測される。   The reason why the temperature rise rate is faster than that of the polylactic acid monolayer and molding is possible in a short time is presumably because the hydroxyl group of the PVA resin promotes heat conduction.

以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、これらの内容に特定されるものではない。
以下、本発明について詳細に説明する。
The description of the constituent requirements described below is an example (representative example) of an embodiment of the present invention, and is not limited to these contents.
Hereinafter, the present invention will be described in detail.

本発明の生分解性積層体は、生分解性樹脂(A)層の少なくとも一方の面に生分解性酸変性ポリエステル系樹脂(B)層を介してポリビニルアルコール系樹脂(C)層が積層されてなる積層体であって、
該積層体の厚みが300〜2000μmであることを特徴とする積層体である。
以下、生分解性積層体の各層、及びその製造方法について詳細に説明する。
In the biodegradable laminate of the present invention, a polyvinyl alcohol resin (C) layer is laminated on at least one surface of the biodegradable resin (A) layer via a biodegradable acid-modified polyester resin (B) layer. A laminated body comprising:
The laminate has a thickness of 300 to 2000 μm.
Hereinafter, each layer of a biodegradable laminated body and its manufacturing method are demonstrated in detail.

〔生分解性樹脂(A)層〕
次に本発明の積層体の外層に好ましく用いられる生分解性樹脂(A)層について説明する。
かかる生分解性樹脂(A)層は、生分解性樹脂を主成分とする層であり、通常は生分解性樹脂を70重量%以上、特に80重量%以上、殊に90重量%以上、更に98重量%以上含有するものである。上限は100重量%である。
[Biodegradable resin (A) layer]
Next, the biodegradable resin (A) layer preferably used for the outer layer of the laminate of the present invention will be described.
Such a biodegradable resin (A) layer is a layer containing a biodegradable resin as a main component. Usually, the biodegradable resin is 70% by weight or more, particularly 80% by weight or more, particularly 90% by weight or more. It contains 98% by weight or more. The upper limit is 100% by weight.

生分解性樹脂(A)としては、例えば、ポリ乳酸、ポリ(ブチレンアジペート/テレフタレート)(以下、PBATという。)、ポリブチレンサクシネート、ポリヒドロキシアルカノエート、(ポリ乳酸/ポリブチレンサクシネート)ブロックコポリマー、ポリカプロラクトン、ポリ(カプロラクトン/ブチレンサクシネート)、ポリ(ブチレンサクシネート/アジペート)、ポリ(ブチレンサクシネート/カーボネート)、ポリ(エチレンンテレフタレート/サクシネート)、ポリ(テトラメチレンアジペート/テレフタレート)、ポリエチレンサクシネート、ポリグリコール酸等の脂肪族ポリエステル;変性でんぷん;カゼインプラスチック;セルロースなどが挙げられ、これらは1種又は2種以上混合して用いることもできる。中でも、強度の点から、ポリ乳酸やPBATが好ましい。また、他の樹脂との接着性及び強度の点から、ポリ乳酸とPBATとの混合物も好ましい。   Examples of the biodegradable resin (A) include polylactic acid, poly (butylene adipate / terephthalate) (hereinafter referred to as PBAT), polybutylene succinate, polyhydroxyalkanoate, and (polylactic acid / polybutylene succinate) block. Copolymer, polycaprolactone, poly (caprolactone / butylene succinate), poly (butylene succinate / adipate), poly (butylene succinate / carbonate), poly (ethylene terephthalate / succinate), poly (tetramethylene adipate / terephthalate), Examples thereof include aliphatic polyesters such as polyethylene succinate and polyglycolic acid; modified starch; casein plastic; cellulose and the like, and these can be used alone or in combination. Of these, polylactic acid and PBAT are preferable from the viewpoint of strength. A mixture of polylactic acid and PBAT is also preferable from the viewpoint of adhesion to other resins and strength.

ポリ乳酸は、乳酸構造単位を主成分とする脂肪族ポリエステル系樹脂であり、L−乳酸、D−乳酸、またはその環状2量体であるL−ラクタイド、D−ラクタイド、DL−ラクタイドを原料とする重合体である。
本発明で用いられるポリ乳酸は、これら乳酸類の単独重合体であることが好ましいが、特性を阻害しない程度の量、例えば10モル%以下であれば、乳酸類以外の共重合成分を含有するものであってもよい。
かかる共重合成分としては、例えば、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、3−ヒドロキシ吉草酸、4−ヒドロキシ吉草酸、6−ヒドロキシカプロン酸などの脂肪族ヒドロキシカルボン酸;カプロラクトンなどのラクトン類;エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、1,4−ブタンジオール等の脂肪族ジオール類;コハク酸、シュウ酸、マロン酸、グルタル酸、アジピン酸などの脂肪族二塩基酸を挙げることができる。
Polylactic acid is an aliphatic polyester resin having a lactic acid structural unit as a main component, and L-lactic acid, D-lactic acid, or L-lactide, D-lactide, and DL-lactide, which are cyclic dimers thereof, as raw materials. Polymer.
The polylactic acid used in the present invention is preferably a homopolymer of these lactic acids, but contains a copolymer component other than lactic acids if the amount does not hinder the properties, for example, 10 mol% or less. It may be a thing.
Examples of the copolymer component include aliphatic hydroxycarboxylic acids such as glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid, and 6-hydroxycaproic acid; caprolactone, and the like. Lactones; Aliphatic diols such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, and 1,4-butanediol; and aliphatic diols such as succinic acid, oxalic acid, malonic acid, glutaric acid, and adipic acid. Mention may be made of basic acids.

また、ポリ乳酸中のL−乳酸成分とD−乳酸成分の含有比率(L/D)は、通常95/5以上であり、特に99/1以上、殊に99.8/0.2のものが好ましく用いられる。かかる値が大きいものほど融点が高くなって、耐熱性が向上し、逆に小さいものほど融点が低くなり、耐熱性が不足する傾向がある。具体的には、ポリ乳酸の単独重合体の場合、L/Dが95/5であるものの融点は152℃であり、99/1であるものの融点は171℃、99.8/0.2であるものは175℃以上である。   The content ratio (L / D) of the L-lactic acid component to the D-lactic acid component in the polylactic acid is usually 95/5 or more, particularly 99/1 or more, especially 99.8 / 0.2. Is preferably used. The larger the value, the higher the melting point and the higher the heat resistance. On the contrary, the smaller the value, the lower the melting point and the heat resistance tends to be insufficient. Specifically, in the case of a homopolymer of polylactic acid, the melting point of L / D of 95/5 is 152 ° C., and the melting point of 99/1 is 171 ° C. and 99.8 / 0.2. Some are above 175 ° C.

また、本発明で用いられるポリ乳酸の重量平均分子量は、通常20000〜1000000であり、特に30000〜300000、殊に40000〜200000のものである。かかる重量平均分子量が大きすぎると熱溶融成形時の溶融粘度が高すぎ、良好な製膜が困難になる傾向があり、逆に小さすぎると、得られた積層体の機械的強度が不充分となる傾向がある。なお、ポリ乳酸系高分子の重量平均分子量は、ゲル浸透クロマトグラフ(GPC)を用い、測定される。   The weight average molecular weight of the polylactic acid used in the present invention is usually from 20,000 to 1,000,000, particularly from 30,000 to 300,000, particularly from 40,000 to 200,000. If the weight average molecular weight is too large, the melt viscosity at the time of hot melt molding tends to be too high, and good film formation tends to be difficult. Conversely, if it is too small, the mechanical strength of the obtained laminate is insufficient. Tend to be. The weight average molecular weight of the polylactic acid polymer is measured using a gel permeation chromatograph (GPC).

詳細には、GPC測定装置(Waters社製GPC−100)、カラム(昭和電工社製、Shodex LF−804)を用いる。測定するポリ乳酸を40℃で溶媒(例えば、クロロホルム)へ溶解させ、濃度1mg/mLのサンプル溶液を準備し、かかるサンプル溶液0.1mLを溶媒(クロロホルム)、温度40℃、1mL/分の流速でカラムに導入しする。
カラムで分離されたサンプル溶液中のサンプル濃度を示差屈折計で測定し、ポリスチレン標準試料にてユニバーサル検量線を作成し、作成したユニバーサル検量線に基づき、ポリ乳酸の重量平均分子量を算出する。
Specifically, a GPC measurement device (Waters GPC-100) and a column (Showa Denko, Shodex LF-804) are used. Polylactic acid to be measured is dissolved in a solvent (for example, chloroform) at 40 ° C. to prepare a sample solution having a concentration of 1 mg / mL, and 0.1 mL of the sample solution is used as a solvent (chloroform) at a temperature of 40 ° C. and a flow rate of 1 mL / min. Introduce into column.
The sample concentration in the sample solution separated by the column is measured with a differential refractometer, a universal calibration curve is created with a polystyrene standard sample, and the weight average molecular weight of polylactic acid is calculated based on the created universal calibration curve.

かかるポリ乳酸の市販品としては、例えば、NatureWorks社製「Ingeo」、三井化学社製「Lacea」、浙江海正生物材料股ふん有限公司製「REVODE」、及び東洋紡績社製「バイロエコール」などを挙げることができる。   Examples of such commercially available products of polylactic acid include “Ingeo” manufactured by NatureWorks, “Lacea” manufactured by Mitsui Chemicals, “REVODE” manufactured by Zhejiang Kaisei Biological Materials Co., Ltd., and “Baylo Ecole” manufactured by Toyobo Co., Ltd. Can be mentioned.

次にPBATについて説明する。PBATは、アジピン酸とテレフタル酸と1,4−ブタンジオールを縮重合して得られるものである。
アジピン酸の含有量は、通常、10〜50モル%、好ましくは15〜40モル%である。
テレフタル酸の含有量は、通常、5〜45モル%、好ましくは8〜35モル%である。
また、1,4―ブタンジオールの含有量は、通常、5〜45モル%、好ましくは10〜30モル%である。
各成分の含有量が多すぎても少なすぎても、加工性、耐腐食性が低下する傾向がある。
Next, PBAT will be described. PBAT is obtained by condensation polymerization of adipic acid, terephthalic acid, and 1,4-butanediol.
The content of adipic acid is usually 10 to 50 mol%, preferably 15 to 40 mol%.
The content of terephthalic acid is usually 5 to 45 mol%, preferably 8 to 35 mol%.
Further, the content of 1,4-butanediol is usually 5 to 45 mol%, preferably 10 to 30 mol%.
If the content of each component is too much or too little, the workability and corrosion resistance tend to decrease.

