[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019163199A - Reduced heteropolyoxomethalate and production process therefor, coating ink containing said reduced heteropolyoxomethalate, and organic electronic device using same - Google Patents

Reduced heteropolyoxomethalate and production process therefor, coating ink containing said reduced heteropolyoxomethalate, and organic electronic device using same Download PDF

Info

Publication number
JP2019163199A
JP2019163199A JP2018148128A JP2018148128A JP2019163199A JP 2019163199 A JP2019163199 A JP 2019163199A JP 2018148128 A JP2018148128 A JP 2018148128A JP 2018148128 A JP2018148128 A JP 2018148128A JP 2019163199 A JP2019163199 A JP 2019163199A
Authority
JP
Japan
Prior art keywords
reduced
heteropolyoxometalate
peak
electronic device
organic electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018148128A
Other languages
Japanese (ja)
Inventor
哲 大久
Toru Ohisa
哲 大久
城戸 淳二
Junji Kido
淳二 城戸
勇進 夫
Yushin Fu
勇進 夫
恒祐 春日
Kosuke Kasuga
恒祐 春日
康平 遠藤
Kohei Endo
康平 遠藤
健志 佐野
Kenji Sano
健志 佐野
裕真 矢口
Yuma Yaguchi
裕真 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Original Assignee
Yamagata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC filed Critical Yamagata University NUC
Publication of JP2019163199A publication Critical patent/JP2019163199A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

To provide, as a coating-type hole injection material, a reduced heteropolyoxometalate and production process therefor that does not require heat treatment after film formation and can drive organic electronic device at low voltage.SOLUTION: Provided is a reduced heteropolyoxometalate characterized in that the proportion of Mo(V)-derived peaks among molybdenum (Mo) peaks measured by X-ray photoelectron spectroscopy (XPS) is 30% or more. Said reduced heteropolyoxometalate is produced by heating and reducing a heteropolyacid selected from the group consisting of phosphomolybdic acid, silicomolybdic acid, and phosphotungstomolybdic acid.SELECTED DRAWING: None

Description

本発明は、有機電子デバイス用の還元ヘテロポリオキソメタレートに関する。   The present invention relates to reduced heteropolyoxometalates for organic electronic devices.

塗布型有機ELは簡便な方法で作製が可能なため、大面積化・生産性において有利とされている。前記有機EL素子を長時間、安定に駆動できる塗布型正孔注入材料として、200℃以上の高温で、大気下で加熱するものが知られている。例えば、特許文献1では、ケギン(Keggin)構造を有するリンモリブデン酸(図1)を含むポリオキソメタレートを水に溶解させて塗布し、200℃で10分間、加熱乾燥して正孔注入層を形成することが述べられているが、この材料を使った素子は、駆動電圧が高い。本発明者らも、厚さ10nm程度のリンモリブデン酸薄膜を窒素下で200℃以上の高温で加熱すると、大幅に低駆動電圧化することを見出しているが(非特許文献1)、高温プロセスは、産業で利用する上でそのまま電気代などのランニングコストの増大につながるため、低温プロセスが可能な材料が求められている。   Since the coating type organic EL can be produced by a simple method, it is advantageous in increasing the area and productivity. As a coating-type hole injection material that can stably drive the organic EL element for a long time, a material that is heated in the atmosphere at a high temperature of 200 ° C. or higher is known. For example, in Patent Document 1, a polyoxometalate containing phosphomolybdic acid (FIG. 1) having a Keggin structure is dissolved in water and applied, and then dried by heating at 200 ° C. for 10 minutes. However, an element using this material has a high driving voltage. The present inventors have also found that when a phosphomolybdic acid thin film having a thickness of about 10 nm is heated at a high temperature of 200 ° C. or higher under nitrogen, the driving voltage is significantly reduced (Non-patent Document 1). Since this leads to an increase in running costs such as electricity bills as it is used in industry, a material that can be processed at low temperature is required.

リンモリブデン酸薄膜を不活性雰囲気下で高温加熱すると、モリブデンが6価から5価に還元される。すると、膜中に欠陥準位が生成し、仕事関数が低下する。この欠陥準位を利用した隣接層との電荷のやり取りが有効に働くと、駆動電圧の低下につながると考えられる。また、5価に還元されるモリブデンの割合が高くなると、低駆動電圧化することも分かっている。   When the phosphomolybdic acid thin film is heated at a high temperature in an inert atmosphere, molybdenum is reduced from hexavalent to pentavalent. Then, defect levels are generated in the film, and the work function is lowered. It is considered that when the exchange of charges with the adjacent layer using this defect level works effectively, the drive voltage is lowered. It has also been found that the drive voltage decreases as the proportion of molybdenum reduced to pentavalent increases.

しかしながら、200℃は高温であり、例えば、PET基板のようなプラスチック基板を使用する場合、高温下で基板が大きく変形してしまうという問題点がある。そのため、プラスチック基板などに適用可能な材料が求められている。   However, 200 ° C. is a high temperature. For example, when a plastic substrate such as a PET substrate is used, there is a problem that the substrate is greatly deformed at a high temperature. Therefore, a material applicable to a plastic substrate or the like is demanded.

特開2011−23711号公報JP 2011-23711 A

ACS Appl. Mater. Interfaces, 2016, 8, 20946(2016年7月出版)ACS Appl. Mater. Interfaces, 2016, 8, 20946 (published July 2016)

本発明は、塗布型の正孔注入材料として、成膜後の加熱処理が不要であり、かつ、有機電子デバイスの低駆動電圧化が可能な還元ヘテロポリオキソメタレート及びその製造方法を提供することを目的とする。   The present invention provides a reduced heteropolyoxometalate as a coating-type hole injection material that does not require heat treatment after film formation and that can reduce the driving voltage of an organic electronic device, and a method for producing the same. With the goal.

本発明は以下の事項からなる。
本発明の還元ヘテロポリオキソメタレートは、X線光電子分光法(XPS)で測定されたモリブデン(Mo)のピークうち、Mo(V)由来のピークの比率が30%以上であることを特徴とする。
XPSで測定されたスペクトルをフィッティングして得られた、Mo 3d3/2の結合エネルギーピークにおけるMo(VI)由来のピークとMo(V)由来のピークとのピークトップの位置の差と、Mo3d5/2の結合エネルギーピークにおけるMo(VI)由来のピークとMo(V)由来のピークとのピークトップの位置の差とがそれぞれ、平均1.30eV以上であることが好ましい。
The present invention comprises the following items.
The reduced heteropolyoxometalate of the present invention is characterized in that the proportion of Mo (V) -derived peaks among molybdenum (Mo) peaks measured by X-ray photoelectron spectroscopy (XPS) is 30% or more. .
The difference in peak top position between the peak derived from Mo (VI) and the peak derived from Mo (V) in the Mo 3d 3/2 binding energy peak obtained by fitting the spectrum measured by XPS, and Mo3d The difference in peak top position between the peak derived from Mo (VI) and the peak derived from Mo (V) in the 5/2 binding energy peak is preferably 1.30 eV or more on average.

