[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019173616A - Film cooling structure - Google Patents

Film cooling structure Download PDF

Info

Publication number
JP2019173616A
JP2019173616A JP2018061312A JP2018061312A JP2019173616A JP 2019173616 A JP2019173616 A JP 2019173616A JP 2018061312 A JP2018061312 A JP 2018061312A JP 2018061312 A JP2018061312 A JP 2018061312A JP 2019173616 A JP2019173616 A JP 2019173616A
Authority
JP
Japan
Prior art keywords
film cooling
gas
high temperature
cooling structure
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018061312A
Other languages
Japanese (ja)
Other versions
JP7168926B2 (en
Inventor
田川 久人
Hisato Tagawa
久人 田川
樋口 眞一
Shinichi Higuchi
眞一 樋口
健一 船▲崎▼
Kenichi Funezaki
健一 船▲崎▼
隼人 滝澤
Hayato Takizawa
隼人 滝澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Mitsubishi Power Ltd
Original Assignee
Iwate University
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University, Mitsubishi Hitachi Power Systems Ltd filed Critical Iwate University
Priority to JP2018061312A priority Critical patent/JP7168926B2/en
Publication of JP2019173616A publication Critical patent/JP2019173616A/en
Application granted granted Critical
Publication of JP7168926B2 publication Critical patent/JP7168926B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

To suppress peeling of cooling gas from a surface of a high-temperature member, to improve film cooling performance.SOLUTION: In a film cooling structure that forms a film cooling film on a surface 2 of a high-temperature member 1 facing a high-temperature flow passage through which high-temperature gas 10 flows, at least one recess 30 is provided on the high-temperature surface 2 so as to correspond to an ejection port 5 of a film cooling hole 4 opened on the high-temperature surface 2; and the recess 30 is arranged upstream of the ejection port 5 in the flow direction of the high-temperature gas 10, and is formed symmetrically with respect to a center line C2 of the ejection port 5 extending in the flow direction of the high-temperature gas 10.SELECTED DRAWING: Figure 1

Description

本発明は、高温気体が流れる高温流路に臨むタービン翼等のガスタービンの高温部材の表面にフィルム冷却膜を形成するフィルム冷却構造等に関する。   The present invention relates to a film cooling structure or the like that forms a film cooling film on the surface of a high-temperature member of a gas turbine such as a turbine blade that faces a high-temperature channel through which high-temperature gas flows.

高温気体に晒される部材のフィルム冷却では、部材表面に設けたフィルム冷却孔(細孔)から冷却気体を噴出させ、この冷却気体で部材表面を覆うことで、高温気体から部材への入熱を抑制する。従って、噴き出した冷却気体が部材表面に沿って流れることがフィルム冷却性能を向上する上で重要である。そこで、フィルム冷却孔よりも上流側に一対の突起を設けて高温気体に縦渦を与え、フィルム冷却孔から噴出する冷却気体を旋回する高温気体で押えることで、部材表面からのフィルム冷却空気の剥離の抑制を図ることが提唱されている(特許文献1等参照)。   In film cooling of a member exposed to a high-temperature gas, cooling gas is ejected from film cooling holes (pores) provided on the surface of the member, and the surface of the member is covered with this cooling gas, so that heat input from the high-temperature gas to the member can be achieved. Suppress. Therefore, it is important to improve the film cooling performance that the jetted cooling gas flows along the surface of the member. Therefore, a pair of protrusions are provided on the upstream side of the film cooling holes to give vertical vortices to the high temperature gas, and the cooling gas ejected from the film cooling holes is pressed by the swirling high temperature gas, so that the film cooling air from the member surface It has been proposed to suppress peeling (see Patent Document 1).

特開2014−214632号公報JP 2014-214632 A

しかし、特許文献1のように高温部品の表面に突起を形成することは製造上の困難性がある。また、高温高速気体に晒されるうちに突起部が消失する可能性があり、実用性の面で課題がある。   However, forming a protrusion on the surface of a high-temperature component as in Patent Document 1 has manufacturing difficulties. Moreover, there is a possibility that the protrusions may disappear while being exposed to the high-temperature and high-speed gas, and there is a problem in terms of practicality.

本発明は、高温部材の表面からの冷却気体の剥離を抑制してフィルム冷却性能を向上させることができる実用的なフィルム冷却構造等を提供することを目的とする。   An object of this invention is to provide the practical film cooling structure etc. which can suppress peeling of the cooling gas from the surface of a high temperature member, and can improve a film cooling performance.

上記目的を達成するために、本発明は、高温部材の表面に開口したフィルム冷却孔の高温気体の流れ方向におけるフィルム冷却孔よりも上流側に位置するように、高温気体の流れ方向に延ばしたフィルム冷却孔の噴出口の中心線について対称に形成した窪みを高温部材の表面に少なくとも1つ配置する。   In order to achieve the above object, the present invention extends in the direction of hot gas flow so that the film cooling hole opened on the surface of the hot member is positioned upstream of the film cooling hole in the hot gas flow direction. At least one recess formed symmetrically with respect to the center line of the jet port of the film cooling hole is disposed on the surface of the high temperature member.

本発明によれば、高温部材の表面からの冷却気体の剥離を抑制してフィルム冷却性能を向上させることができる。   According to this invention, peeling of the cooling gas from the surface of a high temperature member can be suppressed and film cooling performance can be improved.

本発明の第1実施形態に係るフィルム冷却構造の斜視図The perspective view of the film cooling structure which concerns on 1st Embodiment of this invention. 図1のフィルム冷却構造の高温流路から見た平面図A plan view of the film cooling structure of FIG. 図2のA−A線による矢視断面図Cross-sectional view taken along line AA in FIG. 図2のB−B線による矢視断面図Cross-sectional view taken along line B-B in FIG. 図2のC−C線による矢視断面図Cross-sectional view taken along line CC in FIG. 本発明の第2実施形態に係るフィルム冷却構造の平面図The top view of the film cooling structure which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るフィルム冷却構造の平面図The top view of the film cooling structure which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係るフィルム冷却構造の平面図The top view of the film cooling structure which concerns on 4th Embodiment of this invention. 本発明のフィルム冷却構造の一適用対象であるガスタービンの部分断面図Partial sectional drawing of the gas turbine which is one application object of the film cooling structure of this invention 本発明のフィルム冷却構造の適用例1を示す図The figure which shows the application example 1 of the film cooling structure of this invention 本発明のフィルム冷却構造の適用例2を示す図The figure which shows the example 2 of application of the film cooling structure of this invention 本発明のフィルム冷却構造の適用例3を示す図The figure which shows the example 3 of application of the film cooling structure of this invention 比較例に係るフィルム冷却構造の平面図Plan view of film cooling structure according to comparative example 図13のC’−C’線による矢視断面図FIG. 13 is a cross-sectional view taken along line C'-C 'in FIG.

以下に図面を用いて本発明の実施形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1実施形態)
−フィルム冷却構造−
図1は本発明の第1実施形態に係るフィルム冷却構造の斜視図、図2は図1のフィルム冷却構造を高温流路から見た平面図、図3は図2のA−A線による矢視断面図、図4は図2のB−B線による矢視断面図である。これらの図では高温部材1のフィルム冷却構造近傍を抜き出して部分的に表している。図示したフィルム冷却構造は、矢印方向に高温気体10が流れる高温流路に臨む高温部材1の表面にフィルム冷却膜を形成するための構造であり、フィルム冷却孔4と窪み30を含んでいる。以降、単に「上流側」、「下流側」と記載した場合には、高温気体10の流れ方向の上流側、下流側を意味することとする。
(First embodiment)
-Film cooling structure-
1 is a perspective view of a film cooling structure according to a first embodiment of the present invention, FIG. 2 is a plan view of the film cooling structure of FIG. 1 as viewed from a high-temperature flow path, and FIG. 3 is an arrow along line AA in FIG. FIG. 4 is a sectional view taken along the line BB in FIG. 2. In these drawings, the vicinity of the film cooling structure of the high temperature member 1 is extracted and partially shown. The illustrated film cooling structure is a structure for forming a film cooling film on the surface of the high temperature member 1 facing the high temperature flow path through which the high temperature gas 10 flows in the direction of the arrow, and includes a film cooling hole 4 and a recess 30. Hereinafter, when simply described as “upstream side” and “downstream side”, it means the upstream side and the downstream side in the flow direction of the hot gas 10.

