JP2019177424A - Surface-coated cutting tool the hard coating layer of which exhibits excellent oxidation resistance and deposition resistance - Google Patents
Surface-coated cutting tool the hard coating layer of which exhibits excellent oxidation resistance and deposition resistance Download PDFInfo
- Publication number
- JP2019177424A JP2019177424A JP2018066527A JP2018066527A JP2019177424A JP 2019177424 A JP2019177424 A JP 2019177424A JP 2018066527 A JP2018066527 A JP 2018066527A JP 2018066527 A JP2018066527 A JP 2018066527A JP 2019177424 A JP2019177424 A JP 2019177424A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- average
- composite
- crystal grains
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は、高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する耐熱合金の高速断続切削加工において、硬質被覆層が優れた耐酸化性、耐溶着性を備えることにより、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 In the high-speed intermittent cutting of a heat-resistant alloy that is accompanied by high heat generation and an impact load acts on the cutting edge, the hard coating layer has excellent oxidation resistance and welding resistance. The present invention relates to a surface-coated cutting tool (hereinafter, sometimes referred to as a coated tool) that exhibits excellent cutting performance throughout the use of the tool.
従来、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を蒸着法により被覆形成した被覆工具があり、これらは、優れた耐摩耗性を発揮することが知られている。
ただ、前記従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速断続切削条件で用いた場合に異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet, or cubic boron nitride (hereinafter referred to as cBN) based super high pressure sintered body. There is a coated tool in which a Ti—Al-based composite nitride layer is formed on a surface of a tool substrate (hereinafter collectively referred to as a tool substrate) by a vapor deposition method as a hard coating layer. It is known to exhibit wear.
However, the conventional coated tool with the Ti-Al composite nitride layer is relatively excellent in wear resistance, but it is prone to abnormal wear when used under high-speed intermittent cutting conditions. Various proposals for improving the coating layer have been made.
例えば、特許文献1には、(a)工具基体に平均層厚1〜20μmの(Ti1−xAlx)(CyN1−y)(0.60≦x≦0.95、0≦y≦0.005)である硬質被覆層を有し、(b)前記硬質被覆層内のNaCl型の面心立方構造を有する結晶粒の結晶方位を縦断面方向から解析した場合、前記工具基体の表面の法線方向に対して前記結晶粒の{100}面の法線がなす傾斜角のうち0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して、各区分内に存在する度数を集計して得られた傾斜角度数分布において、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上であり、(c)前記法線方向に沿って、前記結晶粒内に周期的な組成変化が存在し、前記xの極大値の平均と極小値の平均の差Δxが0.03〜0.25、周期が3〜100nmである、被覆工具が記載されている。 For example, in Patent Document 1, (a) (Ti 1-x Al x ) (C y N 1-y ) (0.60 ≦ x ≦ 0.95, 0 ≦ 1 ) having an average layer thickness of 1 to 20 μm on a tool base. y ≦ 0.005), and (b) when the crystal orientation of the crystal grains having the NaCl-type face-centered cubic structure in the hard coating layer is analyzed from the longitudinal sectional direction, the tool substrate The inclination angle within the range of 0 to 45 degrees out of the inclination angles formed by the normal lines of the {100} planes of the crystal grains with respect to the normal direction of the surface is divided for each pitch of 0.25 degrees, In the tilt angle number distribution obtained by counting the frequencies existing in each section, the highest peak exists in the tilt angle section within the range of 0 to 10 degrees and also exists in the range of 0 to 10 degrees. The total power is 35% or more of the total power in the tilt angle distribution, and (c) in the normal direction In addition, there is a periodic composition change in the crystal grains, and the difference Δx between the average of the maximum value and the minimum value of x is 0.03 to 0.25, and the period is 3 to 100 nm. The tool is listed.
また、例えば、特許文献2には、(a)工具基体に平均層厚1〜20μmの(Ti1−xAlx)(CyN1−y)(0.60≦x≦0.95、0≦y≦0.005)である硬質被覆層を有し、(b)前記硬質被覆層内のNaCl型の面心立方構造を有する結晶粒の結晶方位を縦断面方向から解析した場合、前記工具基体表面の法線方向に対する{110}面の法線がなす傾斜角のうち0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上のであり、前記結晶粒の平均粒子幅Wが0.1〜2.0μm、平均アスペクト比Aが2〜10である柱状組織を有し、(c)前記工具基体表面の法線方向に沿って、前記結晶粒内に周期的な組成変化が存在し、周期が4〜150nmであり、前記xの極大値の平均と極小値の平均の差Δxが0.03〜0.25である、被覆工具が記載されている。
Further, for example, in
さらに、例えば、特許文献3には、(a)工具基体に平均層厚1〜20μmの(Ti1−xAlx)(CyN1−y)(0.60≦x≦0.95、0≦y≦0.005)である硬質被覆層を有し、(b)前記硬質被覆層内のNaCl型の面心立方構造を有する結晶粒の結晶方位を縦断面方向から解析した場合、前記工具基体表面の法線方向に対する前記結晶粒の{111}面の法線がなす傾斜角を測定し、該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の45%以上の割合を示し、(c)前記結晶粒の平均粒子幅Wが0.1〜2.0μm、平均アスペクト比Aが2〜10である柱状組織を有し、
(d)周期的な組成変化が該結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、前記xの極大値の平均と極小値の平均の差Δxが0.03〜0.25である、被覆工具が記載されている。
Further, for example, in Patent Document 3, (a) (Ti 1-x Al x ) (C y N 1-y ) (0.60 ≦ x ≦ 0.95) having an average layer thickness of 1 to 20 μm on the tool base is disclosed. (0 ≦ y ≦ 0.005), and (b) when the crystal orientation of the crystal grains having the NaCl-type face-centered cubic structure in the hard coating layer is analyzed from the longitudinal sectional direction, An inclination angle formed by a normal line of the {111} plane of the crystal grain with respect to a normal direction of the tool base surface is measured, and an inclination angle within a range of 0 to 45 degrees with respect to the normal direction is included in the inclination angle. When the slope angle distribution within a range of 0 to 10 degrees exists when the slope angle distribution is obtained by summing up the frequencies existing in each section by dividing each pitch of 0.25 degrees, the above-mentioned peak is present, The sum of the frequencies existing within the range of 0 to 10 degrees is 45% of the total frequencies in the tilt angle frequency distribution. (C) having a columnar structure with an average particle width W of 0.1 to 2.0 μm and an average aspect ratio A of 2 to 10;
(D) A periodic composition change exists along one of the equivalent crystal orientations represented by <001> of the crystal grains, and the difference between the average of the maximum value and the average of the minimum values of the x A coated tool is described in which Δx is 0.03 to 0.25.
加えて、例えば、特許文献4には、3〜25μmの厚みの摩耗保護コーティングが、0.70≦x<1、0≦y<0.25、及び0.75≦z<1.15の化学量論係数を有し、1.5〜17μmの範囲内の厚みの少なくとも1つのTi1-xAlxCyNz層を有し、前記Ti1-xAlxCyNz層が150nm以下の厚みの複数の層を備える層状構造を有し、前記複数の層が、同じ結晶構造で、Ti及びAlの化学量論的割合が交互に異なる、Ti1-xAlxCyNz層の周期的に交番する領域で形成され、前記Ti1-xAlxCyNz層が、90vol%以上の面心立方結晶構造を有する、被覆工具が記載されている。 In addition, for example, Patent Document 4 discloses that a wear protection coating having a thickness of 3 to 25 μm has a chemistry of 0.70 ≦ x <1, 0 ≦ y <0.25, and 0.75 ≦ z <1.15. It has a stoichiometric coefficient, at least one of Ti 1-x Al x C y N z layer thickness in the range of 1.5~17Myuemu, the Ti 1-x Al x C y N z layer is 150nm Ti 1-x Al x C y N z having a layered structure including a plurality of layers having the following thicknesses, wherein the plurality of layers have the same crystal structure and alternately different stoichiometric ratios of Ti and Al A coated tool is described that is formed in periodically alternating regions of the layer, wherein the Ti 1-x Al x C y N z layer has a face-centered cubic crystal structure of 90 vol% or more.