本発明の還元ヘテロポリオキソメタレートの製造方法は、平底皿にヘテロポリ酸を広げて載せ、加熱することを特徴とする。また、本発明の還元ヘテロポリオキソメタレートの製造方法は、平底皿にヘテロポリ酸を溶剤に溶かした溶液を薄膜状に滴下し、加熱することを特徴とする。
前記ヘテロポリ酸は、リンモリブデン酸、ケイモリブデン酸、及びリンタングストモリブデン酸からなる群より選ばれる少なくとも一種であることが好ましい。
本発明のインクは、前記還元ヘテロポリオキソメタレート及び有機溶媒を含有することを特徴とする。
前記有機溶媒は、アルコール、又はカルボニル基含有化合物であることが好ましい。
本発明の有機電子デバイスは、前記還元ヘテロポリオキソメタレートを用いたものである。
前記有機電子デバイスは、有機エレクトロルミネッセンス素子であることが好ましい。
The method for producing a reduced heteropolyoxometalate according to the present invention is characterized in that a heteropolyacid is spread and placed on a flat bottom pan and heated. The method for producing a reduced heteropolyoxometalate according to the present invention is characterized in that a solution obtained by dissolving a heteropolyacid in a solvent is dropped into a flat bottom dish in a thin film form and heated.
The heteropolyacid is preferably at least one selected from the group consisting of phosphomolybdic acid, silicomolybdic acid, and phosphotungstomolybdic acid.
The ink of the present invention is characterized by containing the reduced heteropolyoxometalate and an organic solvent.
The organic solvent is preferably an alcohol or a carbonyl group-containing compound.
The organic electronic device of the present invention uses the reduced heteropolyoxometalate.
The organic electronic device is preferably an organic electroluminescence element.

本発明によれば、正孔注入材料として、Mo(V)を30%以上含む還元ヘテロポリオキソメタレートを用いることで、成膜後の加熱プロセスを行うことなく、駆動電圧を大幅に低減した有機電子デバイス、例えば、有機EL素子を作製することができる。   According to the present invention, a reduced heteropolyoxometalate containing 30% or more of Mo (V) is used as the hole injecting material, so that the driving voltage is significantly reduced without performing a heating process after film formation. An electronic device, for example, an organic EL element can be manufactured.

図1は、リンモリブデン酸の構造を表す。FIG. 1 represents the structure of phosphomolybdic acid. 図2(a)は比較例1の試料のXPS測定スペクトル、図2(b)は比較例3の試料のXPS測定スペクトル、図2(c)は実施例1の試料のXPS測定スペクトル、図2(d)は実施例2の試料のXPS測定スペクトル、図2(e)は実施例2の試料のXPS測定スペクトルを表す。2A is an XPS measurement spectrum of the sample of Comparative Example 1, FIG. 2B is an XPS measurement spectrum of the sample of Comparative Example 3, FIG. 2C is an XPS measurement spectrum of the sample of Example 1, and FIG. (D) represents the XPS measurement spectrum of the sample of Example 2, and FIG. 2 (e) represents the XPS measurement spectrum of the sample of Example 2. 図3は、正孔オンリー素子の電流密度−電圧特性の関係を表す。FIG. 3 shows the relationship between the current density and voltage characteristics of the hole-only device. 図4は、有機EL素子の電流密度−電圧特性の関係を表す。FIG. 4 shows the relationship between the current density and voltage characteristics of the organic EL element. 図5は、実施例7、比較例10及び比較例11の太陽電池素子の電流密度−電圧特性の関係(図5(a))と、各波長における分光感度特性(外部量子効率)(図5(b))を示す。図5中、TFB/PMAは実施例7の素子、TFB/PEDOT:PSSは比較例10の素子、及びPEDOT:PSSは比較例11の素子を表す。FIG. 5 shows the relationship between the current density-voltage characteristics of the solar cell elements of Example 7, Comparative Example 10 and Comparative Example 11 (FIG. 5A), and spectral sensitivity characteristics (external quantum efficiency) at each wavelength (FIG. 5). (B)) is shown. In FIG. 5, TFB / PMA represents the device of Example 7, TFB / PEDOT: PSS represents the device of Comparative Example 10, and PEDOT: PSS represents the device of Comparative Example 11.

以下、本発明について、詳細に説明する。
本発明の還元ヘテロポリオキソメタレートは、X線光電子分光法(XPS)で測定されたモリブデン(Mo)のピークうち、Mo(V)由来のピークの比率が30%以上であることを特徴とする。
ここで、ヘテロポリオキソメタレートとは、ヘテロ原子を中心とし、ポリ原子がヘテロ原子に酸素を介して配位した構造を有する化合物であり、特にケギン(Keggin)型のヘテロポリオキソメタレートは、酸化反応の触媒などとして使用されることが知られている。
本発明の還元ヘテロポリオキソメタレートは、ヘテロポリオキソメタレートを構成するヘテロ原子の酸化数が減少した物質である。前記還元ヘテロポリオキソメタレートは、特定のヘテロポリ酸を加熱し、ヘテロ原子、具体的にはモリブデンの酸化状態を(+VI)から(+V)に還元することにより得られる。このようなモリブデンの6価から5価への還元は、黄色から青色に変色することでわかる。
Hereinafter, the present invention will be described in detail.
The reduced heteropolyoxometalate of the present invention is characterized in that the proportion of Mo (V) -derived peaks among molybdenum (Mo) peaks measured by X-ray photoelectron spectroscopy (XPS) is 30% or more. .
Here, the heteropolyoxometalate is a compound having a structure in which a polyatom is coordinated to the heteroatom through oxygen, with a heteroatom at the center. In particular, the Keggin type heteropolyoxometalate is oxidized. It is known to be used as a reaction catalyst.
The reduced heteropolyoxometalate of the present invention is a substance having a reduced oxidation number of heteroatoms constituting the heteropolyoxometalate. The reduced heteropolyoxometalate can be obtained by heating a specific heteropolyacid and reducing the oxidation state of a heteroatom, specifically molybdenum, from (+ VI) to (+ V). Such reduction of molybdenum from hexavalent to pentavalent can be seen by changing the color from yellow to blue.

前記ヘテロポリ酸は、具体的には、リンモリブデン酸、ケイモリブデン酸、及びリンタングストモリブデン酸等である。これらのうち、溶剤に対する高い溶解性、電荷輸送性、並びに有機電子デバイス中で用いた場合の低駆動電圧及び寿命向上の点から、リンモリブデン酸がより好ましい。なお、これらのヘテロポリ酸は市販品が入手可能である。   Specific examples of the heteropolyacid include phosphomolybdic acid, silicomolybdic acid, and phosphotungstomolybdic acid. Of these, phosphomolybdic acid is more preferable from the viewpoints of high solubility in a solvent, charge transportability, and low driving voltage when used in an organic electronic device, and improvement of lifetime. These heteropolyacids are commercially available.