高温部材1は、高温気体10に相対して温度が低い低温気体が流れる低温流路と高温気体10が流れる高温流路とを隔てる。以降、高温部材1の高温流路に臨む表面を高温表面2、低温流路に臨む表面を低温表面3と記載する。高温表面2と低温表面3は表裏の関係にある。フィルム冷却孔4は高温部材1を貫通しており、一端が冷却気体20の流入口6として低温表面3に開口し、他端が冷却気体20の噴出口5として高温表面2に開口している。低温流路を流れる高圧の冷却気体20は流入口6を介してフィルム冷却孔4に流入し、噴出口5から高温流路に噴出する。噴出口5から噴出した冷却気体20で形成されるフィルム冷却膜で高温表面2を覆うことにより、高温気体10から高温表面2への入熱を抑制する。フィルム冷却孔4は、なるべく高温表面2に沿って高温流路に冷却気体20が噴出するように、低温表面3から高温表面2に向かって高温気体10の流れ方向に傾斜している。フィルム冷却孔4の中心線C1(直線)と高温表面2がなす角度α(図2)は、制作上可能な範囲で小さく設定される(例えば30°程度)。フィルム冷却孔4は自己の中心線C1と直交する断面が円形の円孔(円筒形の孔)であるため、流入口6と噴出口5は共に高温気体10の流れ方向に長軸を延ばした楕円形状をしている。なお、角度αは、高温気体10の流れ方向に延ばした噴出口5の中心線C2を含む高温表面2に直交する断面内の角度である。   The high temperature member 1 separates a low temperature channel through which a low temperature gas having a low temperature relative to the high temperature gas 10 and a high temperature channel through which the high temperature gas 10 flows. Hereinafter, the surface facing the high-temperature channel of the high-temperature member 1 is referred to as a high-temperature surface 2, and the surface facing the low-temperature channel is referred to as a low-temperature surface 3. The high temperature surface 2 and the low temperature surface 3 are in a front-back relationship. The film cooling hole 4 penetrates the high temperature member 1, and one end opens to the low temperature surface 3 as the inlet 6 of the cooling gas 20, and the other end opens to the high temperature surface 2 as the outlet 5 of the cooling gas 20. . The high-pressure cooling gas 20 flowing through the low-temperature channel flows into the film cooling hole 4 through the inflow port 6 and is ejected from the ejection port 5 to the high-temperature channel. By covering the high temperature surface 2 with a film cooling film formed by the cooling gas 20 ejected from the ejection port 5, heat input from the high temperature gas 10 to the high temperature surface 2 is suppressed. The film cooling holes 4 are inclined in the flow direction of the high temperature gas 10 from the low temperature surface 3 toward the high temperature surface 2 so that the cooling gas 20 is ejected into the high temperature flow path along the high temperature surface 2 as much as possible. The angle α (FIG. 2) formed by the center line C1 (straight line) of the film cooling hole 4 and the high temperature surface 2 is set as small as possible in production (for example, about 30 °). Since the film cooling hole 4 is a circular hole (cylindrical hole) whose cross section orthogonal to its own center line C1 is circular, both the inlet 6 and the outlet 5 have their long axes extending in the flow direction of the hot gas 10. It has an oval shape. Note that the angle α is an angle in a cross section perpendicular to the high temperature surface 2 including the center line C2 of the jet nozzle 5 extending in the flow direction of the high temperature gas 10.

−窪み−
窪み30はフィルム冷却孔4の噴出口5に対応して高温表面2に設けられており、本実施形態ではフィルム冷却孔4と窪み30とが一対一の関係にある。図1−図4ではフィルム冷却構造を部分的に表しているのでフィルム冷却孔4が1つしか図示されていないが、実際にはフィルム冷却孔4は高温部材1に複数設けられており、フィルム冷却孔4の数だけ窪み30が存在する。窪み30は噴出口5よりも上流側に位置し、高温流路から見て噴出口5の中心線C2について対称な形状をしている。また窪み30は高温部材1の鋳造段階で成形することができる。
-Depression-
The depression 30 is provided on the high temperature surface 2 corresponding to the jet outlet 5 of the film cooling hole 4. In the present embodiment, the film cooling hole 4 and the depression 30 are in a one-to-one relationship. 1 to 4 partially show the film cooling structure, only one film cooling hole 4 is shown. Actually, however, a plurality of film cooling holes 4 are provided in the high temperature member 1, and the film cooling hole 4 is shown in FIG. There are as many depressions 30 as the number of cooling holes 4. The recess 30 is located upstream of the jet port 5 and has a symmetrical shape with respect to the center line C2 of the jet port 5 when viewed from the high-temperature channel. The depression 30 can be formed at the casting stage of the high temperature member 1.

窪み30は高温部材1の高温表面2側に設けた凹みであり、高温表面2との境界である楕円形の縁部と中心線C2上の部分を除き、内壁面は角のない曲面で形成されている。窪み30の内壁面は高温部材1の肉厚内にあり、高温表面2よりも低温表面3側(高温流路と反対側)に位置している。窪み30は短軸及び長軸をそれぞれ有する形状の一対の凹部30a,30bを備えている。凹部30a,30bの内壁面は回転楕円体の表面の一部のような曲面で、高温表面2との境界は楕円形状をしており、互いの長軸の間隔が下流側に向かって広がるように配置されている。本実施形態では凹部30a,30bの上流側の部分は中心線C2上で重なっており、高温流路から見て窪み30は中心線C2について対称なV字を描いている。   The depression 30 is a depression provided on the high temperature surface 2 side of the high temperature member 1, and the inner wall surface is formed with a curved surface without corners except for an elliptical edge that is a boundary with the high temperature surface 2 and a portion on the center line C <b> 2. Has been. The inner wall surface of the recess 30 is within the thickness of the high temperature member 1 and is located on the low temperature surface 3 side (the opposite side to the high temperature flow path) from the high temperature surface 2. The recess 30 includes a pair of recesses 30a and 30b each having a short axis and a long axis. The inner wall surfaces of the recesses 30a and 30b are curved surfaces such as a part of the surface of the spheroid, and the boundary with the high temperature surface 2 is elliptical so that the distance between the major axes increases toward the downstream side. Is arranged. In the present embodiment, the upstream portions of the recesses 30a and 30b overlap on the center line C2, and the recess 30 has a V-shape symmetrical with respect to the center line C2 when viewed from the high temperature channel.

中心線C2を通って高温表面2に直交する面(A−A線断面)に対して、凹部30a,30bの長軸は角度θで傾斜している。θは45度以下とする(θ≦45°)。θ>45°とすると、凹部30a,30bにより形成される一対の縦渦の回転方向が意図する方向と逆になる可能性があるためである。凹部30a,30bの短軸方向に採った幅(凹部30a,30bの短軸の長さ)Wは、長軸方向に採った長さ(窪み30の長軸の長さ)Lよりも当然短い(L>W)。また凹部30a,30bの幅Wは、円孔であるフィルム冷却孔4の直径(孔径)D以下に設定してある。窪み30の深さ(高温表面2からの凹み量)Hは、窪み30の幅Wの半分としてある(W≦D)。また、フィルム冷却孔4の噴出口5と窪み30との高温気体10の流れ方向に採った距離(中心線C2上の間隔)Xは、あまり長いと効果が期待できないため、フィルム冷却孔4の直径Dの4倍以下に設定すべきである(X≦4D)。本実施形態では、図3及び図4に示したように、高温気体10の流れ方向において窪み30とフィルム冷却孔4は位置が重複している(窪み30の下流側縁部は、流入口6の上流側縁部よりも下流側に位置している)。   The major axes of the recesses 30a and 30b are inclined at an angle θ with respect to a plane (cross section taken along the line AA) perpendicular to the high temperature surface 2 through the center line C2. θ is 45 degrees or less (θ ≦ 45 °). This is because if θ> 45 °, the rotation direction of the pair of vertical vortices formed by the recesses 30a and 30b may be opposite to the intended direction. The width taken in the minor axis direction of the recesses 30a and 30b (the length of the minor axis of the recesses 30a and 30b) W is naturally shorter than the length taken in the major axis direction (the length of the major axis of the recess 30). (L> W). The width W of the recesses 30a and 30b is set to be equal to or smaller than the diameter (hole diameter) D of the film cooling hole 4 which is a circular hole. The depth of the depression 30 (the amount of depression from the high temperature surface 2) H is half of the width W of the depression 30 (W ≦ D). Moreover, since the distance (interval on the center line C2) X taken in the flow direction of the hot gas 10 between the jet outlet 5 and the depression 30 of the film cooling hole 4 cannot be expected to be effective, the effect of the film cooling hole 4 It should be set to 4 times or less of the diameter D (X ≦ 4D). In this embodiment, as shown in FIG. 3 and FIG. 4, the positions of the recess 30 and the film cooling hole 4 overlap in the flow direction of the hot gas 10 (the downstream edge of the recess 30 is the inlet 6. Located on the downstream side of the upstream edge).