近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にある。そして、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性の向上が求められるとともに、長期の使用にわたって優れた耐摩耗性が求められている。
前記特許文献1〜4に記載された被覆工具は、合金鋼等の高速断続切削加工に供した場合に、優れた耐チッピング性、耐摩耗性を有するが、熱伝導度が低く高温強度が高く加工硬化を起こしやすい材質であって高難削材である耐熱合金の切削においては、十分な工具寿命を与えない場合があった。
そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、耐熱合金のような刃先が高温になる高難削材の切削に用いたとしても、長期の使用にわたって優れた耐チッピング性、耐摩耗性を発揮する被覆工具を提供することである。
In recent years, there has been a strong demand for labor saving and energy saving in cutting, and along with this, cutting tends to further increase in speed and efficiency. Further, the coated tool is required to further improve abnormal damage resistance such as chipping resistance, chipping resistance, and peel resistance, and to have excellent wear resistance over a long period of use.
The coated tools described in Patent Documents 1 to 4 have excellent chipping resistance and wear resistance when subjected to high-speed intermittent cutting such as alloy steel, but have low thermal conductivity and high high-temperature strength. When cutting a heat-resistant alloy, which is a material that easily causes work hardening and is a highly difficult-to-cut material, there is a case where a sufficient tool life is not given.
Therefore, the technical problem to be solved by the present invention, that is, the object of the present invention is to provide excellent resistance to long-term use even when used for cutting highly difficult-to-cut materials such as heat-resistant alloys where the cutting edge becomes high in temperature. An object of the present invention is to provide a coated tool that exhibits chipping and wear resistance.
本発明者らは、TiとAlの複合窒化物または複合炭窒化物(以下、「TiAlCN」あるいは「(Ti1−xAlx)(CyN1−y)」で示すことがある)を含む硬質被覆層を形成した被覆工具の耐チッピング性、耐摩耗性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。
すなわち、硬質被覆層を構成するTiAlCN層の面配向として、{112}面の配向性を高めると、摩耗に対する耐性、靱性および切削時に発生する高熱に対する摩耗性がバランスよく向上し、高難削材である耐熱合金の高速断続切削に用いても耐摩耗性と耐欠損性が向上するという驚くべき事項を発見した。
The present inventors present a composite nitride or composite carbonitride of Ti and Al (hereinafter sometimes referred to as “TiAlCN” or “(Ti 1-x Al x ) (C y N 1-y )”). As a result of intensive studies to improve the chipping resistance and wear resistance of the coated tool including the hard coating layer including the following, the following knowledge was obtained.
That is, when the orientation of the {112} plane is increased as the plane orientation of the TiAlCN layer constituting the hard coating layer, the resistance to wear, the toughness, and the wear resistance against high heat generated during cutting are improved in a balanced manner. We have discovered the surprising fact that wear resistance and fracture resistance are improved even when used in high-speed intermittent cutting of heat-resistant alloys.
本発明は、前記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1.0〜20.0μmのTiとAlの複合窒化物層または複合炭窒化物層を少なくとも含み、前記複合窒化物層または前記複合炭窒化物層の組成を組成式:(Ti1−xAlx)(CyN1−y)で表した場合、前記複合窒化物層または前記複合炭窒化物層のAlのTiとAlの合量に占める平均含有割合xavg、および前記複合窒化物層または前記複合炭窒化物層のCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.60≦xavg≦0.95、0≦yavg≦0.0050を満足し、
(b)前記複合窒化物層または前記複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の結晶粒を少なくとも含み、
(c)前記複合窒化物層または前記複合炭窒化物層について、電子線後方散乱回折装置を用いて、前記結晶粒の結晶方位を前記複合窒化物層または前記複合炭窒化物層の縦断面方向から解析して、前記工具基体の表面の法線方向に対して前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、該傾斜角のうち前記工具基体の表面の法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して、各区分内に存在する度数を集計して得られた傾斜角度数分布において、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上であり、
(d)前記複合窒化物層または前記複合炭窒化物層を縦断面方向から観察したとき、前記結晶粒の平均粒子幅Wが0.1〜2.0μm、平均アスペクト比Aが2.0〜10.0である柱状組織を有し、また、前記結晶粒おけるTiとAlの周期的な組成変化が前記結晶粒の<001>で表される等価の結晶方位の一つの方位に沿って存在し、Alの前記含有割合の極大値の平均と極小値の平均の差は0.03〜0.25であることを特徴とする表面被覆工具。
(2)前記結晶粒におけるTiとAlの周期的な組成変化が前記結晶粒の<001>で表される等価の結晶方位の一つの方位に沿って存在し、その方位における周期が3〜100nmであり、その方位に直交する面内でAlの前記含有割合の変化量は0.01以下であることを特徴とする前記(1)に記載の表面被覆工具。
(3)前記結晶粒の格子定数aが、立方晶TiNの格子定数aTiNと立方晶AlNの格子定数aAlNに対して、0.05aTiN+0.95aAlN≦a≦0.40aTiN+0.60aAlNを満たすことを特徴とする前記(1)または(2)に記載の表面被覆工具。
(4)前記複合窒化物層または前記複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlの前記複合窒化物または前記複合炭窒化物の結晶粒のみからなることを特徴とする前記(1)〜(3)のいずれかに記載の表面被覆工具。
(5)前記工具基体と前記硬質被覆層との間にTiの炭化物層、窒化物層、、炭酸化物層および炭窒化酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20.0μmの合計平均層厚を有する下部層が存在することを特徴とする前記(1)〜(4)のいずれかに記載の表面被覆工具。
The present invention has been made based on the above findings,
“(1) A surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base made of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body In
(A) The hard coating layer includes at least a composite nitride layer or composite carbonitride layer of Ti and Al having an average layer thickness of 1.0 to 20.0 μm, and the composite nitride layer or the composite carbonitride layer Is represented by the composition formula: (Ti 1-x Al x ) (C y N 1-y ), it occupies the total amount of Ti and Al in the composite nitride layer or the composite carbonitride layer. The average content ratio x avg , and the average content ratio y avg (where x avg and y avg are atomic ratios) in the total amount of C and N in C of the composite nitride layer or the composite carbonitride layer are Satisfying 0.60 ≦ x avg ≦ 0.95 and 0 ≦ y avg ≦ 0.0050, respectively.
