[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019167576A - Method for manufacturing hot-dip galvanized steel sheet - Google Patents

Method for manufacturing hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP2019167576A
JP2019167576A JP2018055645A JP2018055645A JP2019167576A JP 2019167576 A JP2019167576 A JP 2019167576A JP 2018055645 A JP2018055645 A JP 2018055645A JP 2018055645 A JP2018055645 A JP 2018055645A JP 2019167576 A JP2019167576 A JP 2019167576A
Authority
JP
Japan
Prior art keywords
steel sheet
hot
cold
alloying
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018055645A
Other languages
Japanese (ja)
Other versions
JP7086666B2 (en
Inventor
崇之 前田
Takayuki Maeda
崇之 前田
広司 入江
Koji Irie
広司 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018055645A priority Critical patent/JP7086666B2/en
Publication of JP2019167576A publication Critical patent/JP2019167576A/en
Application granted granted Critical
Publication of JP7086666B2 publication Critical patent/JP7086666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

To provide a method for manufacturing a hot-dip galvanized steel sheet, capable of preventing alloying unevenness from occurring even in a situation that an edge center difference occurs in the thickness of a grain boundary oxidation layer to obtain excellent appearance.SOLUTION: The method for manufacturing a hot-dip galvanized steel sheet sequentially includes the following (a)-(d) steps using a steel sheet having a Si content of 1.0 mass% or more as a plating original sheet, (a) the step of hot-rolling a steel sheet having a Si content of 1.0 mass% or more at a winding temperature of 600°C or more; (b) the step of acid-cleaning the hot rolled steel sheet to remove a surface oxide layer and cold-rolling the steel sheet; (c) the step of subjecting the cold-rolled steel sheet to annealing and hot-dip galvanizing; and (d) the step of subjecting the hot-dip galvanized layer to alloying by an induction type heating furnace. The thickness of a grain boundary oxidation layer in the cold-rolled steel sheet obtained in the following (b) step is 4 μm or more in a central portion of the cold-rolled steel sheet in the width direction and is less than 4 μm in a region to 50 mm from the end of the cold-rolled steel sheet in the width direction.SELECTED DRAWING: None

Description

本発明は、めっき原板表面に合金化溶融亜鉛めっき層を有する合金化溶融亜鉛めっき鋼板を製造するための方法に関する。   The present invention relates to a method for producing an alloyed hot-dip galvanized steel sheet having an alloyed hot-dip galvanized layer on the surface of the original plating plate.

自動車の構造用部材に用いられる鋼板には、燃費改善を実現するため、より高強度であることが求められる。また自動車の構造用部材に適用する場合、自動車車体の耐久性を改善するという観点から、めっき原板表面に合金化溶融亜鉛めっき層を形成することも行われている。   Steel sheets used for structural members of automobiles are required to have higher strength in order to improve fuel efficiency. In addition, when applied to structural members of automobiles, an alloyed hot dip galvanized layer is also formed on the surface of the plating original plate from the viewpoint of improving the durability of the automobile body.

合金化溶融亜鉛めっき層が形成されるめっき原板には、Si等の合金元素の含有量を高めて強度を高めた高張力鋼板が用いられるのが一般的である。しかしながら、酸化物形成元素であるSiの含有量を1.0質量%以上に高めると、冷延鋼板の焼鈍時に鋼板表面に酸化物層(Si含有酸化物層)が形成されやすくなり、この酸化物層はめっき濡れ性を阻害するため、合金化溶融亜鉛めっき鋼板を製造するときに、「不めっき」や「合金化ムラ」が発生する。   In general, a high-strength steel sheet having an increased strength by increasing the content of alloy elements such as Si is used for the plating original sheet on which the alloyed hot-dip galvanized layer is formed. However, when the content of Si, which is an oxide-forming element, is increased to 1.0% by mass or more, an oxide layer (Si-containing oxide layer) is easily formed on the surface of the steel sheet when the cold-rolled steel sheet is annealed. Since the physical layer inhibits the plating wettability, “non-plating” and “alloying unevenness” occur when an alloyed hot-dip galvanized steel sheet is produced.

一方、Si含有量が1.0質量%以上である鋼板に対して、熱間圧延の巻取り温度を600℃以上にすると、鋼板表面近傍に粒界酸化層が形成されることも知られている。この粒界酸化層は、鋼板内部でSiが酸化されることによって形成される。粒界酸化層が形成されると、冷間圧延した後の冷延鋼板に対する焼鈍時に、Siが鋼板内部の結晶粒界に沿って酸化物を形成し、鋼板表面での酸化物層の形成が抑制される。その結果、酸化物層の存在に起因する「不めっき」や「合金化ムラ」の発生が抑制される。   On the other hand, it is also known that a grain boundary oxide layer is formed in the vicinity of the steel sheet surface when the hot rolling coiling temperature is 600 ° C. or higher for a steel sheet having a Si content of 1.0 mass% or higher. Yes. This grain boundary oxide layer is formed by oxidizing Si inside the steel plate. When the grain boundary oxide layer is formed, Si forms an oxide along the grain boundary inside the steel sheet during annealing of the cold-rolled steel sheet after cold rolling, and the formation of the oxide layer on the steel sheet surface It is suppressed. As a result, the occurrence of “non-plating” and “alloying unevenness” due to the presence of the oxide layer is suppressed.

熱間圧延巻取り時に生成する粒界酸化層は、鋼板の幅方向(圧延方向に対して垂直な方向:以下同じ)の端部から50mmまでの領域(以下、「幅方向エッジ部近傍」と呼ぶことがある)と、鋼板の幅方向中央部(以下、「幅方向センター部」と呼ぶことがある)で、厚さに差が生じることになる。この粒界酸化層の厚さ(鋼板表面からの深さ:以下同じ)は、幅方向センター部から幅方向両端部になるにつれて徐々に薄くなるのであるが、熱間圧延後の熱延鋼板を酸洗および冷間圧延した後の冷延鋼板においても、鋼板の幅方向センター部で4μm以上となり、鋼板の幅方向エッジ部近傍で4μm未満で残存するのが通常である。鋼板の幅方向センター部と、鋼板の幅方向エッジ部近傍の間で生じる粒界酸化層の厚みの差を、以下では、「エッジ・センター差」と呼ぶことがある。   The grain boundary oxide layer generated at the time of hot rolling is a region from the end of the width direction of the steel sheet (direction perpendicular to the rolling direction; the same applies hereinafter) to 50 mm (hereinafter referred to as “the vicinity of the width direction edge portion”). There is a difference in thickness between the width direction center portion of the steel sheet (hereinafter sometimes referred to as “width direction center portion”). The thickness of the grain boundary oxide layer (depth from the steel sheet surface: the same applies hereinafter) gradually decreases from the width direction center part to the width direction both end parts. Even in a cold-rolled steel sheet after pickling and cold rolling, it is usually 4 μm or more at the center part in the width direction of the steel sheet, and it remains below 4 μm near the edge part in the width direction of the steel sheet. Hereinafter, the difference in the thickness of the grain boundary oxide layer generated between the width direction center portion of the steel plate and the vicinity of the width direction edge portion of the steel plate may be referred to as “edge / center difference”.