PBATの重量平均分子量は、3000〜1000000、好ましくは20000〜600000、更に好ましくは50000〜400000である。かかる重量平均分子量は、溶離液としてのテトラヒドロフランと、40℃に加熱したカラム(ポリスチレンゲル)を用いて、ISO16014―1規格及びISO16014−3規格に従い、ポリスチレン等価量としてサイズ排除クロマトグラフィー(GPC、ゲル浸透クロマトグラフィー)により測定することができる。
かかる重量平均分子量が小さすぎると製造が困難となり、大きすぎると溶融粘度が高くなり成形性が低下する傾向がある。
The weight average molecular weight of PBAT is 3000 to 1000000, preferably 20000 to 600000, and more preferably 50000 to 400000. Such a weight average molecular weight is obtained by using size exclusion chromatography (GPC, gel as polystyrene equivalent amount) using tetrahydrofuran as an eluent and a column (polystyrene gel) heated to 40 ° C. in accordance with ISO 16014-1 standard and ISO 16014-3 standard. Permeation chromatography).
If the weight average molecular weight is too small, the production becomes difficult. If the weight average molecular weight is too large, the melt viscosity tends to increase and the moldability tends to decrease.

PBATは、アジピン酸、テレフタル酸、1,4-ブタンジオール以外にも、その他の共重合成分として、例えば、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコールおよびポリテトラヒドロフラン(ポリ−THF)などのジヒドロキシ化合物;グリコール酸、D−、L−、D,L−乳酸、6−ヒドロキシヘキサン酸、その環式誘導体、例えばグリコリド(1,4−ジオキサン−2,5−ジオン)、D−、L−ジラクチド(3,6−ジメチル−1,4−ジオキサン−2,5−ジオン)、p−ヒドロキシ安息香酸ならびにそのオリゴマーおよびポリマーなどのヒドロキシカルボン酸などが挙げられる。
かかるその他の共重合成分の含有量は、PBAT全体の0.1〜30モル%程度である。
In addition to adipic acid, terephthalic acid, and 1,4-butanediol, PBAT includes other copolymerization components such as dihydroxy such as diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, and polytetrahydrofuran (poly-THF). Compound; glycolic acid, D-, L-, D, L-lactic acid, 6-hydroxyhexanoic acid, cyclic derivatives thereof such as glycolide (1,4-dioxane-2,5-dione), D-, L-dilactide (3,6-dimethyl-1,4-dioxane-2,5-dione), hydroxycarboxylic acids such as p-hydroxybenzoic acid and oligomers and polymers thereof.
The content of such other copolymerization components is about 0.1 to 30 mol% of the whole PBAT.

また、生分解性樹脂(A)としては、ポリ乳酸とPBATの混合物を用いることもできる。混合の割合としては、ポリ乳酸/PBATが、10/90〜90/10、好ましくは20/80〜60/40である。   As the biodegradable resin (A), a mixture of polylactic acid and PBAT can also be used. As a mixing ratio, polylactic acid / PBAT is 10/90 to 90/10, preferably 20/80 to 60/40.

また、本発明の生分解性樹脂(A)層には、生分解性樹脂(A)以外にも熱安定剤、酸化防止剤、紫外線吸収剤、結晶核剤、帯電防止剤、難燃剤、可塑剤、滑剤、充填剤、滑剤、結晶核剤、可塑剤などが配合されていてもよい。   In addition to the biodegradable resin (A), the biodegradable resin (A) layer of the present invention includes a heat stabilizer, an antioxidant, an ultraviolet absorber, a crystal nucleating agent, an antistatic agent, a flame retardant, a plasticizer. Agents, lubricants, fillers, lubricants, crystal nucleating agents, plasticizers and the like may be blended.

〔生分解性酸変性ポリエステル系樹脂(B)層〕
まず、本発明の生分解性積層体において、生分解性樹脂(A)層とポリビニルアルコール系樹脂(C)層の間に介在させる生分解性酸変性ポリエステル系樹脂(B)層について説明する。
かかる生分解性酸変性ポリエステル系樹脂(B)層は(A)層と(C)層の接着剤層として作用するものである。
[Biodegradable acid-modified polyester resin (B) layer]
First, the biodegradable acid-modified polyester resin (B) layer interposed between the biodegradable resin (A) layer and the polyvinyl alcohol resin (C) layer in the biodegradable laminate of the present invention will be described.
The biodegradable acid-modified polyester resin (B) layer acts as an adhesive layer between the (A) layer and the (C) layer.

本発明で用いられる生分解性酸変性ポリエステル系樹脂(B)は、原料の生分解性ポリエステル系樹脂(b)を酸で変性させたものである。
本発明の生分解性酸変性ポリエステル系樹脂(B)は、下記一般式(1)〜(3)でいずれか1つ以上の構造単位を有することが好ましい。

Figure 2019181877
〔式中、lは2〜6の整数である。〕
Figure 2019181877
〔式中、mは2〜6の整数である。〕
Figure 2019181877
〔式中、nは2〜6の整数である。〕 The biodegradable acid-modified polyester resin (B) used in the present invention is obtained by modifying a raw material biodegradable polyester resin (b) with an acid.
The biodegradable acid-modified polyester resin (B) of the present invention preferably has any one or more structural units represented by the following general formulas (1) to (3).
Figure 2019181877
[Wherein, l is an integer of 2-6. ]
Figure 2019181877
[In formula, m is an integer of 2-6. ]
Figure 2019181877
[In formula, n is an integer of 2-6. ]

本発明で用いられる生分解性酸変性ポリエステル系樹脂(B)は、上記一般式(1)〜(3)いずれか1つ以上の構造単位を有することが好ましく、生分解性のされやすさの点では全てこれらの構造単位から構成されているものが望ましいが、耐熱性や強度、生分解性の制御などの目的で、他の構造単位を有していてもよい。かかる一般式(1)〜(3)で表される構造単位合計量は、通常50モル%以上であり、好ましくは70モル%以上、より好ましくは90モル%以上である。   The biodegradable acid-modified polyester resin (B) used in the present invention preferably has one or more structural units of the above general formulas (1) to (3), and is easily biodegradable. In terms of the point, those composed of these structural units are all desirable, but other structural units may be included for the purpose of controlling heat resistance, strength, biodegradability and the like. The total amount of the structural units represented by the general formulas (1) to (3) is usually 50 mol% or more, preferably 70 mol% or more, more preferably 90 mol% or more.

上記一般式(1)〜(3)で表される構造単位をから選ばれる少なくともひとつの構造単位を有する生分解性酸変性ポリエステル系樹脂(B)は、脂肪族ジカルボン酸及び/又は脂肪族ジオール化合物を縮重合し、更に、酸変性することにより得られる。
かかる脂肪族ジカルボン酸としては、例えば、コハク酸、グルタル酸、アジピン酸、1,5−ペンタンジカルボン酸、1,6−ヘキサンジカルボン酸などを挙げることができ、特には成形性と柔軟性の点からアジピン酸が好ましい。
脂肪族ジオール化合物としては、例えば、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールなどを挙げることができ、特には成形性と柔軟性の点から1,4−ブタンジオールが好ましい。
The biodegradable acid-modified polyester resin (B) having at least one structural unit selected from the structural units represented by the general formulas (1) to (3) is an aliphatic dicarboxylic acid and / or an aliphatic diol. It can be obtained by polycondensation of the compound and further acid modification.
Examples of such aliphatic dicarboxylic acids include succinic acid, glutaric acid, adipic acid, 1,5-pentanedicarboxylic acid, 1,6-hexanedicarboxylic acid, and the like, particularly in terms of moldability and flexibility. To adipic acid.
Examples of the aliphatic diol compound include ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and the like. From the viewpoint, 1,4-butanediol is preferred.

またその他の成分として、具体的には、例えば、4−ヒドロキシ酪酸、5−ヒドロキシ吉草酸、6−ヒドロキシヘキサン酸などのヒドロキシ酸;テレフタル酸、イソフタル酸などの芳香族ジカルボン酸に由来するもの;シュウ酸、マロン酸などのアルキレン鎖の数が2未満であるジカルボン酸に由来するもの;グリコール酸、乳酸などのアルキレン鎖の数が2未満であるヒドロキシカルボン酸に由来するもの;その他、ポリエステル系樹脂の共重合成分として公知のものを挙げることができる。   As other components, specifically, hydroxy acids such as 4-hydroxybutyric acid, 5-hydroxyvaleric acid and 6-hydroxyhexanoic acid; those derived from aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid; Those derived from dicarboxylic acids having an alkylene chain number of less than 2 such as oxalic acid and malonic acid; those derived from hydroxycarboxylic acids having an alkylene chain number of less than 2 such as glycolic acid and lactic acid; A well-known thing can be mentioned as a copolymerization component of resin.

本発明の生分解性酸変性ポリエステル系樹脂(B)の重量平均分子量は、通常5000〜50000であり、好ましくは5500〜40000、特に好ましくは6000〜30000である。かかる重合度が大きすぎると溶融粘度が高くなり溶融成形しにくくなる傾向があり、逆に小さすぎると成形物が脆くなる傾向がある。かかる重量平均分子量は、溶離液としてのテトラヒドロフランと、40℃に加熱したカラム(ポリスチレンゲル)を用いて、ISO16014―1規格及びISO16014−3規格に従い、ポリスチレン等価量としてサイズ排除クロマトグラフィー(GPC、ゲル浸透クロマトグラフィー)により測定することができる。
かかる重量平均分子量が小さすぎると製造が困難となり、大きすぎると溶融粘度が高くなり成形性が低下する傾向がある。
The weight average molecular weight of the biodegradable acid-modified polyester resin (B) of the present invention is usually 5000 to 50000, preferably 5500 to 40000, and particularly preferably 6000 to 30000. If the degree of polymerization is too large, the melt viscosity tends to be high and melt molding tends to be difficult. Conversely, if it is too small, the molded product tends to be brittle. Such a weight average molecular weight is obtained by using size exclusion chromatography (GPC, gel as polystyrene equivalent amount) using tetrahydrofuran as an eluent and a column (polystyrene gel) heated to 40 ° C. in accordance with ISO 16014-1 standard and ISO 16014-3 standard. Permeation chromatography).
If the weight average molecular weight is too small, the production becomes difficult. If the weight average molecular weight is too large, the melt viscosity tends to increase and the moldability tends to decrease.

本発明の生分解性酸変性ポリエステル系樹脂(B)は、原料の生分解性ポリエステル系樹脂(b)にα、β−不飽和カルボン酸またはその無水物(以下、α、β−不飽和カルボン酸またはその無水物をα、β−不飽和カルボン酸類ということがある。)をグラフト重合し、酸で変性されたものである。
かかるα、β−不飽和カルボン酸類としては、具体的にはアクリル酸、メタクリル酸などのα、β−不飽和モノカルボン酸;マレイン酸、フマル酸、イタコン酸、シトラス酸、テトラヒドロフタル酸、クロトン酸、イソクロトン酸等のα,β−や不飽和ジカルボン酸又はその無水物などが挙げられ、好ましくはα、β−不飽和ジカルボン酸の無水物が用いられ、中でも無水マレイン酸が好ましい。
なお、これらのα、β−不飽和カルボン酸類は、1種を単独で用いる場合に限らず、2種以上を併用してもよい。
The biodegradable acid-modified polyester resin (B) of the present invention comprises an α, β-unsaturated carboxylic acid or an anhydride thereof (hereinafter referred to as α, β-unsaturated carboxylic acid) as a raw material biodegradable polyester resin (b). The acid or its anhydride may be referred to as α, β-unsaturated carboxylic acids)) and is modified with an acid.
Examples of such α, β-unsaturated carboxylic acids include α, β-unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid; maleic acid, fumaric acid, itaconic acid, citrus acid, tetrahydrophthalic acid, croton Examples include α, β- such as acid and isocrotonic acid, and unsaturated dicarboxylic acids or anhydrides thereof. Preferred are anhydrides of α, β-unsaturated dicarboxylic acids, and maleic anhydride is particularly preferable.
In addition, these (alpha), (beta)-unsaturated carboxylic acids are not restricted to using individually by 1 type, You may use 2 or more types together.

