[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019146215A - ユーザ装置、プロセッサ、基地局及び方法 - Google Patents

ユーザ装置、プロセッサ、基地局及び方法 Download PDF

Info

Publication number
JP2019146215A
JP2019146215A JP2019066161A JP2019066161A JP2019146215A JP 2019146215 A JP2019146215 A JP 2019146215A JP 2019066161 A JP2019066161 A JP 2019066161A JP 2019066161 A JP2019066161 A JP 2019066161A JP 2019146215 A JP2019146215 A JP 2019146215A
Authority
JP
Japan
Prior art keywords
ptm
base station
mbms
multicast
mbms service
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019066161A
Other languages
English (en)
Inventor
真人 藤代
Masato Fujishiro
真人 藤代
ヘンリー チャン
Henry Chang
ヘンリー チャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JP2019146215A publication Critical patent/JP2019146215A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/50Service provisioning or reconfiguring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】MTCのような新たなカテゴリの無線端末がMBMSを用いたマルチキャスト/ブロードキャストサービスを効率的に受信する方法を提供する。【解決手段】ユーザ装置は、システム送受信帯域よりも狭い制限帯域幅内で無線信号を送受信するように構成された送受信機を用いて、SC−PTM(Single Cell Point−To−Multipoint)を用いたMBMSサービスを提供する基地局との無線通信を行う制御部と、を備える。制御部は、基地局が管理するサービングセルに隣接する隣接セルが提供するMBMSサービスに対応付けられたグループRNTIを基地局からサービングセルを介して受信する処理を行う。グループRNTIは、SC−PTM用のシステム情報ブロック又はSC−PTM用のマルチキャスト制御チャネルにより基地局から送信される。【選択図】図15