上記のような現象が生じるのは、熱間圧延巻取り時の冷却速度が幅方向エッジ部近傍と幅方向センター部とで異なり、この冷却速度の差が上記のようなエッジ・センター差となって現れるものと推定される。   The above phenomenon occurs because the cooling rate at the time of hot rolling is different between the vicinity of the width direction edge portion and the width direction center portion, and this difference in cooling rate is the edge center difference as described above. It is estimated that it appears.

粒界酸化層の厚みにエッジ・センター差があれば、めっき層を合金化した後に、鋼板の幅方向エッジ部近傍と、鋼板の幅方向センター部との間で合金化の進行度合いが異なり、鋼板の幅方向全体で見たときに合金化ムラが発生することになる。特に、粒界酸化層の厚さが、4μm未満となる領域では合金化ムラが発生しやすくなる。   If there is an edge / center difference in the thickness of the grain boundary oxide layer, after alloying the plating layer, the degree of progress of alloying differs between the vicinity of the edge in the width direction of the steel sheet and the center part in the width direction of the steel sheet, When viewed in the entire width direction of the steel sheet, uneven alloying occurs. In particular, alloying unevenness is likely to occur in a region where the thickness of the grain boundary oxide layer is less than 4 μm.

こうしたことから、鋼板の幅方向全体で適正な合金化を行うことは困難になる。例えば、鋼板のセンター部を適正に合金化させた場合には、鋼板の幅方向エッジ部近傍が合金化不足(めっき層中のFe含有量が低くなる)となり、合金化ムラが発生する。また鋼板の幅方向エッジ部を適正に合金化させた場合には、鋼板の幅方向センター部が過度に合金化(めっき層中のΓ相形成量が増加してFe含有量が高くなる)し、合金化溶融亜鉛めっき層での耐パウダリング性が低下するという問題が発生する。   For these reasons, it becomes difficult to perform proper alloying in the entire width direction of the steel sheet. For example, when the center portion of the steel plate is appropriately alloyed, the vicinity of the edge portion in the width direction of the steel plate becomes insufficiently alloyed (Fe content in the plating layer becomes low), and uneven alloying occurs. Moreover, when the width direction edge part of a steel plate is appropriately alloyed, the width direction center part of a steel plate is excessively alloyed (the Γ phase formation amount in a plating layer increases and Fe content becomes high). There arises a problem that the powdering resistance of the alloyed hot-dip galvanized layer is lowered.

上記のようなエッジ・センター差による不都合を是正する方法としては、熱間圧延巻取り後の段階で、合金化ムラが発生しやすい幅方向エッジ部近傍を切除する方法があるが、この方法では鋼板製品の歩留りが低下する。   As a method for correcting the inconvenience due to the difference between the edge and the center as described above, there is a method of cutting the vicinity of the edge in the width direction in which alloying unevenness is likely to occur at the stage after hot rolling winding. The yield of steel sheet products decreases.

粒界酸化層の生成を抑制する方法として、熱間圧延での巻取り温度を600℃未満とすることも考えられるが、Si含有量が1.0質量%以上である鋼板では、めっき時に不めっきや合金化ムラ等が生じ、合金化溶融亜鉛めっき鋼板の外観不良を招くことになる。また、熱延鋼板コイル全長で強度が増加し、特にコイル先尾端部で強度が非常に高くなるため、先尾端部の切り落しが必要となり、歩留りが低下する。   As a method for suppressing the formation of the grain boundary oxide layer, it is conceivable to set the coiling temperature in hot rolling to less than 600 ° C. However, in a steel sheet having a Si content of 1.0 mass% or more, it is not effective during plating. Plating, uneven alloying, etc. occur, leading to poor appearance of the galvannealed steel sheet. In addition, the strength increases at the entire length of the hot-rolled steel sheet coil, and the strength becomes very high particularly at the leading end of the coil. Therefore, the leading end is required to be cut off, resulting in a decrease in yield.

こうした状況の下、Si含有量が1.0質量%以上であって、粒界酸化層の厚さにエッジ・センター差がある鋼板をめっき原板として用いると、合金化ムラのない適正な合金化処理を行うことは困難である。   Under these circumstances, when a steel sheet with an Si content of 1.0% by mass or more and an edge-center difference in the thickness of the grain boundary oxide layer is used as the plating base plate, proper alloying without uneven alloying is achieved. It is difficult to process.

合金化ムラのない適正な合金化処理をする技術として、これまでにも様々提案されている。こうした技術として、例えば特許文献1には、「所定の成分組成満足する熱延スラブ加熱温度:1170℃以下、熱延巻取り温度:600℃以下の条件で熱間圧延し、必要に応じて冷間圧延した後、連続溶融亜鉛めっきラインにおいて、Ac1変態点以上、Ac3変態点以下の温度で焼鈍した後めっきし、次いで、誘導加熱方式の合金化炉において炉出側板温が450〜550℃となるよう合金化処理を行い、表層の溶融亜鉛層が消滅後、300℃の温度までを10℃/sec以上の冷却速度で冷却する高強度合金化溶融亜鉛めっき鋼板の製造方法」が提案されている。 Various techniques have been proposed so far for performing appropriate alloying processing without unevenness in alloying. As such a technique, for example, Patent Document 1 describes, “Hot-rolling slab heating temperature satisfying a predetermined component composition: 1170 ° C. or less, hot-rolling temperature: 600 ° C. or less, and cold-cooling as necessary. After the hot rolling, in the continuous hot dip galvanizing line, annealing is performed at a temperature not lower than the Ac 1 transformation point and not higher than the Ac 3 transformation point, and then plating is performed. Proposed method of manufacturing a high-strength galvannealed steel sheet that is alloyed to a temperature of 300 ° C and cooled to a temperature of 300 ° C at a cooling rate of 10 ° C / sec or more after the surface molten zinc layer disappears " Has been.

この技術では、合金化処理時の加熱を誘導加熱方式で行うことにより、めっき原板表層の局所加熱を利用して、連続溶融亜鉛めっきラインでの焼鈍後冷却途中でのオーステナイトのパーライトへの変態を極力抑えるとともに、耐パウダリング性、合金相の均質性にも優れた皮膜を得るようにしたものである。そして、上記のような条件で製造することによって、強度−延性バランスおよび皮膜特性に優れた高強度合金化溶融亜鉛めっき鋼板が得られている。   In this technology, the heating during the alloying process is performed by induction heating, and the transformation of austenite to pearlite during the cooling after annealing in the continuous hot dip galvanizing line is performed using the local heating of the surface layer of the plating plate. In addition to minimizing as much as possible, a film with excellent powdering resistance and homogeneity of the alloy phase is obtained. And by manufacturing on the above conditions, the high intensity | strength galvannealed steel plate excellent in the strength-ductility balance and the film | membrane characteristic is obtained.

一方、特許文献2には、「Si含有量[%Si]との関係で熱間スラブ加熱温度Tsを、Ts(℃)≦1190−67[%Si]と規定するとともに、熱延巻取り温度600℃以下の条件で熱間圧延し、該熱延鋼板を酸洗後、必要に応じて冷間圧延した後、連続溶融亜鉛めっきラインにおいて、浴中Al量が0.15wt%以下の亜鉛浴でめっきを施した後、誘導加熱方式の合金化炉において炉出側板温が450〜550℃となるよう合金化加熱処理を行い、表層の溶融亜鉛層が消滅後300℃の温度までを10℃/sec以上の冷却速度で冷却する高強度合金化溶融亜鉛めっき鋼板の製造方法」が提案されている。   On the other hand, Patent Document 2 defines “the hot slab heating temperature Ts in relation to the Si content [% Si] as Ts (° C.) ≦ 1190−67 [% Si] and the hot rolling coiling temperature. After hot rolling under conditions of 600 ° C. or less, pickling the hot-rolled steel sheet, and cold rolling as necessary, in a continuous hot-dip galvanizing line, a zinc bath having an Al content in the bath of 0.15 wt% or less In the induction heating type alloying furnace, the alloying heat treatment is performed so that the furnace outlet side plate temperature becomes 450 to 550 ° C., and the surface of the molten zinc layer disappears until the temperature reaches 300 ° C. up to 10 ° C. A method for producing a high-strength galvannealed steel sheet that is cooled at a cooling rate of at least / sec has been proposed.