原料の生分解性ポリエステル系樹脂(b)にα、β−不飽和カルボン酸類をグラフト重合させる方法としては、(i)原料を溶媒に溶かし溶液として、かかる溶液を混合してグラフト重合させる方法、(ii)分散剤を用いて、原料の懸濁液の状態でグラフト重合させる方法、(iii)原料を溶融状態で混合し、グラフト重合させる方法が挙げられる。中でも(iii)の方法が好ましい。
また、グラフト重合において、熱のみで反応させることも可能であるが、ラジカル開始剤を用いることが反応性を高めることで好ましい。
As a method of graft polymerization of α, β-unsaturated carboxylic acids to the raw material biodegradable polyester resin (b), (i) a method of dissolving the raw material in a solvent and mixing the solution to perform graft polymerization; (Ii) A method of graft polymerization using a dispersant in the state of a raw material suspension, and (iii) a method of mixing raw materials in a molten state and graft polymerization. Among these, the method (iii) is preferable.
Further, in the graft polymerization, it is possible to cause the reaction only with heat, but it is preferable to use a radical initiator to increase the reactivity.

原料の生分解性ポリエステル系樹脂(b)の市販品としては、例えば、PBATを主成分とするBASF社製「エコフレックス」、ポリブチレンサクシネートを主成分とする三菱化学社製「GS−PLA」、などを挙げることができる。   Examples of commercially available raw-material biodegradable polyester resins (b) include “Ecoflex” manufactured by BASF, which mainly contains PBAT, and “GS-PLA” manufactured by Mitsubishi Chemical, whose main component is polybutylene succinate. And the like.

以下、溶融法を詳細に説明する。溶融法として、原料の生分解性ポリエステル系樹脂(b)とα、β−不飽和カルボン酸類、およびラジカル開始剤を予め混合した後、混練機中で溶融混練して反応させる方法や、混練機中で溶融状態にある生分解性ポリエステル系樹脂に、α、β−不飽和カルボン酸類、およびラジカル開始剤を配合する方法等を用いることができる。
原料を予め混合する際に用いられる混合機としては、例えば、ヘンシェルミキサー、リボンブレンダー、等が用いられ、溶融混練に用いられる混練機としては、例えば、単軸又は二軸押出機、ロール、バンバリーミキサー、ニーダー、ブラベンダーミキサー等を使用することができる。
溶融混練時の温度設定は、原料の生分解性ポリエステル系樹脂(b)の融点以上であって、かつ、熱劣化しない温度範囲で適宜設定すればよい。好ましくは100〜250℃、より好ましくは160〜220℃で溶融混合される。
Hereinafter, the melting method will be described in detail. As a melting method, a raw biodegradable polyester resin (b), an α, β-unsaturated carboxylic acid, and a radical initiator are mixed in advance and then melt kneaded and reacted in a kneader, or a kneader. A method of blending an α, β-unsaturated carboxylic acid and a radical initiator with a biodegradable polyester resin in a molten state can be used.
As a mixer used when mixing raw materials in advance, for example, a Henschel mixer, a ribbon blender, or the like is used. As a kneader used for melt kneading, for example, a single-screw or twin-screw extruder, roll, Banbury, etc. A mixer, a kneader, a Brabender mixer, or the like can be used.
What is necessary is just to set the temperature at the time of melt-kneading suitably in the temperature range which is more than melting | fusing point of the raw material biodegradable polyester-type resin (b), and is not thermally deteriorated. It is preferably melt-mixed at 100 to 250 ° C, more preferably 160 to 220 ° C.

α、β−不飽和カルボン酸類の使用量は、原料の生分解性ポリエステル系樹脂(b)100重量部に対して、通常0.01〜5重量部であり、特に0.1〜2重量部、殊に0.2〜1重量部の範囲が好ましく用いられる。かかる配合量が少なすぎると生分解性ポリエステル系樹脂(b)に十分な量の極性基が導入されず、層間接着性、特にPVA系樹脂層との接着力が不充分になる傾向がある。また、配合量が多すぎると、グラフト重合しなかったα、β−不飽和カルボン酸類が樹脂中に残存する場合があり、それに起因する外観不良などが生じる傾向がある。   The amount of α, β-unsaturated carboxylic acid used is usually 0.01 to 5 parts by weight, particularly 0.1 to 2 parts by weight, based on 100 parts by weight of the raw material biodegradable polyester resin (b). In particular, the range of 0.2 to 1 part by weight is preferably used. If the blending amount is too small, a sufficient amount of polar groups are not introduced into the biodegradable polyester resin (b), and the interlaminar adhesion, particularly the adhesive strength with the PVA resin layer tends to be insufficient. Moreover, when there are too many compounding quantities, the (alpha) and (beta) -unsaturated carboxylic acids which were not graft-polymerized may remain in resin, and there exists a tendency for the appearance defect resulting from it to arise.

また、得られた生分解性酸変性ポリエステル系樹脂(B)の酸価は、通常、2.0〜6.5mg・KOH/gであり、好ましくは、2.5〜6.0mg・KOH/g、特に好ましくは、3.0〜5.5mg・KOH/g、更に好ましくは、3.5〜5.0mg・KOH/gである。
かかる酸価が高すぎると、外観不良となり、低すぎると他の樹脂との接着性が低下する傾向がある。
Moreover, the acid value of the obtained biodegradable acid-modified polyester resin (B) is usually 2.0 to 6.5 mg · KOH / g, preferably 2.5 to 6.0 mg · KOH / g. g, particularly preferably 3.0 to 5.5 mg · KOH / g, and still more preferably 3.5 to 5.0 mg · KOH / g.
If the acid value is too high, the appearance is poor, and if it is too low, the adhesiveness to other resins tends to decrease.

上記の酸価を測定する方法を以下に詳細に説明する。
まず、測定する生分解性酸変性ポリエステル系樹脂(B)を溶剤でよく洗浄する。かかる洗浄は生分解性酸変性ポリエステル系樹脂の不純物、主に未反応のα、β−不飽和カルボン酸またはその無水物を洗い流すためである。かかる溶剤としては、生分解性酸変性ポリエステル系樹脂(B)が溶解することがない溶剤を用いることが必要であり、例えば、水、アセトン、メタノール、エタノール、イソプロパノールなどが挙げられる。
The method for measuring the acid value will be described in detail below.
First, the biodegradable acid-modified polyester resin (B) to be measured is thoroughly washed with a solvent. This washing is for washing away impurities of the biodegradable acid-modified polyester resin, mainly unreacted α, β-unsaturated carboxylic acid or its anhydride. As such a solvent, it is necessary to use a solvent in which the biodegradable acid-modified polyester resin (B) does not dissolve, and examples thereof include water, acetone, methanol, ethanol, and isopropanol.

次に、試験瓶に、溶媒としてテトラヒドロフラン100mlをとり、ホットスターラー(設定温度75℃、スターラー回転数750rpm)で撹拌させながら生分解性酸変性ポリエステル系樹脂(B)5gを投入する。生分解性酸変性ポリエステル系樹脂(B)が溶解するまで、5〜6時間撹拌する。溶解後、超純水4mlを添加して更に10分間撹拌を行い、試験液を作製する。かかる試験液を自動滴定装置により、水酸化カリウム水溶液(N/10)で滴定して、下記の式により酸価を求める。

Figure 2019181877
Next, 100 ml of tetrahydrofuran is taken as a solvent in a test bottle, and 5 g of the biodegradable acid-modified polyester resin (B) is charged while stirring with a hot stirrer (setting temperature 75 ° C., stirrer rotation speed 750 rpm). Stir for 5 to 6 hours until the biodegradable acid-modified polyester resin (B) is dissolved. After dissolution, 4 ml of ultrapure water is added and stirred for another 10 minutes to prepare a test solution. The test solution is titrated with an aqueous potassium hydroxide solution (N / 10) using an automatic titrator, and the acid value is determined by the following formula.
Figure 2019181877

A=生分解性酸変性ポリエステル系樹脂(B)に要した水酸化カリウム水溶液N/10の使用量(ml)
B=空試験に要した水酸化カリウム水溶液N/10の使用量(ml)
f=N/10水酸化カリウム水溶液の力価
S=生分解性酸変性ポリエステル系樹脂(A)採取量(g)
A = Amount of aqueous potassium hydroxide N / 10 required for the biodegradable acid-modified polyester resin (B) (ml)
B = Amount of potassium hydroxide aqueous solution N / 10 required for the blank test (ml)
f = N / 10 Potency of aqueous potassium hydroxide solution S = Biodegradable acid-modified polyester resin (A) Collected amount (g)

滴定装置
滴定測定装置:京都電子工業(株) 電位差自動滴定装置AT−610
参照電極:複合ガラス電極C−171
滴定液:キシダ化学 水酸化カリウム水溶液(N/10)
Titration device Titration measuring device: Kyoto Denshi Kogyo Co., Ltd. Potential difference automatic titration device AT-610
Reference electrode: Composite glass electrode C-171
Titration solution: Kishida chemistry Potassium hydroxide aqueous solution (N / 10)

ラジカル開始剤としては特に限定されず、公知のものを用いることができるが、例えば、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、2,5−ジメチルへキサン−2,5−ジハイドロパーオキサイド、2,5−ジメチル−2,5−ビス(t−ブチルオキシ)ヘキサン、3,5,5−トリメチルへキサノイルパーオキサイド、t−ブチルパーオキシベンゾエート、ベンゾイルパーオキサイド、m−トルオイルパーオキサイド、ジクミルパーオキサイド、1,3−ビス(t−ブチルパーオキシイソプロピル)ベンゼン、ジブチルパーオキサイド、メチルエチルケトンパーオキサイド、過酸化カリウム、過酸化水素などの有機及び無機の過酸化物;2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(イソブチルアミド)ジハライド、2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)プロピオンアミド]、アゾジ−t−ブタン等のアゾ化合物;ジクミル等の炭素ラジカル発生剤などが挙げられる。
これらは、1種を単独で用いてもよく、2種以上のものを併用することも可能である。
It does not specifically limit as a radical initiator, Although a well-known thing can be used, For example, t-butyl hydroperoxide, cumene hydroperoxide, 2,5-dimethyl hexane-2,5-dihydroperoxide 2,5-dimethyl-2,5-bis (t-butyloxy) hexane, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxybenzoate, benzoyl peroxide, m-toluoyl peroxide, Organic and inorganic peroxides such as dicumyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene, dibutyl peroxide, methyl ethyl ketone peroxide, potassium peroxide, hydrogen peroxide; 2,2′- Azobisisobutyronitrile, 2,2'-azobis (isobutyl Bromide) dihalide, 2,2'-azobis [2-methyl-N-(2-hydroxyethyl) propionamide], azo compounds such as azodi -t- butane; and carbon radical generators such as dicumyl like.
These may be used alone or in combination of two or more.

