[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019027685A - Condenser - Google Patents

Condenser Download PDF

Info

Publication number
JP2019027685A
JP2019027685A JP2017147797A JP2017147797A JP2019027685A JP 2019027685 A JP2019027685 A JP 2019027685A JP 2017147797 A JP2017147797 A JP 2017147797A JP 2017147797 A JP2017147797 A JP 2017147797A JP 2019027685 A JP2019027685 A JP 2019027685A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchange
flow path
outlet
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017147797A
Other languages
Japanese (ja)
Other versions
JP2019027685A5 (en
Inventor
康太 有野
Yasuta Arino
康太 有野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr Thermal Systems Japan Ltd
Original Assignee
Keihin Thermal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Thermal Technology Corp filed Critical Keihin Thermal Technology Corp
Priority to JP2017147797A priority Critical patent/JP2019027685A/en
Publication of JP2019027685A publication Critical patent/JP2019027685A/en
Publication of JP2019027685A5 publication Critical patent/JP2019027685A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide a condenser capable of making uniform diversion of a coolant to all heat exchange tubes connected to a condensation part inlet header.SOLUTION: A condenser comprises: a condensation part inlet header 12; multiple heat exchange tubes 5 connected to the condensation part inlet header 12; and an inlet member 16 in which a coolant inflow path 17 is formed. The inlet member 16 includes: one inflow port 23 through which a coolant flows in from the outside; and two outflow ports 24 which are formed while being spaced vertically and through which the coolant flows into the condensation part inlet header 12. The coolant inflow path 17 includes one first channel portion 25 communicating to the inflow port 23, and two second channel portions 26 communicating the first channel portion 25 with the outflow ports 24. A full height portion of each of the outflow ports 24 is located outside of a vertical range of one end opening 5a through which the coolant flows in, in the heat exchange tube 5 that is closest to each of the outflow ports 24.SELECTED DRAWING: Figure 3

Description

この発明は、たとえば自動車に搭載されるカーエアコンに好適に用いられるコンデンサに関する。   The present invention relates to a capacitor suitably used for, for example, a car air conditioner mounted on an automobile.

この明細書および特許請求の範囲において、図1、図2、図7および図8の上下、左右を上下、左右をいうものとする。また、この明細書において、図1、図2、図7および図8の紙面表裏方向を通風方向というものとする。   In this specification and claims, the top, bottom, left and right of FIGS. 1, 2, 7, and 8 are the top and bottom, and the left and right. Moreover, in this specification, it shall be called the ventilation direction of the paper surface front and back of FIG.1, FIG.2, FIG.7 and FIG.