(B) The composite nitride layer or the composite carbonitride layer includes at least crystal grains of a composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure,
(C) With respect to the composite nitride layer or the composite carbonitride layer, an electron beam backscattering diffractometer is used to change the crystal orientation of the crystal grains in the longitudinal section direction of the composite nitride layer or the composite carbonitride layer. The inclination angle formed by the normal of the {112} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal direction of the surface of the tool base, and the surface of the tool base out of the inclination angles In the inclination angle number distribution obtained by dividing the inclination angle within the range of 0 to 45 degrees with respect to the normal direction of each for each pitch of 0.25 degrees and totaling the frequencies existing in each division The highest peak exists in the inclination angle section within the range of 0 to 10 degrees, and the total of the frequencies existing within the range of 0 to 10 degrees is 35% or more of the entire degrees in the inclination angle frequency distribution. ,
(D) When the composite nitride layer or the composite carbonitride layer is observed from the longitudinal sectional direction, the average grain width W of the crystal grains is 0.1 to 2.0 μm, and the average aspect ratio A is 2.0 to It has a columnar structure of 10.0, and a periodic composition change of Ti and Al in the crystal grain exists along one of the equivalent crystal orientations represented by <001> of the crystal grain And the difference of the average of the maximum of the said content rate of Al and the average of minimum is 0.03-0.25, The surface coating tool characterized by the above-mentioned.
(2) The periodic composition change of Ti and Al in the crystal grain exists along one of the equivalent crystal orientations represented by <001> of the crystal grain, and the period in the orientation is 3 to 100 nm. The surface-coated tool according to (1), wherein the amount of change in the content ratio of Al is 0.01 or less in a plane perpendicular to the orientation.
(3) The lattice constant a of the crystal grains is 0.05a TiN + 0.95a AlN ≦ a ≦ 0.40a TiN + 0. With respect to the lattice constant a TiN of cubic TiN and the lattice constant a AlN of cubic AlN. 60a AlN is satisfy | filled , The surface coating tool as described in said (1) or (2) characterized by the above-mentioned.
(4) The composite nitride layer or the composite carbonitride layer is composed only of Ti and Al composite nitrides or crystal grains of the composite carbonitride having a NaCl-type face-centered cubic structure. The surface-coated tool according to any one of (1) to (3).
(5) Between the tool base and the hard coating layer, a Ti carbide layer, a nitride layer, a carbonate layer, and a carbon dioxide layer, or one or more Ti compound layers, The surface-coated tool according to any one of (1) to (4), wherein a lower layer having a total average layer thickness of 0.1 to 20.0 μm is present.
本発明の被覆工具は{112}面の配向性を高めることにより、摩耗に対する耐性と靱性および切削時に発生する高熱に対する耐摩耗性が、バランスよく発揮され、高難削材である耐熱合金の切削に用いても耐摩耗性と耐欠損性が向上するという優れた効果を発揮する。 The coated tool of the present invention improves the orientation of the {112} plane, thereby exhibiting a good balance between wear resistance and toughness and wear resistance against high heat generated during cutting, and cutting a heat-resistant alloy that is a highly difficult-to-cut material. Even if it is used, it has an excellent effect of improving wear resistance and fracture resistance.
次に、本発明の被覆工具の硬質被覆層について、より詳細に説明する。 Next, the hard coating layer of the coated tool of the present invention will be described in more detail.
1.硬質被覆層を構成する複合窒化物層または複合炭窒化物層(TiAlCN層)の平均層厚:
本発明の表面被覆切削工具が有する硬質被覆層は、組成式:(Ti1−xAlx)(CyN1−y)で表されるTiとAlの複合窒化物層または複合炭窒化物層を少なくとも含む。この複合窒化物層または複合炭窒化物層は、硬さが高く、優れた耐摩耗性を有するが、特に平均層厚が1.0〜20.0μmのとき、その効果が際立って発揮される。その理由は、平均層厚が1.0μm未満では、平均層厚が薄いため長期の使用にわたって耐摩耗性を十分確保することができず、一方、その平均層厚が20.0μmを超えると、TiとAlの複合窒化物層または複合炭窒化物層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなるためである。
1. Average layer thickness of the composite nitride layer or composite carbonitride layer (TiAlCN layer) constituting the hard coating layer:
The hard coating layer included in the surface-coated cutting tool of the present invention is a composite nitride layer or composite carbonitride of Ti and Al represented by the composition formula: (Ti 1-x Al x ) (C y N 1-y ). Including at least a layer. This composite nitride layer or composite carbonitride layer has high hardness and excellent wear resistance, but the effect is particularly remarkable when the average layer thickness is 1.0 to 20.0 μm. . The reason is that if the average layer thickness is less than 1.0 μm, the average layer thickness is so thin that the wear resistance cannot be sufficiently secured over a long period of use, while the average layer thickness exceeds 20.0 μm, This is because the crystal grains of the composite nitride layer or composite carbonitride layer of Ti and Al are likely to be coarsened and chipping is likely to occur.
2.硬質被覆層を構成するTiAlCN層の組成:
本発明の表面被覆切削工具が有する硬質被覆層を構成するTiAlCN層は、AlのTiとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.60≦xavg≦0.95、0≦yavg≦0.0050を満足するように制御する。
その理由は、Alの平均含有割合xavgが0.60未満であると、TiとAlのTiAlCN層は硬さに劣るため、耐熱合金等の高速断続切削に供した場合には、耐摩耗性が十分でなく、一方、Alの平均含有割合xavgが0.95を超えると、相対的にTiの含有割合が減少するため、脆化を招き、耐チッピング性が低下するためである。また、Cの平均含有割合yavgは、0≦yavg≦0.0050の範囲の微量であるとき、TiAlCN層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果としてTiAlCN層の耐欠損性および耐チッピング性が向上する。一方、C成分の平均含有割合yavgが0≦yavg≦0.0050の範囲を逸脱すると、TiAlCN層の靭性が低下するため耐欠損性および耐チッピング性が逆に損なわれるため好ましくない。
2. Composition of the TiAlCN layer constituting the hard coating layer:
The TiAlCN layer constituting the hard coating layer of the surface-coated cutting tool of the present invention has an average content ratio x avg in the total amount of Ti and Al in Al and an average content ratio y avg in the total amount of C and N in C (However, x avg and y avg are both atomic ratios) are controlled so as to satisfy 0.60 ≦ x avg ≦ 0.95 and 0 ≦ y avg ≦ 0.0050, respectively.
The reason for this is that if the average Al content x avg is less than 0.60, the TiAlAl TiAlCN layer is inferior in hardness, so when it is subjected to high-speed intermittent cutting of a heat-resistant alloy or the like, it has wear resistance. On the other hand, if the average Al content ratio x avg exceeds 0.95, the Ti content ratio is relatively reduced, leading to embrittlement and lowering of chipping resistance. Further, when the average content ratio y avg of C is a very small amount in the range of 0 ≦ y avg ≦ 0.0050, the adhesion between the TiAlCN layer and the tool substrate or the lower layer is improved, and the lubricity is improved. As a result, the impact during cutting is relieved, and as a result, the fracture resistance and chipping resistance of the TiAlCN layer are improved. On the other hand, if the average content ratio y avg of the component C departs from the range of 0 ≦ y avg ≦ 0.0050, the toughness of the TiAlCN layer is lowered, so that the chipping resistance and chipping resistance are adversely impaired.
3.TiAlCN層におけるNaCl型の面心立方構造の結晶粒
TiAlCN層においてNaCl型の面心立方構造の結晶粒が含まれていなければ本発明の前記目的を達成することはできない。この目的を達成するためには、縦断面(工具基体表面に垂直な断面)において、NaCl型の面心立方構造の結晶粒の占める面積割合が60%以上、好ましくは80%以上、より好ましくは、全ての結晶粒(面積割合が100%)がNaCl型の面心立方構造であるとよい。
3. The crystal grain of the NaCl type face centered cubic structure in the TiAlCN layer If the crystal grain of the NaCl type face centered cubic structure is not contained in the TiAlCN layer, the object of the present invention cannot be achieved. In order to achieve this object, in the longitudinal section (cross section perpendicular to the surface of the tool substrate), the area ratio occupied by the crystal grains of the NaCl type face centered cubic structure is 60% or more, preferably 80% or more, more preferably All the crystal grains (area ratio is 100%) are preferably NaCl-type face-centered cubic structures.