この技術は、優れた強度−延性バランスを有し、表面外観および耐パウダリング性にも優れた高強度合金化溶融亜鉛めっき鋼板を既存の連続溶融亜鉛めっきライン設備で製造することを可能にするという観点からなされたものである。そして、上記のような条件で製造することによって、所望の効果が得られている。   This technology makes it possible to produce high-strength alloyed hot-dip galvanized steel sheets with excellent strength-ductility balance, excellent surface appearance and powdering resistance using existing continuous hot-dip galvanizing line equipment It was made from the viewpoint. And the desired effect is acquired by manufacturing on the above conditions.

特許第2565038号公報Japanese Patent No. 2565038 特許第3097232号公報Japanese Patent No. 3097232

上記特許文献1、2の技術はいずれも、誘導加熱方式の合金化炉において、Si含有量が1.0質量%未満である鋼板をめっき原板として用いること想定したものであり、しかも粒界酸化層が形成されにくい600℃以下の巻取り温度で製造するものである。したがって、これらの技術では、Si含有量が1.0質量%以上である鋼板をめっき原板として用いることを想定しておらず、また本来粒界酸化層厚さのエッジ・センター差が生じることがない技術である。   In the induction heating type alloying furnace, both of the techniques of Patent Documents 1 and 2 are assumed to use a steel plate having a Si content of less than 1.0% by mass as a plating base plate, and further, grain boundary oxidation. It is manufactured at a coiling temperature of 600 ° C. or less where the layer is difficult to form. Therefore, in these techniques, it is not assumed that a steel sheet having a Si content of 1.0 mass% or more is used as a plating original sheet, and an edge-center difference in the grain boundary oxide layer thickness may occur. There is no technology.

こうしたことから、Si含有量が1.0質量%以上である鋼板をめっき原板として用い、粒界酸化層の厚さにエッジ・センター差が生じるような状況の下であっても、合金化ムラの発生を抑制できる技術の確立が望まれているのが実情である。   For this reason, even when a steel plate having a Si content of 1.0% by mass or more is used as a plating original plate and an edge / center difference occurs in the thickness of the grain boundary oxide layer, uneven alloying occurs. In fact, it is desirable to establish a technology that can suppress the occurrence of this.

本発明は上記のような事情に鑑みてなされたものであり、その目的は、Si含有量が1.0質量%以上である鋼板をめっき原板として用い、粒界酸化層の厚さにエッジ・センター差が生じるような状況下であっても、合金化ムラの発生を防止して良好な外観を得ることのできる合金化溶融亜鉛めっき鋼板を製造する方法を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to use a steel plate having a Si content of 1.0% by mass or more as a plating original plate, and to reduce the thickness of the grain boundary oxide layer to An object of the present invention is to provide a method for producing an alloyed hot-dip galvanized steel sheet capable of preventing the occurrence of alloying unevenness and obtaining a good appearance even under a situation where a center difference occurs.

上記課題を解決することのできた本発明の製造方法は、合金化溶融亜鉛めっき鋼板を製造する方法であって、
Si含有量が1.0質量%以上である鋼板をめっき原板として用い、下記(a)〜(d)の工程を順次含み、下記(b)の工程で得られた冷延鋼板における粒界酸化層の厚さが、冷延鋼板の幅方向中央部で4μm以上であり、冷延鋼板の幅方向端部から50mmまでの領域で4μm未満であることを特徴とする。
(a)Si含有量が1.0質量%以上である鋼板を、巻取り温度を600℃以上として熱間圧延する工程、
(b)熱延鋼板を酸洗して表面酸化物層を除去した後、冷間圧延する工程、
(c)冷延鋼板に対して、焼鈍および溶融亜鉛めっき処理を行う工程、
(d)誘導加熱方式の加熱炉で溶融亜鉛めっき層の合金化処理を行う工程。
The production method of the present invention that has solved the above problems is a method of producing an alloyed hot-dip galvanized steel sheet,
Grain boundary oxidation in a cold-rolled steel sheet obtained by using the steel sheet having a Si content of 1.0% by mass or more as the plating original sheet and sequentially including the following steps (a) to (d) and obtained in the following step (b): The thickness of the layer is 4 μm or more at the center in the width direction of the cold-rolled steel sheet, and is less than 4 μm in the region from the end in the width direction of the cold-rolled steel sheet to 50 mm.
(A) a step of hot rolling a steel sheet having a Si content of 1.0% by mass or more at a coiling temperature of 600 ° C. or more;
(B) a step of cold rolling after pickling the hot-rolled steel sheet to remove the surface oxide layer,
(C) A step of performing annealing and hot dip galvanizing treatment on the cold-rolled steel sheet,
(D) A step of alloying the hot-dip galvanized layer in an induction heating type heating furnace.

本発明の実施形態として、前記(c)の焼鈍および溶融めっき処理、並びに前記(d)の合金化処理を、連続溶融亜鉛めっきラインにて行うことが好ましい。   As an embodiment of the present invention, it is preferable that the annealing and hot dipping treatment of (c) and the alloying treatment of (d) are performed in a continuous hot dipping galvanizing line.

また本発明の製造方法において、前記(d)の合金化処理を実施するときの前記冷延鋼鈑の表面温度を450℃未満とすることが好ましい。   Moreover, in the manufacturing method of this invention, it is preferable that the surface temperature of the said cold-rolled steel sheet when implementing the alloying process of said (d) shall be less than 450 degreeC.

本発明は上記のように構成されており、Si含有量が1.0質量%以上である鋼板を用い、粒界酸化層の厚さにエッジ・センター差が生じるような状況の下であっても、合金化ムラの発生を防止して良好な外観を得ることのできる合金化溶融亜鉛めっき鋼板が製造できる。   The present invention is configured as described above, and uses a steel sheet having a Si content of 1.0% by mass or more, under a situation where an edge-center difference occurs in the thickness of the grain boundary oxide layer. In addition, an alloyed hot-dip galvanized steel sheet capable of preventing the occurrence of uneven alloying and obtaining a good appearance can be produced.

Si含有量が1.0質量%以上である鋼板において、巻取り温度が600℃以上となるようにして熱間圧延した場合に粒界酸化層が生成し、また粒界酸化層の厚さに上記のようなエッジ・センター差が生じやすくなる。このようなエッジ・センター差を生じないようにするためには、別の工程が必要となり、また設備上の制約があり、製造コストの増大を招くことになる。   In a steel sheet having a Si content of 1.0% by mass or more, a grain boundary oxide layer is formed when hot rolling is performed so that the coiling temperature is 600 ° C. or more. The edge-center difference as described above tends to occur. In order to prevent such an edge-center difference from occurring, another process is required, and there are restrictions on equipment, resulting in an increase in manufacturing cost.