上記還元ヘテロポリオキソメタレートは、これらのヘテロポリ酸を粉末のままシャーレなどの平底皿に広げて加熱してもよいし、溶剤に溶かして溶液にして平底皿上に薄膜を形成してから加熱してもよい。薄膜形成に用いる溶剤は、ヘテロポリ酸を溶解できるものであれば限定されないが、ヘテロポリ酸は極性溶媒に対する溶解性が高いため、溶媒は高極性のものが好ましい。具体的には、アセトニトリルや、1−ブタノール等の直鎖アルコール等が用いられる。
加熱温度は、通常100〜200℃、好ましくは200℃であり、加熱時間は通常60〜300分、好ましくは約180分である。
The reduced heteropolyoxometalate may be heated by spreading these heteropolyacids in a flat bottom dish such as a petri dish as a powder, or by dissolving in a solvent to form a thin film on the flat bottom dish. May be. The solvent used for forming the thin film is not limited as long as it can dissolve the heteropolyacid, but since the heteropolyacid has high solubility in a polar solvent, the solvent is preferably highly polar. Specifically, acetonitrile, linear alcohol such as 1-butanol, or the like is used.
The heating temperature is usually 100 to 200 ° C., preferably 200 ° C., and the heating time is usually 60 to 300 minutes, preferably about 180 minutes.

X線光電子分光法(XPS)により、上記還元ヘテロポリオキソメタレートの構成元素と電子状態を分析すると、Mo 3d5/2の結合エネルギーピークにおけるMo(VI)由来のピークとMo(V)由来のピークとのピークトップの位置の差とはそれぞれ平均1.30eV以上、具体的には1.30eV以上である。Mo(VI)及びMo(V)の結合エネルギーの差が上記範囲にあるとき、薄膜の加温を必要とせずに素子の駆動電圧を大幅に低減することができる。 When the constituent elements and electronic state of the reduced heteropolyoxometalate are analyzed by X-ray photoelectron spectroscopy (XPS), the Mo (VI) -derived peak and the Mo (V) -derived peak in the Mo 3d 5/2 binding energy peak are analyzed. The difference between the peak and the position of the peak top is 1.30 eV or more on average, specifically 1.30 eV or more. When the difference between the binding energies of Mo (VI) and Mo (V) is in the above range, the driving voltage of the element can be greatly reduced without requiring heating of the thin film.

上記還元ヘテロポリオキソメタレートは、Mo5+由来の青色を示す。還元ヘテロポリオキソメタレートが、後述する有機EL素子の正孔注入層を形成する際にも還元状態を維持するには、この還元ヘテロポリオキソメタレートを水や有機溶媒などに溶解させた溶液もまた青色である必要がある。このような有機溶媒としては、還元ヘテロポリオキソメタレートを完全に溶解させて均一溶液にでき、成膜プロセスにおいて除去可能な溶媒であれば限定されないが、極性溶媒、具体的には、エタノール、1−プロパノール、1−ブタノール、1−ペンタノール、及び1−ヘキサノール等の直鎖アルコール、テトラヒドロフラン(THF)、メチルエチルケトン(MEK)、シクロヘキサノン、並びに酢酸ブチル、安息香酸エチル及び安息香酸ブチル等のエステルが挙げられる。これらのうち、1−ブタノール及びMEK等がより好適に用いられる。 The reduced heteropolyoxometalate exhibits a blue color derived from Mo 5+ . In order to maintain the reduced state even when the reduced heteropolyoxometalate forms a hole injection layer of the organic EL device described later, a solution obtained by dissolving the reduced heteropolyoxometalate in water or an organic solvent can also be used. Must be blue. Such an organic solvent is not limited as long as it is a solvent that can completely dissolve the reduced heteropolyoxometalate into a uniform solution and can be removed in the film formation process. -Linear alcohols such as propanol, 1-butanol, 1-pentanol and 1-hexanol, tetrahydrofuran (THF), methyl ethyl ketone (MEK), cyclohexanone, and esters such as butyl acetate, ethyl benzoate and butyl benzoate It is done. Of these, 1-butanol and MEK are more preferably used.

本発明のインクは、還元ヘテロポリオキソメタレートを上記有機溶媒に溶解させた溶液であり、有機電子デバイスの正孔注入層形成用インクとして用いられる。
なお、上記インクには、必要に応じて、正孔のトラップにならないバインダー樹脂や、塗布性改良剤などの添加剤を添加してもよい。
The ink of the present invention is a solution in which reduced heteropolyoxometalate is dissolved in the above organic solvent, and is used as an ink for forming a hole injection layer of an organic electronic device.
In addition, you may add additives, such as binder resin which does not become a hole trap, and a coating property improving agent, to the said ink as needed.

本発明の有機電子デバイスは、上記還元ヘテロポリオキソメタレートを用いたものである。すなわち、本発明の有機電子デバイス、特に有機EL素子は、正孔注入材料として上記還元ヘテロポリオキソメタレートを塗布した薄膜を有する。   The organic electronic device of the present invention uses the reduced heteropolyoxometalate. That is, the organic electronic device of the present invention, particularly the organic EL element, has a thin film coated with the reduced heteropolyoxometalate as a hole injection material.

上記還元ヘテロポリオキソメタレートの塗布方法としては、例えば、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、及びスリットコート法等が挙げられる。これらのうち、スピンコート法が、回転遠心力を利用した塗布方法で膜厚調整が容易である点で好適に用いられる。   Examples of the method for applying the reduced heteropolyoxometalate include a dipping method, a spin coating method, a transfer printing method, a roll coating method, a brush coating method, an ink jet method, a spray method, and a slit coating method. Among these, the spin coat method is preferably used in that the film thickness can be easily adjusted by a coating method using a rotational centrifugal force.

塗布後、大気、窒素等の不活性ガス、又は真空の条件下で、室温下、或いは、必要に応じて、例えば、ホットプレートやオーブンを用いて室温〜100℃程度に加温して、溶媒を蒸発させる。これにより、均一な薄膜を形成することができる。つまり、本発明では、上記還元ヘテロポリオキソメタレートを用いることで、成膜後に従来のように200℃まで加温しなくても、駆動電圧を大幅に低減した素子を作製することができる。   After application, the solvent is heated to room temperature to about 100 ° C. using a hot plate or an oven, for example, at room temperature under an inert gas such as air, nitrogen, or vacuum, or as necessary. Evaporate. Thereby, a uniform thin film can be formed. That is, in the present invention, by using the reduced heteropolyoxometalate, it is possible to manufacture an element with a greatly reduced driving voltage without heating to 200 ° C. as in the prior art after film formation.

このようにして形成させる薄膜の膜厚は、通常0.1〜200nm、好ましくは0.5〜50nm、より好ましくは1.0〜15nmである。膜厚は、インク中の還元ヘテロポリオキソメタレートの濃度を変化させたり、塗布量を変化させたりして調節することができる。   The film thickness of the thin film thus formed is usually 0.1 to 200 nm, preferably 0.5 to 50 nm, more preferably 1.0 to 15 nm. The film thickness can be adjusted by changing the concentration of the reduced heteropolyoxometalate in the ink or changing the coating amount.

本発明の有機電子デバイス、具体的には、有機EL素子は、陽極上に、正孔注入層を上記のように塗布積層した後、室温から100℃で乾燥させて成膜する工程を備えた方法により作製することができる。本発明では、正孔注入層を低温プロセスで成膜できるため、高温熱処理工程には適用できない、PET基板などのフレキシブル基板を用いた素子作製においても好適に適用することができる。   The organic electronic device of the present invention, specifically, the organic EL device, includes a step of forming a film by coating and laminating the hole injection layer on the anode as described above and then drying from room temperature to 100 ° C. It can be produced by a method. In the present invention, since the hole injection layer can be formed by a low-temperature process, it can be suitably applied to element fabrication using a flexible substrate such as a PET substrate, which is not applicable to a high-temperature heat treatment step.