4.TiAlCN層におけるNaCl型面心立方構造を有する結晶粒の{112}面の傾斜角度分布:
本発明では、TiAlCN層について、電子線後方散乱回折装置を用いて結晶粒の結晶方位を、縦断面方向(工具基体表面の法線方向)から解析し、工具基体表面の法線方向に対する前記結晶粒の{112}面の法線がなす傾斜角を測定して、その傾斜角の内、前記法線方向に対して0〜45度の範囲にある傾斜角を0.25度のピッチごとに区分して各区分に存在する度数を集計し傾斜角度分布を求めたとき、0〜10度の範囲の傾斜角度分布に最高ピークが存在するとともに、前記0〜10度の範囲に存在する度数の合計が前記傾斜角度分布における度数分布の35%以上の割合を示す。
ここで、図2に本発明被覆工具について測定した傾斜角度数分布の一例を示す。すなわち、図2からわかるように、傾斜角度数分布は、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の35%以上の割合となっている。
つまり、本発明の被覆工具は、TiAlCN層において{112}面の法線方向への配向性を相対的に高くし、傾斜角度数分布において0〜10度の範囲内の傾斜角区分に最高ピークが存在し、かつ、0〜10度の範囲内に存在する度数の合計を、傾斜角度数分布における度数全体の35%以上、好ましくは40%以上、より好ましくは45%以上としていることによって、摩耗に対する耐性の向上、靱性および切削時に発生する高熱に対する耐摩耗性の向上が、バランスよく発揮され高難削材である耐熱合金の切削に用いても耐摩耗性と耐欠損性が向上する。
4). Tilt angle distribution of {112} plane of crystal grains having NaCl type face centered cubic structure in the TiAlCN layer:
In the present invention, with respect to the TiAlCN layer, the crystal orientation of crystal grains is analyzed from the longitudinal section direction (normal direction of the tool base surface) using an electron beam backscattering diffractometer, and the crystal with respect to the normal direction of the tool base surface is analyzed. The inclination angle formed by the normal of the {112} plane of the grain is measured, and the inclination angle in the range of 0 to 45 degrees with respect to the normal direction is included in each inclination angle of 0.25 degrees. When the slope angle distribution is obtained by summing up the frequencies existing in each section and obtaining the tilt angle distribution, the highest peak exists in the tilt angle distribution in the range of 0 to 10 degrees, and the frequencies existing in the range of 0 to 10 degrees The total indicates a ratio of 35% or more of the frequency distribution in the tilt angle distribution.
Here, FIG. 2 shows an example of an inclination angle number distribution measured for the coated tool of the present invention. That is, as can be seen from FIG. 2, the inclination angle number distribution has the highest peak in the inclination angle section in the range of 0 to 10 degrees, and the sum of the frequencies existing in the range of 0 to 10 degrees is the inclination. It is a ratio of 35% or more of the whole frequency in the angular frequency distribution.
That is, the coated tool of the present invention has a relatively high orientation in the normal direction of the {112} plane in the TiAlCN layer, and has the highest peak in the tilt angle section within the range of 0 to 10 degrees in the tilt angle number distribution. And the sum of the frequencies existing in the range of 0 to 10 degrees is 35% or more, preferably 40% or more, more preferably 45% or more of the entire frequencies in the inclination angle frequency distribution, Improved wear resistance, toughness, and improved wear resistance against high heat generated during cutting can be exhibited in a well-balanced manner to improve wear resistance and fracture resistance when used for cutting heat-resistant alloys that are highly difficult-to-cut materials.
5.NaCl型の面心立方構造を有する結晶粒において、縦断面方向から観察したときの柱状晶の平均粒子幅W、平均アスペクト比A、並びに、<001>で表される等価の結晶方位の一つの方位に沿ったTiとAlの周期的な組成変化およびAlの含有割合の極大値の平均と極小値の平均の差:
本発明では、NaCl型の立方晶構造を有する結晶粒において、縦断面方向から観察したときの柱状晶の平均粒径幅Wが0.1〜2.0μm、平均アスペクト比Aが2.0〜10.0を満足することが望ましい。このようにすると、NaCl型の立方晶構造を有する結晶粒は所定形状の柱状晶となり優れた耐摩耗性を示す。この数値範囲とした理由は、平均粒子幅Wについては、0.1μm未満であると耐摩耗性が低下することがあり、2.0μmを超えると靱性が低下することがあるためであり、平均アスペクト比Aについては、2未満であるとNaCl型の立方晶構造を有する結晶粒内に後述する組成の周期的な分布を形成し難くなることがあり、10を超えるとクラックの進展を抑制し難くなることがあるためである。
また、<001>で表される等価の結晶方位の一つの方位に沿ってTiとAlの周期的な組成変化が存在し、Al含有量の割合の極大値と極小値の平均の差は0.03〜0.25であることが好ましい。すなわち、結晶粒内にTiとAlの周期的な組成変化が存在するとき、結晶粒内に歪みが生じて硬さが向上する。そして、Alの含有割合(x)の極大値と極小値の平均の差が0.03未満であると、前記歪みが小さく十分な硬さの向上がなく、0.25を超えると前記歪が大きくなりすぎて、格子欠陥が大きくなり硬さが低下してしまう。
5. In a crystal grain having a NaCl-type face-centered cubic structure, one of the average grain width W, average aspect ratio A, and equivalent crystal orientation represented by <001> when viewed from the longitudinal section direction Difference in periodic compositional change of Ti and Al along the azimuth and average of maximum and minimum of Al content ratio:
In the present invention, the average grain size width W of the columnar crystals is 0.1 to 2.0 μm and the average aspect ratio A is 2.0 to 2.0 when observed from the longitudinal section direction in the crystal grains having the NaCl type cubic structure. It is desirable to satisfy 10.0. In this way, the crystal grains having the NaCl type cubic structure become columnar crystals of a predetermined shape and exhibit excellent wear resistance. The reason for setting this numerical range is that the average particle width W is less than 0.1 μm, the wear resistance may be reduced, and if it exceeds 2.0 μm, the toughness may be reduced. When the aspect ratio A is less than 2, it may be difficult to form a periodic distribution of the composition to be described later in the crystal grains having the NaCl-type cubic structure. This is because it may be difficult.
Further, there is a periodic composition change of Ti and Al along one of the equivalent crystal orientations represented by <001>, and the difference between the average of the maximum value and the minimum value of the Al content ratio is 0. 0.03 to 0.25 is preferable. That is, when there is a periodic composition change between Ti and Al in the crystal grains, distortion occurs in the crystal grains and the hardness is improved. When the average difference between the maximum value and the minimum value of the Al content ratio (x) is less than 0.03, the distortion is small and there is no sufficient improvement in hardness. If it becomes too large, lattice defects become large and the hardness decreases.