−フィルム冷却−
図5は図2のC−C線による矢視断面図である。同図において、高温気体10は紙面に直交する方向の手前から奥に向かって高温流路を流れている。噴出口5から高温流路に噴出する冷却気体20も紙面直交方向の奥に向かって流れ、この冷却気体20によって高温部材1の高温表面2を覆うようなフィルム冷却膜が形成される。本実施形態では、上記の通り噴出口5の上流側に位置するように中心線C2について対称に形成した窪み30を高温表面2に配置した。これにより、高温表面2に沿って流れる高温気体10には、窪み30を越える際にフィルム冷却孔4に向かって吹き下ろす向きの旋回成分が付与される。具体的には、同図のように高温気体10の流れ方向の上流側から見ると、中心線C2の右側を流れる高温気体10が窪み30(凹部30a)を超える際に左回り(反時計回り)に旋回する縦渦50が生じる。中心線C2を挟んで対称的に、中心線C2の左側を流れる高温気体10が窪み30(凹部30b)を超える際に右回り(時計回り)に旋回する縦渦51が生じる。これら縦渦50,51は中心線C2の付近では高温流路から高温表面2に吹き下ろす旋回成分を持つため、中心線C2上にあるフィルム冷却孔4から噴出する冷却気体20に対向する。このように高温気体10に冷却気体20に対向する成分を与えることにより、高温流路に噴出する冷却気体20を高温気体10で高温表面2に向かって押える。これにより高温表面2からの冷却気体20の剥離を抑制し、高温表面2に沿ってフィルム冷却膜を効果的に形成し拡げる。
-Film cooling-
FIG. 5 is a cross-sectional view taken along line CC of FIG. In the figure, the high-temperature gas 10 flows through the high-temperature flow path from the front in the direction orthogonal to the paper surface to the back. The cooling gas 20 ejected from the ejection port 5 to the high-temperature flow path also flows toward the back in the direction perpendicular to the paper surface, and a film cooling film is formed by the cooling gas 20 so as to cover the high-temperature surface 2 of the high-temperature member 1. In the present embodiment, the recess 30 formed symmetrically with respect to the center line C <b> 2 is disposed on the high-temperature surface 2 so as to be located on the upstream side of the jet nozzle 5 as described above. As a result, the hot gas 10 flowing along the high temperature surface 2 is given a swirl component in a direction to blow down toward the film cooling hole 4 when the depression 30 is exceeded. Specifically, as seen from the upstream side in the flow direction of the hot gas 10 as shown in the figure, when the hot gas 10 flowing on the right side of the center line C2 exceeds the recess 30 (recess 30a), it turns counterclockwise (counterclockwise). ) Is generated. Symmetrically across the center line C2, when the hot gas 10 flowing on the left side of the center line C2 exceeds the depression 30 (recess 30b), a vertical vortex 51 that turns clockwise (clockwise) is generated. Since these vertical vortices 50 and 51 have a swirling component that blows down from the high-temperature flow path to the high-temperature surface 2 in the vicinity of the center line C2, they face the cooling gas 20 ejected from the film cooling holes 4 on the center line C2. Thus, by giving the component facing the cooling gas 20 to the high-temperature gas 10, the cooling gas 20 ejected into the high-temperature channel is pressed toward the high-temperature surface 2 by the high-temperature gas 10. Thereby, peeling of the cooling gas 20 from the high temperature surface 2 is suppressed, and a film cooling film is effectively formed and spread along the high temperature surface 2.

−比較例−
図13は比較例に係るフィルム冷却構造を表す平面図、図14は図13の高温部材のC’−C’線による矢視断面図である。図13は図2、図14は図5に対応する図である。
-Comparative example-
13 is a plan view showing a film cooling structure according to a comparative example, and FIG. 14 is a cross-sectional view taken along line C′-C ′ of the high temperature member of FIG. 13 corresponds to FIG. 2, and FIG. 14 corresponds to FIG.

同図の比較例は、本実施形態に係るフィルム冷却構造から窪み30を省略した構成に相当する。高温気体110が矢印方向に流れ、フィルム冷却孔104の噴出口105から冷却気体120が噴き出す。フィルム冷却孔104は、高温表面102に対する冷却気体120の密着性を向上させるために低温表面103から高温表面102に向かって高温気体110の流れ方向に傾斜している。こうしたフィルム冷却孔104から冷却気体120が噴き出すと、図14に示したように高温気体110を巻き込むような一対の渦150,151が冷却気体120の周りに発生する。同図に示したように高温気体110の流れ方向から見ると、冷却気体120の右側の渦150は右回り(時計回り)に、冷却気体120の左側の渦151は左回り(反時計回り)に回転する。これら一対の渦150,151は冷却気体120と高温表面102の間に高温気体111,112を引き込み、冷却気体120の高温表面102からの剥離を促してフィルム冷却性能を低下させる。   The comparative example in the figure corresponds to a configuration in which the recess 30 is omitted from the film cooling structure according to the present embodiment. The hot gas 110 flows in the direction of the arrow, and the cooling gas 120 is ejected from the ejection port 105 of the film cooling hole 104. The film cooling holes 104 are inclined in the flow direction of the high temperature gas 110 from the low temperature surface 103 toward the high temperature surface 102 in order to improve the adhesion of the cooling gas 120 to the high temperature surface 102. When the cooling gas 120 is ejected from the film cooling holes 104, a pair of vortices 150 and 151 that entrain the hot gas 110 are generated around the cooling gas 120 as shown in FIG. As shown in the figure, when viewed from the flow direction of the hot gas 110, the vortex 150 on the right side of the cooling gas 120 is clockwise (clockwise), and the vortex 151 on the left side of the cooling gas 120 is counterclockwise (counterclockwise). Rotate to. The pair of vortices 150 and 151 draws the high-temperature gas 111 and 112 between the cooling gas 120 and the high-temperature surface 102, and promotes the peeling of the cooling gas 120 from the high-temperature surface 102, thereby reducing the film cooling performance.

−効果−
(1)フィルム冷却性能
本実施形態では、上記の通り、高温表面2に沿って流れる高温気体10が窪み30を越える際に旋回成分を付与され、フィルム冷却孔4に向かって吹き下ろす向きに旋回する一対の縦渦50,51を生じさせることができる。縦渦50,51は冷却気体20の噴出に伴う渦150,151(図14)と反対方向に回転し、渦150,151を弱める。この作用と相俟って、窪み30により旋回成分を与えた高温気体10(渦50,51)により、フィルム冷却孔4から噴き出す冷却気体20が押えられ、冷却気体20の高温表面2からの冷却気体20の剥離が抑制されてフィルム冷却性能が向上する。
-Effect-
(1) Film cooling performance In the present embodiment, as described above, a swirl component is imparted when the hot gas 10 flowing along the hot surface 2 exceeds the recess 30 and swirls in the direction to blow down toward the film cooling hole 4. A pair of longitudinal vortices 50 and 51 can be generated. The longitudinal vortices 50 and 51 rotate in the opposite direction to the vortices 150 and 151 (FIG. 14) accompanying the ejection of the cooling gas 20 and weaken the vortices 150 and 151. In combination with this action, the cooling gas 20 ejected from the film cooling holes 4 is suppressed by the high temperature gas 10 (vortices 50, 51) imparted with the swirl component by the depression 30, and the cooling gas 20 is cooled from the high temperature surface 2. The peeling of the gas 20 is suppressed and the film cooling performance is improved.

(2)実用性
特許文献3に示されているように、仮にフィルム冷却孔4の噴出口5の上流側の高温表面2に突起を設けた場合、本実施形態と同等のフィルム冷却性能が期待できる。しかし、高温気体10に晒されることで突起の高さが高温酸化現象により徐々に低くなり、フィルム冷却性能が経時的に低下する可能性がある。それに対し、本実施形態における窪み30は元から凹んでいるので消失することがなく、フィルム冷却性能の経時的な低下を抑制することができる。
(2) Practicality As shown in Patent Document 3, if a protrusion is provided on the high temperature surface 2 on the upstream side of the jet outlet 5 of the film cooling hole 4, a film cooling performance equivalent to this embodiment is expected. it can. However, when exposed to the high temperature gas 10, the height of the protrusion gradually decreases due to the high temperature oxidation phenomenon, and the film cooling performance may deteriorate with time. On the other hand, since the dent 30 in this embodiment is dented from the beginning, it does not disappear, and the deterioration of the film cooling performance with time can be suppressed.

特に本実施形態では、窪み30がフィルム冷却孔4と高温気体10の流れ方向において重複した位置関係にあるため、周囲の高温表面2に比べてフィルム冷却孔4に近い。これによりフィルム冷却孔4を流れる冷却気体20による対流冷却効果により高温部材1の周辺部位に比べて窪み30の温度低減効果を向上させることができ、窪み30の形状の計時的変化が抑制できることで、冷却性能の変化をより効果的に抑えることができる。   In particular, in the present embodiment, since the recess 30 has an overlapping positional relationship in the flow direction of the film cooling hole 4 and the high temperature gas 10, it is closer to the film cooling hole 4 than the surrounding high temperature surface 2. Thereby, the temperature reduction effect of the dent 30 can be improved by the convection cooling effect by the cooling gas 20 flowing through the film cooling hole 4 as compared with the peripheral portion of the high temperature member 1, and the temporal change in the shape of the dent 30 can be suppressed. The change in cooling performance can be suppressed more effectively.