Description

本発明は、移動通信システムのためのユーザ装置、プロセッサ、基地局及び方法に関する。
移動通信システムの標準化プロジェクトである3GPP(Third Generation Partnership Project)において、無線端末にマルチキャスト/ブロードキャストサービスを提供するMBMS(Multimedia Broadcast Multicast Service)が仕様化されている。MBMS用の無線伝送方式としては、MBSFN(Multicast Broadcast Single Frequency Network)伝送及びSC−PTM(Single Cell Point−To−Multipoint)伝送の2つの方式がある。MBMSは、同一の無線リソースを用いて複数の無線端末に同一のデータを送信するので、無線リソースの利用効率を高めることができる。
一方、人が介在することなく通信を行うMTC(Machine Type Communication)やIoT(Internet of Things)サービスを対象とした無線端末が検討されている。このような無線端末は、低コスト化、カバレッジ広域化、及び低消費電力化を実現することが求められる。このため、3GPPにおいて、システム送受信帯域の一部のみに送受信帯域幅を制限した新たな無線端末のカテゴリが仕様化されている。しかしながら、現状、新たなカテゴリの無線端末がMBMSを用いたマルチキャスト/ブロードキャストサービスを効率的に受信するための仕組みが存在しないという問題がある。
第1の特徴に係るユーザ装置は、移動通信システムのためのユーザ装置である。ユーザ装置は、システム送受信帯域よりも狭い制限帯域幅内で無線信号を送受信するように構成された送受信機と、前記送受信機を用いて、SC−PTM(Single Cell Point−To−Multipoint)を用いてMBMS(Multimedia Broadcast Multicast Service)サービスを提供する基地局との無線通信を行う制御部と、を備える。前記制御部は、前記基地局が管理するサービングセルに隣接する隣接セルが提供するMBMSサービスに対応付けられたグループRNTIを前記基地局から前記サービングセルを介して受信する処理を行う。前記グループRNTIは、前記SC−PTM用のシステム情報ブロック又は前記SC−PTM用のマルチキャスト制御チャネルにより前記基地局から送信される。
第2の特徴に係る基地局は、移動通信システムのための基地局である。前記基地局は、システム送受信帯域よりも狭い制限帯域幅内で無線信号を送受信するように構成されたユーザ装置に対して、SC−PTM(Single Cell Point−To−Multipoint)を用いてMBMSサービスを提供する制御部を備える。前記制御部は、前記基地局が管理するサービングセルに隣接する隣接セルが提供するMBMSサービスに対応付けられたグループRNTIを、前記サービングセルを介して前記ユーザ装置に送信する処理を行う。前記グループRNTIは、前記SC−PTM用のシステム情報ブロック又は前記SC−PTM用のマルチキャスト制御チャネルにより送信される。
実施形態に係るLTEシステムの構成を示す図である。 実施形態に係るMBMSに係るネットワーク構成を示す図である。 実施形態に係るUE(無線端末)の構成を示す図である。 実施形態に係るeNB(基地局)の構成を示す図である。 実施形態に係るLTEシステムにおける無線インターフェイスのプロトコルスタックを示す図である。 実施形態に係るLTEシステムの下りリンクのチャネルの構成を示す図である。 実施形態に係るLTEシステムの無線フレームの構成を示す図である。 実施形態に係るハイパーフレーム、無線フレーム、及びサブフレームの関係を示す図である。 実施形態に係るカテゴリM1向けの下りリンク物理チャネルを示す図である。 実施形態に係るUEがSC−PTM受信を行う動作の一例を示す図である。 実施形態に係るDirect Indicationを示す図である。 実施形態に係るSIB20を示す図である。 実施形態に係るSC−MCCH中のSCPTM設定情報(SCPTM Configuration)を示す図である。 実施形態に係るH−SFNにより表現される提供開始時間を示す図である。 実施形態に係る繰り返し回数情報を示す図である。
(移動通信システム)
実施形態に係る移動通信システムの構成について説明する。実施形態に係る移動通信システムは、3GPPで仕様が策定されているLTE(Long Term Evolution)システムである。図1は、実施形態に係るLTEシステムの構成を示す図である。図2は、MBMSに係るネットワーク構成を示す図である。
図1に示すように、LTEシステムは、無線端末(UE:User Equipment)100、無線アクセスネットワーク(E−UTRAN:Evolved−UMTS Terrestrial Radio Access Network)10、及びコアネットワーク(EPC:Evolved Packet Core)20を備える。E−UTRAN10及びEPC20は、LTEシステムのネットワークを構成する。
UE100は、移動型の通信装置である。UE100は、自身が在圏するセル(サービングセル)を管理するeNB200と無線通信を行う。
E−UTRAN10は、基地局(eNB:evolved Node−B)200を含む。eNB200は、X2インターフェイスを介して相互に接続される。eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。
EPC20は、モビリティ管理エンティティ(MME)及びサービングゲートウェイ(S−GW)300を含む。MMEは、UE100に対する各種モビリティ制御等を行う。S−GWは、データの転送制御を行う。MME/S−GW300は、S1インターフェイスを介してeNB200と接続される。
MBMS向けのネットワークエンティティについて説明する。E−UTRAN10は、MCE(Multi−Cell/Multicast Coordinating Entity)11を含む。MCE11は、M2インターフェイスを介してeNB200と接続され、M3インターフェイスを介してMME300と接続される(図2参照)。MCE11は、MBSFN無線リソース管理・割当等を行う。具体的には、MCE11は、MBSFN伝送のスケジューリングを行う。これに対し、SC−PTM伝送のスケジューリングはeNB200により行われる。
EPC20は、MBMS GW(MBMS Gateway)21を含む。MBMS GW21は、M1インターフェイスを介してeNB200と接続され、Smインターフェイスを介してMME300と接続され、SG−mb及びSGi−mbインターフェイスを介してBM−SC22と接続される(図2参照)。MBMS GW21は、eNB200に対してIPマルチキャストのデータ伝送及びセッション制御等を行う。
EPC20は、BM−SC(Broadcast Multicast Service Center)22を含む。BM−SC22は、SG−mb及びSGi−mbインターフェイスを介してMBMS GW21と接続され、SGiインターフェイスを介してP−GW23と接続される(図2参照)。BM−SC22は、TMGI(Temporary Mobile Group Identity)の管理・割当等を行う。
EPC20の外部のネットワーク(すなわち、インターネット)には、GCS AS(Group Communication Service Application Server)31が設けられる。GCS AS31は、グループ通信用のアプリケーションサーバである。GCS AS31は、MB2−U及びMB2−Cインターフェイスを介してBM−SC22と接続され、SGiインターフェイスを介してP−GW23と接続される。GCS AS31は、グループ通信におけるグループの管理及びデータ配信等を行う。
図3は、実施形態に係るUE100(無線端末)の構成を示す図である。図3に示すように、UE100は、受信部110、送信部120、及び制御部130を備える。
受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。
送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
制御部130は、UE100における各種の制御を行う。制御部130は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)と、を含む。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサは、後述する各種の処理を実行する。
図4は、実施形態に係るeNB200(基地局)の構成を示す図である。図4に示すように、eNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。
制御部230は、eNB200における各種の制御を行う。制御部230は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)と、を含む。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、後述する各種の処理を実行する。
バックホール通信部240は、X2インターフェイスを介して隣接eNBと接続される。バックホール通信部240は、S1インターフェイスを介してMME/S−GW300と接続される。バックホール通信部240は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信等に用いられる。
図5は、LTEシステムにおける無線インターフェイスのプロトコルスタックを示す図である。図5に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1レイヤ乃至第3レイヤに区分されている。第1レイヤは、物理(PHY)レイヤである。第2レイヤは、MAC(Medium Access Control)レイヤ、RLC(Radio Link Control)レイヤ、及びPDCP(Packet Data Convergence Protocol)レイヤを含む。第3レイヤは、RRC(Radio Resource Control)レイヤを含む。
物理レイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理レイヤとeNB200の物理レイヤとの間では、物理チャネルを介してデータ及び制御信号が伝送される。
MACレイヤは、データの優先制御、HARQ(Hybrid ARQ)による再送処理等を行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御信号が伝送される。eNB200のMACレイヤは、スケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))、及びUE100への割当リソースブロックを決定する。
RLCレイヤは、MACレイヤ及び物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御信号が伝送される。
PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
RRCレイヤは、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、各種設定のためのメッセージ(RRCメッセージ)が伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッドモードであり、そうでない場合、UE100はRRCアイドルモードである。
RRCレイヤの上位に位置するNAS(Non−Access Stratum)レイヤは、セッション管理及びモビリティ管理等を行う。
図6は、LTEシステムの下りリンクのチャネルの構成を示す図である。図6(a)は、論理チャネル(Downlink Logical Channel)とトランポートチャネル(Downlink Transport Channel)との間のマッピングを示す。
図6(a)に示すように、PCCH(Paging Control Channel)は、ページング情報、及びシステム情報変更を通知するための論理チャネルである。PCCHは、トランスポートチャネルであるPCH(Paging Channel)にマッピングされる。
BCCH(Broadcast Control Channel)は、システム情報のための論理チャネルである。BCCHは、トランスポートチャネルであるBCH(Broadcast Control Channel)及びDL−SCH(Downlink Shared Channel)にマッピングされる。