ラジカル開始剤の配合量は、通常、原料の生分解性ポリエステル系樹脂(b)100重量部に対して0.01〜0.7重量部であり、特に0.1〜0.5重量部、殊に0.15〜0.4重量部の範囲が好ましく用いられる。
かかるラジカル開始剤の配合量が少な過ぎると、グラフト重合が十分に起こらず、本発明の効果が得られない場合があり、多すぎる場合には、生分解性ポリエステル系樹脂の分解による低分子量化がおこり、凝集力不足による接着力強度不足となる傾向がある。
The amount of the radical initiator is usually 0.01 to 0.7 parts by weight, particularly 0.1 to 0.5 parts by weight, based on 100 parts by weight of the raw material biodegradable polyester resin (b). In particular, the range of 0.15 to 0.4 parts by weight is preferably used.
If the amount of the radical initiator is too small, graft polymerization may not occur sufficiently, and the effects of the present invention may not be obtained. If it is too large, the molecular weight may be reduced by decomposition of the biodegradable polyester resin. Tends to occur, resulting in insufficient adhesive strength due to insufficient cohesive strength.

また、本発明の生分解性酸変性ポリエステル系樹脂(B)層は、生分解性酸変性ポリエステル系樹脂(B)以外の成分を含有してもよく、生分解性樹脂、熱安定剤、酸化防止剤、紫外線吸収剤、結晶核剤、帯電防止剤、難燃剤、可塑剤、滑剤、充填剤、滑剤、結晶核剤、可塑剤などが配合されていてもよい。 In addition, the biodegradable acid-modified polyester resin (B) layer of the present invention may contain components other than the biodegradable acid-modified polyester resin (B), and the biodegradable resin, the heat stabilizer, the oxidation An inhibitor, an ultraviolet absorber, a crystal nucleating agent, an antistatic agent, a flame retardant, a plasticizer, a lubricant, a filler, a lubricant, a crystal nucleating agent, a plasticizer, and the like may be blended.

〔PVA系樹脂(C)層〕
次に、本発明の積層体におけるPVA系樹脂(C)層について説明する。
かかるPVA系樹脂(C)層は、特に積層体のガスバリア性を担うもので、生分解性樹脂層(A)に対し、その少なくとも一方の面に生分解性酸変性ポリエステル系樹脂(B)を介して積層されるものである。
[PVA resin (C) layer]
Next, the PVA resin (C) layer in the laminate of the present invention will be described.
Such a PVA-based resin (C) layer is particularly responsible for the gas barrier properties of the laminate. The biodegradable acid-modified polyester-based resin (B) is provided on at least one surface of the biodegradable resin layer (A). Are stacked.

本発明のPVA系樹脂(C)層はPVA系樹脂(C)を主成分とする層であり、通常はPVA系樹脂を70重量%以上、特に80重量%以上、殊に90重量%以上含有するものである。かかる含有量が少なすぎると、ガスバリア性が不充分となる傾向がある。
かかるPVA系樹脂(C)層に用いられるPVA系樹脂(C)は、ビニルエステル系単量体を共重合して得られるポリビニルエステル系樹脂をケン化して得られる、ビニルアルコール構造単位を主体とする樹脂であり、ケン化度相当のビニルアルコール構造単位とケン化されずに残ったビニルエステル構造単位から構成される。
上記ビニルエステル系単量体としては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサチック酸ビニル等が挙げられるが、経済的に酢酸ビニルが好ましく用いられる。
The PVA resin (C) layer of the present invention is a layer mainly composed of the PVA resin (C), and usually contains 70% by weight or more, particularly 80% by weight or more, particularly 90% by weight or more of the PVA resin. To do. If the content is too small, gas barrier properties tend to be insufficient.
The PVA resin (C) used in the PVA resin (C) layer is mainly composed of a vinyl alcohol structural unit obtained by saponifying a polyvinyl ester resin obtained by copolymerizing a vinyl ester monomer. The resin is composed of a vinyl alcohol structural unit corresponding to the degree of saponification and a vinyl ester structural unit remaining without being saponified.
Examples of the vinyl ester monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, and benzoic acid. Examples thereof include vinyl acid vinyl and versatic acid vinyl, and vinyl acetate is preferably used economically.

本発明で用いられるPVA系樹脂(C)の平均重合度(JIS K6726に準拠して測定)は、通常、200〜1800であり、特に300〜1500、殊に300〜1000のものが好ましく用いられる。
かかる平均重合度が小さすぎると、PVA系樹脂層の機械的強度が不充分となる傾向があり、逆に平均重合度が大きすぎると、熱溶融成形によってPVA系樹脂層を形成する場合に流動性が不足して成形性が低下する傾向があり、成形時せん断発熱が異常発生して樹脂が熱分解しやすくなる場合がある。
The average degree of polymerization (measured in accordance with JIS K6726) of the PVA resin (C) used in the present invention is usually 200 to 1800, particularly 300 to 1500, particularly 300 to 1000. .
If the average degree of polymerization is too small, the mechanical strength of the PVA-based resin layer tends to be insufficient. Conversely, if the average degree of polymerization is too large, the PVA-based resin layer is fluidized when formed by hot melt molding. There is a tendency that moldability is insufficient and moldability is lowered, and shear heat generation is abnormally generated during molding, and the resin is likely to be thermally decomposed.

また、本発明で用いられるPVA系樹脂(C)のケン化度(JIS K6726に準拠して測定)は、通常、80〜100モル%であり、特に90〜99.9モル%、殊に98〜99.9モル%のものが好適に用いられる。
かかるケン化度が低すぎると、ガスバリア性が低下する傾向がある。
The degree of saponification (measured according to JIS K6726) of the PVA resin (C) used in the present invention is usually 80 to 100 mol%, particularly 90 to 99.9 mol%, particularly 98. Those of ˜99.9 mol% are preferably used.
When the saponification degree is too low, the gas barrier property tends to be lowered.

また、本発明では、PVA系樹脂(C)として、ポリビニルエステル系樹脂の製造時に各種単量体を共重合させ、これをケン化して得られたものや、未変性PVAに後変性によって各種官能基を導入した各種変性PVA系樹脂を用いることができる。   In the present invention, as the PVA-based resin (C), various monomers are copolymerized at the time of producing the polyvinyl ester-based resin and saponified, and various functionalities are obtained by post-modifying the unmodified PVA. Various modified PVA-based resins into which groups are introduced can be used.

ビニルエステル系モノマーとの共重合に用いられる単量体としては、例えば、エチレンやプロピレン、イソブチレン、α−オクテン、α−ドデセン、α−オクタデセン等のオレフィン類、3−ブテン−1−オール、4−ペンテン−1−オール、5−ヘキセン−1−オール、3,4−ジヒドロキシ−1−ブテン等のヒドロキシ基含有α−オレフィン類およびそのアシル化物などの誘導体、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸等の不飽和酸類、その塩、モノエステル、あるいはジアルキルエステル、アクリロニトリル、メタアクリロニトリル等のニトリル類、ジアセトンアクリルアミド、アクリルアミド、メタクリルアミド等のアミド類、エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸類あるいはその塩、アルキルビニルエーテル類、ジメチルアリルビニルケトン、N−ビニルピロリドン、塩化ビニル、ビニルエチレンカーボネート、2,2−ジアルキル−4−ビニル−1,3−ジオキソラン、グリセリンモノアリルエーテル、3,4−ジアセトキシ−1−ブテン、等のビニル化合物、酢酸イソプロペニル、1−メトキシビニルアセテート等の置換酢酸ビニル類、塩化ビニリデン、1,4−ジアセトキシ−2−ブテン、ビニレンカーボネート、等が挙げられる。   Examples of the monomer used for copolymerization with the vinyl ester monomer include olefins such as ethylene, propylene, isobutylene, α-octene, α-dodecene, α-octadecene, 3-buten-1-ol, 4 -Derivatives such as hydroxy group-containing α-olefins such as penten-1-ol, 5-hexen-1-ol, 3,4-dihydroxy-1-butene and acylated products thereof, acrylic acid, methacrylic acid, crotonic acid, Unsaturated acids such as maleic acid, maleic anhydride and itaconic acid, their salts, monoesters or nitriles such as dialkyl esters, acrylonitrile and methacrylonitrile, amides such as diacetone acrylamide, acrylamide and methacrylamide, ethylene sulfonic acid , Allyl sulfonic acid, methallyl sulfo Olefin sulfonic acids such as acids or salts thereof, alkyl vinyl ethers, dimethylallyl vinyl ketone, N-vinyl pyrrolidone, vinyl chloride, vinyl ethylene carbonate, 2,2-dialkyl-4-vinyl-1,3-dioxolane, glycerin monoallyl Ethers, vinyl compounds such as 3,4-diacetoxy-1-butene, substituted vinyl acetates such as isopropenyl acetate and 1-methoxyvinyl acetate, vinylidene chloride, 1,4-diacetoxy-2-butene, vinylene carbonate, etc. Is mentioned.

また、後反応によって官能基が導入されたPVA系樹脂としては、ジケテンとの反応によるアセトアセチル基を有するもの、エチレンオキサイドとの反応によるポリアルキレンオキサイド基を有するもの、エポキシ化合物等との反応によるヒドロキシアルキル基が有するもの、あるいは各種官能基を有するアルデヒド化合物をPVAと反応させて得られたものなどを挙げることができる。
かかる変性PVA系樹脂中の変性種、すなわち共重合体中の各種単量体に由来する構成単位、あるいは後反応によって導入された官能基の含有量は、変性種によって特性が大きくことなるため一概には言えないが、通常、1〜20モル%であり、特に2〜10モル%の範囲が好ましく用いられる。
In addition, PVA resins having a functional group introduced by a post-reaction include those having an acetoacetyl group by reaction with diketene, those having a polyalkylene oxide group by reaction with ethylene oxide, reaction with an epoxy compound, etc. Examples thereof include those having a hydroxyalkyl group or those obtained by reacting an aldehyde compound having various functional groups with PVA.
The content of the modified species in the modified PVA resin, that is, the constituent units derived from various monomers in the copolymer, or the functional group introduced by the post-reaction is largely different depending on the modified species. Although it cannot say, it is 1-20 mol% normally, and especially the range of 2-10 mol% is used preferably.