6.NaCl型の面心立方構造の結晶粒において、<001>で表される等価の結晶方位の一つの方位に沿ったTiとAlの周期的な組成変化の周期と当該方位に直交する面内でのAlの含有割合の変化:
前述のとおり、TiとAlの周期的な含有割合の変化が、<001>で表される等価の結晶方位の一つの方位に沿って存在し、この変化の周期が3〜100nmであることが望ましい。周期が3nm未満であると靱性が低下することがあり、100nmを超えると硬さの向上が期待できないことがある。また、この周期的変化が存在する方位に直行する面(すなわち、この方位を法線方向とする面)方向のAl含有量の変化量(最大値と最小値との差)は、0.01以下であることが望ましい。この周期とAl含有量の変化であれば、十分な硬度や耐欠損性の向上がより一層さなれる。
なお、この周期的な組成変化を示す模式図を図3として示す。
6). In the crystal grains of the NaCl type face-centered cubic structure, the periodic composition change period of Ti and Al along one of the equivalent crystal orientations represented by <001> is in a plane orthogonal to the orientation. In Al content ratio of:
As described above, a change in the periodic content ratio of Ti and Al exists along one of the equivalent crystal orientations represented by <001>, and the period of this change is 3 to 100 nm. desirable. If the period is less than 3 nm, the toughness may decrease, and if it exceeds 100 nm, improvement in hardness may not be expected. Further, the amount of change in Al content (difference between the maximum value and the minimum value) in the direction perpendicular to the direction in which this periodic change exists (that is, the plane having this direction as the normal direction) is 0.01. The following is desirable. If the period and the Al content change, sufficient hardness and fracture resistance can be further improved.
In addition, the schematic diagram which shows this periodic composition change is shown as FIG.
Al含有割合の周期的な変化の有無と周期的な変化の極大値と極小値の差、周期幅、
および、周期的な変化のある方向と直交する面の含有量の変化は、透過型電子顕微鏡(倍率200000倍)を用いた複合窒化物層または複合炭窒化物層の微小領域の観察にてその存在を確認する。例えば、エネルギー分散型X線分光法(EDS)を用いて、工具基体表面に垂直な断面(縦断面)における400nm×400nmの領域について面分析を行い、NaCl型の面心立方構造の立方晶の結晶粒において縞状に色の濃淡の変化が見られたとき、前記立方晶の結晶粒内に、TiAlCNにおけるTiとAlの周期的な組成変化が存在する。そして、当該結晶粒について、電子線解析を行うことにより周期的な組成変化がNaCl型の面心立方構造を有する結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在することを確認し、その方位に沿った、前記面分析の結果に基づいて濃淡から10周期分程度の組成変化が測定範囲に入る様に倍率を設定した上で、工具基体表面の法線方向に沿ってEDSによる線分析を5周期分の範囲で行い、Alの含有割合xの周期的な変化の極大値と極小値のそれぞれの平均値の差を求め、さらに該5周期の極大値間の平均間隔をTiとAlの周期的な組成変化の周期として求める。そして、その方位に直交する方位に対してもEDSによる面分析を行う。
Presence or absence of periodic change in Al content ratio, difference between maximum and minimum values of periodic change, period width,
In addition, the change in the content of the surface perpendicular to the direction in which the periodic change occurs can be determined by observing a minute region of the composite nitride layer or the composite carbonitride layer using a transmission electron microscope (magnification 200000 times). Confirm existence. For example, using energy dispersive X-ray spectroscopy (EDS), surface analysis is performed on a 400 nm × 400 nm region in a cross section (longitudinal cross section) perpendicular to the surface of the tool substrate, and a cubic crystal having a NaCl type face-centered cubic structure is obtained. When a change in color shading is seen in the crystal grains, periodic compositional changes of Ti and Al in TiAlCN exist in the cubic crystal grains. Then, by performing electron beam analysis on the crystal grain, the periodic composition change occurs in one of the equivalent crystal orientations represented by <001> of the crystal grain having the NaCl type face centered cubic structure. And the magnification is set so that a composition change of about 10 cycles from the light and shade is included in the measurement range based on the result of the surface analysis along the direction. A line analysis by EDS is performed in the range of 5 cycles along the normal direction, the difference between the average value of the maximum value and the minimum value of the periodic change in the Al content ratio x is obtained, and further, the 5 cycles The average interval between the maximum values is obtained as the period of periodic composition change of Ti and Al. Then, surface analysis by EDS is also performed on the direction orthogonal to the direction.
7.NaCl型の面心立方構造の結晶粒の格子定数a:
前記TiAlN層について、X線回折装置を用い、Cu−Kα線を線源としてX線回折試験を実施し、NaCl型の面心立方構造の結晶粒の格子定数aを求めたとき、前記結晶粒の格子定数aが、立方晶TiN(JCPDS00−038−1420)の格子定数aTiN:4.24173Åと立方晶AlN(JCPDS00−046−1200)の格子定数aAlN:4.0450Åに対して、0.05aTiN+0.95aAlN≦a≦0.40aTiN+0.60aAlNの関係を満たすとき、より高い硬さを示し、かつ高い熱伝導性を示すことにより、TiAlN層は優れた耐摩耗性に加えて、優れた耐熱衝撃性を備える。ここで、上記式の下限値0.05aTiN+0.95aAlNは4.055Åであり、上限値0.40aTiN+0.60aAlNは4.124Åである。
7). Lattice constant a of crystal grains of NaCl type face centered cubic structure:
When the TiAlN layer was subjected to an X-ray diffraction test using an X-ray diffractometer and a Cu-Kα ray as a radiation source, the lattice constant a of the crystal grains of the NaCl type face centered cubic structure was obtained. The lattice constant a of cubic TiN (JCPDS00-038-1420) is 0 with respect to the lattice constant aTiN: 4.24173Å of cubic TiN (JCPDS00-046-1200) and the lattice constant a AlN of 4.0450Å. .05a TiN + 0.95a AlN ≤a ≤0.40a TiN + 0.60a When satisfying the relationship of AlN , the TiAlN layer has excellent wear resistance by exhibiting higher hardness and high thermal conductivity. In addition, it has excellent thermal shock resistance. Here, the lower limit value 0.05a TiN + 0.95a AlN of the above formula is 4.055Å, and the upper limit value 0.40a TiN + 0.60a AlN is 4.124Å.
8.下部層:
本発明のTiAlCN層を含む硬質被覆層は、それだけでも十分な効果を奏するが、Tiの炭化物層、窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20.0μmの合計平均層厚を有する下部層を設けた場合には、これらの層が奏する効果と相俟って、一層優れた特性が発揮される。ただし、Tiの炭化物層、窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20.0μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
8). Lower layer:
The hard coating layer including the TiAlCN layer of the present invention alone has a sufficient effect, but one or two or more layers of Ti carbide layer, nitride layer, carbonate layer and carbonitride oxide layer are included. When a lower layer made of a compound layer and having a total average layer thickness of 0.1 to 20.0 μm is provided, more excellent characteristics are exhibited in combination with the effects of these layers. However, when a lower layer composed of one or two or more Ti compound layers of Ti carbide layer, nitride layer, carbonate layer and carbonitride layer is provided, the total average layer thickness of the lower layer is 0. When the thickness is less than 1 μm, the effect of the lower layer is not sufficiently achieved. On the other hand, when the thickness exceeds 20.0 μm, the crystal grains are likely to be coarsened and chipping is likely to occur.
9.上部層
Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20.0μmの合計平均層厚を有する上部層を設けると、一層優れた特性が発揮されて好ましい。ここで、合計平均層厚が0.1μm未満であると、上部層を設けた効果が十分に発揮されず、一方、20μmを超えると、チッピングが発生しやすくなる。
9. Upper layer: Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, consisting of one or more Ti compound layers, and a total of 0.1 to 20.0 μm It is preferable to provide an upper layer having an average layer thickness because more excellent characteristics are exhibited. Here, if the total average layer thickness is less than 0.1 μm, the effect of providing the upper layer is not sufficiently exhibited, while if it exceeds 20 μm, chipping tends to occur.