CCCH(Common Control Channel)は、UE100とeNB200との間の送信制御情報のための論理チャネルである。CCCHは、UE100がネットワークとの間でRRC接続を有していない場合に用いられる。CCCHは、DL−SCHにマッピングされる。
DCCH(Dedicated Control Channel)は、UE100とネットワークとの間の個別制御情報を送信するための論理チャネルである。DCCHは、UE100がRRC接続を有する場合に用いられる。DCCHは、DL−SCHにマッピングされる。
DTCH(Dedicated Traffic Channel)は、データ送信のための個別論理チャネルである。DTCHは、DL−SCHにマッピングされる。
SC−MTCH(Single Cell Multicast Traffic Channel)は、SC−PTM伝送のための論理チャネルである。SC−MTCHは、SC−PTM伝送を用いてネットワークからUE100にデータを送信するための1対多チャネル(point−to−multipoint downlink channel)である。
SC−MCCH(Single Cell Multicast Control Channel)は、SC−PTM伝送のための論理チャネルである。SC−MTCHは、1又は複数のSC−MTCHのためのMBMS制御情報をネットワークからUE100に送信するための1対多チャネル(point−to−multipoint downlink channel)である。SC−MCCHは、SC−PTMを用いてMBMSを受信する又は受信に興味を持つUE100に用いられる。また、SC−MCCHは、1つのセルに1つのみ存在する。
MCCH(Multicast Control Channel)は、MBSFN伝送のための論理チャネルである。MCCHは、ネットワークからUE100へのMTCH用のMBMS制御情報の送信のために用いられる。MCCHは、トランスポートチャネルであるMCH(Multicast Channel)にマッピングされる。
MTCH(Multicast Traffic Channel)は、MBSFN伝送のための論理チャネルである。MTCHは、MCHにマッピングされる。
図6(b)は、トランポートチャネル(Downlink Transport Channel)と物理チャネル(Downlink Physical Channel)との間のマッピングを示す。
図6(b)に示すように、BCHは、PBCH(Physical Broadcast Channel)にマッピングされる。
MCHは、PMCH(Physical Multicast Channel)にマッピングされる。MCHは、複数のセルによるMBSFN伝送をサポートする。
PCH及びDL−SCHは、PDSCH(Physical Downlink Shared Channel)にマッピングされる。DL−SCHは、HARQ、リンクアダプテーション、及び動的リソース割当をサポートする。
PDCCHは、PDSCH(DL−SCH、PCH)のリソース割り当て情報及びDL−SCHに関するHARQ情報等を運搬する。また、PDCCHは、上りリンクのスケジューリンググラントを運ぶ。
図7は、LTEシステムの無線フレームの構成を示す図である。LTEシステムにおいて、下りリンクにはOFDMA(Orthogonal Frequency Division Multiple Access)、上りリンクにはSC−FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。
図7に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのシンボル及び1つのサブキャリアにより1つのリソースエレメント(RE)が構成される。また、UE100に割り当てられる無線リソース(時間・周波数リソース)のうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。
下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に下りリンク制御信号を伝送するためのPDCCHとして用いられる領域である。また、各サブフレームの残りの部分は、主に下りリンクデータを伝送するためのPDSCHとして使用できる領域である。また、下りリンクにおいて、MBSFN伝送向けのサブフレームであるMBSFNサブフレームが設定され得る。
上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に上りリンク制御信号を伝送するためのPUCCHとして用いられる領域である。各サブフレームにおける残りの部分は、主に上りリンクデータを伝送するためのPUSCHとして使用できる領域である。
LTEシステムにおいて、消費電力を削減するために間欠受信(DRX:Discontinuous Reception)がUE100に設定され得る。DRX動作において、RRCアイドルモードのUE100は、所定の時間間隔(DRXサイクル)で発生するページング受信機会(Paging Occasion)においてページングメッセージを監視する。
DRX動作において、UE100は、ページングを受信するためにPDCCHを間欠的に監視する。UE100は、ページング用の識別子(P−RNTI:Paging Radio Network Temporary Identifier)を用いてPDCCHをデコードし、ページングチャネルの割り当て情報を取得する。UE100は、割当情報に基づいて、ページングメッセージを取得する。UE100におけるPDCCH監視タイミングは、UE100の識別子(IMSI:International Mobile Subscriber Identity)に基づいて定められる。
DRX動作におけるPDCCH監視タイミング(PDCCH監視サブフレーム)は、Paging Occasion(PO)と称される。POは、ページングの受信機会に相当する。
UE100及びeNB200は、Paging Occasion(PO)、及び、Paging Occasionを含みうる無線フレームであるPaging Frame(PF)を下記のように計算する。
PFのシステムフレーム番号(SFN)は、下記の式(1)から求められる。
SFN mod T = (T div N) * (UE_ID mod N) …(1)
但し、Tは、ページングを監視するためのUE100のDRXサイクルであり、無線フレームの数で表される。また、Tは、eNB200がSIB(System Information Block)によりブロードキャストするデフォルトDRX値、及びNASメッセージによりUE100に設定されるUE固有DRX値のうち、何れか小さい方である。なお、UE固有DRX値が設定されていない場合、UE100は、デフォルトDRX値を適用する。また、Nは、TとnBのうち最小値である。nBは、4T, 2T, T, T/2, T/4, T/8, T/16, T/32から選択される値である。UE_IDは、「IMSI mod1024」により求められる値である。
このようにして求められたPFのうち、下記の式(2)により、インデックスi_sを求め、インデックスi_sに対応するPOのサブフレーム番号を求める。
i_s = floor(UE_ID/N) mod Ns …(2)
但し、Nsは、1とnB/Tのうち最大値である。
次に、拡張DRX(extended DRX)について説明する。拡張DRXにおいては、非常に長いDRXサイクルをサポートするためにハイパーフレームが用いられる。
図8は、ハイパーフレーム、無線フレーム、及びサブフレームの関係を示す図である。図8に示すように、ハイパーフレームは、H−SFN(Hyper System Frame Number)により識別される。H−SFNは、セルから報知される。無線フレームは、SFN(System Frame Number)により識別される。サブフレームは、サブフレーム番号により識別される。1つのハイパーフレームは、1024個の無線フレームにより構成される。1024個の無線フレームには、0番から1023番までのシステムフレーム番号が割り振られている。また、1つの無線フレームは、10個のサブフレームにより構成される。10個のサブフレームには、0番から9番までのサブフレーム番号が割り振られている。
拡張DRXサイクルが設定されたUE100は、拡張DRXのサポートをセルがシステム情報により示す場合に、拡張DRX動作を行う。UE100は、自UEに設定された周期的なページングウィンドウ内で、上述したPOの監視を行う。ページングウィンドウは、UE固有である。ページングウィンドウは、ページングハイパーフレーム(PH)、PH内の開始点(PW_start)、及びPH内の終了点(PW_end)により定められる。
ここで、PHは、下記の式(3)を満たすH−SFNである。
H−SFN mod TeDRX,H= (UE_ID mod TeDRX,H) …(3)
UE_IDは「IMSI mod 1024」である。TeDRX,Hは、UE100に設定された拡張DRXサイクル(eDRX cycle)である。
PW_startは、ページングウィンドウの最初の無線フレームを示し、下記の式(4)を満たすSFNである。
SFN = 256* ieDRX …(4)
ieDRXは、「floor(UE_ID/TeDRX,H) mod 4」である。
PW_endは、ページングウィンドウの最後の無線フレームを示し、下記の式(5)を満たすSFNである。
SFN = (PW_start + L*100 − 1) mod 1024 …(5)
Lは、UE100に設定されたページングウィンドウ長である。
(想定シナリオ)
実施形態に係る想定シナリオについて説明する。実施形態において、システム送受信帯域の一部のみに送受信帯域幅を制限した新たなカテゴリのUE100がMBMSを用いたマルチキャスト/ブロードキャストサービスを受信するシナリオを想定する。このようなシナリオ(ユースケース)としては、MBMSサービスとして多数のUE100に対するファームウェアの一括配信を行うケースが挙げられる。
新たなUEカテゴリは、カテゴリM1及びNB(Narrow Band)−IoTカテゴリと称される。カテゴリM1は、UE100の送受信帯域幅を1.08MHz(すなわち、6リソースブロックの帯域幅)に制限するとともに、繰り返し送信等を用いたカバレッジ強化(CE:Enhanced Coverage)技術をサポートする。NB−IoTカテゴリは、UE100の送受信帯域幅を180kHz(すなわち、1リソースブロックの帯域幅)にさらに制限するとともに、カバレッジ強化技術をサポートする。繰り返し送信は、複数のサブフレームを用いて同一の信号を繰り返し送信する技術である。以下において、カテゴリM1のUE100を主として想定するが、NB−IoTカテゴリのUE100を想定してもよい。なお、このようなUE100には、省電力化のためにeDRXが設定されることが想定される。
一例として、LTEシステムのシステム帯域幅は10MHzであり、そのうちの送受信帯域幅は9MHz(すなわち、50リソースブロックの帯域幅)である。一方、カテゴリM1のUE100は、6リソースブロックよりも広い帯域幅で送信される下りリンク無線信号を受信することができないため、通常のPDCCHを受信することができない。このため、MTC向けのPDCCHであるMPDCCH(MTC−PDCCH)が導入される。同様な理由で、NB−IoT向けのPDCCHであるNPDCCH(NB−PDCCH)が導入される。
図9は、カテゴリM1向けの下りリンク物理チャネルを示す図である。図9に示すように、eNB200は、6リソースブロック以内でMPDCCHを送信する。MPDCCHは、PDSCHを割り当てるためのスケジューリング情報を含む。一例として、MPDCCHは、当該MPDCCHが送信されるサブフレームとは異なるサブフレームのPDSCHを割り当てる。eNB200は、6リソースブロック以内でPDSCHを送信する。また、eNB200は、同一の信号の繰り返し送信を行うために、複数のサブフレームに亘ってPDSCHを割り当てる。カテゴリM1のUE100は、MPDCCHを受信することで割り当てPDSCHを特定し、割り当てPDSCHで送信されるデータを受信する。
次に、MBMSについて説明する。MBMS用の無線伝送方式としては、MBSFN伝送及びSC−PTM伝送の2つの方式がある。MBSFN伝送においては、複数のセルからなるMBSFNエリア単位で、PMCHを介してデータが送信される。これに対し、SC−PTM伝送においては、セル単位で、PDSCHを介してデータが送信される。以下においては、カテゴリM1又はNB−IoTカテゴリのUE100がSC−PTM受信を行うシナリオを主として想定するが、MBSFNを想定してもよい。