これらの各種変性PVA系樹脂の中でも、本発明においては、溶融成形可能なPVA系樹脂が好ましく、更には、側鎖に一級水酸基を有するポリビニルアルコール系樹脂、アルキレンオキサイド基含有ポリビニルアルコール系樹脂及びエチレン変性PVA系樹脂等のα−オレフィン単位含有ポリビニルアルコール系樹脂が好ましく、特に、下記一般式(4)で示される側鎖に1,2−ジオール構造を有する構造単位を有するPVA系樹樹が溶融成形が容易になる点で好ましい。
なお、一般式(4)におけるR1、R2、及びR3はそれぞれ独立して水素原子または置換基を有してもよい炭素数1〜4のアルキル基を示し、Xは単結合または結合鎖を示し、R4、R5、及びR6はそれぞれ独立して水素原子または置換基を有してもよい炭素数1〜4のアルキル基を示すものである。置換基とは、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、スルホン酸基、エステル基が挙げられる。
Among these various modified PVA resins, in the present invention, a melt-moldable PVA resin is preferable, and further, a polyvinyl alcohol resin having a primary hydroxyl group in the side chain, an alkylene oxide group-containing polyvinyl alcohol resin, and ethylene. An α-olefin unit-containing polyvinyl alcohol resin such as a modified PVA resin is preferable. In particular, a PVA tree having a structural unit having a 1,2-diol structure in the side chain represented by the following general formula (4) is melted. It is preferable in terms of easy molding.
In the general formula (4), R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent, and X represents a single bond or a bond Represents a chain, and R 4 , R 5 , and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent. Examples of the substituent include a halogen atom (fluorine atom, chlorine atom, bromine atom, etc.), a sulfonic acid group, and an ester group.

Figure 2019181877
Figure 2019181877

中でも、一般式(4)で表わされる1,2−ジオール構造単位中のR1〜R3、及びR4〜R6がすべて水素原子であり、Xが単結合である、下記一般式(4’)で表わされる構造単位を有するPVA系樹脂が最も好ましい。

Figure 2019181877
Among them, R 1 to R 3 and R 4 to R 6 in the 1,2-diol structural unit represented by the general formula (4) are all hydrogen atoms, and X is a single bond. A PVA resin having a structural unit represented by ') is most preferred.
Figure 2019181877

また、一般式(4)で表わされる1,2−ジオール構造単位中のXは熱安定性の点や高温下や酸性条件下での安定性の点で単結合であるものが最も好ましいが、本発明の効果を阻害しない範囲であれば結合鎖であってもよく、かかる結合鎖としては、例えば、アルキレン、アルケニレン、アルキニレン、フェニレン、ナフチレン等の炭化水素(これらの炭化水素はフッ素、塩素、臭素等のハロゲン等で置換されていても良い)の他、−O−、−(CH2O)m−、−(OCH2)m−、−(CH2O)mCH2−、−CO−、−COCO−、−CO(CH2)mCO−、−CO(C64)CO−、−S−、−CS−、−SO−、−SO2−、−NR−、−CONR−、−NRCO−、−CSNR−、−NRCS−、−NRNR−、−HPO4−、−Si(OR)2−、−OSi(OR)2−、−OSi(OR)2O−、−Ti(OR)2−、−OTi(OR)2−、−OTi(OR)2O−、−Al(OR)−、−OAl(OR)−、−OAl(OR)O−、等(Rは各々独立して任意の置換基であり、水素原子、アルキル基が好ましく、またmは1〜5の整数)が挙げられる。中でも製造時あるいは使用時の安定性の点で炭素数6以下のアルキレン基、特にメチレン基、あるいは−CH2OCH2−が好ましい。 Further, X in the 1,2-diol structural unit represented by the general formula (4) is most preferably a single bond in terms of thermal stability and stability under high temperature or acidic conditions. A bonded chain may be used as long as it does not inhibit the effect of the present invention. Examples of such a bonded chain include hydrocarbons such as alkylene, alkenylene, alkynylene, phenylene, and naphthylene (these hydrocarbons are fluorine, chlorine, another may be substituted with halogen such as bromine, etc.), -O -, - (CH 2 O) m -, - (OCH 2) m -, - (CH 2 O) mCH 2 -, - CO- , -COCO -, - CO (CH 2) mCO -, - CO (C 6 H 4) CO -, - S -, - CS -, - SO -, - SO 2 -, - NR -, - CONR-, -NRCO-, -CSNR-, -NRCS-, -NRNR-, -HPO 4 -, - Si (OR) 2 -, - OSi (OR) 2 -, - OSi (OR) 2 O -, - Ti (OR) 2 -, - OTi (OR) 2 -, - OTi (OR) 2 O-, -Al (OR)-, -OAl (OR)-, -OAl (OR) O-, etc. (R is each independently an optional substituent, preferably a hydrogen atom or an alkyl group; Is an integer of 1 to 5. Among them, an alkylene group having 6 or less carbon atoms, particularly a methylene group or —CH 2 OCH 2 — is preferable from the viewpoint of stability during production or use.

かかる側鎖に1,2−ジオール構造を有するPVA系樹脂の製造法としては、特に限定されないが、例えば、特開2006−95825号公報に説明されている方法を用いることができる。
中でも、共重合反応性および工業的な取扱い性に優れるという点から、3,4−ジアシロキシ−1−ブテンとビニルエステル系化合物を共重合してケン化する方法を用いることが好ましく、特に3,4−ジアセトキシ−1−ブテンと酢酸ビニルを共重合してケン化する方法が好ましく用いられる。
A method for producing a PVA resin having a 1,2-diol structure in the side chain is not particularly limited, and for example, a method described in JP-A-2006-95825 can be used.
Among these, from the viewpoint of excellent copolymerization reactivity and industrial handleability, it is preferable to use a method in which 3,4-diasiloxy-1-butene and a vinyl ester compound are copolymerized and saponified. A method in which 4-diacetoxy-1-butene and vinyl acetate are copolymerized and saponified is preferably used.

かかる側鎖に1,2−ジオール構造を有するPVA系樹脂に含まれる1,2−ジオール構造単位の含有量は、通常、1〜20モル%であり、さらに2〜10モル%、特に3〜8モル%のものが好ましく用いられる。かかる含有量が低すぎると、側鎖1,2−ジオール構造の効果が得られにくく、逆に高すぎると、高湿度でのガスバリア性の低下が著しくなる傾向がある。   The content of the 1,2-diol structural unit contained in the PVA resin having a 1,2-diol structure in the side chain is usually 1 to 20 mol%, further 2 to 10 mol%, particularly 3 to 8 mol% is preferably used. If the content is too low, it is difficult to obtain the effect of the side chain 1,2-diol structure. On the other hand, if the content is too high, the gas barrier property at high humidity tends to deteriorate significantly.

なお、PVA系樹脂中の1,2−ジオール構造単位の含有率は、PVA系樹脂を完全にケン化したものの1H−NMRスペクトル(溶媒:DMSO−d6、内部標準:テトラメチルシラン)から求めることができ、具体的には1,2−ジオール単位中の水酸基プロトン、メチンプロトン、およびメチレンプロトン、主鎖のメチレンプロトン、主鎖に連結する水酸基のプロトンなどに由来するピーク面積から算出すればよい。 The content of the 1,2-diol structural unit in the PVA resin is determined from a 1 H-NMR spectrum (solvent: DMSO-d6, internal standard: tetramethylsilane) of a completely saponified PVA resin. Specifically, if calculated from the peak area derived from the hydroxyl proton, methine proton, and methylene proton in the 1,2-diol unit, the methylene proton in the main chain, the proton in the hydroxyl group linked to the main chain, etc. Good.

また、本発明で用いられるPVA系樹脂(C)は、一種類であっても、二種類以上の混合物であってもよく、その場合は、上述の未変性PVAどうし、未変性PVAと側鎖に1,2−ジオール構造を有するPVA系樹脂、ケン化度、重合度、変性度などが異なる側鎖に1,2−ジオール構造を有するPVA系樹脂同士、未変性PVA、あるいは側鎖に1,2−ジオール構造を有するPVA系樹脂と他の変性PVA系樹脂、などの組み合わせを用いることができる。   In addition, the PVA resin (C) used in the present invention may be one kind or a mixture of two or more kinds. In that case, the above-mentioned unmodified PVA, unmodified PVA and side chains are used. PVA resin having a 1,2-diol structure, PVA resins having a 1,2-diol structure in side chains different in saponification degree, polymerization degree, modification degree, etc., unmodified PVA, or 1 in side chain A combination of a PVA resin having a 2-diol structure and another modified PVA resin can be used.

また、本発明のPVA系樹脂(C)層は、PVA系樹脂(C)以外の成分を含有してもよく、PVA系樹脂(C)以外他の生分解性樹脂、熱安定剤、酸化防止剤、紫外線吸収剤、結晶核剤、帯電防止剤、難燃剤、可塑剤、滑剤、充填剤、滑剤、結晶核剤、可塑剤などが配合されていてもよい。   Moreover, the PVA-type resin (C) layer of this invention may contain components other than PVA-type resin (C), other biodegradable resins other than PVA-type resin (C), a heat stabilizer, antioxidant. An agent, an ultraviolet absorber, a crystal nucleating agent, an antistatic agent, a flame retardant, a plasticizer, a lubricant, a filler, a lubricant, a crystal nucleating agent, a plasticizer, and the like may be blended.

〔積層体〕
本発明の積層体は、生分解性樹脂(A)層の少なくとも一方の面に、生分解性酸変性ポリエステル系樹脂(B)を主成分とする接着剤層を介してPVA系樹脂(C)層が積層されてなるものであり、通常3〜15層、好ましくは3〜7層、特に好ましくは5〜7層の層構造を有する。その構成は特に限定されないが、生分解性樹脂層をa、PVA系樹脂層をc、生分解性酸変性ポリエステル層(接着剤層)をbとするとき、a/b/c、a/b/c/b/a、a/c/b/c/b/c/aなど、任意の組み合わせが可能である。なお、かかる生分解性樹脂層、PVA系樹脂層、生分解性酸変性ポリエステル層は、同一のものでもよく、異なったものであってもよい。
なお、通常は、PVA系樹脂層に吸湿によるガスバリア性能の低下を防止するため、外気、あるいは水分を含有する内容物に接触する層に脂肪族ポリエステル系樹脂層を設ける層構成であることが好ましい。
[Laminate]
The laminate of the present invention has a PVA resin (C) on at least one surface of the biodegradable resin (A) layer via an adhesive layer mainly composed of the biodegradable acid-modified polyester resin (B). The layers are laminated and usually have a layer structure of 3 to 15 layers, preferably 3 to 7 layers, particularly preferably 5 to 7 layers. The structure is not particularly limited. When the biodegradable resin layer is a, the PVA resin layer is c, and the biodegradable acid-modified polyester layer (adhesive layer) is b, a / b / c, a / b Arbitrary combinations such as / c / b / a and a / c / b / c / b / c / a are possible. The biodegradable resin layer, the PVA resin layer, and the biodegradable acid-modified polyester layer may be the same or different.
In general, it is preferable that the PVA-based resin layer has a layer structure in which an aliphatic polyester-based resin layer is provided in a layer that comes into contact with the contents containing the outside air or moisture in order to prevent deterioration of gas barrier performance due to moisture absorption. .