10.成膜方法(条件)
本発明のTiAlCN層は、工具基体またはTiの炭化物層、窒化物層、炭酸化物層および炭窒酸化物層の少なくとも一層以上である下部層の上に、TiAlCN層形成用の反応ガスを所定条件で供給して、成膜することによって得られる。また、TiAlCN層の傾斜角の制御方法として、例えば、TiAlCN層形成の下地層として、平均層厚が1.5〜3.5μmのTiCN層を形成する。
例えば、ガス組成を表す%は容量%として、
(1)下地層(TiCN層)
反応ガス:CH3CN:0.4〜0.8%、TiCl4:2.0〜3.5%、N2:20.0〜30.0%、H2:残り
反応雰囲気圧力:7.0kPa
反応雰囲気温度:800〜870℃
(2)TiAlCN層
ガス群A:NH3:0.8〜1.6%、H2:35.0〜40.0%
ガス群B:AlCl3:0.5〜0.7%、Al(CH3)3:0.00〜0.08%、TiCl4:0.1〜0.3%、N2:0.0〜10.0%、H2:残り
(ガス群Aとガス群Bの%は、ガス群Aとガス群Bガスの合計に対するものである)
反応雰囲気圧力:4.5〜5.0kPa
反応雰囲気温度:700〜900℃
ここで、ガス群Aとガス群Bとは、熱CVD装置の反応容器内の空間で被成膜物の直前までガスを分離して供給し、被成膜物の直前でガス群Aとガス群Bが混合し、反応させるようにする。これは、互いに反応活性の高いガス種を成膜領域にわたって均一に成膜するために有効であり、詳細な技術内容は、例えば特開2015−131984号公報に開示されている。
10. Deposition method (conditions)
In the TiAlCN layer of the present invention, the reaction gas for forming the TiAlCN layer is formed on the tool base or the lower layer, which is at least one of the Ti carbide layer, nitride layer, carbonate layer and carbonitride layer, under predetermined conditions. To obtain the film. As a method for controlling the tilt angle of the TiAlCN layer, for example, a TiCN layer having an average layer thickness of 1.5 to 3.5 μm is formed as a base layer for forming the TiAlCN layer.
For example,% representing gas composition is volume%,
(1) Underlayer (TiCN layer)
Reaction gas: CH 3 CN: 0.4~0.8%, TiCl 4: 2.0~3.5%, N 2: 20.0~30.0%, H 2: remainder Pressure of reaction atmosphere: 7. 0 kPa
Reaction atmosphere temperature: 800-870 ° C
(2) TiAlCN layer gas group A: NH 3 : 0.8 to 1.6%, H 2 : 35.0 to 40.0%
Gas group B: AlCl 3 : 0.5 to 0.7%, Al (CH 3 ) 3 : 0.00 to 0.08%, TiCl 4 : 0.1 to 0.3%, N 2 : 0.0 ˜10.0%, H 2 : remaining (% in gas group A and gas group B is relative to the sum of gas group A and gas group B gas)
Reaction atmosphere pressure: 4.5 to 5.0 kPa
Reaction atmosphere temperature: 700-900 ° C
Here, the gas group A and the gas group B are separated and supplied in the space in the reaction vessel of the thermal CVD apparatus until just before the film formation object, and the gas group A and the gas just before the film formation object. Allow Group B to mix and react. This is effective for uniformly forming gas species having high reaction activity over the film forming region, and detailed technical contents are disclosed in, for example, Japanese Patent Application Laid-Open No. 2015-131984.
次に、実施例について説明する。
ここでは、本発明被覆工具の具体例として、工具基体としてWC基超高圧焼結体を用いたインサート切削工具に適用したものについて述べるが、工具基体として、TiCN基サーメット、cBN基超高圧焼結体を用いた場合であっても同様であるし、ドリル、エンドミルに適用した場合も同様である。
Next, examples will be described.
Here, as a specific example of the coated tool of the present invention, a tool base applied to an insert cutting tool using a WC-based ultrahigh-pressure sintered body will be described. As a tool base, TiCN-based cermet, cBN-based ultrahigh-pressure sintered The same applies to the case where the body is used, and the same applies when applied to a drill or an end mill.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr3C2粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、三菱マテリアル社製SEMT13T3AGSNのインサート形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa. After vacuum sintering at a predetermined temperature within a range of ˜1470 ° C. for 1 hour, after sintering, tool bases A to C made of WC-based cemented carbide having an insert shape of SEMT13T3AGSN made by Mitsubishi Materials Corp. Each was manufactured.
次に、これら工具基体A〜Cの表面に、CVD装置を用いて、下地層(TiCN層)とTiAlCN層をCVDにより形成し、表6に示される本発明被覆工具1〜10を得た。
成膜条件は、表2、3に記載したとおりであるが、概ね、次のとおりである。
(1)下地層(TiCN層)
CH3CN:0.4〜0.8%、TiCl4:2.0〜3.5%、N2:20.0〜30.0%、H2:残り
反応雰囲気圧力:7.0kPa
反応雰囲気温度:800〜870℃
(2)TiAlCN層
ガス群A:NH3:0.8〜1.6%、H2:35.0〜40.0%
ガス群B:AlCl3:0.5〜0.7%、Al(CH3)3:0.00〜0.08%、TiCl4:0.1〜0.3%、N2:0.0〜10.0%、H2:残り
反応雰囲気圧力:4.5〜5.0kPa
反応雰囲気温度:700〜900℃
ガス群Aとガス群Bとは、熱CVD装置の反応容器内の空間で被成膜物の直前までガスを分離して供給し、被成膜物の直前でガス群Aとガス群Bが混合し、反応させるようにしており、前述の特開2015−131984号公報に記載されているものを使用した。
なお、本発明被覆工具は1〜10は、表4に記載された成膜条件により、表5に示された下部層のみ、または、下部層および上部層を形成した。
Next, a base layer (TiCN layer) and a TiAlCN layer were formed on the surfaces of the tool bases A to C by CVD using a CVD apparatus, and the inventive coated tools 1 to 10 shown in Table 6 were obtained.
The film formation conditions are as described in Tables 2 and 3, and are generally as follows.
(1) Underlayer (TiCN layer)
CH 3 CN: 0.4~0.8%, TiCl 4: 2.0~3.5%, N 2: 20.0~30.0%, H 2: remainder Pressure of reaction atmosphere: 7.0 kPa
Reaction atmosphere temperature: 800-870 ° C
(2) TiAlCN layer gas group A: NH 3 : 0.8 to 1.6%, H 2 : 35.0 to 40.0%
Gas group B: AlCl 3 : 0.5 to 0.7%, Al (CH 3 ) 3 : 0.00 to 0.08%, TiCl 4 : 0.1 to 0.3%, N 2 : 0.0 ~10.0%, H 2: remainder pressure of reaction atmosphere: 4.5~5.0KPa
Reaction atmosphere temperature: 700-900 ° C
The gas group A and the gas group B are separated and supplied in the space inside the reaction vessel of the thermal CVD apparatus until just before the film formation object, and the gas group A and the gas group B are just before the film formation object. A mixture and a reaction were used, and those described in JP-A-2015-131984 were used.
In the coated tools of the present invention, only the lower layer shown in Table 5 or the lower layer and the upper layer were formed according to the film forming conditions shown in Table 4 for 1 to 10 of the present invention.