(3)製作容易性
窪み30は高温部材1の鋳造段階で成形することができ、この場合には高温部材1の鋳造後に窪み30を仕上げ加工する工程は省略できる。仮に高温部材1の鋳造後に窪み30の仕上げ加工が必要な場合でも、窪み30に形状を合わせた電極を用いた放電加工により容易に窪み表面を仕上げることができる。フィルム冷却孔4は高温部材1の鋳造後に放電加工等で単純な円孔を穿てば良く、製作時間の短縮とコストの低減を図ることができる。フィルム冷却孔4の形状が単純なので精度良く加工することができ、フィルム冷却孔4の形状のばらつきを抑え、冷却性能の低下を抑制することができる。但し、フィルム冷却孔4は単純な円孔ではなく、フィルム冷却性能を向上するために用いられている断面形状が複雑なシェイプト孔としても良い。
(3) Ease of manufacturing The recess 30 can be formed at the casting stage of the high-temperature member 1, and in this case, the step of finishing the recess 30 after the casting of the high-temperature member 1 can be omitted. Even if it is necessary to finish the recess 30 after casting the high temperature member 1, the surface of the recess can be easily finished by electric discharge machining using an electrode having a shape matched to the recess 30. The film cooling hole 4 may be a simple circular hole formed by electric discharge machining or the like after the high temperature member 1 is cast, and the production time and cost can be reduced. Since the shape of the film cooling hole 4 is simple, the film cooling hole 4 can be processed with high accuracy, variation in the shape of the film cooling hole 4 can be suppressed, and deterioration of the cooling performance can be suppressed. However, the film cooling hole 4 is not a simple circular hole but may be a shape hole having a complicated cross-sectional shape used for improving the film cooling performance.

(4)その他
本願発明者等は、フィルム冷却孔4の噴出口5の上流側に窪み30を設ける構成について、窪み30の形状や配置のパターンを変えて幾通りかフィルム冷却性能を検討した。その結果、次の知見が得られた。まず、本実施形態においては、前述した通り窪み30の長さLを幅Wより長くして細長い形状とし、下流側に向かって開くV字型に窪み30を配置した。この構造の場合、例えば窪み30を1つの円形の窪みとした場合、中心線C2を挟んで分離した凹部30a,30bを平行に配置した場合に比べて、縦渦50,51の速度成分が強化されてフィルム冷却性能がより向上することが分かった。また、窪み30(凹部30a,30b)の幅Wをフィルム冷却孔4の直径Dより小さくすることにより、縦渦50,51の強度がより強まり、フィルム冷却性能の向上に一層効果的であることも判った。
(4) Others The inventors of the present application have examined the film cooling performance in several ways by changing the shape of the depressions 30 and the arrangement pattern of the depressions 30 on the upstream side of the jet outlets 5 of the film cooling holes 4. As a result, the following knowledge was obtained. First, in the present embodiment, as described above, the length L of the recess 30 is longer than the width W to have an elongated shape, and the recess 30 is arranged in a V shape that opens toward the downstream side. In the case of this structure, for example, when the recess 30 is a single circular recess, the velocity components of the longitudinal vortices 50 and 51 are strengthened compared to the case where the recesses 30a and 30b separated with the center line C2 interposed therebetween are arranged in parallel. It was found that the film cooling performance was further improved. Further, by making the width W of the recess 30 (recessed portions 30a, 30b) smaller than the diameter D of the film cooling hole 4, the strength of the longitudinal vortices 50, 51 is further increased, which is more effective in improving the film cooling performance. I also understood.

(第2実施形態)
図6は本発明の第2実施形態に係るフィルム冷却構造の高温流路から見た平面図である。第1実施形態と同様の要素には既出図面と同符号を付して適宜説明を省略する。本実施形態は窪み30の形状を変えた例である。本実施形態では窪み30を構成する2つの凹部30a,30bが分離されている。一対の凹部30a,30bは噴出口5の中心線C2について対称であり、中心線C2を挟んで間隔Sだけ離して配置してある。間隔Sは高温表面2と直交する方向から見た凹部30a,30bの中心点間距離である。同図に示すように、凹部30a,30bは互いの長軸の間隔が高温気体10の流れ方向の下流側に向かって広がるように配置されている。その他の構成は、幅W、長さL、角度θ、直径Dの関係を含めて第1実施形態と同様である。
(Second Embodiment)
FIG. 6 is a plan view of the film cooling structure according to the second embodiment of the present invention as viewed from the high temperature flow path. Elements similar to those in the first embodiment are denoted by the same reference numerals as those in the above-described drawings, and description thereof will be omitted as appropriate. The present embodiment is an example in which the shape of the recess 30 is changed. In the present embodiment, the two recesses 30a and 30b constituting the recess 30 are separated. The pair of recesses 30a and 30b are symmetric with respect to the center line C2 of the jet nozzle 5, and are spaced apart by an interval S across the center line C2. The interval S is the distance between the center points of the recesses 30 a and 30 b as viewed from the direction orthogonal to the high temperature surface 2. As shown in the figure, the recesses 30a and 30b are arranged such that the distance between the major axes increases toward the downstream side in the flow direction of the hot gas 10. Other configurations are the same as those in the first embodiment, including the relationship between the width W, the length L, the angle θ, and the diameter D.

本実施形態においても、縦渦50,51を発生させることができ、第1実施形態と同様の効果が得られる。   Also in this embodiment, the vertical vortices 50 and 51 can be generated, and the same effect as in the first embodiment can be obtained.

(第3実施形態)
図7は本発明の第3実施形態に係るフィルム冷却構造の高温流路から見た平面図である。第1実施形態と同様の要素には既出図面と同符号を付して適宜説明を省略する。第1実施形態では1つの噴出口5に対応して高温部材1の高温表面2に窪み30を1つ設けた構成を例示したが、窪み30は少なくとも1つあれば良く、1つの噴出口5に対応して窪み30を複数設けても良い。本実施形態は、1つのフィルム冷却孔4の噴出口5の上流側において、高温気体10の流れ方向に窪み30を複数(本例では2つ)並べて配置した例である。2つの窪み30はいずれも中心線C2について対称な第1実施形態の窪み30と形状及び向きも同様であり、中心線C2に沿って並べられている。この例では2つの窪み30の大きさも等しい。また窪み30は2つともフィルム冷却孔4と高温気体10の流れ方向の位置が重複している。その他の構成は第1実施形態と同様である。
(Third embodiment)
FIG. 7 is a plan view of the film cooling structure according to the third embodiment of the present invention as seen from the high temperature flow path. Elements similar to those in the first embodiment are denoted by the same reference numerals as those in the above-described drawings, and description thereof will be omitted as appropriate. In the first embodiment, the configuration in which one depression 30 is provided on the high temperature surface 2 of the high temperature member 1 corresponding to one ejection port 5 is illustrated, but at least one depression 30 is sufficient. A plurality of depressions 30 may be provided correspondingly. This embodiment is an example in which a plurality (two in this example) of the depressions 30 are arranged in the flow direction of the hot gas 10 on the upstream side of the jet outlet 5 of one film cooling hole 4. The two depressions 30 have the same shape and orientation as those of the depression 30 of the first embodiment that is symmetric with respect to the center line C2, and are arranged along the center line C2. In this example, the sizes of the two depressions 30 are also equal. In addition, the two recesses 30 are overlapped with each other in the flow direction of the film cooling hole 4 and the hot gas 10. Other configurations are the same as those of the first embodiment.

このように窪み30を高温気体10の流れ方向に複数タンデムに配置したことにより、本実施形態では縦渦50,51の速度を第1実施形態に比べて強めることができ、冷却気体20の高温表面2からの剥離をより効果的に抑制することができる。   Thus, by arrange | positioning the hollow 30 in multiple tandem in the flow direction of the high temperature gas 10, in this embodiment, the speed of the vertical vortex 50 and 51 can be strengthened compared with 1st Embodiment, and the high temperature of the cooling gas 20 is obtained. Separation from the surface 2 can be more effectively suppressed.

なお、1つの噴出口5に対応して窪み30を2つ設けた場合のフィルム冷却性能の向上は1つの場合よりも著しく高い。しかし、窪み30を3つにした場合のフィルム冷却性能は2つの場合と同程度であり、窪み30を3つ以上に増やしてもフィルム冷却性能の効果は小さいことが判明した。第2実施形態のよう中心線C2を挟んで凹部30a,30bを離した構成に比べても、本実施形態のフィルム冷却性能の向上の効果は顕著であった。   In addition, the improvement of the film cooling performance in the case of providing two depressions 30 corresponding to one ejection port 5 is significantly higher than in the case of one. However, it was found that the film cooling performance when the number of the depressions 30 is three is similar to that when the number of the depressions 30 is three, and the effect of the film cooling performance is small even when the number of the depressions 30 is increased to three or more. The effect of improving the film cooling performance of the present embodiment was remarkable even when compared with the configuration in which the concave portions 30a and 30b were separated with the center line C2 interposed therebetween as in the second embodiment.