UE100は、RRCコネクティッドモードでMBMSサービスを受信してもよい。UE100は、RRCアイドルモードでMBMSサービスを受信してもよい。以下において、UE100がRRCアイドルモードでMBMSサービスを受信するケースを主として想定する。なお、RRCアイドルモードは、サスペンド状態を含む。サスペンド状態の場合、UE100のコンテキスト情報がeNB200に維持されるため、RRC接続を速やかに復旧することができる。
図10は、実施形態に係るUE100がSC−PTM受信を行う動作の一例を示す図である。UE100は、カテゴリM1又はNB−IoTカテゴリのUE100である。
図10に示すように、ステップS1において、UE100は、eNB200を介してEPC20からUSD(User Service Description)を取得する。USDは、各MBMSサービスの基本的な情報を提供する。USDは、MBMSサービスごとに、当該MBMSサービスを識別するTMGIと、当該MBMSサービスが提供される周波数と、当該MBMSサービスの提供開始・終了時間と、を含む。
ステップS2において、UE100は、MPDCCH又はNPDCCHをeNB200から受信する。MPDCCH及びNPDCCHのそれぞれは、システム情報(SIB:System Information Block)の更新を示す更新通知情報(Direct Indication)を含む。図11は、Direct Indicationを示す図である。図11(a)はMPDCCH中のDirect Indicationを示し、図11(b)はNPDCCH中のDirect Indicationを示す。UE100は、Direct Indicationに基づいて、いずれかのシステム情報が更新されたことを認識し、SIBタイプ1(SIB1)をさらに受信する。SIB1は、各SIBの更新有無を示すタグ番号(valueTag)を含む。UE100は、タグ番号に基づいて、SC−PTM用のSIBであるSIBタイプ20(SIB20)の更新有無を判断する。ここでは、SIB20が更新されていると仮定して説明を進める。なお、SIB20はSC−MCCHのスケジューリング情報のみを含むので、更新は稀であると考えられる。
ステップS3において、UE100は、BCCHを介してeNB200からSIB20を受信する。SIB20は、SC−MCCHの取得に必要な情報(スケジューリング情報)を含む。図12は、SIB20を示す図である。図12に示すように、SIB20は、SC−MCCHの内容が変更され得る周期を示すsc−mcch−ModificationPeriod、SC−MCCHの送信(再送)時間間隔を無線フレーム数で示すsc−mcch−RepetitionPeriod、SC−MCCHがスケジュールされる無線フレームのオフセットを示すsc−mcch−Offset、及びSC−MCCHがスケジュールされるサブフレームを示すsc−mcch−Subframe等を含む。sc−mcch−RepetionPeriod(最大2,560ms毎)にSC−MCCH(SCPTM Configuration)が送信される。UE100は、sc−mcch−ModificationPeriod(最大655,360ms=約10.92分)毎にSC−MCCHを取得する。このようなSC−MCCHの取得は、UE100の消費電力を増加させ得る。
ステップS4において、UE100は、SIB20に基づいて、SC−MCCHを介してeNB200からSCPTM設定情報(SCPTM Configuration)を受信する。物理レイヤにおいてSC−MCCHの送信にはSC−RNTI(Single Cell RNTI)が用いられる。図13は、SC−MCCH中のSCPTM設定情報(SCPTM Configuration)を示す図である。図13に示すように、SCPTM設定情報は、SC−MRB(Single Cell MBMS Point to Multipoint Radio Bearer)を介して送信されるMBMSサービスに適用可能な制御情報を含む。SCPTM設定情報は、当該情報を送信するセルにおける各SC−MTCHの設定を含むsc−mtch−InfoList、及びSC−MRBを介してMBMSサービスを提供する隣接セルのリストであるscptmNeighbourCellListを含む。sc−mtch−InfoListは、1又は複数のSC−MTCH−Infoを含む。各SC−MTCH−Infoは、SC−MRBを介して送信される進行中のMBMSセッションの情報(mbmsSessionInfo)、当該MBMSセッションに対応するG−RNTI(Group RNTI)、及びSC−MTCHのためのDRX情報であるsc−mtch−schedulingInfoを含む。mbmsSessionInfoは、MBMSサービスを識別するTMGI及びセッションID(sessionId)を含む。G−RNTIは、マルチキャストグループ(具体的には、特定グループ宛てのSC−MTCH)を識別するRNTIである。G−RNTIは、TMGIと1対1でマッピングされる。sc−mtch−schedulingInfoは、onDurationTimerSCPTM、drx−InactivityTimerSCPTM、schedulingPeriodStartOffsetSCPTMを含む。schedulingPeriodStartOffsetSCPTMは、SC−MTCH−SchedulingCycle及びSC−MTCH−SchedulingOffsetを含む。ここで、SC−PTM伝送向けのDRXについて説明する。SC−PTM伝送向けのDRXは、上述したDRXとは独立した動作である。SC−PTM伝送向けのDRXが設定されたUE100は、RRCコネクティッドモード又はRRCアイドルモードにおいて、対応するG−RNTIを用いてPDCCHを間欠的に監視する。onDurationTimerSCPTM又はdrx−InactivityTimerSCPTMが動作中(runnning)である場合、アクティブ時間となる。UE100は、アクティブ時間においてPDCCHを監視する。また、UE100は、「[(SFN * 10) + subframe number] modulo (SC−MTCH−SchedulingCycle) = SC−MTCH−SchedulingOffset」が満たされる場合、onDurationTimerSCPTMを開始させる。UE100は、PDCCHがDL送信を示す場合、drx−InactivityTimerSCPTMを開始させる。
ステップS5において、UE100は、SCPTM設定情報(SCPTM Configuration)中のSC−MTCH−SchedulingInfoに基づいて、SC−MTCHを介して、自身が興味のあるTMGIに対応するMBMSサービス(データ)を受信する。物理レイヤにおいて、eNB200は、G−RNTIを用いてPDCCHを送信した後、PDSCHを介してデータを送信する。UE100は、最大でも8192ms毎にデータ受信を試みる。このデータ受信は、UE100の消費電力を増加させ得る。
(動作パターン)
実施形態に係る動作パターンについて説明する。前提として、UE100は、システム送受信帯域よりも狭い制限帯域幅内で無線信号を送受信するように構成された送受信機(受信部110及び制御部130)と、送受信機を用いてeNB200との無線通信を行う制御部130と、を備える。制限帯域幅とは、例えば、UE100がM1カテゴリに属する場合には1.08MHz(すなわち、6リソースブロックの帯域幅)であり、UE100がNB−IoTカテゴリに属する場合には180kHz(すなわち、1リソースブロックの帯域幅)である。制御部130は、eNB200を介して提供されるマルチキャスト/ブロードキャストサービス(MBMSサービス)を受信するために必要な情報を、制限帯域幅内でeNB200から受信する処理を行う。
(1)動作パターン1
上述したように、カテゴリM1又はNB−IoTカテゴリのUE100がSC−PTM受信を行う場合、UE100の消費電力を増加させる。特に、eDRXがUE100に設定されるケースを想定すると、SC−PTM受信に関連したウェイクアップにより、十分な消費電力削減効果が得られなくなる懸念がある。よって、UE100の消費電力の増加を抑制しつつSC−PTM受信を可能とすることが望まれる。
動作パターン1において、UE100には、事前設定されたサービス識別子(TMGI)を記憶する所定の記憶媒体が設けられる。一例として、所定の記憶媒体は、UICC(Universal Integrated Circuit Card)である。事前設定されたサービス識別子は、特定のMBMSサービスに専用のサービス識別子である。特定のMBMSサービスは、ファームウェア配信サービスであってもよい。
これにより、UE100は、USDをユニキャストで取得することなく、eNB200(サービングセル)から提供されるSC−MCCHを見るだけで、eNB200から特定のMBMSサービスが提供されることを確認することができる。よって、RRCアイドルモードのUE100は、USDを取得するためだけにRRCコネクティッドモードに遷移する必要がない。また、UE100はeDRXのウェイクアップ時(ページング確認時)に、SC−MCCHを受信してもよい。
(2)動作パターン2
上述したように、UE100は、MPDCCH又はNPDCCH中の更新通知情報(Direct Indication)を受信した後、SIB1中のタグ番号(valueTag)を受信して確認しなければ、SIB20の更新を認識することができない。このようなタグ番号の受信及び確認の処理は、UE100の消費電力を増加させる。
動作パターン2において、UE100は、制限帯域幅以下の帯域幅を有する所定物理下りリンク制御チャネル(MPDCCH又はNPDCCH)上でeNB200から更新通知情報(Direct Indication)を受信する。更新通知情報は、SC−PTM用のシステム情報ブロック(SIB20)の更新を示す第1の更新通知、SC−PTM用のマルチキャスト制御チャネル(SC−MCCH)の更新を示す第2の更新通知、SC−PTM用のマルチキャスト制御チャネル(SC−MCCH)中で示される特定のMBMSサービスに関する更新を示す第3の更新通知、のうち少なくとも1つを含む。第1乃至第3の更新通知のそれぞれは、1ビットのフラグとして定義されてもよい。更新通知情報(Direct Indication)は、既存フォーマットを用いてもよいし、新たなフォーマット(新たなPDCCHフォーマット)を定義してもよい。
第1の更新通知は、SIB20単独での更新通知である。UE100は、MPDCCH又はNPDCCH中の更新通知情報(Direct Indication)が第1の更新通知を含むことに応じて、SIB1を受信しなくても、SIB20の更新を認識することができる。
第2の更新通知は、SC−MCCH(すなわち、SCPTM Configuration)の更新通知である。eNB200は、SC−N−RNTIでスクランブルされたMPDCCH又はNPDCCHにより第2の更新通知をUE100に送信してもよい。UE100は、MPDCCH又はNPDCCH中の更新通知情報(Direct Indication)が第2の更新通知を含むことに応じて、SC−MCCHの更新を認識することができる。
第3の更新通知は、SC−MCCH中のsc−mtch−InfoListのうち特定のSC−MTCH−Infoに関する更新通知である。特定のSC−MTCH−Infoは、特定のMBMSサービス(例えば、ファームウェア配信サービス)と対応付けられている。具体的には、特定のSC−MTCH−Infoは、特定のMBMSサービスを識別するTMGI(サービス識別子)を含む。UE100は、MPDCCH又はNPDCCH中の更新通知情報(Direct Indication)が第3の更新通知を含むことに応じて、SC−MCCHを受信しなくても、特定のSC−MTCH−Infoの更新を認識することができる。複数のMBMSサービスのそれぞれの更新を通知可能とする場合、更新通知情報(Direct Indication)中の2ビット以上を第3の更新通知に割り当ててもよい。各ビットの位置はMBMSサービス(具体的には、SC−MTCH−Info)と対応付けられる。ビット位置とMBMSサービスとの対応関係は、eNB200からUE100にSIB等により設定されてもよい。この場合、UE100は、更新通知情報(Direct Indication)中の第3の更新通知のビット位置に基づいて、SC−MCCH中のsc−mtch−InfoListのうち、どのSC−MTCH−Infoが更新されたかを確認する。