本発明者らは、Si含有量が1.0質量%以上である鋼板をめっき原板として用い、粒界酸化層の厚さにエッジ・センター差が生じるような状況下であっても、合金化ムラの発生を防止して良好な外観を得ることのできる合金化溶融亜鉛めっき鋼板を得るするための製造条件について、様々な角度から検討した。   The present inventors use a steel plate having a Si content of 1.0 mass% or more as a plating original plate, and even in a situation where an edge-center difference occurs in the thickness of the grain boundary oxide layer, alloying is performed. Manufacturing conditions for obtaining an alloyed hot-dip galvanized steel sheet capable of preventing occurrence of unevenness and obtaining a good appearance were examined from various angles.

その結果、下記(a)〜(d)の工程を順次含んで合金化溶融亜鉛めっき鋼板を製造すれば、合金化ムラの発生を防止して良好な外観を得ることのできる合金化溶融亜鉛めっき鋼板が得られることを見出し、本発明を完成した。
(a)Si含有量が1.0質量%以上である鋼板を、巻取り温度を600℃以上として熱間圧延する工程、
(b)熱延鋼板を酸洗して表面酸化物層を除去した後、冷間圧延する工程、
(c)冷延鋼板に対して、焼鈍および溶融亜鉛めっき処理を行う工程、
(d)誘導加熱方式の加熱炉で溶融亜鉛めっき層の合金化処理を行う工程。
As a result, if an alloyed hot-dip galvanized steel sheet is manufactured by sequentially including the following steps (a) to (d), alloyed hot-dip galvanizing that can prevent occurrence of unevenness of alloying and obtain a good appearance It discovered that a steel plate was obtained and completed this invention.
(A) a step of hot rolling a steel sheet having a Si content of 1.0% by mass or more at a coiling temperature of 600 ° C. or more;
(B) a step of cold rolling after pickling the hot-rolled steel sheet to remove the surface oxide layer,
(C) A step of performing annealing and hot dip galvanizing treatment on the cold-rolled steel sheet,
(D) A step of alloying the hot-dip galvanized layer in an induction heating type heating furnace.

上記(a)〜(d)の夫々の工程について説明する。   The respective steps (a) to (d) will be described.

[(a)の工程]
(a)の工程では、Si含有量が1.0質量%以上である鋼板を、巻取り温度を600℃以上として熱間圧延する。Si含有量が1.0質量%以上である鋼板に対して、巻取り温度を600℃以上として熱間圧延すれば、粒界酸化層が生成し、また粒界酸化層の厚さに上記のようなエッジ・センター差が生じやすくなる。
[Step (a)]
In the step (a), a steel sheet having a Si content of 1.0% by mass or more is hot-rolled at a coiling temperature of 600 ° C. or more. If a steel sheet having a Si content of 1.0% by mass or more is hot-rolled at a coiling temperature of 600 ° C. or higher, a grain boundary oxide layer is formed, and the thickness of the grain boundary oxide layer is set to the above-described thickness. Such edge-center difference is likely to occur.

すなわち(a)の工程は、上記のようなエッジ・センター差が生じやすい状況下で熱間圧延を行う。そのためには、巻取り温度を600℃以上として熱間圧延する必要があるが、巻取り温度があまり高くなると、設備寿命が短くなることが予想されるので、その上限は熱間圧延温度以下である。   That is, in the step (a), hot rolling is performed in a situation where the edge-center difference is likely to occur. For that purpose, it is necessary to perform hot rolling at a coiling temperature of 600 ° C. or higher. However, if the coiling temperature becomes too high, the equipment life is expected to be shortened, so the upper limit is below the hot rolling temperature. is there.

[(b)の工程]
(b)の工程では、上記(a)の工程で得られた熱延鋼板を、酸洗して表面酸化物層を除去した後、冷間圧延する。上記(a)の工程で形成される粒界酸化層の厚さは、(b)の工程で冷間圧延して得られた冷延鋼板の段階で、冷延鋼板の幅方向センター部で4μm以上であり、冷延鋼板の幅方向エッジ部近傍で4μm未満となり、エッジ・センター差が生じている。
[Step (b)]
In the step (b), the hot-rolled steel sheet obtained in the step (a) is pickled to remove the surface oxide layer, and then cold-rolled. The thickness of the grain boundary oxide layer formed in the step (a) is 4 μm at the center in the width direction of the cold-rolled steel plate at the cold-rolled steel plate stage obtained by cold rolling in the step (b). As described above, in the vicinity of the edge portion in the width direction of the cold-rolled steel sheet, it is less than 4 μm, and an edge-center difference is generated.

[(c)の工程]
(c)の工程では、上記のようなエッジ・センター差が生じている冷延鋼板に対して、焼鈍および溶融亜鉛めっき処理を施す。冷延鋼板を焼鈍すると、粒界酸化層の存在によって、Siが鋼板内部の結晶粒界に沿って酸化物を形成し、鋼板表面での酸化物層の形成が抑制される。その結果、酸化物層の存在に起因する「不めっき」や「合金化ムラ」の発生が抑制される。しかしながら、その後の溶融亜鉛めっき層の合金化に際して、通常の加熱炉で加熱すれば、エッジ・センター差に起因する「合金化ムラ」が発生することになる。
[Step (c)]
In the step (c), annealing and hot dip galvanizing are performed on the cold-rolled steel sheet having the edge-center difference as described above. When the cold-rolled steel sheet is annealed, due to the presence of the grain boundary oxide layer, Si forms an oxide along the crystal grain boundary inside the steel sheet, and the formation of the oxide layer on the steel sheet surface is suppressed. As a result, the occurrence of “non-plating” and “alloying unevenness” due to the presence of the oxide layer is suppressed. However, in the subsequent alloying of the hot dip galvanized layer, if it is heated in a normal heating furnace, “alloying unevenness” due to the edge-center difference will occur.

[(d)の工程]
(d)の工程では、誘導加熱方式の加熱炉で溶融亜鉛めっき層の合金化処理を行う。溶融亜鉛めっき層の合金化に際し、誘導加熱方式の加熱炉で加熱することによって、エッジ・センター差に起因する「合金化ムラ」の発生を防止できる。誘導加熱方式の加熱炉を、以下では「IH(Induction Heating)ヒータ」と呼ぶことがある。
[Step (d)]
In the step (d), the galvanized layer is alloyed in an induction heating type heating furnace. When alloying the hot dip galvanized layer, heating by an induction heating furnace can prevent occurrence of “alloying unevenness” due to edge-center difference. Hereinafter, the induction heating furnace may be referred to as an “IH (Induction Heating) heater”.