上記有機EL素子の層構造は、一対の電極間に、少なくとも1つの発光層が電荷発生層を含む中間層を介して積層された構造であり、例えば、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極等の層構成が挙げられる。具体的には、下記実施例に示すような構成とすることができる。上記層構造においては、さらに、正孔輸送発光層、及び電子輸送発光層等を含んでもよい。   The layer structure of the organic EL element is a structure in which at least one light emitting layer is laminated between a pair of electrodes via an intermediate layer including a charge generation layer. For example, anode / hole injection layer / hole transport Examples of the layer structure include layer / light emitting layer / electron transport layer / electron injection layer / cathode. Specifically, it can be configured as shown in the following examples. The layer structure may further include a hole transport light emitting layer, an electron transport light emitting layer, and the like.

上記有機EL素子の構成層に用いられる成膜材料は、公知のものから適宜選択して用いることができ、また、低分子系又は高分子系のいずれであってもよい。上記有機EL素子の各構成層の膜厚は、各層同士の適応性や求められる全体の層厚さ等を考慮して、適宜状況に応じて定められるが、通常、0.5nm〜5μmの範囲内である。   The film forming material used for the constituent layer of the organic EL element can be appropriately selected from known materials, and may be either a low molecular weight type or a high molecular weight type. The film thickness of each constituent layer of the organic EL element is appropriately determined according to the situation in consideration of the adaptability between the layers and the required total layer thickness, but is usually in the range of 0.5 nm to 5 μm. Is within.

電極は、公知の材料及び構成でよく、限定されるものではない。例えば、ガラスやポリマーからなる透明基板上に透明導電性薄膜が形成されたものが用いられ、ガラス基板に陽極として酸化インジウム錫(ITO)電極が形成された、いわゆるITO基板が一般的である。また、高温加熱を要しないため、フレキシブル基板等も好適に適用することができる。一方、陰極は、Al等の仕事関数の小さい(4eV以下)金属や合金、導電性化合物により構成される。   The electrode may be a known material and configuration and is not limited. For example, a so-called ITO substrate is generally used in which a transparent conductive thin film is formed on a transparent substrate made of glass or polymer, and an indium tin oxide (ITO) electrode is formed as an anode on the glass substrate. In addition, since high-temperature heating is not required, a flexible substrate or the like can be suitably applied. On the other hand, the cathode is composed of a metal, alloy, or conductive compound having a small work function (4 eV or less) such as Al.

上記各層の形成方法は、蒸着法、スパッタリング法等などのドライプロセスでもよいが、本発明は、特に塗布プロセスにより形成可能である点に利点を有しており、スピンコート法、インクジェット法、キャスティング法、ディップコート法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法、ナノパーティクル分散液を用いる方法等のウェットプロセスを好適に適用することができる。   The formation method of each of the above layers may be a dry process such as a vapor deposition method or a sputtering method. However, the present invention has an advantage in that it can be formed by a coating process, and a spin coating method, an ink jet method, a casting method. Wet processes such as a method, a dip coating method, a bar coating method, a blade coating method, a roll coating method, a gravure coating method, a flexographic printing method, a spray coating method, and a method using a nanoparticle dispersion can be suitably applied.

以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は下記実施例により制限されるものではない。
〔還元リンモリブデン酸の調製〕
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not restrict | limited by the following Example.
(Preparation of reduced phosphomolybdic acid)

[調製例1]
12モリブド(VI)りん酸n水和物(関東化学(株)製)(以下「リンモリブデン酸n水和物」又は「PMA」という。)粉末をシャーレ上に広げ、オーブン中で200℃、3時間焼成して試料1を得た。リンモリブデン酸n水和物粉末は黄色であったが、加熱後に青黒く変色した。
[Preparation Example 1]
12 Molybdo (VI) phosphate n-hydrate (manufactured by Kanto Chemical Co., Ltd.) (hereinafter referred to as “phosphomolybdate n-hydrate” or “PMA”) was spread on a petri dish and heated in an oven at 200 ° C. A sample 1 was obtained by baking for 3 hours. The phosphomolybdic acid n-hydrate powder was yellow but turned blue after heating.

[調製例2]
リンモリブデン酸n水和物粉末をアセトニトリルに1g/mLの濃度で溶解させ、シャーレに滴下し、1000rpm、30秒でスピンコートしてシャーレ上に広げた後、蛍光灯の光のもと、オーブン中で200℃、3時間焼成し、青黒く変色した粉末をシャーレから掻き取って試料2を得た。
[Preparation Example 2]
Phosphormolybdic acid n-hydrate powder is dissolved in acetonitrile at a concentration of 1 g / mL, dropped onto a petri dish, spin-coated at 1000 rpm for 30 seconds, spread on the petri dish, and then exposed to fluorescent light in the oven. Sample 2 was obtained by scraping the powder that was baked at 200 ° C. for 3 hours and turned blue-black in a petri dish.

[調製例3]
調製例2において、溶媒をアセトニトリルからn−ブタノールに変更した以外は、調製例2と同様にして、試料3を得た。試料3も試料2と同様に、加熱後に青黒く変色した。
[Preparation Example 3]
Sample 3 was obtained in the same manner as in Preparation Example 2 except that the solvent was changed from acetonitrile to n-butanol in Preparation Example 2. Similarly to sample 2, sample 3 also turned blue-black after heating.

〔還元リンモリブデン酸インクの調製〕
調製例2で得られた試料2に各種溶媒を該試料2の濃度が10mg/mLとなるように加えた。
結果を表1に示す。試料2は水、直鎖アルコール及びメチルエチルケトンによく溶解することが確認された。
[Preparation of reduced phosphomolybdic acid ink]
Various solvents were added to Sample 2 obtained in Preparation Example 2 so that the concentration of Sample 2 was 10 mg / mL.
The results are shown in Table 1. Sample 2 was confirmed to dissolve well in water, linear alcohol and methyl ethyl ketone.

Figure 2019163199
Figure 2019163199

〔X線光電子分光法(XPS)による還元リンモリブデン酸の評価〕
試料1〜3のXPS測定を行い、モリブデン(Mo)のピークのうち、Mo(V)の割合とピークトップ位置を調べた。用いた装置はサーモフィッシャーサイエンティフィック株式会社製シータプローブで、光源としてAlKαを用い、X線は分光結晶を用いて単色化した。ピークの分解能を決めるアナライザーのパスエネルギーは50eVとした。C1s由来のピーク位置を285.0eVとして、エネルギー軸(横軸)の補正を行った。
[Evaluation of reduced phosphomolybdic acid by X-ray photoelectron spectroscopy (XPS)]
XPS measurement of samples 1 to 3 was performed, and the ratio of Mo (V) and the peak top position of the molybdenum (Mo) peak were examined. The apparatus used was a Theta Probe manufactured by Thermo Fisher Scientific Co., Ltd., using AlKα as a light source, and X-rays were monochromatized using a spectroscopic crystal. The path energy of the analyzer that determines the resolution of the peak was 50 eV. The peak position derived from C1s was set to 285.0 eV, and the energy axis (horizontal axis) was corrected.