UE100は、第2及び第3の更新通知が提供されていない場合、SC−MCCH modification boundary毎もしくはSC−N−RNTIでスクランブルされたPDCCHを受信する毎に、SC−MCCHを受信し、興味のあるTMGIに関する設定(SC−MTCH−Info)の更新有無を確認してもよい。
(3)動作パターン3
動作パターン3は、特定のMBMSサービスの配信開始を直接的にUE100に通知可能とする動作パターンである。
動作パターン3において、UE100は、制限帯域幅以下の帯域幅を有するPDSCH上でeNB200からページングメッセージを受信する。ページングメッセージは、特定のMBMSサービスのサービス識別子(TMGI)を含む。ページングメッセージは、複数のサービス識別子(TMGI)からなるリストを含んでもよい。これにより、UE100は、特定のMBMSサービスの配信が開始されることを認識し、特定のMBMSサービスを受信するための処理を開始することができる。よって、UE100のウェイクアップを必要最小限に留めることができる。なお、一般的なページングメッセージは、サービス識別子(TMGI)を含むのではなく、呼び出し対象のUE100の識別子(IMSI等)を含むことに留意すべきである。
eNB200は、P−RNTIでスクランブルされたMPDCCH又はNPDCCHにより、ページングメッセージを運ぶPDSCH(狭帯域PDSCH)を指定する。そして、eNB200は、指定したPDSCHでページングメッセージを送信する。UE100は、P−RNTIでスクランブルされたMPDCCH又はNPDCCHを受信することにより、ページングメッセージを運ぶPDSCH(狭帯域PDSCH)を認識する。そして、UE100は、認識したPDSCHでページングメッセージを受信する。UE100は、動作パターン1で説明した事前設定されたサービス識別子(TMGI)がページングメッセージ中で示されているか否かを確認してもよい。
UE100は、ページングメッセージに含まれるサービス識別子(TMGI)が示すMBMSサービスの受信を望む場合、eNB200とのRRC接続を確立してもよい。この場合、UE100は、eNB200にRRC Connection Requestメッセージを送信してもよいし、サスペンド状態の場合はRRC Resume RequestメッセージをeNB200に送信してもよい。或いは、UE100は、RRC接続を確立することに代えて、SIB20及び/又はSC−MCCHを取得し、その後、SC−PTMが送信されていれば、受信を試みてもよい。
(4)動作パターン4
動作パターン4において、UE100は、特定のMBMSサービスの提供が開始される時間及び提供が終了される時間のうち少なくとも一方を示す時間情報をeNB200から受信する。時間情報は、SC−PTM用のシステム情報ブロック(SIB20)又はSC−PTM用のマルチキャスト制御チャネル(SC−MCCH)によりeNB200から送信される。SIB20又はSC−MCCH(SCPTM Configuration)は、複数のサービス識別子(TMGI)と、当該複数のサービス識別子(TMGI)のそれぞれの時間情報と、からなるリストを含んでもよい。これにより、TMGI毎に開始時間等をUE100に通知することができる。よって、UE100は、自身が興味のあるMBMSサービス(例えば、事前設定されたサービス識別子が示すMBMSサービス)の提供が開始されるまで、スリープ状態を維持することができる。
時間情報は、提供開始時間及び提供終了時間の組み合わせであってもよい。或いは、時間情報は、提供開始時間及び提供持続時間(例えば、1分間)の組み合わせであってもよい。提供開始時間(及び提供終了時間)は、H−SFNにより表現されてもよいし、UTC(Coordinated Universal Time)により表現されてもよい。
H−SFNにより表現される場合、UE100は、提供開始時間を示すH−SFNがラップアラウンド(#1023→#0)後のH−SFNであると認識する。図14は、H−SFNにより表現される提供開始時間を示す図である。図14(a)は、UE100が、H−SFN=150の時点において、SC−MCCH中で提供開始時間がH−SFN=200と示されるケースを示す。この場合、UE100は、ラップアラウンド(#1023→#0)後のH−SFN=200においてMBMSサービスの提供が開始されると認識する。図14(b)は、UE100が、H−SFN=300の時点において、SC−MCCH中で提供開始時間がH−SFN=200と示されるケースを示す。この場合、UE100は、ラップアラウンド(#1023→#0)後のH−SFN=200においてMBMSサービスの提供が開始されると認識する。このような規則を定めることにより、UE100とネットワークとで提供開始時間の解釈にずれが生じることを防止することができる。このような規則としては、例えば「UE100は、H−SFNがラップアラウンド(上限値に達した)後の、指定H−SFNを提供開始タイミングとして理解しなければならない」というような規則とすることができる。同様な考え方で、H−SFNの上限に代えてSC−MCCH又はSIBのmodification boundaryを用いて、SC−MCCH又はSIBのmodification boundaryの次のboundary以降のタイミングに該当するH−SFNで提供が開始されるとしてもよい。
一方、UTCにより表現される場合、UE100がGPS等を有しておらず、現在のUTCを確認することができないケースも想定される。但し、現在のUTCがSIBタイプ16(SIB16)で提供されている場合、GPS等を利用不能なUE100であってもUTCを確認することができる。よって、eNB200は、自身がSIB16を送信している場合に限って、UTCにより表現される提供開始時間をUE100に提供してもよい。
(5)動作パターン5
上述したように、カバレッジ強化(CE)を目的として、MPDCCH(又はNPDCCH)とPDSCH(狭帯域PDSCH)とに繰り返し送信が適用され得る。繰り返し送信が適用される場合、UE100は、最大繰り返し送信回数及び実際の繰り返し送信回数を把握していることが望ましい。
動作パターン5において、UE100は、制限帯域幅以下の帯域幅を有する所定物理下りリンク制御チャネル(MPDCCH又はNPDCCH)の繰り返し送信回数及び制限帯域幅以下の帯域幅を有する物理下りリンク共有チャネル(狭帯域PDSCH)の繰り返し送信回数のうち少なくとも一方を示す繰り返し回数情報をeNB200から受信する。繰り返し回数情報は、最大繰り返し送信回数及び実際の繰り返し送信回数の少なくとも一方を示す。繰り返し回数情報は、SC−PTM用のシステム情報ブロック(SIB20)又はSC−PTM用のマルチキャスト制御チャネル(SC−MCCH)によりeNB200から送信される。
図15は、繰り返し回数情報を示す図である。図15(a)は、SIB20中で繰り返し回数情報(# of repetition)が提供されるケースを示す。図15(a)に示すように、eNB200は、SIB20中で、SC−MCCHに対応するMPDCCH(又はNPDCCH)の繰り返し回数情報と、SC−MCCHに対応する狭帯域PDSCHの繰り返し回数情報と、を提供する。UE100は、SC−MCCHに繰り返し送信が適用される場合でも、SIB20中の繰り返し回数情報に基づいてSC−MCCHを適切に受信することができる。図15(b)は、SC−MCCH中で繰り返し回数情報(# of repetition)が提供されるケースを示す。図15(b)に示すように、eNB200は、SC−MCCH中で、SC−MTCHに対応するMPDCCH(又はNPDCCH)の繰り返し回数情報と、SC−MTCHに対応する狭帯域PDSCHの繰り返し回数情報と、を提供する。ここでは、繰り返し送信回数情報がMBMSサービス毎(TMGI毎)に提供される一例を示している。UE100は、SIB20中の繰り返し回数情報に基づいてSC−MTCHを適切に受信することができる。
(6)動作パターン6
UE100は、SC−PTM受信中に一のセルから他のセルに移動し得る。このような場合において、SC−PTM受信を継続可能とすることが望ましい。
動作パターン6において、UE100は、eNB200が管理するサービングセルに隣接する隣接セルが提供するMBMSサービスに対応付けられたグループRNTI(G−RNTI)をeNB200からサービングセルを介して受信する。すなわち、UE100は、隣接セルが用いるG−RNTIをサービングセルから受信する。当該G−RNTIは、SC−PTM用のシステム情報ブロック(SIB20)又はSC−PTM用のマルチキャスト制御チャネル(SC−MCCH)によりeNB200(サービングセル)から送信される。
eNB200(サービングセル)は、G−RNTIに加えて、隣接セルのSC−MTCHスケジューリング情報(sc−mtch−schedulingInfo)をUE100に提供してもよい。或いは、eNB200(サービングセル)は、隣接セルのSC−MCCH情報(SCPTM Configuration)の全てをUE100に提供してもよい。これにより、UE100は、サービングセルから隣接セルに移動した場合でも、当該隣接セルのSC−MTCHを速やかに受信することができる。なお、eNB200(サービングセル)は、隣接セルのSIB20の少なくとも一部をUE100に提供してもよい。
(7)動作パターン7
UE100は、SC−MTCH上で送信されるMBMSサービス(データ)の受信に必ずしも成功するとは限らない。ファームウェア配信サービスを想定すると、データ(ファームウェア)が一部でも欠落することは問題である。
動作パターン7において、UE100は、eNB200とのRRC接続を有しない状態(すなわち、RRCアイドルモード)において、MBMSサービスの受信に失敗したことに応じてRRC接続を確立し、受信に失敗したMBMSサービスに関する情報をeNB200に送信する。これにより、当該MBMSサービスのユニキャスト再送をeNB200に促すことができる。
動作パターン7において、eNB200は、SC−MTCH上で送信済みのMBMSサービス(データ)を一定時間はバッファする。eNB200は、データをバッファしておく時間に関連するタイマ値をSIB等によりUE100に設定してもよい。当該タイマ値は、UE100がSC−MTCHの受信に失敗してから、RRC接続を確立する(例えば、RRC Connection Requestメッセージを送信する)までの許容時間を規定する。UE100は、受信失敗した場合に、当該タイマ値をセットしたタイマを起動し、当該タイマが満了するまでの間にRRC Connection Requestメッセージ(又はRRC Connection Resumeメッセージ)を送信しなければならない。eNB200は、SC−MTCH送信又はバッファリング毎に当該タイマを起動し、当該タイマが満了した場合に、当該バッファリングしたデータを破棄する。
MBMSサービスの受信に失敗したUE100は、RRCコネクティッドモードに遷移した後、以下の情報のうち少なくとも1つをeNB200に通知してもよい。
・SC−PTM受信に失敗した旨
・受信に失敗したTMGI
・受信に失敗した先頭のパケット番号(PDCPシーケンス番号等)
・受信に失敗したHARQプロセスID
ここで、パケット番号及び/又はHARQプロセスIDを通知することにより、eNB200は、MBMSサービス(データ)の全部をユニキャストで再送するのではなく、UE100が受信に失敗した時点以降のデータのみをユニキャストで再送することができる。これにより、UE100は、マルチキャストで正常受信できたデータを活用することができる。
eNB200は、ユニキャスト再送を行う際に、以下の情報のうち少なくとも1つをUE100に通知してもよい。
・再送用ベアラのID
・再送開始パケットのPDCPシーケンス番号
・HARQプロセスID
なお、UE100がMBMSサービスの受信に失敗したことに応じてRRC Connection Requestメッセージを送信する一例を説明したが、これに限らず、SC−MTCH受信失敗を示すフィードバック情報を送信してもよい。当該フィードバック情報は、再送制御信号(ACKもしくはNACK)などであってもよい。
(その他の実施形態)
上述した各動作パターンを別個独立に実施する場合に限らず、2以上の動作パターンを組み合わせて実施してもよい。例えば、一の動作パターンに係る一部の処理を他の動作パターンに追加してもよい。或いは、一の動作パターンに係る一部の処理を他の動作パターンの一部の構成と置換してもよい。
上述した実施形態において、MBMSサービスとしてファームウェア配信を想定していた。しかしながら、グループメッセージ配信、グループチャットメッセージ配信、ウィルス定義ファイルの配信、天気予報のような定期更新ファイルの配信、ニュース速報のような不定期ファイル配信、映像コンテンツ等の夜間ファイル配信(オフピーク配信)、音声/映像ストリーミング配信、電話/ビデオ電話(グループ通信)、ライブ映像配信、ラジオ音声配信等のMBMSサービスを想定してもよい。