ここで「合金化ムラ」とは、幅方向センター部と幅方向エッジ部近傍で、めっき層中におけるFe濃度の差が3.0質量%よりも大きくなることである。なお、幅方向エッジ部近傍とは、前述のごとく、鋼板の幅方向(圧延方向に対して垂直な方向)の端部から50mmまでの領域を意味するが、このように規定したのは、次の通りである。すなわち、端部から50mmまでの領域が合金化ムラの発生しやすい領域(すなわち、粒界酸化層の厚さが4μm未満となる領域)であること、および端部から50mmの位置よりも端部の方が粒界酸化層の厚さ薄くなる(すなわち、「エッジ・センター差」が大きくなる)のであるが、この領域内と幅方向センター部とを比較することによって、合金化ムラの発生状況を把握できるからである。   Here, “alloying unevenness” means that the difference in Fe concentration in the plating layer is greater than 3.0 mass% in the vicinity of the width direction center portion and the width direction edge portion. As described above, the vicinity in the width direction edge portion means a region from the end in the width direction (direction perpendicular to the rolling direction) of the steel plate to 50 mm. It is as follows. That is, the region from the end portion to 50 mm is a region where alloying unevenness is likely to occur (that is, the region where the thickness of the grain boundary oxide layer is less than 4 μm), and the end portion is more than the position 50 mm from the end portion. The grain boundary oxide layer becomes thinner (ie, the “edge / center difference” becomes larger). By comparing this area with the center in the width direction, the occurrence of unevenness in alloying occurs. It is because it can grasp.

また幅方向センター部とは、上記鋼板幅方向の中心から両エッジ部に向かって夫々200mmまでの領域を意味する。或いは、板幅が狭い場合には、鋼板幅方向の中心から両エッジ部に向かって板幅の40%位置までの領域であっても良い。要するに、鋼板の幅の長さの範囲内で、幅方向エッジ部近傍と幅方向センター部とが領域的に重複しない状態となっていればよい。   Moreover, the width direction center part means the area | region to 200 mm from the center of the said steel plate width direction toward both edge parts, respectively. Alternatively, when the plate width is narrow, it may be a region from the center in the steel plate width direction to the 40% position of the plate width toward both edge portions. In short, the width direction edge part vicinity and the width direction center part should just be in the state which does not overlap in a region within the range of the width of a steel plate.

本発明において、溶融亜鉛めっき層の合金化に際してIHヒータを用いれば[前記(d)の工程]、上記のような合金化ムラが解消される理由についてはその全てを明らかした訳ではないが、おそらく次のように考えることができた。すなわち、IHヒータで加熱することにより、めっき原板(冷延鋼板)と溶融亜鉛めっき層との界面が効率的に加熱され、鋼板表面温度よりも溶融亜鉛めっき層の温度が高くなり、これまで合金化が進行しにくいとされていたエッジ部近傍においても、合金化が効果的に進行するためと推察される。   In the present invention, if an IH heater is used for alloying the hot dip galvanized layer [step (d)], not all of the reasons why the above alloying unevenness is eliminated are clarified. Perhaps I could think of it as follows. That is, by heating with an IH heater, the interface between the plating original plate (cold rolled steel plate) and the hot dip galvanized layer is efficiently heated, and the temperature of the hot dip galvanized layer becomes higher than the surface temperature of the steel plate. It is presumed that the alloying effectively proceeds even in the vicinity of the edge portion where the alloying is unlikely to proceed.

これに対して、溶融亜鉛めっき層の合金化に際して、赤外線加熱方式の加熱炉(以下、「赤外線ヒータ」と呼ぶことがある)を用いた場合は、鋼板の幅方向センター部が過剰に合金化してしまい、めっき品質が悪化することになる。赤外線ヒータでは、めっき表面からの輻射によって合金化を進行させるものであり、特に加熱されやすく、粒界酸化層が厚くなる幅方向センター部で合金化が過剰に進行することになる。   On the other hand, when alloying the hot dip galvanized layer, when using an infrared heating furnace (hereinafter sometimes referred to as “infrared heater”), the center portion in the width direction of the steel sheet is excessively alloyed. As a result, the plating quality deteriorates. In the infrared heater, alloying proceeds by radiation from the plating surface, and particularly, the alloying proceeds excessively at the center portion in the width direction where the grain boundary oxide layer is easily heated.

前記(d)の工程において、溶融亜鉛めっき層の合金化処理を実施するときの冷延鋼板の表面温度(以下、「板温」と呼ぶことがある)については特に限定するものではないが、粒界酸化層が特に厚い場合での過度の合金化進行を抑制するという観点からすれば、板温は450℃未満とすることが好ましい。より好ましくは430℃以下であり、更に好ましくは410℃以下である。   In the step (d), the surface temperature of the cold-rolled steel sheet when performing the alloying treatment of the hot-dip galvanized layer (hereinafter, sometimes referred to as “plate temperature”) is not particularly limited. From the viewpoint of suppressing excessive alloying when the grain boundary oxide layer is particularly thick, the plate temperature is preferably less than 450 ° C. More preferably, it is 430 degrees C or less, More preferably, it is 410 degrees C or less.

上記板温が450℃以上では、粒界酸化層が厚い場合に、合金化処理時の潜熱により、IHヒータと、その後の冷却帯の間でも合金化が進行するため、めっき層中におけるFe濃度が高くなりすぎ、耐パウダリング性が悪化することがある。但し、合金化処理を行うときの板温が、あまり低くなり過ぎると合金化の進行が遅くなって生産性が低下するので、概ね300℃以上であることが好ましい。   When the plate temperature is 450 ° C. or higher, when the grain boundary oxide layer is thick, the alloying progresses between the IH heater and the subsequent cooling zone due to the latent heat during the alloying process, so the Fe concentration in the plating layer May become too high and the powdering resistance may deteriorate. However, if the plate temperature at the time of alloying is too low, the progress of alloying slows down and the productivity is lowered.

本発明でめっき原板として用いる鋼板は、通常の高張力鋼板であればよいが、より高強度を達成する鋼板として、少なくともSi含有量は1.0質量%以上とする必要がある。Si含有量の上限は、概ね2.7質量%以下である。またCやMn等の成分については、何ら限定するものではなく、通常C:0.05〜0.5質量%程度、Mn:1.6〜4.0質量%程度で含有していればよい。また、P,S,N,O等の不可避不純物も含有することも許容できる。   Although the steel plate used as a plating original plate by this invention should just be a normal high-tensile steel plate, Si content needs to be 1.0 mass% or more as a steel plate which achieves higher intensity | strength. The upper limit of Si content is approximately 2.7% by mass or less. Moreover, about components, such as C and Mn, it does not limit at all, Usually, C: About 0.05-0.5 mass% and Mn: About 1.6-4.0 mass% should just contain. . It is also acceptable to contain inevitable impurities such as P, S, N, and O.

めっき原板表面に形成される溶融亜鉛めっきの種類については、めっき層中に合金元素を含むものであってもよい。また亜鉛めっき層は、鋼板の片面または両面に被覆される。溶融亜鉛めっきの付着量は、片面あたりで例えば30〜120g/m2程度である。 About the kind of hot dip galvanization formed in the plating original plate surface, an alloy element may be included in a plating layer. The galvanized layer is coated on one side or both sides of the steel plate. The adhesion amount of hot dip galvanizing is, for example, about 30 to 120 g / m 2 per side.