たとえばカーエアコンのコンデンサとして、凝縮部、凝縮部の下方に設けられた過冷却部、および凝縮部と過冷却部との間に設けられ、かつ凝縮部から流入した気液混相冷媒を気相冷媒と液相冷媒とに分離するとともに液相冷媒を過冷却部に送り出す受液部とを備えており、凝縮部が、長手方向を上下方向に向けた状態で左右方向に間隔をおいて配置された凝縮部入口ヘッダおよび凝縮部出口ヘッダと、両ヘッダ間において長手方向を左右方向に向けるとともに上下方向に間隔をおいて並列状に配置され、かつ長手方向の両端が凝縮部入口ヘッダおよび凝縮部出口ヘッダに接続されるとともに凝縮部入口ヘッダに接続された一端から冷媒が流入するようになされた複数の扁平直管状熱交換管からなる1つの凝縮用熱交換パスと、凝縮部入口ヘッダに接合されかつ凝縮部入口ヘッダ内に冷媒を流入させる入口部材とを有し、過冷却部が、長手方向を上下方向に向けた状態で左右方向に間隔をおいて配置された過冷却部入口ヘッダおよび過冷却部出口ヘッダと、両ヘッダ間において長手方向を左右方向に向けるとともに上下方向に間隔をおいて並列状に配置され、かつ長手方向の両端が過冷却部入口ヘッダおよび過冷却部出口ヘッダに接続されるとともに過冷却部出口ヘッダに接続された一端から冷媒が流出するようになされた複数の直管状熱交換管からなる1つの過冷却用熱交換パスと、過冷却部出口ヘッダに接合されかつ過冷却部出口ヘッダ内から冷媒を流出させる出口部材とを有し、凝縮部の入口部材に、冷媒が外部から流入する1つの流入口と、冷媒が凝縮部入口ヘッダ内へ流出する1つの流出口とを有する1つの冷媒流入路が形成され、過冷却部の出口部材に、冷媒が過冷却部出口ヘッダから流入する流入口と、冷媒が外部に流出する流出口とを有する冷媒流出路が形成されているコンデンサが広く知られている(たとえば、特許文献1参照)。   For example, as a condenser of a car air conditioner, a condensing unit, a supercooling unit provided below the condensing unit, and a gas-liquid mixed phase refrigerant provided between the condensing unit and the supercooling unit and flowing in from the condensing unit are used as gas phase refrigerants. And a liquid receiving part for sending the liquid phase refrigerant to the supercooling part, and the condensing part is arranged with an interval in the left-right direction with the longitudinal direction oriented in the vertical direction. The condensing unit inlet header and the condensing unit outlet header are arranged in parallel in the longitudinal direction between the headers, with the longitudinal direction being set to the left and right, and spaced in the vertical direction. One condensing heat exchange path comprising a plurality of flat straight tubular heat exchange tubes connected to the outlet header and adapted to allow refrigerant to flow from one end connected to the condensing unit inlet header, and to the condensing unit inlet And a supercooling portion that is disposed at intervals in the left-right direction with the longitudinal direction thereof being directed in the vertical direction. The inlet header and the supercooling section outlet header are arranged in parallel in the longitudinal direction between the headers in the left-right direction and spaced apart in the vertical direction, and both ends of the longitudinal direction are the supercooling section inlet header and the supercooling section. One supercooling heat exchange path comprising a plurality of straight tubular heat exchange pipes connected to the outlet header and configured to allow the refrigerant to flow out from one end connected to the subcooler outlet header, and the subcooler outlet header And an outlet member for allowing the refrigerant to flow out of the subcooling section outlet header, and one inlet for allowing the refrigerant to flow from the outside into the inlet section of the condensing section, and the refrigerant flowing into the condensing section inlet header. One refrigerant inflow passage having one outflow port is formed, and the outlet member of the supercooling unit has an inlet port from which the refrigerant flows in from the supercooling unit outlet header, and an outlet port from which the refrigerant flows out to the outside. A capacitor in which a refrigerant outflow path is formed is widely known (see, for example, Patent Document 1).

ところで、凝縮部入口ヘッダ内に流入する冷媒は気相であるから、入口部材の冷媒流入路の流路断面積は、出口部材の冷媒流出路の流路断面積よりも大きくすることが要求される。その結果、特許文献1の図2に記載されているように、凝縮用熱交換パスの少なくとも1つ、ここでは2つの熱交換管の冷媒が流入する前記一端の全高さ部分が、入口部材の流出口の上下方向の範囲内に位置することが有り、この場合、冷媒流入路から当該2つの熱交換管内に冷媒が流入しやすくなる。したがって、当該2つの熱交換管内に流入する冷媒量が比較的多くなるとともに、これら2つの熱交換管を除いた凝縮用熱交換パスの他の熱交換管内に流入する冷媒量が比較的少なくなり、その結果、入口部材の冷媒流入路を通って凝縮部入口ヘッダ内に流入した冷媒の凝縮部入口ヘッダに接続された全熱交換管への分流を均一化することが困難な場合がある。   By the way, since the refrigerant flowing into the condenser inlet header is a gas phase, the flow passage cross-sectional area of the refrigerant inflow passage of the inlet member is required to be larger than the flow passage cross-sectional area of the refrigerant outflow passage of the outlet member. The As a result, as described in FIG. 2 of Patent Document 1, at least one of the heat exchange paths for condensation, in this case, the entire height portion of the one end into which the refrigerant of the two heat exchange pipes flows is the inlet member. In some cases, the refrigerant is positioned within the vertical range of the outlet, and in this case, the refrigerant easily flows into the two heat exchange tubes from the refrigerant inflow path. Therefore, the amount of refrigerant flowing into the two heat exchange tubes becomes relatively large, and the amount of refrigerant flowing into other heat exchange tubes in the heat exchange path for condensation excluding these two heat exchange tubes becomes relatively small. As a result, it may be difficult to equalize the flow of the refrigerant that has flowed into the condenser inlet header through the refrigerant inlet passage of the inlet member to the total heat exchange pipe connected to the condenser inlet header.