本発明の積層体の厚さは、通常300〜2000μmであり、特に400〜1500μm、殊に500〜1000μmの範囲が好ましく用いられる。
さらに積層体を構成する各層の厚さ、複数同種の層がある場合は、それぞれ一層ごとの厚さとしては、生分解性樹脂(A)層は、通常100〜1000μm、好ましくは200〜800μm、特に好ましくは250〜700μmである。かかる生分解性樹脂層の厚さが厚すぎると、積層体が硬くなりすぎる傾向があり、逆に薄すぎると積層体が脆くなる傾向がある。
生分解性酸変性ポリエステル系樹脂(B)層は、通常1〜200μm、好ましくは5〜100μm、特に好ましくは10〜50μmである。かかる接着剤層が厚すぎると、外観が不良となる場合があり、逆に薄すぎると接着力が弱くなる傾向がある。
また、PVA系樹脂(C)層は、通常5〜200μm、好ましくは10〜150μm、特に好ましくは15〜100μmである。かかるPVA系樹脂層が厚すぎると、硬く脆くなる傾向があり、逆に薄すぎると、バリア性が低くなる傾向があり好ましくない。
The thickness of the laminate of the present invention is usually 300 to 2000 μm, preferably 400 to 1500 μm, particularly 500 to 1000 μm.
Further, when there are multiple layers of the same thickness, each layer constituting the laminate, the thickness of each layer is usually 100 to 1000 μm, preferably 200 to 800 μm, as the biodegradable resin (A) layer, Especially preferably, it is 250-700 micrometers. If the biodegradable resin layer is too thick, the laminate tends to be too hard, and conversely if too thin, the laminate tends to be brittle.
The biodegradable acid-modified polyester resin (B) layer is usually 1 to 200 μm, preferably 5 to 100 μm, particularly preferably 10 to 50 μm. If the adhesive layer is too thick, the appearance may be poor. Conversely, if the adhesive layer is too thin, the adhesive force tends to be weak.
Moreover, a PVA-type resin (C) layer is 5-200 micrometers normally, Preferably it is 10-150 micrometers, Most preferably, it is 15-100 micrometers. If the PVA resin layer is too thick, it tends to be hard and brittle, whereas if it is too thin, the barrier property tends to be low, which is not preferable.

積層体全体に対する生分解性樹脂(A)層の厚さ、生分解性樹脂(A)層が複数ある場合は、その厚さの合計値の比は、0.99〜0.5、好ましくは0.95〜0.6、特に好ましくは0.9〜0.8である。かかる比が大きすぎると、PVA系樹脂層が薄くなることになり、バリア性が低くなる傾向があり、小さすぎると積層体が硬く脆くなる傾向がある。
また、生分解性酸変性ポリエステル系樹脂(B)層の全体に対する厚さの比は、複数ある場合は、その厚さの合計値の比で、通常0.005〜0.5であり、好ましくは0.01〜0.1である。かかる比が大きすぎると、外観が悪くなる傾向があり、小さすぎると接着力が弱くなる傾向がある。
PVA系樹脂(C)層の全体に対する厚さの比は、0.005〜0.5であり、好ましくは0.01〜0.2である。かかる比が小さすぎるとバリア性が低下する傾向があり、大きすぎるとコストがかかり、経済性が低下する傾向がある。
When there are a plurality of biodegradable resin (A) layers and a plurality of biodegradable resin (A) layers with respect to the entire laminate, the ratio of the total thickness is 0.99 to 0.5, preferably 0.95 to 0.6, particularly preferably 0.9 to 0.8. If this ratio is too large, the PVA resin layer will be thin and the barrier property tends to be low, and if it is too small, the laminate tends to be hard and brittle.
Moreover, the ratio of the thickness with respect to the whole biodegradable acid-modified polyester-type resin (B) layer is a ratio of the total value of the thickness, when there are multiple, and is normally 0.005-0.5, Preferably Is 0.01 to 0.1. When this ratio is too large, the appearance tends to be poor, and when it is too small, the adhesive force tends to be weak.
The ratio of the thickness with respect to the whole PVA-type resin (C) layer is 0.005-0.5, Preferably it is 0.01-0.2. If the ratio is too small, the barrier property tends to be lowered, and if it is too large, the cost is increased and the economy tends to be lowered.

本発明の積層体は、従来公知の成形方法によって製造することができ、具体的には溶融成形法や溶液状態からの成形法を用いることができる。例えば、溶融成形法としては、生分解性樹脂のフィルム、あるいはシートに、接着性樹脂、PVA系樹脂を順次、あるいは同時に溶融押出ラミネートする方法、逆にPVA系樹脂のフィルム・シートに、接着性樹脂、脂肪族ポリエステル系樹脂を順次、あるいは同時に溶融押出ラミネートする方法、または、生分解性樹脂、接着樹脂、PVA系樹脂を共押出する方法が挙げられる。
また、溶液状態からの成形法としては、生分解性樹脂のフィルム、シート等に生分解性酸変性ポリエステル系樹脂を良溶媒に溶解した溶液を溶液コートし、乾燥後、PVA系樹脂の水溶液を溶液コートする方法などを挙げることができる。
中でも、一工程で製造でき、層間接着性が優れた積層体が得られる点で溶融成形法が好ましく、特に共押出法が好ましく用いられる。そして、かかる溶融成形法を用いる場合には、PVA系樹脂として側鎖に1,2−ジオール構造を有するPVA系樹脂を用いることが好ましい。
The laminate of the present invention can be produced by a conventionally known molding method, and specifically, a melt molding method or a molding method from a solution state can be used. For example, as a melt molding method, an adhesive resin and a PVA resin are sequentially or simultaneously melt-extruded laminated to a biodegradable resin film or sheet, and conversely, an adhesive property is applied to a PVA resin film or sheet. Examples thereof include a method of melt-extrusion laminating a resin and an aliphatic polyester-based resin sequentially or simultaneously, or a method of co-extruding a biodegradable resin, an adhesive resin, and a PVA-based resin.
As a molding method from a solution state, a solution in which a biodegradable acid-modified polyester resin is dissolved in a good solvent is solution-coated on a film or sheet of a biodegradable resin, and after drying, an aqueous solution of a PVA resin is used. Examples thereof include a solution coating method.
Among them, the melt molding method is preferable, and the coextrusion method is particularly preferably used in that a laminate that can be manufactured in one step and has excellent interlayer adhesion can be obtained. And when using this melt-molding method, it is preferable to use PVA-type resin which has a 1, 2- diol structure in a side chain as PVA-type resin.

上記共押出法においては、例えば具体的にはインフレーション法、Tダイ法マルチマニーホールドダイ法、フィードブロック法、マルチスロットダイ法が挙げられる。ダイスを用いる場合のダイスの形状としてはTダイス、丸ダイス等を使用することができる。
溶融押出時の溶融成形温度は、樹脂により異なるが、通常190〜250℃であり、好ましくは200〜230℃の範囲が用いられる。
Specific examples of the coextrusion method include an inflation method, a T-die method, a multimany hold die method, a feed block method, and a multi-slot die method. As the shape of the die when using the die, a T die, a round die or the like can be used.
Although the melt molding temperature at the time of melt extrusion varies depending on the resin, it is usually 190 to 250 ° C, preferably 200 to 230 ° C.

本発明の積層体は、さらに加熱延伸処理されたものであることが好ましく、かかる延伸処理により、強度の向上や、ガスバリア性の向上が期待できる。
特に、本発明の積層体において、PVA系樹脂として側鎖に1,2−ジオール構造を有するPVA系樹脂を用いると、延伸性が良好となる。
It is preferable that the laminate of the present invention is further subjected to a heat-stretching treatment, and the stretching treatment can be expected to improve strength and gas barrier properties.
In particular, in the laminate of the present invention, when a PVA resin having a 1,2-diol structure in the side chain is used as the PVA resin, the stretchability is improved.

なお、上記延伸処理等については、公知の延伸方法を採用することができる。
例えば具体的には、積層体シートの両耳を把んで拡幅する一軸延伸、二軸延伸;積層体シートを金型を用いて延伸加工する深絞成形法、真空成形法、圧空成形法、真空圧空成形法等の金型を用いた成形法;パリソン等の予備成形された積層体を、チューブラー延伸法、延伸ブロー法等で加工する方法が挙げられる。かかる延伸法として、フィルムやシート状の成形物を目的とする場合、一軸延伸、二軸延伸法を採用することが好ましい。
In addition, about the said extending | stretching process etc., a well-known extending | stretching method is employable.
For example, specifically, uniaxial stretching and biaxial stretching for grasping and widening both ears of the laminate sheet; deep drawing method for stretching the laminate sheet using a mold, vacuum forming method, pressure forming method, vacuum A molding method using a mold such as a pressure forming method; a method of processing a preformed laminated body such as a parison by a tubular stretching method, a stretching blow method, or the like. As the stretching method, when aiming at a film or a sheet-like molded product, it is preferable to employ a uniaxial stretching method or a biaxial stretching method.

また、深絞成形法、真空成形法、圧空成形法、真空圧空成形法等の金型成形方法の場合は、積層体を、熱風オーブン、加熱ヒーター式オーブン又は両者の併用などにより均一に加熱して、チャック、プラグ、真空力、圧空力などにより延伸することが好ましい。
カップやトレイ等の、絞り比(成形品の深さ(mm)/成形品の最大直径(mm))が通常0.1〜3である成形物を目的とする場合、深絞成形法、真空成形法、圧空成形法、真空圧空成形法等の金型を用いて延伸加工する金型成形方法を採用することが好ましく、中でも、成形性の点で真空圧空成形法が好ましい。
成形品の形状としては、カップ、トレイ、シートなどが挙げられる。
In addition, in the case of mold forming methods such as deep drawing, vacuum forming, pressure forming, vacuum pressure forming, etc., the laminate is heated uniformly using a hot air oven, a heater-type oven or a combination of both. Thus, stretching is preferably performed by a chuck, a plug, a vacuum force, a pneumatic force or the like.
When a molded product such as a cup or tray whose drawing ratio (depth of molded product (mm) / maximum diameter of molded product (mm)) is usually 0.1 to 3 is used, a deep drawing method, vacuum It is preferable to employ a mold forming method such as a forming method, a pressure forming method, a vacuum pressure forming method, or the like that is stretched using a mold, and among these, a vacuum / pressure forming method is preferable in terms of formability.
Examples of the shape of the molded product include a cup, a tray, and a sheet.

本発明の積層体を金型を用いて形成する際の、成形温度としては、通常50〜150℃、好ましくは60〜120℃、更に好ましくは70〜100℃である。かかる温度が低すぎると、延伸が十分できない可能性があり、高すぎると成形物が熱劣化する場合がある。
また、金型を用いて形成する際の昇温速度は、通常1℃/秒以上、好ましくは1.5℃/秒以上、2.0℃/秒以上である。かかる速度が遅すぎると生産効率が低下する傾向がある。
As forming temperature at the time of forming the laminated body of this invention using a metal mold | die, it is 50-150 degreeC normally, Preferably it is 60-120 degreeC, More preferably, it is 70-100 degreeC. If the temperature is too low, stretching may not be sufficient, and if it is too high, the molded product may be thermally deteriorated.
Further, the rate of temperature rise when forming using a mold is usually 1 ° C./second or more, preferably 1.5 ° C./second or more, and 2.0 ° C./second or more. If the speed is too slow, production efficiency tends to decrease.