上記のように本発明では、Si含有量が1.0質量%以上である鋼板をめっき原板として用い、冷延鋼板における粒界酸化層の厚さが、冷延鋼板の幅方向センター部で4μm以上であり、冷延鋼板の幅方向エッジ部から50mmまでの領域で4μm未満であるような鋼板を用い、前記Si含有量が1.0質量%以上である鋼板を、巻取り温度を600℃以上として熱間圧延する工程[前記(a)]の工程」、熱延鋼板を酸洗して表面酸化物層を除去した後冷間圧延する工程[前記(b)の工程]、冷延鋼板に対して、焼鈍および溶融亜鉛めっき処理を行う工程[前記(c)の工程]、誘導加熱方式の加熱炉で溶融亜鉛めっき層の合金化処理を行う工程[前記(d)の工程]、を順次含むことによって、粒界酸化層の厚さで生じるエッジ・センター差による不都合が是正され、合金化ムラの抑制された合金化溶融亜鉛めっき鋼板が得られる。   As described above, in the present invention, a steel plate having a Si content of 1.0% by mass or more is used as a plating original plate, and the thickness of the grain boundary oxide layer in the cold-rolled steel plate is 4 μm at the center in the width direction of the cold-rolled steel plate. A steel sheet having a Si content of 1.0% by mass or more is used at a coiling temperature of 600 ° C. using a steel sheet that is less than 4 μm in the region from the edge in the width direction of the cold-rolled steel sheet to 50 mm. Step of hot rolling as described above [Step of (a)], Step of pickling hot rolled steel sheet to remove surface oxide layer and then cold rolling [Step of (b)], Cold rolled steel plate In contrast, a step of performing annealing and hot dip galvanizing treatment [the step of (c) above], a step of alloying a hot dip galvanized layer in a heating furnace of an induction heating method [step of the above (d)], Edge center caused by the thickness of grain boundary oxide layer by including sequentially -The inconvenience due to the difference is corrected, and an alloyed hot-dip galvanized steel sheet with reduced unevenness in alloying is obtained.

なお、本発明において、前記(c)の焼鈍および溶融めっき処理、並びに前記(d)の合金化処理は、夫々独立した別の工程で行ってもよいが、これらの処理を連続溶融亜鉛めっきラインにて、一連の工程で連続的に行うことが好ましい。連続溶融亜鉛めっきラインにて、焼鈍、溶融めっき処理および合金化処理を連続的に行うことによって、生産性の向上や製造コストの低減が図れる。   In the present invention, the annealing and hot dipping treatment of (c) and the alloying treatment of (d) may be performed in separate independent processes, but these treatments are performed in a continuous hot dip galvanizing line. It is preferable to carry out continuously in a series of steps. By continuously performing annealing, hot dipping treatment and alloying treatment in a continuous hot dip galvanizing line, productivity can be improved and manufacturing costs can be reduced.

またいずれにしても、冷延鋼板への焼鈍は、例えば1〜30%程度の水素を含む還元性雰囲気(残部は窒素)とし、鋼板のAc1変態点〜970℃程度の温度範囲とし、10〜54000秒間程度保持することが好ましい。 In any case, the annealing to the cold-rolled steel sheet is, for example, a reducing atmosphere containing about 1 to 30% hydrogen (the balance is nitrogen), the temperature range from the Ac 1 transformation point of the steel sheet to about 970 ° C., 10 It is preferable to hold for about 54000 seconds.

以下、実施例に基づいて、本発明の作用効果をより具体的に示すが、下記実施例は本発明を限定する性質のものではなく、前記および後記の趣旨に徴して設計変更することは、いずれも本発明の技術的範囲に含まれる。   Hereinafter, based on the examples, the effects of the present invention will be described more specifically, but the following examples are not of a nature that limits the present invention, and the design change in accordance with the gist of the above and the following description, Both are included in the technical scope of the present invention.

(1)供試材
以下に示す冷延鋼板を、めっき原板として使用した。
鋼板の成分組成:C0.22質量%、Si1.15質量%、Mn2.23質量%(残部:鉄、およびP,S,N,O等の不可避不純物)
鋼板の形状:板厚1.4mm、板幅70mm、長さ150mm(板幅1000mmのコイルより、幅方向センター部用鋼板:幅中央を中心として前記形状で切りだした。幅方向エッジ部用鋼板:エッジ部より前記形状で切りだした。)
熱間圧延の巻取り温度:650℃
粒界酸化層の厚さ:冷延鋼板の幅方向センター部で11.0μm、冷延鋼板の幅方向エッジ部から50mmの位置で1.1μm(鋼鈑断面のSEMを用いて撮影した写真にて測定)
(1) Test material The cold-rolled steel sheet shown below was used as a plating original sheet.
Component composition of steel sheet: C 0.22% by mass, Si 1.15% by mass, Mn 2.23% by mass (the balance: iron and inevitable impurities such as P, S, N, O)
Shape of steel plate: plate thickness 1.4 mm, plate width 70 mm, length 150 mm (from a coil having a plate width of 1000 mm, steel plate for width direction center portion: cut out in the shape centered on the width center. Steel plate for width direction edge portion. : Cut out in the above shape from the edge.)
Hot rolling coiling temperature: 650 ° C
Thickness of the grain boundary oxide layer: 11.0 μm at the center in the width direction of the cold-rolled steel sheet, 1.1 μm at the position 50 mm from the edge in the width direction of the cold-rolled steel sheet (in the photograph taken using the SEM of the steel plate cross section) Measured)

(2)実験手順
鋼板を溶融亜鉛めっきシミュレーターにセットし、還元焼鈍、溶融亜鉛めっき処理および合金化処理を実施した。条件は以下に示す通りである。
(2) Experimental procedure The steel plate was set in a hot dip galvanizing simulator and subjected to reduction annealing, hot dip galvanizing treatment and alloying treatment. The conditions are as shown below.

[還元焼鈍条件]
焼鈍雰囲気:N2−5%H2
焼鈍温度:630℃
保持時間:200秒
[Reduction annealing conditions]
Annealing atmosphere: N 2 -5% H 2
Annealing temperature: 630 ° C
Holding time: 200 seconds

[溶融亜鉛めっき処理条件]
浴中Al濃度:0.13質量%
浴温度:460℃
侵入板温:460℃
浸漬時間:4秒
溶融亜鉛めっき付着量(片面だけ):70g/m2
[Hot galvanizing conditions]
Al concentration in the bath: 0.13 mass%
Bath temperature: 460 ° C
Intrusion board temperature: 460 ° C
Immersion time: 4 seconds Amount of hot dip galvanized coating (only on one side): 70 g / m 2

[合金化条件]
雰囲気:大気雰囲気
合金化温度(板温):(A)IHヒータによる加熱時400−460℃、(B)赤外線ヒータによる加熱時670−700℃
合金化時間:14秒
[Alloying conditions]
Atmosphere: Air atmosphere Alloying temperature (plate temperature): (A) 400-460 ° C. when heated by IH heater, (B) 670-700 ° C. when heated by infrared heater
Alloying time: 14 seconds

(3)評価方法
合金化後のめっき層を、JIS K 8847に規定するヘキサメチレンテトラミン(インヒビター)を添加した塩酸にて溶解し、高周波誘導結合プラズマ(Inductively Cupled Plasma:ICP)に基づき、溶解前後の質量変化から、めっき付着量とFe付着量を求め、質量比からめっき層中のFe濃度(質量%)を求めた。
(3) Evaluation method The alloyed plating layer was dissolved in hydrochloric acid to which hexamethylenetetramine (inhibitor) specified in JIS K 8847 was added, and before and after dissolution based on high frequency inductively coupled plasma (ICP). From the mass change, the plating adhesion amount and the Fe adhesion amount were determined, and the Fe concentration (mass%) in the plating layer was determined from the mass ratio.