[比較例1]
還元処理を行っていないPMA粉末を1−ブタノールに溶解し、スピンコートで30nmに成膜した後、加熱処理をせずにXPS測定を行った。
[Comparative Example 1]
PMA powder that was not subjected to reduction treatment was dissolved in 1-butanol and formed into a film with a thickness of 30 nm by spin coating, and then XPS measurement was performed without heat treatment.

[比較例2]
還元処理を行っていないPMA粉末を1−ブタノールに溶解し、スピンコートで30nmに成膜して、窒素雰囲気下で100℃、10分間の加熱処理を行った後、XPS測定を行った。
[Comparative Example 2]
The PMA powder not subjected to reduction treatment was dissolved in 1-butanol, formed into a film of 30 nm by spin coating, and subjected to heat treatment at 100 ° C. for 10 minutes in a nitrogen atmosphere, and then XPS measurement was performed.

[比較例3]
還元処理を行っていないPMA粉末を1−ブタノールに溶解し、スピンコートで30nmに成膜して、窒素雰囲気下で200℃、10分間の加熱処理を行った後、XPS測定を行った。
[Comparative Example 3]
The PMA powder not subjected to the reduction treatment was dissolved in 1-butanol, formed into a film of 30 nm by spin coating, and subjected to a heat treatment at 200 ° C. for 10 minutes in a nitrogen atmosphere, and then XPS measurement was performed.

[実施例1]
調製例1で得られた試料1を1−ブタノールに溶解し、スピンコートで30nmに成膜した後、加熱処理をせずにXPS測定を行った。
[Example 1]
Sample 1 obtained in Preparation Example 1 was dissolved in 1-butanol and formed into a film with a thickness of 30 nm by spin coating, and then XPS measurement was performed without heat treatment.

[実施例2]
調製例2で得られた試料2を1−ブタノールに溶解し、スピンコートで30nmに成膜した後、加熱処理をせずにXPS測定を行った。
[Example 2]
Sample 2 obtained in Preparation Example 2 was dissolved in 1-butanol and formed into a film with a thickness of 30 nm by spin coating, and then XPS measurement was performed without heat treatment.

[実施例3]
調製例3で得られた試料3を1−ブタノールに溶解し、スピンコートで30nmに成膜した後、加熱処理をせずにXPS測定を行った。
[Example 3]
Sample 3 obtained in Preparation Example 3 was dissolved in 1-butanol and formed into a film with a thickness of 30 nm by spin coating, and then XPS measurement was performed without heat treatment.

[実施例4]
調製例3で得られた試料3を1−ブタノールに溶解し、スピンコートで30nmに成膜して、窒素雰囲気下で100℃、10分間の加熱処理を行った後、XPS測定を行った。
[Example 4]
Sample 3 obtained in Preparation Example 3 was dissolved in 1-butanol, spin-coated to a thickness of 30 nm, subjected to heat treatment at 100 ° C. for 10 minutes in a nitrogen atmosphere, and then XPS measurement was performed.

比較例1〜3及び実施例1〜4で測定したスペクトルとフィッティングで得た結果を図2及び表2に示す。   The spectra obtained in Comparative Examples 1 to 3 and Examples 1 to 4 and the results obtained by fitting are shown in FIG.

Figure 2019163199
Figure 2019163199

スペクトルには、低結合エネルギー側から、Mo 3d5/2のMo(V)ピーク及びMo(VI)ピーク、並びにMo3d3/2のMo(V)ピーク及びMo(VI)ピークに相当する4つのピーク成分があった。それぞれのピーク面積に感度因子で重み付けをして、Moの価数の比率を求めたところ、Mo(V)の比率は、200℃で加熱した比較例3では24%であるのに対して、実施例1〜4では32%以上と、高い比率を保有していることがわかった。特許文献1では、Mo(V)が混在するヘテロポリオキソメタレートについて記載されているが、そのMo(V)比率は15%であり低い。後述する正孔オンリー素子の結果を見ると、15%の比率では素子の駆動電圧は高いが、それ以上になると飛躍的に駆動電圧が低下することがわかる。そのため、Mo(V)比率を15%よりも高めることが非常に重要である。 From the low binding energy side, there are four spectra corresponding to Mo 3d 5/2 Mo (V) peak and Mo (VI) peak, and Mo3d 3/2 Mo (V) peak and Mo (VI) peak. There was a peak component. Each peak area was weighted with a sensitivity factor to determine the ratio of the valence of Mo. The ratio of Mo (V) was 24% in Comparative Example 3 heated at 200 ° C., whereas In Examples 1-4, it turned out that 32% or more has a high ratio. Patent Document 1 describes a heteropolyoxometalate mixed with Mo (V), but its Mo (V) ratio is as low as 15%. Looking at the results of the hole-only device, which will be described later, it can be seen that the drive voltage of the device is high at a ratio of 15%, but the drive voltage drastically decreases when the ratio is higher. Therefore, it is very important to increase the Mo (V) ratio beyond 15%.

また、本発明ではMo 3d3/2とMo 3d5/2のMo(VI)とMo(V)由来のピーク同士の間隔が大きくなっていた。薄膜に成膜した後に、200℃で加熱した比較例3の場合では1.17eVであったのに対し、本発明で示したあらかじめ200℃で加熱された還元リンモリブデン酸を塗布成膜したものはどれも1.30eV以上と間隔が大きい。そのため、ピークが4つに分かれている。このことは、本発明で得られたものは公知の薄膜後に加熱した試料とは本質的に異なるものができていることを示している。 Moreover, in this invention, the space | interval of the peak derived from Mo (VI) and Mo (V) of Mo3d3 / 2 and Mo3d5 / 2 was large. In the case of Comparative Example 3 heated at 200 ° C. after being formed on a thin film, it was 1.17 eV, whereas reduced phosphomolybdic acid heated in advance at 200 ° C. according to the present invention was applied to form a film. All have a large interval of 1.30 eV or more. Therefore, the peak is divided into four. This shows that what is obtained by the present invention is essentially different from a sample heated after a known thin film.

〔正孔オンリー素子の作製〕
正孔注入特性を評価するために、ITO(130nm)/正孔注入層(10nm)/α−NPD(90nm)/MoO3(5nm)/Al(100nm)の素子を作製した。ここで、正孔注入層を下記のようにした。正孔注入層はスピンコートで、α−NPD、MoO3、Alは蒸着法により成膜した。
[Preparation of hole-only devices]
In order to evaluate the hole injection characteristics, devices of ITO (130 nm) / hole injection layer (10 nm) / α-NPD (90 nm) / MoO 3 (5 nm) / Al (100 nm) were fabricated. Here, the hole injection layer was as follows. The hole injection layer was formed by spin coating, and α-NPD, MoO 3 , and Al were formed by vapor deposition.

[比較例4]
還元処理を行っていないPMA粉末をアセトニトリルに溶解し、スピンコートで10nmに成膜した。その後に加熱処理は行わなかった。
[Comparative Example 4]
PMA powder not subjected to reduction treatment was dissolved in acetonitrile, and a film was formed to 10 nm by spin coating. Thereafter, no heat treatment was performed.