(第4実施形態)
図8は本発明の第4実施形態に係るフィルム冷却構造の高温流路から見た平面図である。第1実施形態と同様の要素には既出図面と同符号を付して適宜説明を省略する。本実施形態は第2実施形態と第3実施形態を組み合わせた例であり、第3実施形態のような凹部30a,30bが分離した窪み30をフィルム冷却孔4の噴出口5の上流側に高温気体10の流れ方向に複数並べて配置してある。その他の構成については、説明済みの実施形態と同様である。このように実施形態を組み合わせてもフィルム冷却性能の向上の効果が得られる。
(Fourth embodiment)
FIG. 8 is a plan view of the film cooling structure according to the fourth embodiment of the present invention as viewed from the high temperature flow path. Elements similar to those in the first embodiment are denoted by the same reference numerals as those in the above-described drawings, and description thereof will be omitted as appropriate. This embodiment is an example in which the second embodiment and the third embodiment are combined, and the dent 30 separated by the recesses 30a and 30b as in the third embodiment is placed on the upstream side of the jet outlet 5 of the film cooling hole 4 at a high temperature. A plurality of gas 10 are arranged in the flow direction. Other configurations are the same as those in the above-described embodiment. Thus, even if the embodiments are combined, the effect of improving the film cooling performance can be obtained.

(変形例)
上記実施形態では窪み30の凹部30a,30bが高温流路から見て楕円形状である場合を例に挙げて説明したが、例えば短軸方向のいずれかに凸となるように長軸がカーブしたような、楕円を変形させた形状としても良い。その他、凹部30a,30bが長軸について非対称であるような形状(例えば長軸が中心から短軸方向のいずれかにオフセットしたような形状)としても良い。
(Modification)
In the above embodiment, the case where the recesses 30a and 30b of the recess 30 are elliptical when viewed from the high-temperature flow path has been described as an example. For example, the major axis is curved so as to be convex in one of the minor axis directions. It is good also as a shape which deform | transformed the ellipse. In addition, the recesses 30a and 30b may have a shape that is asymmetric with respect to the major axis (for example, a shape in which the major axis is offset from the center in any of the minor axis directions).

(適用対象)
図9は本発明のフィルム冷却構造の一適用対象であるガスタービンの部分断面図である。この図に示したガスタービンは、大気aを吸い込んで圧縮する圧縮機100、圧縮機100からの圧縮空気bを燃料cと共に燃焼する燃焼器200、及び燃焼器200からの燃焼ガスdによって駆動されるタービン300を備えている。
(Applicable)
FIG. 9 is a partial cross-sectional view of a gas turbine which is one application target of the film cooling structure of the present invention. The gas turbine shown in this figure is driven by a compressor 100 that sucks and compresses the atmosphere a, a combustor 200 that combusts compressed air b from the compressor 100 together with fuel c, and a combustion gas d from the combustor 200. The turbine 300 is provided.

圧縮機100のロータ100Aとタービン300のロータ300Aは同軸上に連結されている。また、ロータ100A又はロータ300Aには、例えば発電機が連結される。これによってタービン300のロータ300Aと共に発電機が回転し、ロータ300Aの回転エネルギーが電気エネルギーに変換される。ロータ300Aに軸動力を与えた燃焼ガスeはガスタービンから排出され、例えば浄化装置等に導かれた後、放出される。   The rotor 100A of the compressor 100 and the rotor 300A of the turbine 300 are connected coaxially. For example, a generator is connected to the rotor 100A or the rotor 300A. As a result, the generator rotates together with the rotor 300A of the turbine 300, and the rotational energy of the rotor 300A is converted into electric energy. The combustion gas e that has imparted shaft power to the rotor 300A is discharged from the gas turbine, and is led to, for example, a purification device and then released.

燃焼器200には、燃料cと圧縮空気bを燃焼させる燃焼室を形成する燃焼器ライナ201やこれをタービン300に接続する尾筒202の他、図示していないが、燃焼器ライナ201や尾筒202を包囲するアウタケーシングやバーナ等が備わっている。燃焼器ライナ201及び尾筒202とアウタケーシングの間には円筒状の空気流路が形成される。   The combustor 200 includes a combustor liner 201 that forms a combustion chamber for burning the fuel c and the compressed air b, a tail cylinder 202 that connects the combustion chamber 201 to the turbine 300, and a combustor liner 201 and a tail. An outer casing, a burner and the like surrounding the cylinder 202 are provided. A cylindrical air flow path is formed between the combustor liner 201 and the transition piece 202 and the outer casing.

タービン300は、ロータ300Aと、このロータ300Aの周方向外側を覆うケーシング315とを備えている。ロータ300Aは、外周部に動翼316を周方向に複数設けたタービンディスク317とスペーサ318とを軸方向に交互に複数積層して構成されている。また、ケーシング315の内側には、各段落において動翼316の上流側に対向するように静翼321の環状翼列が固定されている。   The turbine 300 includes a rotor 300A and a casing 315 that covers the outer side of the rotor 300A in the circumferential direction. The rotor 300A is configured by alternately stacking a plurality of turbine disks 317 and spacers 318 in the axial direction, each having a plurality of rotor blades 316 provided in the circumferential direction on the outer peripheral portion. Further, the annular blade row of the stationary blade 321 is fixed inside the casing 315 so as to face the upstream side of the moving blade 316 in each paragraph.

前述した本実施形態に係るフィルム冷却構造は、このようなガスタービンのタービン部材、例えば燃焼器ライナ201や尾筒202、静翼321、動翼316に適用することができる。例えば燃焼器ライナ201や尾筒202を適用対象とする場合、燃焼器ライナ201や尾筒202の内側が高温流路、外側の環状流路が低温流路、燃焼器ライナ201や尾筒202の壁面が高温部材1に相当する。従って、燃焼器ライナ201や尾筒202に多数設けられた空気孔をフィルム冷却孔4として、内周面における空気孔の下流側(タービン300側)に窪み30を設けることで適用できる。静翼321や動翼316を適用対象とする場合、特に燃焼ガスdの温度が高い初段に好適に適用することができる。次に静翼321や動翼316への適用例を順次例示していく。   The film cooling structure according to this embodiment described above can be applied to such turbine members of a gas turbine, for example, the combustor liner 201, the tail cylinder 202, the stationary blade 321 and the moving blade 316. For example, when the combustor liner 201 and the tail tube 202 are to be applied, the inside of the combustor liner 201 and the tail tube 202 is a high-temperature channel, the outer annular channel is a low-temperature channel, and the combustor liner 201 and the tail tube 202 The wall surface corresponds to the high temperature member 1. Therefore, the air holes provided in the combustor liner 201 and the tail cylinder 202 can be used as the film cooling holes 4, and the depression 30 can be provided on the inner peripheral surface downstream of the air holes (the turbine 300 side). In the case where the stationary blade 321 and the moving blade 316 are to be applied, it can be suitably applied to the first stage where the temperature of the combustion gas d is particularly high. Next, application examples to the stationary blade 321 and the moving blade 316 will be sequentially illustrated.

(適用例1)
図10は本発明のフィルム冷却構造の適用例1を示す図である。同図には本発明の高温部材のフィルム冷却構造をガスタービンの静翼321の翼部302の表面(翼面)に適用した例を示している。静翼321は内外周のエンドウォール303,304とこれらに両端を支持された翼部302を備えている。翼部302は同一段落において円環状に複数配列されるが、同図ではそのうちの一つを抜き出して図示している。静翼環の内外周、翼部302の内部には、低温流路が存在する。ガスタービンの燃焼ガスd(高温気体)が周方向に隣接する静翼321の間に流れ込むと、翼面とエンドウォール303,304の表面が高温の燃焼ガスdに晒される。翼部302の腹側面(圧力面)には、いずれかの実施形態(図では第3実施形態)に係るフィルム冷却構造が設けられている。本例ではタービン径方向(静翼の翼高さ方向)に複数のフィルム冷却構造を並べた場合を例示している。フィルム冷却構造は図7で説明した例と同様であり、翼部302の表面におけるフィルム冷却孔4の燃焼ガスdの流れ方向の上流側にフィルム冷却性能の向上に最も効果的な2列の窪み30が設けてある。
(Application example 1)
FIG. 10 is a diagram showing an application example 1 of the film cooling structure of the present invention. The figure shows an example in which the film cooling structure for a high temperature member of the present invention is applied to the surface (blade surface) of a blade portion 302 of a stationary blade 321 of a gas turbine. The stationary blade 321 includes inner and outer end walls 303 and 304 and blade portions 302 supported at both ends thereof. A plurality of wing portions 302 are arranged in a ring shape in the same paragraph, but one of them is shown in the drawing. A low-temperature flow path exists in the inner and outer peripheries of the stationary blade ring and in the blade portion 302. When the combustion gas d (hot gas) of the gas turbine flows between the circumferentially adjacent stationary blades 321, the blade surfaces and the surfaces of the end walls 303 and 304 are exposed to the high-temperature combustion gas d. A film cooling structure according to any of the embodiments (the third embodiment in the figure) is provided on the ventral side surface (pressure surface) of the wing portion 302. In this example, a case where a plurality of film cooling structures are arranged in the turbine radial direction (blade height direction of the stationary blade) is illustrated. The film cooling structure is the same as the example described with reference to FIG. 7, and two rows of depressions that are most effective for improving the film cooling performance on the upstream side in the flow direction of the combustion gas d of the film cooling hole 4 on the surface of the blade portion 302. 30 is provided.