特開2005−241237号公報JP 2005-241237 A

この発明の目的は、上記実情に鑑み、凝縮部入口ヘッダ内に流入した冷媒の凝縮部入口ヘッダに接続された全熱交換管への分流を均一化しうるコンデンサを提供することにある。   In view of the above circumstances, an object of the present invention is to provide a condenser capable of equalizing the flow of refrigerant flowing into the condenser inlet header to the total heat exchange pipe connected to the condenser inlet header.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)長手方向を上下方向に向けて配置された凝縮部入口ヘッダと、長手方向を左右方向に向けるとともに上下方向に間隔をおいて並列状に配置され、かつ長手方向の一端が凝縮部入口ヘッダに接続されるとともに凝縮部入口ヘッダに接続された一端の開口から冷媒が流入するようになされた複数の熱交換管からなる熱交換パスとを備えており、凝縮部入口ヘッダに、凝縮部入口ヘッダ内に冷媒を流入させる入口部材が接合され、入口部材に、冷媒が外部から流入する流入口と、冷媒が凝縮部入口ヘッダ内へ流出する流出口とを有する冷媒流入路が形成されており、入口部材の冷媒流入路を通って凝縮部入口ヘッダ内に流入した冷媒が、凝縮部入口ヘッダに接続された熱交換管の前記一端開口から熱交換管内に流入するようになっているコンデンサにおいて、
入口部材が、1つの流入口および上下方向に間隔をおいて形成された複数の流出口を備えており、冷媒流入路が、流入口に通じる1つの第1流路部分、および当該第1流路部分の冷媒流れ方向下流側端部と流出口とを通じさせる流出口と同数の第2流路部分を有し、各流出口の全高さ部分のうちの少なくとも一部が、各流出口に最も近い位置にある熱交換管における冷媒が流入する前記一端開口の上下方向の範囲外に位置しているコンデンサ。
1) Condenser inlet header arranged with the longitudinal direction facing up and down, and arranged in parallel with the longitudinal direction oriented in the left and right direction and spaced in the vertical direction, and one end in the longitudinal direction is arranged at the condenser inlet header And a heat exchange path composed of a plurality of heat exchange tubes adapted to allow the refrigerant to flow in from an opening at one end connected to the condenser inlet header. The condenser inlet is connected to the condenser inlet header. An inlet member for allowing the refrigerant to flow into the header is joined, and a refrigerant inflow path having an inlet for the refrigerant to flow in from the outside and an outlet for the refrigerant to flow into the condenser inlet header is formed in the inlet member. The refrigerant that has flowed into the condenser inlet header through the refrigerant inlet passage of the inlet member flows into the heat exchanger pipe from the one end opening of the heat exchanger pipe connected to the condenser inlet header. In,
The inlet member includes one inflow port and a plurality of outflow ports formed at intervals in the vertical direction, and the refrigerant inflow path is one first flow path portion communicating with the inflow port, and the first flow There are as many second flow path portions as the outlets through which the downstream end portion of the passage direction in the refrigerant flow direction and the outlets pass, and at least a part of the total height of each outlet is the most in each outlet. A capacitor located outside a range in a vertical direction of the one end opening into which a refrigerant flows in a heat exchange pipe at a close position.

2)各流出口の全高さ部分が、各流出口に最も近い位置にある熱交換管における冷媒が流入する前記一端開口の上下方向の範囲外に位置している上記1)記載のコンデンサ。   2) The capacitor according to 1) above, wherein the entire height portion of each outlet is located outside the range in the vertical direction of the one end opening into which the refrigerant flows in the heat exchange pipe located closest to each outlet.