また、比較の目的で、工具基体A〜Cの表面に、表2、3に示される条件によりCVDを行うことにより、表6に示されるTiAlCN層を含む硬質被覆層を蒸着形成して比較被覆工具1〜10を製造した。
なお、比較被覆工具1〜10については、表4に示される形成条件により、表5に示された下部層のみ、または、下部層および上部層を形成した。
For comparison purposes, a hard coating layer including a TiAlCN layer shown in Table 6 is formed by vapor deposition on the surfaces of the tool bases A to C according to the conditions shown in Tables 2 and 3 for comparative coating. Tools 1-10 were manufactured.
In addition, about the comparison coating tools 1-10, according to the formation conditions shown in Table 4, only the lower layer shown in Table 5, or the lower layer and the upper layer were formed.
前記本発明被覆工具1〜10、比較被覆工具1〜10の硬質被覆層について、前述した方法を用いて、平均Al含有割合xと平均C含有割合yを算出した。また、基体表面の法線に対して{112}面の法線がなすそれぞれの傾斜角度数分布において、傾斜角度数の最高ピークが0〜10度に存在するかを確認すると共に、傾斜角が0〜10度の範囲内に存在する度数の割合を求めた。さらに、TiとAlの組成変化の<001>で表される等価の方位に沿った周期の有無とAl含有割合の極大値の平均と極小値の平均との差、その周期幅、さらには、その方位に直交する面内のAl含有割合の変化についても測定した。加えて、NaCl型の面心立方構造を有する結晶粒の割合、NaCl型の面心立方構造を有するTiNおよびAlNの格子定数、NaCl型の面心立方構造を有する柱状晶の粒界部に存在する微粒径の結晶粒の面積割合を測定した。
なお、平均層厚は、各構成層の縦断面を走査型電子顕微鏡(倍率5000倍)を用いて観察し、観察視野内の5点の層厚を測定して平均して求めた。
これらの結果を表6にまとめた。なお、表6には記載していないが、発明被覆工具1〜10、比較被覆工具1〜10のいずれも、NaCl型面心立方構造の面積率は60%以上であることを確認している。
For the hard coating layers of the inventive coated tools 1 to 10 and the comparative coated tools 1 to 10, the average Al content ratio x and the average C content ratio y were calculated using the method described above. In addition, in each inclination angle number distribution formed by the normal of the {112} plane with respect to the normal of the substrate surface, it is confirmed whether the maximum peak of the inclination angle exists at 0 to 10 degrees, and the inclination angle is The ratio of the frequency existing within the range of 0 to 10 degrees was determined. Further, the presence / absence of a period along the equivalent orientation represented by <001> of the composition change of Ti and Al, the difference between the average of the maximum value and the average of the minimum value of the Al content ratio, the period width, The change in the Al content ratio in the plane perpendicular to the orientation was also measured. In addition, the ratio of crystal grains having NaCl-type face-centered cubic structure, the lattice constants of TiN and AlN having NaCl-type face-centered cubic structure, and present at the grain boundaries of columnar crystals having NaCl-type face-centered cubic structure The area ratio of crystal grains having a fine particle diameter was measured.
The average layer thickness was determined by observing the longitudinal section of each constituent layer using a scanning electron microscope (5000 times magnification), and measuring and averaging the five layer thicknesses within the observation field.
These results are summarized in Table 6. In addition, although not described in Table 6, it is confirmed that the area ratio of the NaCl type face centered cubic structure is 60% or more in any of the invention coated tools 1 to 10 and the comparative coated tools 1 to 10. .
続いて、前記本発明被覆工具1〜10および比較被覆工具1〜10について、いずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、耐熱合金、Ni−19Cr−19Fe−3Mo−0.9Ti−0.5Al−5.1(Nb+Ta)合金の時効硬化処理材の湿式正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
切削試験:湿式正面フライス、センターカット切削加工
被削材:上記耐熱合金 幅100mm、長さ400mmのブロック材
回転速度:153min−1
切削速度:60m/min
切り込み:1.0mm
一刃送り量:0.15mm/刃
切削時間:8分
表7に、切削試験の結果を示す。なお、比較被覆工具1〜10については、チッピング発生が原因で寿命に至ったため、寿命に至るまでの時間を示す。
Subsequently, with respect to the inventive coated tools 1 to 10 and comparative coated tools 1 to 10, both are heat-resistant alloy, Ni-19Cr-, in a state of being clamped by a fixing jig at the tip of a cutter made of tool steel having a cutter diameter of 125 mm. A wet face milling and center-cut cutting test of the age-hardened material of 19Fe-3Mo-0.9Ti-0.5Al-5.1 (Nb + Ta) alloy was performed, and the flank wear width of the cutting edge was measured.
Cutting test: wet face milling, center-cut cutting work material: heat-resistant alloy Block material rotation speed of
Cutting speed: 60 m / min
Cutting depth: 1.0mm
Single blade feed amount: 0.15 mm / blade cutting time: 8 minutes Table 7 shows the results of the cutting test. In addition, about the comparison coated tools 1-10, since it reached the lifetime due to chipping generation | occurrence | production, the time until it reaches a lifetime is shown.
表7に示される結果から、本発明被覆工具1〜10は、
(a)前記硬質被覆層は、平均層厚1.0〜20.0μmの組成式:(Ti1−xAlx)(CyN1−y)において、Xavg、およびYavgが、0.60≦Xavg≦0.95、0≦Yavg≦0.0050を満足し、
(b)NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の結晶粒を含み、
(c)前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、該傾斜角のうち前記工具基体の表面の法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して、各区分内に存在する度数を集計して得られた傾斜角度数分布において、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上であり、
(d)前記結晶粒の平均粒子幅Wが0.1〜2.0μm、平均アスペクト比Aが2.0〜10.0である柱状組織を有し、また、前記結晶粒おけるTiとAlの周期的な組成変化が前記結晶粒の<001>で表される等価の結晶方位の一つの方位に沿って存在し、Alの前記含有割合の極大値の平均と極小値の平均の差は0.03〜0.25である、
ことを満足しているから、切削加工が難しい耐熱合金の高速連続切削加工において、チッピングの発生がなく、長期にわたって優れた切削性能を発揮する。
これに対して、本発明の規定を満足しない比較被覆工具1〜10は、切削加工が難しい耐熱合金の高速連続切削加工においてチッピングが発生し、短時間で使用寿命に至っている。
From the results shown in Table 7, the inventive coated tools 1-10 are
(A) The hard coating layer has an average layer thickness of 1.0 to 20.0 μm: (Ti 1-x Al x ) (C y N 1-y ), X avg and Y avg are 0 satisfy .60 ≦ X avg ≦ 0.95,0 ≦ Y avg ≦ 0.0050,
(B) including a crystal grain of composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure;
(C) The inclination angle formed by the normal line of the {112} plane that is the crystal plane of the crystal grain is measured, and the inclination angle is within a range of 0 to 45 degrees with respect to the normal direction of the surface of the tool base. In the inclination angle distribution obtained by dividing the inclination angle at 0.25 degree pitch and counting the frequencies existing in each division, it is the highest in the inclination angle division within the range of 0 to 10 degrees. The sum of the frequencies existing within the range of 0 to 10 degrees is 35% or more of the entire frequencies in the tilt angle frequency distribution, with the presence of the peak,
(D) The crystal grains have a columnar structure having an average grain width W of 0.1 to 2.0 μm and an average aspect ratio A of 2.0 to 10.0, and Ti and Al in the crystal grains A periodic composition change exists along one of the equivalent crystal orientations represented by <001> of the crystal grains, and the difference between the average of the maximum value and the average of the minimum value of the Al content is 0. .03-0.25,
Satisfying this, there is no occurrence of chipping in high-speed continuous cutting of heat-resistant alloys that are difficult to cut, and exhibits excellent cutting performance over a long period of time.