ここで、ガスタービンシステムでは、省資源化及び環境保全の観点から、熱効率向上のために燃焼ガスの高温化が進められている。そのため高温気体に晒されるタービン翼のような部材においては、健全性を確保するために構成部品をその材料の制限温度以下に冷却し、構成部品の高温腐食や構造強度の低下を抑制する必要がある。それに対し、ガスタービンの高温部材の冷却には、一般に圧縮機から抽気した圧縮空気を使用するため、高温化に伴って冷却気体量が増加すると燃焼器で燃焼する空気量が減って出力が低下する。また、燃焼ガスが流れるタービンのガスパスに部材冷却後の冷却気体が放出されると、燃焼ガスの温度が低下して熱効率が低下する。   Here, in the gas turbine system, from the viewpoint of resource saving and environmental protection, the temperature of the combustion gas is being increased to improve the thermal efficiency. Therefore, in components such as turbine blades that are exposed to high-temperature gas, it is necessary to cool the component parts below the limit temperature of the material in order to ensure soundness, and to suppress high-temperature corrosion and structural strength degradation of the component parts. is there. On the other hand, since the compressed air extracted from the compressor is generally used for cooling the high temperature member of the gas turbine, if the amount of the cooling gas increases as the temperature rises, the amount of air combusted in the combustor decreases and the output decreases. To do. Moreover, if the cooling gas after member cooling is discharge | released to the gas path of the turbine through which combustion gas flows, the temperature of combustion gas will fall and thermal efficiency will fall.

それに対し、本例では特徴的フィルム冷却構造を適用したことによって冷却効率が向上するため、燃焼ガスの温度を上昇させても冷却気体量の増加を抑制することができる。前述したように、窪み30のない基準構造に比べて本発明のフィルム冷却構造は高い冷却効率を得ることができる。   On the other hand, since the cooling efficiency is improved by applying the characteristic film cooling structure in this example, an increase in the amount of cooling gas can be suppressed even if the temperature of the combustion gas is increased. As described above, the film cooling structure of the present invention can obtain higher cooling efficiency than the reference structure without the depression 30.

また、ガスタービン翼は、通常、精密鋳造で製作するが、窪み30も翼と一体で精密鋳造することができるので、従来の製作工程を変更することなく、製作時間もコストも増やすことなく製作することができる。また、フィルム冷却孔4の加工も従来と同様に、精密鋳造で翼を製作した後、前述した通り放電加工等で穿孔することができる。フィルム冷却孔4は円孔で良いので、複雑な形状のシェイプト孔に比べて加工が格段に容易であり、製作時間とコストを抑制することができる。また静翼321のように、翼部302とエンドウォール303,304の境目付近や翼間の狭隘部分等、フィルム冷却孔4を放電加工するための電極が入り難いような場所でも円孔であれば一回の放電加工で済むので容易に製作することができる。   Gas turbine blades are usually manufactured by precision casting, but the depression 30 can also be precision cast integrally with the blades, so that the manufacturing time and cost are not increased without changing the conventional manufacturing process. can do. Also, the film cooling hole 4 can be drilled by electric discharge machining or the like as described above after manufacturing a blade by precision casting, as in the prior art. Since the film cooling hole 4 may be a circular hole, it is much easier to process than a complicatedly shaped shape hole, and manufacturing time and cost can be reduced. Even in places where the electrode for electric discharge machining of the film cooling hole 4 is difficult to enter, such as near the boundary between the blade 302 and the end walls 303 and 304, or the narrow portion between the blades, such as the stationary blade 321, the circular hole may be used. For example, it can be easily manufactured because only one electric discharge machining is required.

なお、一般的に翼部の背側よりも腹側のフィルム冷却孔から噴き出した冷却気体の方が翼面から剥がれ易い。従って、図10の例のように翼部302の腹側に本発明に係るフィルム冷却構造を適用することによって特に効果的にフィルム冷却性能を向上させることができる。但し、腹側面のみならず、背側面にも本発明に係るフィルム冷却構造は適用可能であって前述した効果を奏することができる。背側及び腹側の少なくとも一方に本発明に係るフィルム冷却構造を設けることができる。図10にはフィルム冷却構造を1列設けた場合を例示しているが、複数列設けることも可能である。   In general, the cooling gas ejected from the film cooling hole on the ventral side rather than the back side of the wing portion is more easily peeled off from the blade surface. Therefore, the film cooling performance can be particularly effectively improved by applying the film cooling structure according to the present invention to the ventral side of the wing 302 as in the example of FIG. However, the film cooling structure according to the present invention can be applied not only to the abdominal side but also to the back side, and the above-described effects can be achieved. The film cooling structure according to the present invention can be provided on at least one of the back side and the ventral side. Although FIG. 10 illustrates the case where one row of film cooling structures is provided, a plurality of rows can be provided.

(適用例2)
図11は本発明のフィルム冷却構造の適用例2を示す図である。同図には本発明に係るフィルム冷却構造をガスタービンの静翼321のエンドウォール304に適用した例を示している。本例では一つのエンドウォール304に2枚の翼部302を設けた構成を例示している。翼部302と同様にガスパスに臨むエンドウォール304の表面も高温の燃焼ガスdに晒される。従って、エンドウォール304の健全性を確保するため、エンドウォール304に複数のフィルム冷却孔4が設けられていて、ここから冷却気体を噴き出すことによってエンドウォール304の温度を低減している。本例ではフィルム冷却孔4はエンドウォール304の前縁306の近くに配置されていて、その上流側に2列の窪み30が設けてある。フィルム冷却構造は図6で説明した例と同様であるが、他の実施形態のフィルム冷却構造も当然適用可能である。
(Application example 2)
FIG. 11 is a diagram showing an application example 2 of the film cooling structure of the present invention. The figure shows an example in which the film cooling structure according to the present invention is applied to an end wall 304 of a stationary blade 321 of a gas turbine. In this example, a configuration in which two wing portions 302 are provided on one end wall 304 is illustrated. Similar to the blade 302, the surface of the end wall 304 facing the gas path is also exposed to the high-temperature combustion gas d. Therefore, in order to ensure the soundness of the end wall 304, a plurality of film cooling holes 4 are provided in the end wall 304, and the temperature of the end wall 304 is reduced by jetting cooling gas therefrom. In this example, the film cooling hole 4 is disposed near the front edge 306 of the end wall 304, and two rows of depressions 30 are provided on the upstream side thereof. The film cooling structure is similar to the example described with reference to FIG. 6, but the film cooling structures of other embodiments are naturally applicable.

図10の例と同様、ガスタービンの熱効率向上のために燃焼温度を上げた場合でも、冷却気体量や空力損失の増加を抑制することができるので、ガスタービンの熱効率を効果的に向上することができる。   As in the example of FIG. 10, even when the combustion temperature is raised to improve the thermal efficiency of the gas turbine, the increase in the amount of cooling gas and aerodynamic loss can be suppressed, so that the thermal efficiency of the gas turbine is effectively improved. Can do.

また隣接する翼部302の間の領域である翼間307では、翼前縁308で発生した馬蹄形渦等によって翼間307を流れる燃焼ガスdの乱れが大きく、フィルム冷却孔4の噴出口5の上流側に設けた窪み30の効果が低減されてしまう。それに対し、図11のように翼間307を避けてエンドウォール304の前縁306の近くにフィルム冷却構造を設けたことによって特に効果的にフィルム冷却効率を向上させることができる。但し、翼間307にフィルム冷却構造を設けてフィルム冷却性能の向上を図ること自体は可能である。また、図11ではエンドウォール304にフィルム冷却構造を設けた場合を図示したが、エンドウォール303,304の少なくとも一方にフィルム冷却構造を設けることができる。フィルム冷却構造を1列設けた場合を例示しているが、複数列設けることも可能である。   Further, in the interblade 307 that is an area between adjacent wings 302, the disturbance of the combustion gas d flowing through the interblade 307 due to the horseshoe vortex generated at the wing leading edge 308 is large, and the jet outlet 5 of the film cooling hole 4 The effect of the depression 30 provided on the upstream side is reduced. On the other hand, the film cooling efficiency can be improved particularly effectively by providing the film cooling structure near the front edge 306 of the end wall 304 while avoiding the interblade 307 as shown in FIG. However, it is possible to improve the film cooling performance by providing a film cooling structure between the blades 307. Further, FIG. 11 illustrates the case where the end wall 304 is provided with a film cooling structure. However, at least one of the end walls 303 and 304 can be provided with a film cooling structure. Although the case where the film cooling structure is provided in one row is illustrated, a plurality of rows can be provided.