3)熱交換管が直管からなるとともに熱交換管の中心線が直線状であり、入口部材の冷媒流入路の第1流路部分および第2流路部分の中心線が直線状であり、熱交換管の中心線と、第1流路部分および第2流路部分の中心線とが平行となっている上記1)または2)記載のコンデンサ。   3) The heat exchange pipe is a straight pipe, the center line of the heat exchange pipe is straight, and the center lines of the first flow path portion and the second flow path portion of the refrigerant inflow path of the inlet member are straight, The capacitor according to 1) or 2) above, wherein the center line of the heat exchange pipe and the center lines of the first flow path portion and the second flow path portion are parallel to each other.

4)上下方向に隣接する流出口間の範囲内に、少なくとも1つの熱交換管が位置している上記3)記載のコンデンサ。   4) The capacitor according to 3) above, wherein at least one heat exchange pipe is located within a range between the outlets adjacent in the vertical direction.

5)入口部材の冷媒流入路の第2流路部分の流路断面積が全長にわたって同一であり、入口部材の冷媒流入路の各流出口の形状が前記第2流路部分の横断面形状と同一であり、前記各流出口の形状および前記第2流路部分の横断面形状が、通風方向の寸法が上下方向の寸法よりも大きくなった扁平状である上記1)〜4)のうちのいずれかに記載のコンデンサ。   5) The flow passage cross-sectional area of the second flow passage portion of the refrigerant inflow passage of the inlet member is the same over the entire length, and the shape of each outlet of the refrigerant flow passage of the inlet member is the cross-sectional shape of the second flow passage portion. Of the above-mentioned 1) to 4), the shape of each outlet and the cross-sectional shape of the second flow path portion are flat with the ventilation direction dimension larger than the vertical dimension. A capacitor according to any one of the above.

6)入口部材の全流出口のうちの少なくとも1つの流出口の大きさが、他の流出口の大きさと異なっている上記1)〜5)のうちのいずれかに記載のコンデンサ。   6) The capacitor according to any one of the above 1) to 5), wherein the size of at least one of the outlets of the inlet member is different from the size of the other outlets.

7)入口部材の冷媒流入路の第1流路部分が、一端が入口部材の外面に開口した有底穴からなり、当該有底穴の一端開口が流入口となっており、第2流路部分が、一端が第1流路部分となる有底穴の底面に開口するとともに他端が凝縮部入口ヘッダ内に開口した貫通穴からなり、当該貫通穴の凝縮部入口ヘッダ側開口が流出口となっている上記1)〜6)のうちのいずれかに記載のコンデンサ。   7) The first flow path portion of the refrigerant inflow passage of the inlet member is formed of a bottomed hole having one end opened on the outer surface of the inlet member, and the one end opening of the bottomed hole is an inflow port, and the second flow path The portion is formed of a through hole having one end opened at the bottom of the bottomed hole that becomes the first flow path portion and the other end opened into the condenser inlet header, and the condenser inlet header side opening of the through hole is the outlet The capacitor according to any one of 1) to 6) above.

8)第1流路部分になる有底穴の長手方向と、第2流路部分になる貫通穴の長手方向とが同方向を向いている上記7)記載のコンデンサ。   8) The capacitor described in 7) above, wherein the longitudinal direction of the bottomed hole serving as the first flow path portion and the longitudinal direction of the through hole serving as the second flow path portion are directed in the same direction.