On the other hand, the comparative coated tools 1 to 10 that do not satisfy the provisions of the present invention have chipping in high-speed continuous cutting of heat-resistant alloys that are difficult to cut, and have reached the service life in a short time.
前述のように、本発明の被覆工具は、耐熱合金の高速断続切削加工であっても、高速断続切削加工の被覆工具として用いることができ、しかも、長期にわたって優れた耐摩耗性を発揮するから、切削装置の高性能化並びに切削加工の省力化及び省エネ化、さらには低コスト化に十分に満足できる対応ができるものである。 As described above, the coated tool of the present invention can be used as a coated tool for high-speed interrupted cutting even in high-speed interrupted cutting of a heat-resistant alloy, and exhibits excellent wear resistance over a long period of time. Therefore, it is possible to sufficiently satisfy the demand for higher performance of the cutting device, labor saving and energy saving of the cutting work, and further cost reduction.
Claims (5)
(a)前記硬質被覆層は、平均層厚1.0〜20.0μmのTiとAlの複合窒化物層または複合炭窒化物層を少なくとも含み、前記複合窒化物層または前記複合炭窒化物層の組成を組成式:(Ti1−xAlx)(CyN1−y)で表した場合、前記複合窒化物層または前記複合炭窒化物層のAlのTiとAlの合量に占める平均含有割合xavg、および前記複合窒化物層または前記複合炭窒化物層のCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.60≦xavg≦0.95、0≦yavg≦0.0050を満足し、
(b)前記複合窒化物層または前記複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の結晶粒を少なくとも含み、
(c)前記複合窒化物層または前記複合炭窒化物層について、電子線後方散乱回折装置を用いて、前記結晶粒の結晶方位を前記複合窒化物層または前記複合炭窒化物層の縦断面方向から解析して、前記工具基体の表面の法線方向に対して前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、該傾斜角のうち前記工具基体の表面の法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して、各区分内に存在する度数を集計して得られた傾斜角度数分布において、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上であり、
(d)前記複合窒化物層または前記複合炭窒化物層を縦断面方向から観察したとき、前記結晶粒の平均粒子幅Wが0.1〜2.0μm、平均アスペクト比Aが2.0〜10.0である柱状組織を有し、また、前記結晶粒おけるTiとAlの周期的な組成変化が前記結晶粒の<001>で表される等価の結晶方位の一つの方位に沿って存在し、Alの前記含有割合の極大値の平均と極小値の平均の差は0.03〜0.25であることを特徴とする表面被覆工具。 In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body,
(A) The hard coating layer includes at least a composite nitride layer or composite carbonitride layer of Ti and Al having an average layer thickness of 1.0 to 20.0 μm, and the composite nitride layer or the composite carbonitride layer Is represented by the composition formula: (Ti 1-x Al x ) (C y N 1-y ), it occupies the total amount of Ti and Al in the composite nitride layer or the composite carbonitride layer. The average content ratio x avg , and the average content ratio y avg (where x avg and y avg are atomic ratios) in the total amount of C and N in C of the composite nitride layer or the composite carbonitride layer are Satisfying 0.60 ≦ x avg ≦ 0.95 and 0 ≦ y avg ≦ 0.0050, respectively.
(B) The composite nitride layer or the composite carbonitride layer includes at least crystal grains of a composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure,
(C) With respect to the composite nitride layer or the composite carbonitride layer, an electron beam backscattering diffractometer is used to change the crystal orientation of the crystal grains in the longitudinal section direction of the composite nitride layer or the composite carbonitride layer. The inclination angle formed by the normal of the {112} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal direction of the surface of the tool base, and the surface of the tool base out of the inclination angles In the inclination angle number distribution obtained by dividing the inclination angle within the range of 0 to 45 degrees with respect to the normal direction of each for each pitch of 0.25 degrees and totaling the frequencies existing in each division The highest peak exists in the inclination angle section within the range of 0 to 10 degrees, and the total of the frequencies existing within the range of 0 to 10 degrees is 35% or more of the entire degrees in the inclination angle frequency distribution. ,
(D) When the composite nitride layer or the composite carbonitride layer is observed from the longitudinal sectional direction, the average grain width W of the crystal grains is 0.1 to 2.0 μm, and the average aspect ratio A is 2.0 to It has a columnar structure of 10.0, and a periodic composition change of Ti and Al in the crystal grains exists along one of the equivalent crystal orientations represented by <001> of the crystal grains And the difference of the average of the maximum value of the said content rate of Al and the average of minimum value is 0.03-0.25, The surface coating tool characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018066527A JP2019177424A (en) | 2018-03-30 | 2018-03-30 | Surface-coated cutting tool the hard coating layer of which exhibits excellent oxidation resistance and deposition resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018066527A JP2019177424A (en) | 2018-03-30 | 2018-03-30 | Surface-coated cutting tool the hard coating layer of which exhibits excellent oxidation resistance and deposition resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019177424A true JP2019177424A (en) | 2019-10-17 |
Family
ID=68277104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018066527A Pending JP2019177424A (en) | 2018-03-30 | 2018-03-30 | Surface-coated cutting tool the hard coating layer of which exhibits excellent oxidation resistance and deposition resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019177424A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021146442A (en) * | 2020-03-19 | 2021-09-27 | 三菱マテリアル株式会社 | Surface-coated cutting tool |
-
2018
- 2018-03-30 JP JP2018066527A patent/JP2019177424A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021146442A (en) * | 2020-03-19 | 2021-09-27 | 三菱マテリアル株式会社 | Surface-coated cutting tool |
JP7401850B2 (en) | 2020-03-19 | 2023-12-20 | 三菱マテリアル株式会社 | surface coated cutting tools |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6478100B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP6284034B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JPWO2012063515A1 (en) | Surface coated cutting tool | |
JP7121234B2 (en) | A surface cutting tool with a hard coating that exhibits excellent chipping resistance | |
JP6709526B2 (en) | Surface coated cutting tool | |
JP6857298B2 (en) | Surface coating cutting tool with excellent chipping resistance due to the hard coating layer | |
WO2020138304A1 (en) | Surface-coated cutting tool | |
JP6617917B2 (en) | Surface coated cutting tool | |
JP2018164961A (en) | Surface coat cutting tool by which hard coating layer exhibits excellent wear resistance and chipping resistance and manufacturing method therefor | |
JP7453613B2 (en) | surface coated cutting tools | |
JP6650108B2 (en) | Surface coated cutting tool with excellent chipping and wear resistance | |
WO2020166683A1 (en) | Surface-coated cutting tool | |
JP2021126738A (en) | Surface-coated cutting tool exhibiting excellent chipping resistance and wear resistance in strong intermittent cutting | |
JP6935058B2 (en) | Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer | |
JP2019177424A (en) | Surface-coated cutting tool the hard coating layer of which exhibits excellent oxidation resistance and deposition resistance | |
JP6774649B2 (en) | Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer | |
JP2020146820A (en) | Cutting tool with hard coating layer exhibiting excellent chipping resistance | |
JP7541279B2 (en) | Surface-coated cutting tools | |
JP7453616B2 (en) | surface coated cutting tools | |
JP7137149B2 (en) | A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance | |
US11998992B2 (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance | |
JP7190111B2 (en) | surface coated cutting tools | |
JP6957824B2 (en) | Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer | |
JP6651130B2 (en) | Surface coated cutting tool with excellent chipping and wear resistance | |
JP2019177425A (en) | Surface-coated cutting tool the hard coating layer of which exhibits excellent oxidation resistance and deposition resistance |