本発明の積層体は、PVA系樹脂層が生分解性であり、その他の層も生分解性樹脂を主成分としているため、生分解性に優れるものである。ここでいう生分解性とは、ポリエステル系樹脂等の非水溶性樹脂については、ISO14855 58℃ 60日以内、PVA系樹脂等の水溶性樹脂については、ISO14851に準拠するものである。   The laminate of the present invention has excellent biodegradability because the PVA-based resin layer is biodegradable and the other layers are mainly composed of biodegradable resin. The term “biodegradable” as used herein refers to ISO 14855 58 ° C. within 60 days for water-insoluble resins such as polyester resins, and ISO 14851 for water-soluble resins such as PVA resins.

本発明の積層体は、例えば、コーヒーカプセル、シュリンクフィルムなどの食品包装材料、薬品包装材料、化粧水やファンデーションのケースなどの化粧品類の包装材料、金属部品類の包装材料、電子部品の包装材料、酸化や吸湿による特性低下を抑制すべき物品類の包装材料、匂い移り、匂い漏れが気になる物質の包装材料や、マルチシート、燻蒸用シート、育苗用トレイ、被覆用シートなどの各種農業用シートや農業用資材として有用である。   The laminate of the present invention includes, for example, food packaging materials such as coffee capsules and shrink films, chemical packaging materials, packaging materials for cosmetics such as cases for lotions and foundations, packaging materials for metal parts, and packaging materials for electronic parts. Various agricultural products such as packaging materials for articles whose characteristics should be suppressed due to oxidation and moisture absorption, packaging materials for substances that cause odor transfer and odor leakage, multi-sheets, fumigation sheets, seedling trays, coating sheets, etc. It is useful as an industrial sheet or agricultural material.

以下に、本発明を実施例を挙げて説明するが、本発明はその要旨を超えない限り、実施例の記載に限定されるものではない。
尚、明細書中、「部」、「%」とあるのは、断りのない限り重量基準を意味する。
Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to the description of the examples unless it exceeds the gist.
In the specification, “parts” and “%” mean weight basis unless otherwise specified.

実施例1
〔生分解性酸変性ポリエステル系樹脂(B)の作製〕
原料の生分解性ポリエステル系樹脂(b)としてPBAT(BASF社製「Ecoflex C1200」)100部、無水マレイン酸0.35部、ラジカル開始剤として2,5−ジメチル−2,5−ビス(t−ブチルオキシ)ヘキサン(日本油脂社製「パーヘキサ25B」)0.25部をドライブレンドした後、これを二軸押出機にて下記条件で溶融混練し、ストランド状に押出し、水冷後、ペレタイザーでカットし、円柱形ペレット形状の生分解性酸変性ポリエステル系樹脂(B)を得た。また、得られた生分解性酸変性ポリエステル系樹脂(B)の酸価は4.9mg・KOH/gであった。
二軸押出機
直径(D):15mm、
L/D:60
スクリュ回転数:200rpm
メッシュ:90/90mesh
加工温度:210℃
Example 1
[Preparation of biodegradable acid-modified polyester resin (B)]
100 parts of PBAT ("Ecoflex C1200" manufactured by BASF), 0.35 parts of maleic anhydride as a raw material biodegradable polyester resin (b), 2,5-dimethyl-2,5-bis (t -Butyloxy) After 0.25 part of hexane (Nippon Yushi Co., Ltd. "Perhexa 25B") is dry blended, this is melt kneaded with a twin screw extruder under the following conditions, extruded into a strand, cooled with water, and cut with a pelletizer. As a result, a cylindrical pellet-shaped biodegradable acid-modified polyester resin (B) was obtained. The resulting biodegradable acid-modified polyester resin (B) had an acid value of 4.9 mg · KOH / g.
Twin screw extruder Diameter (D): 15mm,
L / D: 60
Screw rotation speed: 200rpm
Mesh: 90/90 mesh
Processing temperature: 210 ° C

〔PVA系樹脂(C)の作製〕
還流冷却器、滴下漏斗、攪拌機を備えた反応容器に、酢酸ビニル68.0部、メタノール23.8部、3,4−ジアセトキシ−1−ブテン8.2部を仕込み、アゾビスイソブチロニトリルを0.3モル%(対仕込み酢酸ビニル)投入し、攪拌しながら窒素気流下で温度を上昇させ、重合を開始した。酢酸ビニルの重合率が90%となった時点で、m−ジニトロベンゼンを添加して重合を終了し、続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビニルモノマーを系外に除去し共重合体のメタノール溶液とした。
[Preparation of PVA resin (C)]
A reaction vessel equipped with a reflux condenser, a dropping funnel and a stirrer was charged with 68.0 parts of vinyl acetate, 23.8 parts of methanol, and 8.2 parts of 3,4-diacetoxy-1-butene, and azobisisobutyronitrile. Was added in an amount of 0.3 mol% (compared with vinyl acetate), and the temperature was raised under a nitrogen stream while stirring to initiate polymerization. When the polymerization rate of vinyl acetate reaches 90%, m-dinitrobenzene is added to complete the polymerization, and then unreacted vinyl acetate monomer is removed out of the system by blowing methanol vapor. A combined methanol solution was obtained.

ついで、上記メタノール溶液をさらにメタノールで希釈し、濃度45%に調整してニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウムの2%メタノール溶液を共重合体中の酢酸ビニル構造単位および3,4−ジアセトキシ−1−ブテン構造単位の合計量1モルに対して10.5ミリモルとなる割合で加えてケン化を行った。ケン化が進行するとともにケン化物が析出し、粒子状となった時点で濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、目的とする側鎖に1,2−ジオール構造を有するPVA系樹脂を作製した。   Next, the methanol solution was further diluted with methanol, adjusted to a concentration of 45%, charged into a kneader, and a 2% methanol solution of sodium hydroxide was added to the vinyl acetate structural unit in the copolymer while maintaining the solution temperature at 35 ° C. And saponification was performed by adding 10.5 mmol with respect to 1 mol of the total amount of 3,4-diacetoxy-1-butene structural units. When saponification progresses and saponification precipitates and forms particles, it is filtered off, washed well with methanol and dried in a hot air drier to form a 1,2-diol structure on the target side chain. The PVA-type resin which has was produced.

得られたPVA系樹脂のケン化度は、残存酢酸ビニルおよび3,4−ジアセトキシ−1−ブテンの加水分解に要するアルカリ消費量にて分析したところ、99.2モル%であった。また、平均重合度は、JIS K 6726に準じて分析を行ったところ、450であった。また、一般式(4‘)で表される1,2−ジオール構造単位の含有量は、1H−NMR(300MHzプロトンNMR、d6−DMSO溶液、内部標準物質;テトラメチルシラン、50℃)にて測定した積分値より算出したところ、6モル%であった。 The saponification degree of the obtained PVA-based resin was 99.2 mol% when analyzed by the alkali consumption required for hydrolysis of residual vinyl acetate and 3,4-diacetoxy-1-butene. The average degree of polymerization was 450 when analyzed according to JIS K 6726. In addition, the content of the 1,2-diol structural unit represented by the general formula (4 ′) is 1 H-NMR (300 MHz proton NMR, d6-DMSO solution, internal standard substance: tetramethylsilane, 50 ° C.). The calculated value was 6 mol%.

〔積層体の作製〕
生分解性樹脂(A)としてポリ乳酸(PLA)(A)(ネイチャーワークス社製「Ingeo4032D」)、上記で得られた側鎖に1,2−ジオール構造を有するPVA系樹脂(C)、生分解性酸変性ポリエステル系樹脂(B)を用い、押出機を3台備えた3種5層多層性膜装置にて、PLA/生分解性酸変性ポリエステル系樹脂(B)/PVA(C)/生分解性酸変性ポリエステル系樹脂(B2)/PLAの3種5層構造の積層体を製造した。得られた積層体の厚さは800μmであり、各層の厚さは、365μm/20μm/30μm/20μm/365μmであった。
なお、各押出機、およびロールの設定温度は下記の通りである。
設定温度
PLA(A):C1/C2/C3/C4/h1/N1=200/210/210/200/190/190℃
PVA(C):C1/C2/C3/C4/h1/N1=180/200/210/210/210/210℃
分解性酸変性ポリエステル系樹脂(B):C1/C2/C3/h1/N1=200/210/210/210/210℃
ダイス:D5/D4/D3/D2/D1=190/190/190/190/190℃
ロール:50℃
(Production of laminate)
Polylactic acid (PLA) (A) (“Ingeo 4032D” manufactured by Nature Works) as the biodegradable resin (A), PVA resin (C) having a 1,2-diol structure in the side chain obtained above, Using a degradable acid-modified polyester resin (B), PLA / biodegradable acid-modified polyester resin (B) / PVA (C) / A laminate of biodegradable acid-modified polyester resin (B2) / PLA having three types and five layers was produced. The thickness of the obtained laminate was 800 μm, and the thickness of each layer was 365 μm / 20 μm / 30 μm / 20 μm / 365 μm.
The set temperatures of each extruder and roll are as follows.
Set temperature PLA (A): C1 / C2 / C3 / C4 / h1 / N1 = 200/210/210/200/190/190 ° C.
PVA (C): C1 / C2 / C3 / C4 / h1 / N1 = 180/200/210/210/210/210 ° C.
Degradable acid-modified polyester resin (B): C1 / C2 / C3 / h1 / N1 = 200/210/210/210/210 ° C.
Dice: D5 / D4 / D3 / D2 / D1 = 190/190/190/190/190 ° C.
Roll: 50 ° C

〔昇温速度評価〕
上記で得られたシートを用いて、カットテスト成形機FKC−0631−20(浅野研究所製/圧空真空成型機)にてカップ成形を行った(設定したシート温度に到達するとカップに成形される。)。ヒーター温度は、250℃とし、カップに成形されるまでの時間を測定し、昇温速度を算出した。結果を表1に示す。
[Evaluation of heating rate]
Using the sheet obtained above, cup molding was performed with a cut test molding machine FKC-0631-20 (manufactured by Asano Laboratories / compressed air vacuum molding machine) (when the set sheet temperature was reached, the cup was molded). .) The heater temperature was 250 ° C., the time until molding into a cup was measured, and the rate of temperature increase was calculated. The results are shown in Table 1.

〔成形性評価〕
得られたカップを目視で観察して以下の基準で評価した。結果を表1に示す。
○:白化している箇所や穴が無い
×:白化している箇所があり、穴があいている。
(Formability evaluation)
The obtained cup was visually observed and evaluated according to the following criteria. The results are shown in Table 1.
○: There are no whitened portions or holes. ×: There are whitened portions and there are holes.

〔酸素透過度測定〕
得られた積層体に対して、酸素透過度測定装置(OX−TRAN2/20、米国のMOCON社製)により、23℃及び50%RHの条件で酸素の透過度を測定した。
結果を表1に示す。
(Oxygen permeability measurement)
With respect to the obtained laminate, the oxygen permeability was measured under the conditions of 23 ° C. and 50% RH with an oxygen permeability measuring device (OX-TRAN 2/20, manufactured by MOCON, USA).
The results are shown in Table 1.