翼部302と同様にエンドウォール303,304も精密鋳造で製作するので、窪み30も一体に精密鋳造することによって従来の製作工程から製作時間やコストを増やすことなく製作可能である。製作容易性についても図10の例と同様に確保できる。また、翼部302に近いエンドウォール303,304の表面に複雑な形状の孔を穿つことは難しいが、フィルム冷却孔4の場合は円孔で足りるので容易に穿孔することができる。   Since the end walls 303 and 304 are manufactured by precision casting in the same manner as the wing portion 302, the recess 30 can be manufactured by precision casting integrally without increasing the manufacturing time and cost from the conventional manufacturing process. Manufacturability can also be ensured as in the example of FIG. In addition, it is difficult to make a hole having a complicated shape on the surfaces of the end walls 303 and 304 close to the wing portion 302. However, in the case of the film cooling hole 4, a circular hole is sufficient, so that the hole can be easily made.

(適用例3)
図12は本発明のフィルム冷却構造の適用例3を示す図である。同図はガスタービンの動翼316の翼面301に本発明に係るフィルム冷却構造を適用した例を示している。図示したように、動翼316の内部は隔壁331によって前側の流路332と後側の流路333に仕切られた蛇行流路構造となっている。本図では、前縁側の3つの流路と後縁側の3つの流路が一組となっており、それぞれ翼の付根側と先端側で繋がった蛇行流路となっている。翼の付根部に冷却空気の導入口があり、圧縮機100からの圧縮空気の一部が冷却気体としてタービン軸を介して導かれていて、翼前縁部や腹側部分に設けたフィルム冷却孔4から冷却気体がガスパスに放出される。本例では、腹側と背側のフィルム冷却孔4の噴出口5の上流側に2列の窪み30を設けた場合を例示している。このフィルム冷却構造は図6で説明した例と同様であるが、他の実施形態のフィルム冷却構造も当然適用可能である。
(Application example 3)
FIG. 12 is a diagram showing an application example 3 of the film cooling structure of the present invention. This figure shows an example in which the film cooling structure according to the present invention is applied to a blade surface 301 of a moving blade 316 of a gas turbine. As shown in the figure, the inside of the moving blade 316 has a meandering flow path structure partitioned by a partition wall 331 into a front flow path 332 and a rear flow path 333. In this figure, the three flow paths on the front edge side and the three flow paths on the rear edge side form a set, which are serpentine flow paths connected on the root side and the tip side of the wing, respectively. There is an inlet for cooling air at the root of the blade, and a part of the compressed air from the compressor 100 is guided as a cooling gas through the turbine shaft, and film cooling provided at the blade leading edge and the ventral side Cooling gas is discharged from the holes 4 into the gas path. In this example, a case where two rows of depressions 30 are provided on the upstream side of the jet port 5 of the film cooling hole 4 on the ventral side and the back side is illustrated. The film cooling structure is the same as the example described with reference to FIG. 6, but the film cooling structures of other embodiments are naturally applicable.

本例のように動翼316に発明を適用した場合も図10や図11の場合と同様の効果が得られる。図12では、動翼316の背側面と腹側面のそれぞれにおいて、翼スパン方向にフィルム冷却構造を複数並べた列をコード長方向に1列ずつ設けた構成を例示したが、背側面若しくは腹側面のみ、又はコード長方向に複数列のフィルム冷却構造を設けても勿論良い。   When the invention is applied to the moving blade 316 as in this example, the same effect as in the case of FIGS. 10 and 11 can be obtained. FIG. 12 illustrates a configuration in which a plurality of rows of film cooling structures arranged in the blade span direction are provided in the cord length direction on each of the back side surface and the ventral side surface of the moving blade 316. Of course, a plurality of film cooling structures may be provided in the cord length direction.

(その他の適用例)
適用例1−3は、それぞれ単独で適用することもできるし、他の少なくとも1つの適用例と組み合わせて適用することもできる。また、本発明に係るフィルム冷却構造を燃焼器ライナ201や尾筒202、静翼321の翼部302、エンドウォール303,304、動翼316に適用した例を説明した。しかし、これらの部位に限られず、動翼316のプラットフォーム、シュラウド等、一般にフィルム冷却が採用されている種々の高温部材にも本発明に係るフィルム冷却構造は適用可能であり、同様の効果が得られる。
(Other application examples)
The application examples 1-3 can be applied alone or in combination with at least one other application example. Further, the example in which the film cooling structure according to the present invention is applied to the combustor liner 201, the tail cylinder 202, the blade 302 of the stationary blade 321, the end walls 303 and 304, and the moving blade 316 has been described. However, the film cooling structure according to the present invention can be applied to various high-temperature members generally adopting film cooling, such as the platform of the rotor blade 316, the shroud, and the like, and the same effect can be obtained. It is done.

1…高温部材、2…高温表面(高温部材の表面)、4…フィルム冷却孔、5…噴出口、10…高温気体、30…窪み、30a,30b…凹部、100…圧縮機、200…燃焼器、201…燃焼器ライナ、300…タービン、316…動翼(タービン翼)、321…静翼(タービン翼)、a…大気(空気)、b…圧縮空気、c…燃料、d…燃焼ガス(高温気体)、C1…フィルム冷却孔の中心線、C2…噴出口の中心線、D…フィルム冷却孔の直径、W…凹部の幅(凹部の短軸の長さ)、X…フィルム冷却孔と窪みとの高温気体の流れ方向に採った距離 DESCRIPTION OF SYMBOLS 1 ... High temperature member, 2 ... High temperature surface (surface of high temperature member), 4 ... Film cooling hole, 5 ... Jet port, 10 ... High temperature gas, 30 ... Depression, 30a, 30b ... Recess, 100 ... Compressor, 200 ... Combustion 201: Combustor liner, 300 ... Turbine, 316 ... Rotor blade (turbine blade), 321 ... Stator blade (turbine blade), a ... Atmosphere (air), b ... Compressed air, c ... Fuel, d ... Combustion gas (High temperature gas), C1 ... center line of film cooling hole, C2 ... center line of jet outlet, D ... diameter of film cooling hole, W ... width of recess (length of minor axis of recess), X ... film cooling hole The distance taken in the direction of hot gas flow between the dent and the depression

Claims (14)