上記1)〜8)のコンデンサによれば、入口部材が、1つの流入口および上下方向に間隔をおいて形成された複数の流出口を備えており、冷媒流入路が、流入口に通じる1つの第1流路部分、および当該第1流路部分の冷媒流れ方向下流側端部と流出口とを通じさせる流出口と同数の第2流路部分を有し、各流出口の全高さ部分のうちの少なくとも一部が、各流出口に最も近い位置にある熱交換管における冷媒が流入する一端開口の上下方向の範囲外に位置しているので、流出口に最も近い位置にある熱交換管内に冷媒が流入しにくくなるとともに、流出口に最も近い位置にある熱交換管を除いた他の熱交換管内にも冷媒が流入しやすくなる。したがって、入口部材の冷媒流入路を通って凝縮部入口ヘッダ内に流入した冷媒を、凝縮部入口ヘッダに接続された全熱交換管に均一に分流することができ、コンデンサの性能低下を防止することが可能になる。   According to the capacitors 1) to 8) above, the inlet member includes one inflow port and a plurality of outflow ports formed at intervals in the vertical direction, and the refrigerant inflow path is connected to the inflow port 1 Two first flow path portions, and the same number of second flow path portions as the outlets through which the downstream end portion of the first flow path portion in the refrigerant flow direction and the outlets pass. Since at least a part of them is located outside the vertical range of the one end opening into which the refrigerant flows in the heat exchange pipes closest to the respective outlets, the inside of the heat exchange pipes closest to the outlets It is difficult for the refrigerant to flow into the refrigerant, and the refrigerant easily flows into other heat exchange pipes except for the heat exchange pipe located closest to the outlet. Therefore, the refrigerant that has flowed into the condenser inlet header through the refrigerant inlet passage of the inlet member can be evenly divided into the total heat exchange pipe connected to the condenser inlet header, thereby preventing deterioration of the condenser performance. It becomes possible.

上記2)〜4)のコンデンサによれば、凝縮部出口ヘッダ内に流入した冷媒を、凝縮部入口ヘッダに接続された全熱交換管に、一層均一に分流することができる。   According to the capacitors 2) to 4), the refrigerant flowing into the condenser outlet header can be more evenly divided into the total heat exchange pipe connected to the condenser inlet header.

上記5)のコンデンサによれば、入口部材の大きさを同一と考えると、前記各流出口の形状および前記第2流路部分の断面形状を円形にした場合に比較して、前記各流出口の面積および前記第2流路部分の流路断面積を大きくすることができ、流路抵抗を低減することができる。   According to the capacitor of 5) above, assuming that the size of the inlet member is the same, each outlet is compared with the case where the shape of each outlet and the cross-sectional shape of the second flow path portion are circular. And the cross-sectional area of the second flow path portion can be increased, and the flow resistance can be reduced.

上記6)のコンデンサによれば、入口部材の冷媒流入路および流出口を通って凝縮部入口ヘッダ内に流入した冷媒の凝縮部入口ヘッダに接続された全熱交換管への流入量を、効果的に均一化することができる。   According to the condenser of 6), the amount of refrigerant flowing into the condenser inlet header through the refrigerant inlet passage and outlet of the inlet member into the total heat exchange pipe connected to the condenser inlet header is effective. Can be made uniform.

上記7)のコンデンサによれば、第1流路部分から第2流路部分への冷媒の流れがスムーズになり、冷媒流入路での流路抵抗の増加が抑制される。   According to the capacitor 7), the flow of the refrigerant from the first flow path portion to the second flow path portion becomes smooth, and an increase in flow resistance in the refrigerant inflow passage is suppressed.

上記8)のコンデンサによれば、第1流路部分および第2流路部分の加工が容易であり、比較的安価に入口部材に冷媒流入路を形成することができる。   According to the capacitor 8), the processing of the first flow path part and the second flow path part is easy, and the refrigerant inflow path can be formed in the inlet member at a relatively low cost.