なお、幅方向エッジ部近傍におけるFe濃度(質量%)を測定するに際しては、測定精度を高めるために、上記で切り出した幅方向エッジ部用鋼板から、幅方向端部から50mmまでの領域を含むように、幅50mm×長さ50mmの試験片を更に切り出して用いた。また幅方向センター部におけるFe濃度(質量%)を測定するに際しては、上記で切り出した幅方向センター部用鋼板から幅50mm×長さ50mmの試験片を更に切り出して用いた。したがって、上記のようにして求めためっき層中のFe濃度(質量%)は、各試験片での平均的な値となる。   In measuring the Fe concentration (mass%) in the vicinity of the width direction edge portion, in order to improve the measurement accuracy, the region from the width direction edge portion steel plate cut out above to a region of 50 mm from the width direction end portion is included. Thus, the test piece of width 50mm x length 50mm was further cut out and used. Moreover, when measuring the Fe concentration (mass%) in the width direction center part, the test piece of width 50mm x length 50mm was further cut out and used from the steel plate for width direction center parts cut out above. Therefore, the Fe concentration (mass%) in the plating layer determined as described above is an average value for each test piece.

めっき層中のFe濃度において、幅方向センター部と幅方向エッジ部近傍での差(質量%差)が3.0%以下であり、且つFe濃度(質量%)が5%以上15%以下である場合を「○」と評価した。また幅方向センター部と幅方向エッジ部近傍でのFe濃度の差が3.0%以下であり、且つFe濃度が15%より多く20%以下となる場合を「△」と評価した。   In the Fe concentration in the plating layer, the difference (mass% difference) between the width direction center portion and the width direction edge portion is 3.0% or less, and the Fe concentration (mass%) is 5% or more and 15% or less. A case was evaluated as “◯”. Moreover, the case where the difference in Fe concentration between the width direction center portion and the width direction edge portion was 3.0% or less and the Fe concentration was more than 15% and 20% or less was evaluated as “Δ”.

いずれの場合においても、幅方向センター部と幅方向エッジ部近傍のFe濃度の差が3.0%よりも大きくなる場合には、「×」として評価した。幅方向センター部と幅方向エッジ部近傍のFe濃度の差が3.0%よりも大きくなると、それだけで合金化ムラが発生する。   In any case, when the difference in Fe concentration between the width direction center portion and the width direction edge portion was larger than 3.0%, it was evaluated as “x”. If the difference in Fe concentration between the width direction center portion and the width direction edge portion is larger than 3.0%, alloying unevenness occurs only by that.

一方、めっき層中のFe濃度は、5〜15%の範囲であることが、めっき外観上最も好ましい。めっき層中のFe濃度が5%未満では、合金化が不十分となり、耐食性に劣る。めっき層中のFe濃度が15%よりも多く、且つ20%以下となる場合には、耐パウダリング性が若干低下するが、幅方向センター部と幅方向エッジ部近傍のFe濃度の差が3.0%以下となっていれば、合金化ムラが発生しないので、製品としては合格となる(「△」と評価)。また、めっき層中のFe濃度が20%よりも多くなる場合には、過度の合金化によるΓ相形成量が増加し、耐パウダリング性が著しく悪化するので、製品としては不適である。   On the other hand, the Fe concentration in the plating layer is most preferably in the range of 5 to 15% in terms of plating appearance. If the Fe concentration in the plating layer is less than 5%, alloying is insufficient and the corrosion resistance is poor. When the Fe concentration in the plating layer is more than 15% and 20% or less, the powdering resistance is slightly lowered, but the difference in Fe concentration between the width direction center portion and the width direction edge portion is 3%. If it is 0.0% or less, uneven alloying does not occur, so the product is acceptable (evaluated as “Δ”). On the other hand, when the Fe concentration in the plating layer is more than 20%, the amount of Γ phase formed due to excessive alloying increases and the powdering resistance is remarkably deteriorated, which is not suitable as a product.

その結果を、表1に示す(表1の試験No.1〜5)。   The results are shown in Table 1 (Test Nos. 1 to 5 in Table 1).

Figure 2019167576
Figure 2019167576

この結果から、次のように考察できる。まずIHヒータにより合金化処理することによって(試験No.1〜3)、幅方向センター部と幅方向エッジ部近傍のFe濃度の差を3.0%以下とすることができ、合金化ムラを抑制できることが明らかである(実施例1〜3)。このうち、特に合金化時の温度を450℃未満とした例(試験No.2、3)では、めっき層中のFe濃度が5〜15%の範囲内となっており、めっき外観上最も好ましいものとなっている(実施例2、3)。   From this result, it can be considered as follows. First, by alloying with an IH heater (Test Nos. 1 to 3), the difference in Fe concentration between the center in the width direction and the edge in the width direction can be reduced to 3.0% or less, and unevenness in alloying can be prevented. It is clear that it can be suppressed (Examples 1 to 3). Among these, especially in the example (test Nos. 2 and 3) in which the temperature during alloying is less than 450 ° C., the Fe concentration in the plating layer is in the range of 5 to 15%, which is most preferable in terms of plating appearance. (Examples 2 and 3).

これに対し赤外線ヒータにより合金化処理した例(試験No.4、5)では、幅方向センター部と幅方向エッジ部近傍のFe濃度の差を3.0%以下とすることができず、合金化ムラが抑制できていなことが明らかである(比較例1、2)。   On the other hand, in the examples (test Nos. 4 and 5) in which the alloying treatment was performed with the infrared heater, the difference in Fe concentration between the width direction center portion and the width direction edge portion could not be 3.0% or less. It is clear that uneven formation has not been suppressed (Comparative Examples 1 and 2).

Claims (3)

合金化溶融亜鉛めっき鋼板を製造する方法であって、
Si含有量が1.0質量%以上である鋼板をめっき原板として用い、下記(a)〜(d)の工程を順次含み、下記(b)の工程で得られた冷延鋼板における粒界酸化層の厚さが、冷延鋼板の幅方向中央部で4μm以上であり、冷延鋼板の幅方向端部から50mmまでの領域で4μm未満であることを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
(a)Si含有量が1.0質量%以上である鋼板を、巻取り温度を600℃以上として熱間圧延する工程、
(b)熱延鋼板を酸洗して表面酸化物層を除去した後、冷間圧延する工程、
(c)冷延鋼板に対して、焼鈍および溶融亜鉛めっき処理を行う工程、
(d)誘導加熱方式の加熱炉で溶融亜鉛めっき層の合金化処理を行う工程。
A method for producing an alloyed hot-dip galvanized steel sheet,
Grain boundary oxidation in a cold-rolled steel sheet obtained by using the steel sheet having a Si content of 1.0% by mass or more as the plating original sheet and sequentially including the following steps (a) to (d) and obtained in the following step (b): The thickness of the layer is 4 μm or more at the center in the width direction of the cold-rolled steel sheet, and less than 4 μm in the region from the end in the width direction of the cold-rolled steel sheet to 50 mm. Production method.
(A) a step of hot rolling a steel sheet having a Si content of 1.0% by mass or more at a coiling temperature of 600 ° C. or more;
(B) a step of cold rolling after pickling the hot-rolled steel sheet to remove the surface oxide layer,
(C) A step of performing annealing and hot dip galvanizing treatment on the cold-rolled steel sheet,
(D) A step of alloying the hot-dip galvanized layer in an induction heating type heating furnace.
前記(c)の焼鈍および溶融めっき処理、並びに前記(d)の合金化処理を、連続溶融亜鉛めっきラインにて行う請求項1に記載の合金化溶融亜鉛めっき鋼板の製造方法。   The method for producing an alloyed hot-dip galvanized steel sheet according to claim 1, wherein the annealing and hot-dipping treatment of (c) and the alloying treatment of (d) are performed in a continuous hot-dip galvanizing line. 前記(d)の合金化処理を実施するときの前記冷延鋼板の表面温度を450℃未満とする請求項1または2に記載の合金化溶融亜鉛めっき鋼板の製造方法。   The manufacturing method of the galvannealed steel plate of Claim 1 or 2 which makes the surface temperature of the said cold-rolled steel plate when implementing the alloying process of said (d) less than 450 degreeC.
JP2018055645A 2018-03-23 2018-03-23 Manufacturing method of alloyed hot-dip galvanized steel sheet Active JP7086666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018055645A JP7086666B2 (en) 2018-03-23 2018-03-23 Manufacturing method of alloyed hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018055645A JP7086666B2 (en) 2018-03-23 2018-03-23 Manufacturing method of alloyed hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2019167576A true JP2019167576A (en) 2019-10-03
JP7086666B2 JP7086666B2 (en) 2022-06-20