上述した実施形態において、移動通信システムとしてLTEシステムを例示した。しかしながら、本発明はLTEシステムに限定されない。LTEシステム以外の移動通信システムに本発明を適用してもよい。
[付記]
(1.はじめに)
本付記において、FeMTC UEのための既存のマルチキャストメカニズムを強化するための一般的な問題について検討する。
(2.検討)
(2.1.リリース13のSC−PTM)
SCCHは、PMCHを使用したMBSFNとは異なり、PDSCHを使用して単一セル内のDLマルチキャスト伝送をサポートするように、eMBMSアーキテクチャの上に規定された。PDSCHベースのマルチキャストメカニズムは、SC−RNTI又はG−RNTIでスクランブルされたPDCCHによる動的スケジューリングを可能にし、これは、WIの目的、つまり「BL/CE(eMTC)UEのマシンタイプ通信」に適合するが、MPDCCHはリリース13においてSC−RNTI、SC−N−RNTI及びG−RNTIをサポートしていない。
考察1:リリース13のSC−PTMは、潜在的に6つのPRB動作をサポートするが、MPDCCHはSC−PTM送信のためのRNTIを必要とする。
UEがDLマルチキャストデータを受信する前に、UEは、SC−MCCH送信の機会を知るためにSIB20を取得する必要があり、SC−MCCHは、SC−PTM受信のための詳細情報、すなわち、G−RNTIに対するTMGIなどのSC−MTCH−InfoList、SC−PTMスケジューリング情報を運ぶ。
SC−MCCH修正期間の現在の上限は、約10.92分、すなわち、rf65536である。したがって、SC−PTMに興味のあるUEは、既にSC−MCCHを受信していても、すなわちSC−MCCH変更通知を受信しようとしても、SC−MCCHの内容が少なくとも10.92分に1回変更されたかどうかを確認する必要がある(SC−N−RNTIでスクランブルされたPDCCH)。一方、リリース13のeDRXはアイドルモードのDRXサイクルを43.69 munitiesまで拡張する。FeMTC UEがeDRXサイクルで設定されていると仮定することができるが、UEがSC−PTM受信に関心がある場合、eDRXが電力節約の観点から完全に利益を得ることはできない。
UEは、PDCCH内のSC−RNTIを監視し、DL−SCH内のSC−MCCH送信を取得する。SC−MCCHは、各MBMSサービスTMGI及びオプションのセッションID、関連するG−RNTI及びスケジューリング情報を含む、SC−MTCH上で送信された進行中のセッションを有するすべてのMBMSサービスのリストを提供する。対象のTMGIがSC−MCCHで利用可能である場合、UEは、サブフレームオケージョンにおいてG−RNTIでスクランブルされたPDCCH、すなわちSC−PTMを監視する。SC−PTMの現在のスケジューリング期間は8,192msまで、すなわちsf8192までに規定されているので、UEはeDRXサイクルに比べてはるかに短い期間である8秒ごとにPDCCHを復号する必要がある。
考察2:SC−PTM受信に関心のあるIDLE UEは、SC−N−RNTI及び/又はG−RNTIでスクランブルされたPDCCHを、その設定されたeDRXサイクルよりも短い時間で復号する必要があるかもしれない。
FeMTC UEの追加の電力消費を回避するために、例えば、H−SFNを使用するeDRXメカニズムと整合するように、SC−MCCH変更通知メカニズム及び/又はSC−PTMスケジューリング期間を延長する必要があることが議論されるべきである。
提案1:RAN2は、UEの電力消費を最小限に抑えるために、SC−MCCH変更通知及びSC−PTMスケジューリング期間が延長されるかどうかを議論するべきである。
(2.2.リリース14マルチキャスト要件)
(2.2.1.ファームウェア更新ユースケースのサポート)
WIDは、FeMTC UEのためのDLマルチキャストのモチベーション、例えば、ファームウェア又はソフトウェアアップデート、グループメッセージ配信を特定する。レガシーeMBMSの主なアプリケーションとして想定されたグループ通信及びビデオストリーミングと比較して、より信頼性の高い通信を必要とする。すなわち、1つのパケットだけが失われてもファームウェアは意味をなさない。
ユニキャスト伝送に関して、HARQ及びARQ機能は、ファームウェア更新の場合の要求されるQoSに合致する可能性がある信頼できるパケット転送を保証する。しかし、近い将来、IoTデバイスに期待される大量の接続数を考慮すると、信頼性の高い通信はユニキャスト(及び場合によっては堅牢なネットワーク展開のみ)に依存していることはもはや意味をなさない。
一方、マルチキャスト送信は、複数のUEへのデータ転送を同時に提供することができ、これは、セル内の膨大な数のデバイスに役立つために有益である。しかし、既存のマルチキャスト方式は、パケットのデコードに失敗したプロトコルのサポートがないため、場合によっては十分に堅牢ではない。
考察3:ユニキャスト伝送は、例えばファームウェアなどの信頼できるデータ転送を保証することができ、マルチキャスト伝送は、より多くの数のUE、大規模なMTCデバイスに役立つことができる。
改善のアプローチは、a)ユニキャストとマルチキャストの組み合わせ、b)ユニキャストへの拡張、c)マルチキャストへの拡張の3つであり、a)とc)のみがWIの範囲に沿っている。
a)に関して、マルチキャストを介してダウンロードされたファイルの完全性チェックに失敗したUEは、例えば、上位レイヤ開始の再送信要求によってユニキャストを介してファイルを再取得することが予想される。AS仕様の観点からは単純なメカニズムであるが、UEの電力消費の観点からはいくつかの欠点がある。例えば、パケットの一部が首尾よく復号されなくても、UEはファイル全体を再取得する必要があり、特にファイルがファームウェア/ソフトウェアなどの小さいサイズでない場合は効率的ではない。さらに、UEがIDLE、すなわちマルチキャストのアイドルモード受信中であった場合、UEはユニキャスト転送のためのRRC接続を確立する必要があり、接続確立/再開のために追加のシグナリングが必要となる。
c)に関しては、マルチキャストのAS仕様に再送方式を導入するアプローチの1つであるかもしれない。それは、ファームウェアを完全にダウンロードするためにFeMTC UEの効率を改善する一方で、例えば、ULフィードバック及び/又は再送信メカニズムのための標準化努力を必要とする。低電力消費がMTCデバイスの重要な性能であることを考慮すると、再送信スキームはDLマルチキャストのために考慮されるべきである。
提案2:RAN2は、ULフィードバックを含む再送方式がFeMTC UE用のSC−PTMに導入されるべきかどうかについて議論すべきである。
(2.2.2.強化カバレッジのサポート)
現在、Connected及びIDLEのリリース14前のUEは、MBMSサービスを受信することができる。リリース14のUEは強化カバレッジにあると仮定されるので、現在のマルチキャストメカニズムの原則が適用されるべきである。
提案3:ConnectedとIDLEのリリース14のUEは、強化カバレッジでSC−PTMも受信できる必要がある。
信号の繰り返しは、帯域幅を削減したアクセス技術に加えて、リリース13のカバレッジ強化をサポートするための重要なコンポーネントである。この繰り返し送信技術は、強化カバレッジにおいてUEへのリリース14マルチキャストに再使用されると考えられる。RAN2の観点からは、少なくともBCCH(SIB20)及びDL−SCH(SC−MCCH及びSC−PTM)を考慮する必要があり、これらのチャネルの(最大)繰り返し回数はRRCによって既に提供されている、すなわちpdsch−maxNumRepetitionCEmodeA、pdsch−maxNumRepetitionCEmodeB及びmpdcch−NumRepetition。MPDCCHは、PDSCHの繰り返しの実際の回数を提供する。対応するPDSCHを割り当てるMPDCCHが使用される場合、SC−MCCH/SC−PTM送信のためのmpdcch−NumRepetitionは、IDLE UEに対してSIB中で提供する必要がある。さらに、SC−MCCHの繰り返しは、アクセスレイテンシを制限するために、SIB20、すなわちsc−mcch−RepetionPeriod−r13で既に提供されている。それは強化カバレッジをサポートするために再利用することもできる。RAN2がこれらの変更が必要であることに同意する場合、RAN1にはRAN2の意見も通知する必要がある。
考察4:強化カバレッジでのマルチキャスティングでは、繰り返し技法を再利用する必要がある。
提案4:RAN2が考察4に同意する場合、希望の変更を通知するためにLSがRAN1に送られるべきである。
現在のアイドルモード手順によれば、MBMSサービスを受信又は関心を持つUEは、他の周波数にわたってSC−PTMを提供する周波数に優先順位を付けること、すなわち最も高い優先順位を考慮することができる。一方、「カバレッジを向上させるためのセル選択基準Sによるランク付けは、現在のサービングセルが強化されたカバレッジを使用してしかアクセスできない場合に周波数内(intra-frequency)及び周波数間(inter-frequency)セル再選択に適用される」と規定されており、UEが強化カバレッジ内にある場合、すべての周波数を等しい優先度とする。強化カバレッジにおけるSC−PTM受信は、リリース13において明確に想定されていないので、現在の仕様により、強化カバレッジのUEは、通常のカバレッジで行われるようにSC−PTM周波数を優先させることができることが確認される。また、RAN2は、仕様にメモを追加するなど、いくつかの小さな強化が必要かどうかを議論する必要がある。
提案5:RAN2は、強化カバレッジ内のUEが関心のあるマルチキャストサービスを提供する周波数に優先順位を付けることを許可されているかどうかを議論し、明確にすべきである。
(2.2.3.その他の最適化)
(2.2.3.1.サービス継続性)
現在の仕様では、SC−MCCHは、SCPTM−NeighbourCellList内の隣接セル情報、すなわち物理セルID及び周波数を提供する。サービングセルがSC−PTMを提供しないTMGIにUEの関心がある場合、UEは、関心のあるTMGIを探索するために、隣接セルのSC−MCCHを復号する必要がある。これは、周波数間測定よりもさらに復号化するためにUEのバッテリを消費し、これは、このWIで幾分強化されたUEの移動性に大きな影響を及ぼす。したがって、低消費電力でFeMTC UEのモビリティを促進するために、いくつかの追加情報をブロードキャストする必要があるかどうかについて議論すべきである。
提案6:RAN2は、より低い電力消費でUEの移動性を支援するために、例えばSC−MCCHにおいて追加の情報がブロードキャストされるか否かを議論すべきである。
(2.2.3.2.ワンショットマルチキャスト)
2.2.1節で説明したように、ファームウェア/ソフトウェアアップデートのユースケースは、ブロードキャストサービスではなくマルチキャストタイプのサービスである。ファームウェアはファイルのセットであると仮定することもできるので、同じファームウェアが何度もマルチキャストされることは効率的ではない。現在のMBMSサービスでは、「アプリケーション/サービス層が、各サービスに対して、TMGI、セッションの開始及び終了時間、周波数及びMBMSサービスエリア識別子をUSDで提供すると仮定している。これは、ワンショットマルチキャスティングを実行することを可能にすることができる。すなわち、1つのファームウェアは、適切な開始/終了時間をUSDで設定することによって、一度だけマルチキャストされる。ただし、ユニキャストでUSDを取得する必要がある。したがって、関連するUEは、ファームウェアが配信されるときに少なくとも1回はRRC接続を確立する必要があり、NW容量及びUE電力消費の観点からは効率的ではない。したがって、RANレベルの最適化、例えばUSDと相互作用する/補完する開始/停止時間、TMGIベースのページングなどのRANレベル情報など、ある種の最適化が必要な場合がある。
提案7:RAN2は、ワンショットマルチキャスト配信を容易にするためにRANレベルの最適化が必要かどうかを議論すべきである。
[相互参照]
本願は米国仮出願第62/372919号(2016年8月10日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。