高温気体が流れる高温流路に臨む高温部材の表面にフィルム冷却膜を形成するフィルム冷却構造であって、
前記高温部材の表面に噴出口が開口したフィルム冷却孔、及び
前記噴出口に対応して前記高温部材の表面に設けた少なくとも1つの窪みを備え、
前記窪みが、前記高温気体の流れ方向における前記噴出口よりも上流側に位置し、前記高温気体の流れ方向に延ばした前記噴出口の中心線について対称に形成してあることを特徴とするフィルム冷却構造。
A film cooling structure for forming a film cooling film on the surface of a high temperature member facing a high temperature flow path through which a high temperature gas flows,
A film cooling hole having a jet opening opened on the surface of the high temperature member, and at least one depression provided on the surface of the high temperature member corresponding to the jet outlet,
The film is characterized in that the recess is located upstream of the jet port in the flow direction of the hot gas and is symmetrical about the center line of the jet port extending in the flow direction of the hot gas. Cooling structure.
請求項1のフィルム冷却構造において、前記窪みが短軸及び長軸をそれぞれ有する形状の一対の凹部を備えており、互いの長軸の間隔が前記高温気体の流れ方向の下流側に向かって広がるように前記一対の凹部を配置したことを特徴とするフィルム冷却構造。   2. The film cooling structure according to claim 1, wherein the recess includes a pair of recesses each having a minor axis and a major axis, and a distance between the major axes is widened toward the downstream side in the flow direction of the high-temperature gas. A film cooling structure in which the pair of recesses are arranged as described above. 請求項2のフィルム冷却構造において、前記一対の凹部の上流側の部分が前記噴出口の中心線上で重なっていることを特徴とするフィルム冷却構造。   3. The film cooling structure according to claim 2, wherein upstream portions of the pair of recesses overlap each other on a center line of the ejection port. 請求項2のフィルム冷却構造において、前記一対の凹部が前記噴出口の中心線を挟んで離して配置してあることを特徴とするフィルム冷却構造。   3. The film cooling structure according to claim 2, wherein the pair of recesses are arranged apart from each other with a center line of the jet port interposed therebetween. 請求項2のフィルム冷却構造において、前記凹部の短軸の長さが、前記フィルム冷却孔の直径以下であることを特徴とするフィルム冷却構造。   3. The film cooling structure according to claim 2, wherein the length of the minor axis of the recess is equal to or less than the diameter of the film cooling hole. 請求項1のフィルム冷却構造において、前記高温気体の流れ方向に前記窪みが複数配置してあることを特徴とするフィルム冷却構造。   The film cooling structure according to claim 1, wherein a plurality of the depressions are arranged in a flow direction of the high-temperature gas. 請求項1のフィルム冷却構造において、前記窪みは、前記高温部材の表面との境界である縁部を除いて角のない曲面で形成されていることを特徴とするフィルム冷却構造。   The film cooling structure according to claim 1, wherein the recess is formed as a curved surface having no corners except for an edge that is a boundary with the surface of the high temperature member. 請求項1のフィルム冷却構造において、前記フィルム冷却孔が、その中心線と直交する断面が円形の円孔であることを特徴とするフィルム冷却構造。   2. The film cooling structure according to claim 1, wherein the film cooling hole is a circular hole having a circular cross section perpendicular to the center line. 請求項1のフィルム冷却構造において、前記噴出口と前記窪みとの前記高温気体の流れ方向に採った距離が、前記フィルム冷却孔の直径の4倍以下であることを特徴とするフィルム冷却構造。   2. The film cooling structure according to claim 1, wherein a distance taken in the flow direction of the high-temperature gas between the ejection port and the depression is not more than four times the diameter of the film cooling hole. 請求項1のフィルム冷却構造を備えたタービン翼。   A turbine blade provided with the film cooling structure according to claim 1. 請求項1のフィルム冷却構造を備えた燃焼器ライナ。   A combustor liner comprising the film cooling structure of claim 1. 空気を圧縮する圧縮機と、
前記圧縮機からの圧縮空気と共に燃料を燃焼する燃焼器と、
請求項10のタービン翼を備えて前記燃焼器からの燃焼ガスで駆動されるタービンと
を備えたことを特徴とするガスタービン。
A compressor for compressing air;
A combustor for combusting fuel with compressed air from the compressor;
A gas turbine comprising the turbine blade of claim 10 and driven by combustion gas from the combustor.
空気を圧縮する圧縮機と、
請求項11の燃焼器ライナを備えて前記圧縮機からの圧縮空気と共に燃料を燃焼する燃焼器と、
前記燃焼器からの燃焼ガスで駆動されるタービンと
を備えたことを特徴とするガスタービン。
A compressor for compressing air;
A combustor comprising the combustor liner of claim 11 for combusting fuel with compressed air from the compressor;
A gas turbine comprising: a turbine driven by combustion gas from the combustor.
高温気体が流れる高温流路に臨む高温部材の表面にフィルム冷却膜を形成するフィルム冷却方法であって、
前記高温部材の表面に開口したフィルム冷却孔の噴出口よりも前記高温気体の流れ方向における上流側に位置するように、前記高温気体の流れ方向に延ばした前記噴出口の中心線について対称に形成した窪みを前記高温部材の表面に少なくとも1つ配置し、
前記窪みを通る高温気体に前記フィルム冷却孔に向かって吹き下ろす向きの旋回成分を付与し、前記フィルム冷却孔から噴出する冷却気体を旋回する高温気体で押え、前記高温部材の表面からの前記冷却気体の剥離を抑制することを特徴とするフィルム冷却方法。
A film cooling method for forming a film cooling film on the surface of a high temperature member facing a high temperature flow path through which a high temperature gas flows,
Formed symmetrically about the center line of the jet port extending in the flow direction of the hot gas so as to be located upstream of the jet port of the film cooling hole opened in the surface of the hot member in the flow direction of the hot gas Arranging at least one hollow on the surface of the high temperature member;
The swirling component in a direction to blow down toward the film cooling hole is imparted to the high temperature gas passing through the depression, and the cooling gas ejected from the film cooling hole is pressed by the swirling high temperature gas, and the cooling from the surface of the high temperature member is performed. A film cooling method characterized by suppressing gas separation.
JP2018061312A 2018-03-28 2018-03-28 Film cooling structure Active JP7168926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018061312A JP7168926B2 (en) 2018-03-28 2018-03-28 Film cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018061312A JP7168926B2 (en) 2018-03-28 2018-03-28 Film cooling structure

Publications (2)

Publication Number Publication Date
JP2019173616A true JP2019173616A (en) 2019-10-10
JP7168926B2 JP7168926B2 (en) 2022-11-10

Family

ID=68168395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018061312A Active JP7168926B2 (en) 2018-03-28 2018-03-28 Film cooling structure

Country Status (1)

Country Link
JP (1) JP7168926B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138905A (en) * 2001-10-09 2003-05-14 United Technol Corp <Utc> Airfoil and method for improving heat transfer of airfoil
JP2005002899A (en) * 2003-06-12 2005-01-06 Hitachi Ltd Gas turbine burner
JP2008520890A (en) * 2004-11-23 2008-06-19 シーメンス アクチエンゲゼルシヤフト Gas turbine turbine blade, use of gas turbine blade, and cooling method of gas turbine blade
JP2011196360A (en) * 2010-03-24 2011-10-06 Kawasaki Heavy Ind Ltd Double jet type film cooling structure
JP2014214632A (en) * 2013-04-23 2014-11-17 三菱日立パワーシステムズ株式会社 Film cooling structure
JP2016166607A (en) * 2015-02-27 2016-09-15 ゼネラル・エレクトリック・カンパニイ Engine component
US20160273771A1 (en) * 2013-11-25 2016-09-22 United Technologies Corporation Film cooled multi-walled structure with one or more indentations
US9644903B1 (en) * 2012-06-01 2017-05-09 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Shaped recess flow control

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138905A (en) * 2001-10-09 2003-05-14 United Technol Corp <Utc> Airfoil and method for improving heat transfer of airfoil
JP2005002899A (en) * 2003-06-12 2005-01-06 Hitachi Ltd Gas turbine burner
JP2008520890A (en) * 2004-11-23 2008-06-19 シーメンス アクチエンゲゼルシヤフト Gas turbine turbine blade, use of gas turbine blade, and cooling method of gas turbine blade
JP2011196360A (en) * 2010-03-24 2011-10-06 Kawasaki Heavy Ind Ltd Double jet type film cooling structure
US9644903B1 (en) * 2012-06-01 2017-05-09 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Shaped recess flow control
JP2014214632A (en) * 2013-04-23 2014-11-17 三菱日立パワーシステムズ株式会社 Film cooling structure
US20160273771A1 (en) * 2013-11-25 2016-09-22 United Technologies Corporation Film cooled multi-walled structure with one or more indentations
JP2016166607A (en) * 2015-02-27 2016-09-15 ゼネラル・エレクトリック・カンパニイ Engine component

Also Published As

Publication number Publication date
JP7168926B2 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
US8083485B2 (en) Angled tripped airfoil peanut cavity
JP6283462B2 (en) Turbine airfoil
JP4659206B2 (en) Turbine nozzle with graded film cooling
JP4771849B2 (en) Aerofoil for turbines
EP1637699B1 (en) Offset coriolis turbulator blade
EP3436668B1 (en) Turbine airfoil with turbulating feature on a cold wall
JP4785511B2 (en) Turbine stage
EP2557270B1 (en) Airfoil including trench with contoured surface
US8657576B2 (en) Rotor blade
JP6134193B2 (en) Film cooling structure
JP2003138905A (en) Airfoil and method for improving heat transfer of airfoil
US9039371B2 (en) Trailing edge cooling using angled impingement on surface enhanced with cast chevron arrangements
EP1645722B1 (en) Turbine airfoil with stepped coolant outlet slots
JP2000291406A (en) Blade cooling by multiple collision cooling
JP2005299638A (en) Thermal shield turbine airfoil
EP3483395B1 (en) Inter-turbine ducts with flow control mechanisms
JP6506549B2 (en) Structural configuration and cooling circuit in turbine blade
JP6843253B2 (en) Walls of hot gas section and corresponding hot gas section for gas turbine
WO2017074404A1 (en) Turbine airfoil with offset impingement cooling at leading edge
US10900361B2 (en) Turbine airfoil with biased trailing edge cooling arrangement
JP7168926B2 (en) Film cooling structure
WO2019002274A1 (en) A turbomachine component and method of manufacturing a turbomachine component
US11346248B2 (en) Turbine nozzle segment and a turbine nozzle comprising such a turbine nozzle segment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221019

R150 Certificate of patent or registration of utility model

Ref document number: 7168926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150