実施例2
実施例1において、各層の厚みをPLA/生分解性酸変性ポリエステル系樹脂(B)/PVA(C)/生分解性酸変性ポリエステル系樹脂(B)/PLA=225μm/15μm/20μm/15μm/225μm、総厚み500μmに変更した以外は実施例1と同様に成形し、評価した。結果を表1に示す。
Example 2
In Example 1, the thickness of each layer is PLA / biodegradable acid-modified polyester resin (B) / PVA (C) / biodegradable acid-modified polyester resin (B) / PLA = 225 μm / 15 μm / 20 μm / 15 μm / Except having changed to 225 micrometers and the total thickness of 500 micrometers, it shape | molded similarly to Example 1, and evaluated. The results are shown in Table 1.

比較例1
実施例1において、各層の厚みをPLA/生分解性酸変性ポリエステル系樹脂(B)/PVA(C)/生分解性酸変性ポリエステル系樹脂(B)/PLA=90μm/6μm/8μm/6μm/90μm、総厚み200μmに変更した以外は実施例1と同様に成形し、評価した。結果を表1に示す。
Comparative Example 1
In Example 1, the thickness of each layer is PLA / biodegradable acid-modified polyester resin (B) / PVA (C) / biodegradable acid-modified polyester resin (B) / PLA = 90 μm / 6 μm / 8 μm / 6 μm / It was molded and evaluated in the same manner as in Example 1 except that the thickness was changed to 90 μm and the total thickness was 200 μm. The results are shown in Table 1.

比較例2
実施例1において、積層体を製造せずにポリ乳酸単層で成形し、同様に評価した。結果を表1に示す。
Comparative Example 2
In Example 1, the laminate was molded with a polylactic acid monolayer without production, and evaluated in the same manner. The results are shown in Table 1.

Figure 2019181877
Figure 2019181877

本発明の積層体は昇温速度が速く、生産性に優れ、更には成形性に優れるものであった。一方、層の厚みが薄い比較例1は、昇温速度は速いが、成形物に穴が開き、成形性に劣るものであった。またポリ乳酸単層の比較例2は、昇温速度が遅く、更にはガスバリア性も劣るものであった。   The laminate of the present invention had a high temperature rise rate, excellent productivity, and excellent moldability. On the other hand, Comparative Example 1 in which the thickness of the layer is thin has a high heating rate, but has a hole in the molded product and is inferior in moldability. Moreover, the comparative example 2 of the polylactic acid single layer had a slow temperature rising rate and was inferior in gas barrier properties.

本発明の積層体は、ガスバリア性と生分解性を有しており、さらに層間接着性に優れることから、コーヒーカプセル、食品や薬品類の各種包装材料や農業用フィルムとして有用である。   Since the laminate of the present invention has gas barrier properties and biodegradability, and further has excellent interlayer adhesion, it is useful as coffee capsules, various packaging materials for foods and chemicals, and agricultural films.

Claims (8)

生分解性樹脂(A)層の少なくとも一方の面に生分解性酸変性ポリエステル系樹脂(B)層を介してポリビニルアルコール系樹脂(C)層が積層されてなる積層体であって、
該積層体の厚みが300〜2000μmであることを特徴とする積層体。
A laminate in which a polyvinyl alcohol resin (C) layer is laminated on at least one surface of a biodegradable resin (A) layer via a biodegradable acid-modified polyester resin (B) layer,
A laminate having a thickness of 300 to 2000 μm.
生分解性樹脂(A)がポリ乳酸、ポリ(ブチレンアジペート/テレフタレート)及びポリブチレンサクシネートの少なくともひとつを含有することを特徴とする請求項1記載の積層体。   The laminate according to claim 1, wherein the biodegradable resin (A) contains at least one of polylactic acid, poly (butylene adipate / terephthalate), and polybutylene succinate. 生分解性酸変性ポリエステル(B)の原料の生分解性ポリエステル(b)が、ポリ(ブチレンアジペート/テレフタレート)、ポリブチレンサクシネート、ポリ(ブチレンサクシネート/アジペート)及びポリヒドロキシアルカノエートの少なくともひとつを含有することを特徴とする請求項1又は2記載の積層体。   The biodegradable polyester (b) as a raw material of the biodegradable acid-modified polyester (B) is at least one of poly (butylene adipate / terephthalate), polybutylene succinate, poly (butylene succinate / adipate), and polyhydroxyalkanoate The laminate according to claim 1, comprising: ポリビニルアルコール系樹脂(C)が溶融成形可能なポリビニルアルコール系樹脂であることを特徴とする請求項1〜3いずれか記載の積層体。   The laminate according to any one of claims 1 to 3, wherein the polyvinyl alcohol resin (C) is a melt-moldable polyvinyl alcohol resin. ポリビニルアルコール系樹脂(C)が、側鎖に一級水酸基を有するポリビニルアルコール系樹脂、アルキレンオキサイド基含有ポリビニルアルコール系樹脂及びα−オレフィン単位含有ポリビニルアルコール系樹脂から選ばれる一種以上のポリビニルアルコール系樹脂を含有することを特徴とする請求項1〜3の積層体。   The polyvinyl alcohol resin (C) is one or more polyvinyl alcohol resins selected from polyvinyl alcohol resins having a primary hydroxyl group in the side chain, alkylene oxide group-containing polyvinyl alcohol resins, and α-olefin unit-containing polyvinyl alcohol resins. The laminate according to claim 1, which is contained. 請求項1〜4いずれか記載の積層体からなるコーヒーカプセル。   The coffee capsule which consists of a laminated body in any one of Claims 1-4. 請求項1〜4いずれか記載の積層体からなる食品容器。   The food container which consists of a laminated body in any one of Claims 1-4. 請求項1〜4いずれか記載の積層体からなる化粧品容器。   A cosmetic container comprising the laminate according to any one of claims 1 to 4.
JP2018078506A 2018-04-16 2018-04-16 Laminates and coffee capsules, food containers, cosmetic containers Active JP7361456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018078506A JP7361456B2 (en) 2018-04-16 2018-04-16 Laminates and coffee capsules, food containers, cosmetic containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018078506A JP7361456B2 (en) 2018-04-16 2018-04-16 Laminates and coffee capsules, food containers, cosmetic containers

Publications (2)

Publication Number Publication Date
JP2019181877A true JP2019181877A (en) 2019-10-24
JP7361456B2 JP7361456B2 (en) 2023-10-16

Family

ID=68338280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018078506A Active JP7361456B2 (en) 2018-04-16 2018-04-16 Laminates and coffee capsules, food containers, cosmetic containers

Country Status (1)

Country Link
JP (1) JP7361456B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111971A1 (en) * 2019-12-04 2021-06-10 株式会社ユポ・コーポレーション Biodegradable multilayer body
CN114981079A (en) * 2019-12-26 2022-08-30 三菱化学株式会社 Laminate, packaging material, and food packaging material
IT202100006086A1 (en) * 2021-03-15 2022-09-15 Lavazza Luigi Spa CARTRIDGE FOR THE PREPARATION OF LIQUID PRODUCTS
JP7359138B2 (en) 2018-09-28 2023-10-11 三菱ケミカル株式会社 Resin composition, molded article, and method for producing resin composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003335315A (en) * 2002-03-15 2003-11-25 Toyo Seikan Kaisha Ltd Plastic container
JP2010525962A (en) * 2007-04-30 2010-07-29 エバプ エンバイロンメンタルズ リミテッド Biodegradable multilayer polymer film and packaging material produced therefrom
JP2013212682A (en) * 2011-11-11 2013-10-17 Nippon Synthetic Chem Ind Co Ltd:The Biodegradable laminate
WO2017069127A1 (en) * 2015-10-19 2017-04-27 デンカ株式会社 Laminated sheet and formed container

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003335315A (en) * 2002-03-15 2003-11-25 Toyo Seikan Kaisha Ltd Plastic container
JP2010525962A (en) * 2007-04-30 2010-07-29 エバプ エンバイロンメンタルズ リミテッド Biodegradable multilayer polymer film and packaging material produced therefrom
JP2013212682A (en) * 2011-11-11 2013-10-17 Nippon Synthetic Chem Ind Co Ltd:The Biodegradable laminate
WO2017069127A1 (en) * 2015-10-19 2017-04-27 デンカ株式会社 Laminated sheet and formed container

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7359138B2 (en) 2018-09-28 2023-10-11 三菱ケミカル株式会社 Resin composition, molded article, and method for producing resin composition
WO2021111971A1 (en) * 2019-12-04 2021-06-10 株式会社ユポ・コーポレーション Biodegradable multilayer body
CN114981079A (en) * 2019-12-26 2022-08-30 三菱化学株式会社 Laminate, packaging material, and food packaging material
CN114981079B (en) * 2019-12-26 2024-08-27 三菱化学株式会社 Laminate, packaging material, and food packaging material
IT202100006086A1 (en) * 2021-03-15 2022-09-15 Lavazza Luigi Spa CARTRIDGE FOR THE PREPARATION OF LIQUID PRODUCTS
WO2022195367A1 (en) * 2021-03-15 2022-09-22 Luigi Lavazza S.P.A. Cartridge for the preparation of liquid products

Also Published As

Publication number Publication date
JP7361456B2 (en) 2023-10-16

Similar Documents

Publication Publication Date Title
JP5414875B2 (en) Biodegradable laminate
JP7361456B2 (en) Laminates and coffee capsules, food containers, cosmetic containers
JP2024102173A (en) Biodegradable acid-modified polyester resin and laminate
JP6977499B2 (en) Resin composition and laminate
JP6184093B2 (en) Resin composition and molded product thereof
JP5979996B2 (en) Method for producing multilayer stretched film
WO2023190413A1 (en) Modified polyester-based resin, adhesive resin composition, and laminate
JP7359138B2 (en) Resin composition, molded article, and method for producing resin composition
JP6572557B2 (en) Resin composition
JP2024139768A (en) Acid-modified polyester resin composition and laminate
JP2024046111A (en) Acid-modified polyester resin composition and laminate
JP2019038944A (en) Biodegradable polyester resin and laminate
JP2024046112A (en) Polyester resin composition and laminate
JP2024144312A (en) Acid-modified polyester resin composition and laminate
JP2024146868A (en) Biodegradable acid-modified polyester resin and laminate
WO2023190618A1 (en) Acid-modified polyester resin, laminate and biodegradable adhesive
JP2023145417A (en) Acid modification polyester resin, laminate and biodegradable adhesive
JP2023145418A (en) Acid-modified polyester-based resin, laminate and biodegradable adhesive
WO2023190619A1 (en) Acid-modified polyester resin composition and laminate
WO2019103078A1 (en) Resin composition, melt-molding material, multilayer structure, and liquid-packaging material
WO2021049637A1 (en) Biodegradable laminated sheet, sheet for forming containers, and biodegradable container
WO2024177028A1 (en) Resin composition and method for producing resin composition
JP6391396B2 (en) Modified ethylene-vinyl ester copolymer saponified composition
JP2024145840A (en) Polyvinyl alcohol resin composition and molded article using same
WO2020203536A1 (en) Molded article and method for producing molded article

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220615

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220615

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20220628

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220804

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220809

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220819

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231003

R151 Written notification of patent or utility model registration

Ref document number: 7361456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151