Claims (4)

  1. 移動通信システムのためのユーザ装置であって、
    システム送受信帯域よりも狭い制限帯域幅内で無線信号を送受信するように構成された送受信機と、
    前記送受信機を用いて、SC−PTM(Single Cell Point−To−Multipoint)を用いてMBMS(Multimedia Broadcast Multicast Service)サービスを提供する基地局との無線通信を行う制御部と、を備え、
    前記制御部は、前記基地局が管理するサービングセルに隣接する隣接セルが提供するMBMSサービスに対応付けられたグループRNTIを前記基地局から前記サービングセルを介して受信する処理を行い、
    前記グループRNTIは、前記SC−PTM用のシステム情報ブロック又は前記SC−PTM用のマルチキャスト制御チャネルにより前記基地局から送信される
    ユーザ装置。
  2. 移動通信システムのためのユーザ装置を制御するプロセッサであって、
    システム送受信帯域よりも狭い制限帯域幅内において、SC−PTM(Single Cell Point−To−Multipoint)を用いてMBMS(Multimedia Broadcast Multicast Service)サービスを提供する基地局との無線通信を行う処理と
    前記基地局が管理するサービングセルに隣接する隣接セルが提供するMBMSサービスに対応付けられたグループRNTIを前記基地局から前記サービングセルを介して受信する処理と、を実行し、
    前記グループRNTIは、前記SC−PTM用のシステム情報ブロック又は前記SC−PTM用のマルチキャスト制御チャネルにより前記基地局から送信される
    プロセッサ。
  3. 移動通信システムのための基地局であって、
    システム送受信帯域よりも狭い制限帯域幅内で無線信号を送受信するように構成されたユーザ装置に対して、SC−PTM(Single Cell Point−To−Multipoint)を用いてMBMSサービスを提供する制御部を備え、
    前記制御部は、前記基地局が管理するサービングセルに隣接する隣接セルが提供するMBMSサービスに対応付けられたグループRNTIを、前記サービングセルを介して前記ユーザ装置に送信する処理を行い、
    前記グループRNTIは、前記SC−PTM用のシステム情報ブロック又は前記SC−PTM用のマルチキャスト制御チャネルにより送信される
    基地局。
  4. システム送受信帯域よりも狭い制限帯域幅内で無線信号を送受信するように構成されるユーザ装置と、SC−PTM(Single Cell Point−To−Multipoint)を用いてMBMSサービスを提供する基地局と、を有する移動通信システムに用いられる方法であって、
    前記ユーザ装置が、前記基地局が管理するサービングセルに隣接する隣接セルが提供するMBMSサービスに対応付けられたグループRNTIを前記基地局から前記サービングセルを介して受信し、
    前記グループRNTIは、前記SC−PTM用のシステム情報ブロック又は前記SC−PTM用のマルチキャスト制御チャネルにより前記基地局から送信される
    方法。
JP2019066161A 2016-08-10 2019-03-29 ユーザ装置、プロセッサ、基地局及び方法 Pending JP2019146215A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662372919P 2016-08-10 2016-08-10
US62/372,919 2016-08-10