[比較例5]
還元処理を行っていないPMA粉末をアセトニトリルに溶解し、スピンコートで10nmに成膜した。その後に窒素雰囲気下で100℃、10分間の加熱処理を行った。
[Comparative Example 5]
PMA powder not subjected to reduction treatment was dissolved in acetonitrile, and a film was formed to 10 nm by spin coating. Thereafter, heat treatment was performed at 100 ° C. for 10 minutes in a nitrogen atmosphere.

[比較例6]
還元処理を行っていないPMA粉末をアセトニトリルに溶解し、スピンコートで10nmに成膜した。その後に窒素雰囲気下で200℃、10分間の加熱処理を行った。
[Comparative Example 6]
PMA powder not subjected to reduction treatment was dissolved in acetonitrile, and a film was formed to 10 nm by spin coating. Thereafter, heat treatment was performed at 200 ° C. for 10 minutes in a nitrogen atmosphere.

[実施例5]
調製例2で得られた試料2を1−ブタノールに溶解し、スピンコートで10nmに成膜した。その後に加熱処理は行わなかった。
[Example 5]
Sample 2 obtained in Preparation Example 2 was dissolved in 1-butanol and formed into a film of 10 nm by spin coating. Thereafter, no heat treatment was performed.

素子の電流密度−電圧特性を図3に示す。また、20mA/cm2時の電圧を表3に示す。

Figure 2019163199
The current density-voltage characteristics of the element are shown in FIG. Table 3 shows the voltage at 20 mA / cm 2 .
Figure 2019163199

比較例のものでは、薄膜成膜後に200℃という高温で加熱しなければ低電圧で駆動しなかった。それに対し、本発明のものは、薄膜成膜後に加熱をしていない実施例5のものは同様に薄膜成膜後に加熱していない比較例4のものよりも大幅に低い駆動電圧を示した。このことはリンモリブデン酸を還元した効果が出ていることを示している。その駆動電圧は薄膜成膜後に200℃で加熱した比較例6とほぼ同等の駆動電圧であった。以上から明らかなように、本発明の還元リンモリブデン酸は従来のリンモリブデン酸と比較して、高い正孔注入特性を示した。よって、前記薄膜を用いた有機エレクトロルミネッセンス素子においても同様の効果が期待できる。どの程度、Mo(V)に還元されていればよいかはわからないが、比較例5が高駆動電圧であったことから、15%以上のMo(V)比率が必要であるといえる。   The comparative example was not driven at a low voltage unless heated at a high temperature of 200 ° C. after the thin film was formed. On the other hand, the thing of Example 5 which was not heated after thin film film formation showed the driving voltage significantly lower than the thing of the comparative example 4 which was not heated after thin film film formation similarly. This indicates that the effect of reducing phosphomolybdic acid is exerted. The driving voltage was almost the same as that of Comparative Example 6 heated at 200 ° C. after the thin film was formed. As is clear from the above, the reduced phosphomolybdic acid of the present invention showed higher hole injection characteristics than the conventional phosphomolybdic acid. Therefore, the same effect can be expected in an organic electroluminescence element using the thin film. Although it is not known to what extent it should be reduced to Mo (V), it can be said that a Mo (V) ratio of 15% or more is necessary because Comparative Example 5 had a high driving voltage.

[有機EL素子の作製]
ITO(130nm)/正孔注入層(10nm)/α−NPD(90nm)/CBP:8wt%Ir(ppy)3(30nm)/BAlq(10nm)/Alq3(40nm)/Liq(1nm)/Al(100nm)の素子を作製した。
[Production of organic EL element]
ITO (130 nm) / hole injection layer (10 nm) / α-NPD (90 nm) / CBP: 8 wt% Ir (ppy) 3 (30 nm) / BAlq (10 nm) / Alq3 (40 nm) / Liq (1 nm) / Al ( 100 nm) was produced.

正孔注入層は、比較例7及び8並びに実施例6に示すようにスピンコートで成膜した。それ以外の層は蒸着法により成膜した。   The hole injection layer was formed by spin coating as shown in Comparative Examples 7 and 8 and Example 6. The other layers were formed by vapor deposition.

[比較例7]
還元処理を行っていないPMA粉末をアセトニトリルに溶解し、スピンコートで10nmに成膜した。その後に加熱処理は行わなかった。
[Comparative Example 7]
PMA powder not subjected to reduction treatment was dissolved in acetonitrile, and a film was formed to 10 nm by spin coating. Thereafter, no heat treatment was performed.

[比較例8]
還元処理を行っていないPMA粉末をアセトニトリルに溶解し、スピンコートで10nmに成膜した。その後に窒素雰囲気下で200℃、10分間の加熱処理を行った。
[Comparative Example 8]
PMA powder not subjected to reduction treatment was dissolved in acetonitrile, and a film was formed to 10 nm by spin coating. Thereafter, heat treatment was performed at 200 ° C. for 10 minutes in a nitrogen atmosphere.

[実施例6]
調製例2で得られた試料2を1−ブタノールに溶解し、スピンコートで10nmに成膜した。その後に加熱処理は行わなかった。
[Example 6]
Sample 2 obtained in Preparation Example 2 was dissolved in 1-butanol and formed into a film of 10 nm by spin coating. Thereafter, no heat treatment was performed.

素子の電流密度−電圧特性を図4に示す。また、20mA/cm2時の電圧を表4に示す。

Figure 2019163199
FIG. 4 shows the current density-voltage characteristics of the element. Table 4 shows the voltage at 20 mA / cm 2 .
Figure 2019163199

正孔オンリー素子と同様に本発明の還元リンモリブデン酸を用い、薄膜成膜後に加熱を行わなかった実施例6のものは、比較例7のものよりも大幅に低い駆動電圧を示し、リンモリブデン酸を200℃で加熱した比較例8と同等に低い駆動電圧であった。つまり、薄膜成膜後の後処理を必要としない還元リンモリブデン酸の合成に成功したといえる。   As in the case of the hole-only device, the reduced phosphomolybdic acid of the present invention, which was not heated after the thin film was formed, had a driving voltage significantly lower than that of Comparative Example 7, The driving voltage was as low as that of Comparative Example 8 in which the acid was heated at 200 ° C. In other words, it can be said that the reduced phosphomolybdic acid was successfully synthesized without the need for post-treatment after thin film formation.