Family

ID=68108149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018055645A Active JP7086666B2 (en) 2018-03-23 2018-03-23 Manufacturing method of alloyed hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP7086666B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114351072A (en) * 2021-12-29 2022-04-15 北华航天工业学院 Production process of alloyed coated steel bar
CN115216607A (en) * 2022-06-30 2022-10-21 武汉钢铁有限公司 Control method for alloying spot defect of hot-dip galvanized iron alloy outer plate
CN115233132A (en) * 2022-06-08 2022-10-25 河钢股份有限公司承德分公司 Method for controlling edge curling thickness of non-flower hot-base galvanized steel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331607A (en) * 1992-05-27 1993-12-14 Nkk Corp Galvannealed steel sheet excellent in powdering resistance and aptitude for external surface and its production
JP2003328035A (en) * 2002-05-17 2003-11-19 Nippon Steel Corp Method for manufacturing hot-dip galvanized steel sheet
JP2004052035A (en) * 2002-07-19 2004-02-19 Jfe Steel Kk Hot-dip galvannealed steel sheet and manufacturing method therefor
JP2005060742A (en) * 2003-08-19 2005-03-10 Nippon Steel Corp High-strength galvannealed steel sheet with superior adhesiveness, and manufacturing method therefor
JP2008231493A (en) * 2007-03-20 2008-10-02 Nisshin Steel Co Ltd Method for producing hot-dip galvannealed steel sheet for spot-welding
JP2015193907A (en) * 2014-03-28 2015-11-05 株式会社神戸製鋼所 Alloyed high-strength hot-dip galvanized steel sheet having excellent workability and delayed fracture resistance, and method for producing the same
WO2016038801A1 (en) * 2014-09-08 2016-03-17 Jfeスチール株式会社 Method and apparatus for producing high-strength hot-dipped galvanized steel sheet
WO2017145329A1 (en) * 2016-02-25 2017-08-31 新日鐵住金株式会社 High strength hot-dip galvanized steel sheet with excellent impact peel resistance and worked section corrosion resistance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331607A (en) * 1992-05-27 1993-12-14 Nkk Corp Galvannealed steel sheet excellent in powdering resistance and aptitude for external surface and its production
JP2003328035A (en) * 2002-05-17 2003-11-19 Nippon Steel Corp Method for manufacturing hot-dip galvanized steel sheet
JP2004052035A (en) * 2002-07-19 2004-02-19 Jfe Steel Kk Hot-dip galvannealed steel sheet and manufacturing method therefor
JP2005060742A (en) * 2003-08-19 2005-03-10 Nippon Steel Corp High-strength galvannealed steel sheet with superior adhesiveness, and manufacturing method therefor
JP2008231493A (en) * 2007-03-20 2008-10-02 Nisshin Steel Co Ltd Method for producing hot-dip galvannealed steel sheet for spot-welding
JP2015193907A (en) * 2014-03-28 2015-11-05 株式会社神戸製鋼所 Alloyed high-strength hot-dip galvanized steel sheet having excellent workability and delayed fracture resistance, and method for producing the same
WO2016038801A1 (en) * 2014-09-08 2016-03-17 Jfeスチール株式会社 Method and apparatus for producing high-strength hot-dipped galvanized steel sheet
WO2017145329A1 (en) * 2016-02-25 2017-08-31 新日鐵住金株式会社 High strength hot-dip galvanized steel sheet with excellent impact peel resistance and worked section corrosion resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114351072A (en) * 2021-12-29 2022-04-15 北华航天工业学院 Production process of alloyed coated steel bar
CN114351072B (en) * 2021-12-29 2024-03-05 北华航天工业学院 Production process of alloyed plated steel bar
CN115233132A (en) * 2022-06-08 2022-10-25 河钢股份有限公司承德分公司 Method for controlling edge curling thickness of non-flower hot-base galvanized steel
CN115216607A (en) * 2022-06-30 2022-10-21 武汉钢铁有限公司 Control method for alloying spot defect of hot-dip galvanized iron alloy outer plate
CN115216607B (en) * 2022-06-30 2023-11-10 武汉钢铁有限公司 Control method for alloying speck defect of hot dip galvanized iron alloy outer plate

Also Published As

Publication number Publication date
JP7086666B2 (en) 2022-06-20

Similar Documents

Publication Publication Date Title
JP7244720B2 (en) Galvanized steel sheet with excellent spot weldability and its manufacturing method
US9902135B2 (en) Galvanized steel sheet for hot forming
JP5391572B2 (en) Cold rolled steel sheet, hot dip plated steel sheet, and method for producing the steel sheet
JP2007277652A (en) Manufacturing method of galvannealed sheet steel having good workability, powdering resistance and sliding property
US10927441B2 (en) High-strength galvanized hot-rolled steel sheet and method for manufacturing same
JP5799819B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance
JP7086666B2 (en) Manufacturing method of alloyed hot-dip galvanized steel sheet
JP2023507960A (en) High-strength hot-dip galvanized steel sheet with excellent surface quality and electric resistance spot weldability and its manufacturing method
JP2006097102A (en) High-tensile galvannealed steel sheet and its manufacturing method
JP2000309824A (en) Cold rolled steel sheet, hot dip plated steel sheet and their production
US20140342182A1 (en) Galvannealed steel sheet having high corrosion resistance after painting
JP5051886B2 (en) Method for producing cold-rolled steel sheet and plated steel sheet
WO2010053074A1 (en) Alloyed hot-dip galvanized steel sheet and method for producing same
JP6436268B1 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent plating adhesion
JP4969954B2 (en) Alloyed hot-dip galvanized steel sheet with excellent appearance quality and method for producing the same
JPH0941110A (en) Production of high tensile strength hot dip galvanized steel sheet
JP3271568B2 (en) Ti-IF steel sheet with excellent surface appearance
JP5920281B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JPH1018011A (en) Galvannealed steel sheet and its production
KR101153670B1 (en) A Method for Alloying Cold-Rolled Steel Sheet
JP4855290B2 (en) Hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
JP5092858B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
KR102200174B1 (en) Zinc plated steel sheet having excellent surface property and spot weldability and manufacturing method thereof
WO2019188235A1 (en) Alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet production method
JP2023505445A (en) Galvanized steel sheet excellent in fatigue strength of electric resistance spot welds, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220502

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220502

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220516

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220608

R150 Certificate of patent or registration of utility model

Ref document number: 7086666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150