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018533009A Division JP6506887B2 (ja) 2016-08-10 2017-08-04 無線端末及び基地局

Publications (1)

Publication Number Publication Date
JP2019146215A true JP2019146215A (ja) 2019-08-29

Family

ID=61162559

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018533009A Active JP6506887B2 (ja) 2016-08-10 2017-08-04 無線端末及び基地局
JP2019066161A Pending JP2019146215A (ja) 2016-08-10 2019-03-29 ユーザ装置、プロセッサ、基地局及び方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018533009A Active JP6506887B2 (ja) 2016-08-10 2017-08-04 無線端末及び基地局

Country Status (4)

Country Link
US (1) US10939251B2 (ja)
EP (1) EP3484193B1 (ja)
JP (2) JP6506887B2 (ja)
WO (1) WO2018030305A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734658B (zh) * 2016-08-11 2023-01-31 夏普株式会社 单小区多播业务的信息变更传输方法和设备
CN111314973B (zh) * 2016-08-12 2021-12-14 华为技术有限公司 一种数据处理方法以及相关设备
US20180337759A1 (en) * 2017-05-16 2018-11-22 Qualcomm Incorporated Bandwidth dependent control size
US11991610B2 (en) * 2018-08-10 2024-05-21 Apple Inc. Long term evolution (LTE) control region for downlink transmissions for enhanced machine type communications (eMTC)
WO2021051319A1 (zh) * 2019-09-18 2021-03-25 Oppo广东移动通信有限公司 一种drx配置方法及装置、终端设备、网络设备
CN113853824B (zh) * 2019-10-26 2024-04-12 华为技术有限公司 一种通信方法及装置
US11452166B2 (en) * 2019-11-07 2022-09-20 Qualcomm Incorporated Discontinuous reception operation for new radio multicast communications
WO2021112740A1 (en) * 2019-12-06 2021-06-10 Telefonaktiebolaget Lm Ericsson (Publ) Control resources for bandwidth-restricted wireless devices
US11540290B2 (en) * 2020-01-09 2022-12-27 Qualcomm Incorporated Modified downlink control information to support low tier user equipment
KR20210117845A (ko) * 2020-03-20 2021-09-29 삼성전자주식회사 무선 통신 시스템에서 방송서비스 설정 정보를 처리하기 위한 장치 및 방법
WO2021098106A1 (en) * 2020-03-24 2021-05-27 Zte Corporation Dynamically changing multicast/broadcast service delivery
US20230239661A1 (en) * 2020-06-29 2023-07-27 Telefonaktiebolaget Lm Ericsson (Publ) Multicast and broadcast services for user equipments in idle and inactive states
JP7521680B2 (ja) 2020-07-13 2024-07-24 日本電気株式会社 端末装置、通信装置、端末装置の方法、通信装置の方法、及びプログラム
EP4187939A4 (en) * 2020-07-22 2024-08-07 Kt Corp MBS DATA TRANSMISSION METHOD AND DEVICE THEREFOR
KR102689447B1 (ko) * 2020-07-22 2024-07-31 주식회사 케이티 Mbs 데이터 전송 방법 및 그 장치
US20230362959A1 (en) * 2020-08-06 2023-11-09 Samsung Electronics Co., Ltd. Method and system for managing configuration and control information of mbs services in wireless network
CN116349392A (zh) * 2020-10-19 2023-06-27 株式会社Kt Mbs数据处理方法及装置
US12137467B2 (en) 2020-10-22 2024-11-05 Apple Inc. MBMS transmission reliability enhancement
EP4260622A1 (en) * 2020-12-08 2023-10-18 Toyota Jidosha Kabushiki Kaisha Targeted multicast broadcast services (mbs) notification signaling
US11877238B2 (en) 2021-03-29 2024-01-16 Parsa Wireless Communications Llc Power saving for multicast broadcast services
US20240260134A1 (en) * 2021-05-14 2024-08-01 Parsa Wireless Communications Llc Multicast broadcast services notification and operation in inactive state
WO2023283512A1 (en) * 2021-07-09 2023-01-12 Qualcomm Incorporated Discontinuous reception methodology for multimedia
US12126497B2 (en) * 2021-09-01 2024-10-22 Parsa Wireless Communications Llc Prediction-based data transmission by internet of things (IoT) devices
WO2024138446A1 (en) * 2022-12-28 2024-07-04 Nec Corporation Devices, methods, and medium for communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131087A1 (ja) * 2008-04-22 2009-10-29 シャープ株式会社 通信装置、通信方法
JP2011509549A (ja) * 2007-12-10 2011-03-24 リサーチ イン モーション リミテッド 単一セルポイントツーマルチポイント多重化およびスケジューリングのためのシステムおよび方法
WO2016123547A1 (en) * 2015-01-30 2016-08-04 Kyocera Corporation Transmission mechanism selection for point to multipoint (ptm) compatible services using serving cell information
WO2016121786A1 (ja) * 2015-01-30 2016-08-04 京セラ株式会社 基地局、プロセッサ及びユーザ端末

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924998B (zh) * 2009-06-09 2011-12-21 电信科学技术研究院 一种数据传输方法、系统及装置
MX2017002023A (es) * 2014-08-15 2017-08-14 Interdigital Patent Holdings Inc Metodo y aparato para apoyar la transmision de enlace ascendente y un mbms para una wtru con ancho de banda reducido.
US10368329B2 (en) * 2016-04-11 2019-07-30 Qualcomm Incorporated Synchronization for standalone LTE broadcast
CN114696964B (zh) * 2016-08-09 2024-04-05 Lg电子株式会社 在无线通信系统中发送/接收数据的方法及其设备
US11039460B2 (en) * 2016-08-09 2021-06-15 Lg Electronics Inc. Method for transmitting/receiving data in wireless communication system supporting Narrow Band Internet-of-Things and device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509549A (ja) * 2007-12-10 2011-03-24 リサーチ イン モーション リミテッド 単一セルポイントツーマルチポイント多重化およびスケジューリングのためのシステムおよび方法
WO2009131087A1 (ja) * 2008-04-22 2009-10-29 シャープ株式会社 通信装置、通信方法
WO2016123547A1 (en) * 2015-01-30 2016-08-04 Kyocera Corporation Transmission mechanism selection for point to multipoint (ptm) compatible services using serving cell information
WO2016121786A1 (ja) * 2015-01-30 2016-08-04 京セラ株式会社 基地局、プロセッサ及びユーザ端末

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HUAWEI (RAPPORTEUR): "Summary of email discussion: [91#23][LTE/SC-PTM] Service continuity", 3GPP TSG-RAN WG2 #91BIS R2-154196 [ONLINE], JPN6019023510, 1 October 2015 (2015-10-01), pages 1 - 11, ISSN: 0004175349 *
HUAWEI, HISILICON: "SC-PTM configuration and operation", 3GPP TSG-RAN WG2 MEETING #91 R2-153378 [ONLINE], JPN6017039208, 14 August 2015 (2015-08-14), pages 1 - 6, ISSN: 0004060925 *
HUAWEI, HISILICON: "Views on LTE Rel-14", 3GPP TSG RAN MEETING #69 RP-151356 [ONLINE], JPN6019023509, 8 September 2015 (2015-09-08), pages 1 - 24, ISSN: 0004175348 *
INTEL CORPORATION: "New WID: High-Performance eMTC (HeMTC) for LTE", 3GPP TSG RAN MEETING #72 RP-161274 [ONLINE], JPN6019023512, 16 June 2016 (2016-06-16), pages 1 - 8, ISSN: 0004175346 *
KYOCERA: "Multicast enhancements for FeMTC", 3GPP TSG-RAN WG2 #95 R2-165056 [ONLINE], JPN6017039212, 12 August 2016 (2016-08-12), pages 1 - 5, ISSN: 0004060926 *
QUALCOMM INCORPORATED: "New WI proposal for LTE MTC and NB-IoT enhancements", 3GPP TSG RAN MEETING #72 RP-161099 [ONLINE], JPN6019023506, 7 June 2016 (2016-06-07), pages 1 - 8, ISSN: 0004175347 *

Also Published As

Publication number Publication date
EP3484193A4 (en) 2019-05-15
JPWO2018030305A1 (ja) 2019-06-13
EP3484193A1 (en) 2019-05-15
EP3484193B1 (en) 2021-03-24
US20190182632A1 (en) 2019-06-13
US10939251B2 (en) 2021-03-02
JP6506887B2 (ja) 2019-04-24
WO2018030305A1 (ja) 2018-02-15

Similar Documents

Publication Publication Date Title
US10939251B2 (en) User equipment and base station
US10952096B2 (en) Base station and user terminal
JP6766169B2 (ja) 無線端末及び基地局
JP6741969B2 (ja) 移動通信システム
JP6689933B2 (ja) 無線端末及びネットワーク装置
JP6732206B2 (ja) 無線端末及び基地局
WO2021159466A1 (en) Methods and apparatus of group scheduling for nr multicast service
WO2022025013A1 (ja) 通信制御方法
WO2022239774A1 (ja) 通信制御方法、基地局、及びユーザ装置
US20230413229A1 (en) Method and Apparatus for Relay Communication
JPWO2018062248A1 (ja) 無線端末及び基地局
US20240179722A1 (en) Communication method
JP7425259B2 (ja) 通信制御方法及び基地局
US20240179798A1 (en) Communication method
WO2018143246A1 (ja) 無線端末及び基地局

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190329

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190329

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191217