[実施例7]
ITO(150nm)/TFB(1nm)/還元処理を行ったPMA(1nm)/CH3NH3PbI3(500nm)/C70(30nm)/B4PyMPM(4nm)/Ag(80nm)のペロブスカイト太陽電池素子を次に示す手順により作製した。
最初に、ストライプ状にITOがパターニングされた3mm幅のITO/ガラス基板を、洗剤及び純水で洗浄し、65℃のオーブンで一晩乾燥した後、UV−オゾン装置で10分間表面処理を行った。その上に、ホール注入層として、TFBのp−キシレン溶液(0.2mg/ml)をスピンコートした。次に、還元処理を行ったPMAの1−ブタノール溶液(1mg/ml)をスピンコートした。成膜された表面をDMFで軽く洗浄した後、CH3NH3IとPbI2のN,N−ジメチルホルムアミド(DMF)溶液をスピンコートし、スピンコート直後にクロロベンゼンを表面に滴下することで、結晶性の高いCH3NH3PbI3ペロブスカイト膜を形成した。その後、基板を真空蒸着装置に移し、電子輸送層として、C70とB4PyMPMを順に、真空蒸着法により成膜した。最後に3mm幅ストライプのメタルシャドーマスクをセットし、Agを真空蒸着法により成膜した。得られた太陽電池素子は、ガラス製の封止キャップを接着剤で接着して封止した後、分光計器(株)製の太陽電池特性測定装置により、素子特性の評価を行った。
[Example 7]
ITO (150 nm) / TFB (1 nm) / reduced PMA (1 nm) / CH 3 NH 3 PbI 3 (500 nm) / C 70 (30 nm) / B4PyMPM (4 nm) / Ag (80 nm) perovskite solar cell element Was prepared by the following procedure.
First, a 3 mm wide ITO / glass substrate with ITO patterned in stripes was washed with detergent and pure water, dried in an oven at 65 ° C. overnight, and then surface-treated with a UV-ozone apparatus for 10 minutes. It was. A TFB p-xylene solution (0.2 mg / ml) was spin-coated thereon as a hole injection layer. Next, a 1-butanol solution (1 mg / ml) of PMA subjected to reduction treatment was spin-coated. After lightly washing the film-formed surface with DMF, a solution of CH 3 NH 3 I and PbI 2 in N, N-dimethylformamide (DMF) is spin-coated, and chlorobenzene is dropped on the surface immediately after spin coating. A highly crystalline CH 3 NH 3 PbI 3 perovskite film was formed. Thereafter, the substrate was moved to a vacuum evaporation apparatus, an electron transport layer, the C 70 and B4PyMPM turn, it was formed by vacuum deposition. Finally, a metal shadow mask with a stripe width of 3 mm was set, and Ag was deposited by vacuum evaporation. The obtained solar cell element was sealed by adhering a glass sealing cap with an adhesive, and then the element characteristics were evaluated by a solar cell characteristic measuring apparatus manufactured by Spectrometer Co., Ltd.

Figure 2019163199
Figure 2019163199

[比較例9]
実施例7と同様の方法で、PMAを用いずに素子を作製した。素子構造は、ITO(150nm)/TFB(1nm)/CH3NH3PbI3(500nm)/C70(30nm)/B4PyMPM(4nm)/Ag(80nm)である。
実施例7と同様の方法で、素子特性の評価を行った。
[Comparative Example 9]
A device was fabricated in the same manner as in Example 7 without using PMA. The element structure is ITO (150 nm) / TFB (1 nm) / CH 3 NH 3 PbI 3 (500 nm) / C 70 (30 nm) / B4PyMPM (4 nm) / Ag (80 nm).
The device characteristics were evaluated in the same manner as in Example 7.

[比較例10]
実施例7と同様の方法で、PMAの代わりにPEDOT:PSSを用いて素子を作製した。素子構造は、ITO(150nm)/TFB(1nm)/PEDOT:PSS(40nm)/CH3NH3PbI3(500nm)/C70(30nm)/B4PyMPM(4nm)/Ag(80nm)である。
実施例7と同様の方法で、素子特性の評価を行った。

Figure 2019163199
[Comparative Example 10]
A device was fabricated in the same manner as in Example 7 using PEDOT: PSS instead of PMA. The element structure is ITO (150 nm) / TFB (1 nm) / PEDOT: PSS (40 nm) / CH 3 NH 3 PbI 3 (500 nm) / C 70 (30 nm) / B4PyMPM (4 nm) / Ag (80 nm).
The device characteristics were evaluated in the same manner as in Example 7.
Figure 2019163199

[比較例11]
実施例7と同様の方法で、TFB/PMAの代わりに、PEDOT:PSSのみを用いて素子を作製した。素子構造は、ITO(150nm)/PEDOT:PSS(40nm)/CH3NH3PbI3(500nm)/C70(30nm)/B4PyMPM(4nm)/Ag(80nm)である。
実施例7と同様の方法で、素子特性の評価を行った。
[太陽電池特性評価結果]
実施例7、比較例9、比較例10、比較例11の素子の太陽電池特性評価を行った。このうち、比較例9の素子は、TFB層の上にCH3NH3PbI3の溶液をスピンコートする際、TFB層表面が溶液をはじいてしまう現象が発生し、均一なCH3NH3PbI3層の形成ができず、結果的に太陽電池特性を示す素子を得ることができなかった。従って、太陽電池特性が評価できたものは、実施例7、比較例10、比較例11の素子であった。素子特性は以下の通りである。

Figure 2019163199
表5に示す通り、還元処理を行ったPMAを用いた太陽電池素子は、17.9%と最も高い効率を示し、得られた開放電圧が高いことから電圧ロスが少なく、優れた特性を示すことが分かった。
太陽電池の電流−電圧特性、及び、各波長における分光感度特性を図5に示す。実施例7をTFB/PMA、比較例10をTFB/PEDOT:PSS、比較例11をPEDOT:PSSとして示した。いずれも、PMAを用いた太陽電池素子の特性が最も高く、優れた電子デバイスを提供することが分かった。 [Comparative Example 11]
A device was fabricated in the same manner as in Example 7 using only PEDOT: PSS instead of TFB / PMA. The element structure is ITO (150 nm) / PEDOT: PSS (40 nm) / CH 3 NH 3 PbI 3 (500 nm) / C 70 (30 nm) / B4PyMPM (4 nm) / Ag (80 nm).
The device characteristics were evaluated in the same manner as in Example 7.
[Solar cell characteristics evaluation results]
The solar cell characteristics of the elements of Example 7, Comparative Example 9, Comparative Example 10, and Comparative Example 11 were evaluated. Among these, in the device of Comparative Example 9, when the CH 3 NH 3 PbI 3 solution was spin-coated on the TFB layer, a phenomenon that the surface of the TFB layer repels the solution, and the uniform CH 3 NH 3 PbI was generated. Three layers could not be formed, and as a result, an element showing solar cell characteristics could not be obtained. Accordingly, the elements of Example 7, Comparative Example 10, and Comparative Example 11 were able to evaluate the solar cell characteristics. The element characteristics are as follows.
Figure 2019163199
As shown in Table 5, the solar cell element using the PMA subjected to the reduction treatment has the highest efficiency of 17.9%, and since the obtained open voltage is high, the voltage loss is small and excellent characteristics are exhibited. I understood that.
FIG. 5 shows the current-voltage characteristics of the solar cell and the spectral sensitivity characteristics at each wavelength. Example 7 was shown as TFB / PMA, Comparative Example 10 as TFB / PEDOT: PSS, and Comparative Example 11 as PEDOT: PSS. In any case, it was found that the solar cell element using PMA has the highest characteristics and provides an excellent electronic device.

Claims (10)

X線光電子分光法(XPS)で測定されたモリブデン(Mo)のピークうち、Mo(V)由来のピークの比率が30%以上であることを特徴とする還元ヘテロポリオキソメタレート。   A reduced heteropolyoxometalate characterized in that the proportion of Mo (V) -derived peaks among molybdenum (Mo) peaks measured by X-ray photoelectron spectroscopy (XPS) is 30% or more. XPSで測定されたスペクトルをフィッティングして得られた、
Mo 3d3/2の結合エネルギーピークにおけるMo(VI)由来のピークとMo(V)由来のピークとのピークトップの位置の差と、
Mo 3d5/2の結合エネルギーピークにおけるMo(VI)由来のピークとMo(V)由来のピークとのピークトップの位置の差と
がそれぞれ平均1.30eV以上であることを特徴とする請求項1に記載の還元ヘテロポリオキソメタレート。
Obtained by fitting the spectrum measured by XPS,
The difference in peak top position between the Mo (VI) -derived peak and the Mo (V) -derived peak in the Mo 3d 3/2 binding energy peak;
The difference in peak top positions between the Mo (VI) -derived peak and the Mo (V) -derived peak in the Mo 3d 5/2 binding energy peak is 1.30 eV or more on average, respectively. 2. The reduced heteropolyoxometalate according to 1.
平底皿にヘテロポリ酸を広げて載せ、加熱することを特徴とする還元ヘテロポリオキソメタレートの製造方法。   A method for producing a reduced heteropolyoxometalate, comprising spreading a heteropolyacid on a flat bottom plate and heating the plate. 平底皿にヘテロポリ酸を溶剤に溶かした溶液を薄膜状に滴下し、加熱することを特徴とする還元ヘテロポリオキソメタレートの製造方法。   A method for producing a reduced heteropolyoxometalate, wherein a solution obtained by dissolving a heteropolyacid in a solvent is dropped into a flat bottom dish in a thin film form and heated. 前記へテロポリ酸が、リンモリブデン酸、ケイモリブデン酸、及びリンタングストモリブデン酸からなる群より選ばれる少なくとも一種であることを特徴とする請求項3又は4に記載の還元ヘテロポリオキソメタレート。   The reduced heteropolyoxometalate according to claim 3 or 4, wherein the heteropolyacid is at least one selected from the group consisting of phosphomolybdic acid, silicomolybdic acid, and phosphotungstomolybdic acid. 請求項1又は2に記載の還元ヘテロポリオキソメタレートと、有機溶媒又は水とを含有するインク。   An ink comprising the reduced heteropolyoxometalate according to claim 1 and an organic solvent or water. 前記有機溶媒が、アルコール、カルボニル基含有化合物、又はテトラヒドロフランであることを特徴とする請求項6に記載のインク。   The ink according to claim 6, wherein the organic solvent is alcohol, a carbonyl group-containing compound, or tetrahydrofuran. 請求項1又は2に記載の還元ヘテロポリオキソメタレートを用いた有機電子デバイス。   An organic electronic device using the reduced heteropolyoxometalate according to claim 1. 有機エレクトロルミネッセンス素子であることを特徴とする請求項8に記載の有機電子デバイス。   It is an organic electroluminescent element, The organic electronic device of Claim 8 characterized by the above-mentioned. 太陽電池素子であることを特徴とする請求項8に記載の有機電子デバイス。   The organic electronic device according to claim 8, wherein the organic electronic device is a solar cell element.
JP2018148128A 2017-08-08 2018-08-07 Reduced heteropolyoxomethalate and production process therefor, coating ink containing said reduced heteropolyoxomethalate, and organic electronic device using same Pending JP2019163199A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017153571 2017-08-08
JP2017153571 2017-08-08

Publications (1)

Publication Number Publication Date
JP2019163199A true JP2019163199A (en) 2019-09-26

Family

ID=68065784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018148128A Pending JP2019163199A (en) 2017-08-08 2018-08-07 Reduced heteropolyoxomethalate and production process therefor, coating ink containing said reduced heteropolyoxomethalate, and organic electronic device using same

Country Status (1)

Country Link
JP (1) JP2019163199A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02312106A (en) * 1989-05-26 1990-12-27 Nippon Shokubai Kagaku Kogyo Co Ltd Conductive inorganic oxide composite and manufacture thereof
US20030233014A1 (en) * 2002-06-04 2003-12-18 Korea Institute Of Science And Technology. Method for preparing a heteropolyacid catalyst from basic solvent treatments and method for preparing methacrylic acid using thereof
JP2011023711A (en) * 2009-06-19 2011-02-03 Dainippon Printing Co Ltd Organic electronic device, and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02312106A (en) * 1989-05-26 1990-12-27 Nippon Shokubai Kagaku Kogyo Co Ltd Conductive inorganic oxide composite and manufacture thereof
US20030233014A1 (en) * 2002-06-04 2003-12-18 Korea Institute Of Science And Technology. Method for preparing a heteropolyacid catalyst from basic solvent treatments and method for preparing methacrylic acid using thereof
JP2011023711A (en) * 2009-06-19 2011-02-03 Dainippon Printing Co Ltd Organic electronic device, and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SATORU OHISA: "A Solution-Processed Heteropoly Acid Containing MoO3 Units as a Hole-Injection Material for Highly S", ACS APPL. MATER. INTERFACES, vol. 8, JPN6022026290, July 2016 (2016-07-01), pages 20946 - 20954, ISSN: 0004946940 *

Similar Documents

Publication Publication Date Title
Schackmar et al. Perovskite solar cells with all‐inkjet‐printed absorber and charge transport layers
US8174000B2 (en) Liquid compositions for inkjet printing of organic layers or other uses
EP2355197B1 (en) Charge-transporting material and charge-transporting varnish
CN107852793B (en) Organic thin film laminate and organic electroluminescent element
KR20140027409A (en) Organic electronic device and method for manufacturing same
TW201024385A (en) Charge transporting material and charge transporting varnish
CN103781845A (en) Vertically phase-separating semiconducting organic material layers
GB2486203A (en) Transition metal oxide doped interface by deposition and drying of precursor
TWI559590B (en) Process for controlling the acceptor strength of solution-processed transition metal oxides for oled applications
TWI758271B (en) Non-aqueous ink compositions containing transition metal complexes, and uses thereof in organic electronics
TW201713734A (en) Non-aqueous ink compositions containing metallic nanopaiticles suitable for use in organic electronics
US9502654B2 (en) Method of manufacturing a multilayer semiconductor element, and a semiconductor element manufactured as such
JP2019502264A (en) Nanoparticle-conductive polymer composites for use in organic electronics
US10319910B2 (en) Organic electroluminescent diode and method for manufacturing hole transporting layer thereof
JP2019163199A (en) Reduced heteropolyoxomethalate and production process therefor, coating ink containing said reduced heteropolyoxomethalate, and organic electronic device using same
JP7110537B2 (en) Precursor for light absorption layer, method for producing organic-inorganic composite solar cell using the same, and organic-inorganic composite solar cell
KR20200088733A (en) Preparation method of perovskite solar cells via vapor-casting processing
KR20170140140A (en) Self-metered solution-processable organic light-emitting devices based on small molecular emissive layers doped with interface-engineering additives
JP6433128B2 (en) Organic electroluminescence device
TWI829765B (en) Coating composition
JP2010087104A (en) Photoelectric conversion element and manufacturing method thereof, and solar battery
TWI814728B (en) Non-aqueous ink composition
KR101809813B1 (en) Self-metered solution-processable organic light-emitting devices based on small molecular emissive layers doped with interface-engineering additives
CN114094022A (en) Perovskite light emitting diode and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221220