この発明によるコンデンサの全体構成を具体的に示す正面図である。It is a front view which shows concretely the whole structure of the capacitor | condenser by this invention. 図1のコンデンサを模式的に示す正面図である。FIG. 2 is a front view schematically showing the capacitor of FIG. 1. 図1のコンデンサの要部を示す一部を省略した垂直断面図である。FIG. 2 is a vertical sectional view in which a part of the capacitor shown in FIG. 1 is omitted. 図1のコンデンサの要部を示す分解斜視図である。It is a disassembled perspective view which shows the principal part of the capacitor | condenser of FIG. 入口部材の変形例を示す図3相当の図である。It is a figure equivalent to FIG. 3 which shows the modification of an inlet member. 図5の入口部材を示す図4相当の図である。FIG. 6 is a view corresponding to FIG. 4 showing the inlet member of FIG. 5. この発明によるコンデンサの他の実施形態の全体構成を具体的に示す正面図である。It is a front view which shows concretely the whole structure of other embodiment of the capacitor | condenser by this invention. 図7のコンデンサを模式的に示す正面図である。It is a front view which shows the capacitor | condenser of FIG. 7 typically.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

また、全図面を通じて同一物および同一部分には同一符号を付す。   Moreover, the same code | symbol is attached | subjected to the same thing and the same part through all drawings.

図1はこの発明によるコンデンサの全体構成を具体的に示し、図2は図1のコンデンサを模式的に示し、図3および図4は図1のコンデンサの要部の構成を示す。図2においては、個々の熱交換管の図示は省略されるとともに、コルゲートフィン、サイドプレート、入口部材および出口部材の図示も省略されている。   FIG. 1 specifically shows the overall configuration of the capacitor according to the present invention, FIG. 2 schematically shows the capacitor of FIG. 1, and FIGS. 3 and 4 show the configuration of the main part of the capacitor of FIG. In FIG. 2, illustration of individual heat exchange tubes is omitted, and illustration of corrugated fins, side plates, inlet members, and outlet members is also omitted.

図1および図2において、コンデンサ(1)は、凝縮部(2)と、凝縮部(2)の下方に設けられた過冷却部(3)と、長手方向を上下方向に向けた状態で凝縮部(2)と過冷却部(3)との間に設けられ、かつ凝縮部(2)で凝縮した液相主体冷媒を貯留するとともに液相主体冷媒を過冷却部(3)に供給する液溜部の機能を有するアルミニウム製タンク状受液器(4)(受液部)とからなり、幅方向を通風方向に向けるとともに長手方向を左右方向に向けた状態で上下方向に間隔をおいて並列状に配置された複数のアルミニウム製扁平直管状熱交換管(5)と、長手方向を上下方向に向けた状態で左右方向に間隔をおいて配置されるとともに熱交換管(5)の左右両端部が接続された2つのアルミニウム製ヘッダタンク(6)(7)と、隣り合う熱交換管(5)どうしの間および上下両端の熱交換管(5)の外側に配置されて熱交換管(5)にろう材により接合されたアルミニウム製コルゲートフィン(8)と、上下両端のコルゲートフィン(8)の外側に配置されてコルゲートフィン(8)にろう材により接合されたアルミニウム製サイドプレート(9)とを備えている。以下、ろう材による接合をろう付というものとする。   1 and 2, the condenser (1) is condensed with the condenser (2), the supercooling part (3) provided below the condenser (2), and the longitudinal direction thereof being directed vertically. A liquid provided between the section (2) and the supercooling section (3) and storing the liquid phase main refrigerant condensed in the condensing section (2) and supplying the liquid phase main refrigerant to the subcooling section (3). It consists of an aluminum tank receiver (4) (receiver) that has the function of a reservoir, with the width direction oriented in the ventilation direction and the longitudinal direction oriented in the left-right direction, with an interval in the vertical direction. A plurality of flat aluminum tubular heat exchange pipes (5) arranged in parallel with the left and right sides of the heat exchange pipe (5) arranged at intervals in the left-right direction with the longitudinal direction facing the vertical direction Two aluminum header tanks (6) and (7) connected at both ends, and between the adjacent heat exchange pipes (5) and heat exchange pipes at the upper and lower ends ( Aluminum corrugated fins (8) that are placed outside of 5) and joined to the heat exchange pipe (5) with brazing material, and corrugated fins (8) that are placed outside of the corrugated fins (8) at both upper and lower ends. And an aluminum side plate (9) joined by a brazing material. Hereinafter, joining with a brazing material is referred to as brazing.

コンデンサ(1)の凝縮部(2)および過冷却部(3)には、それぞれ上下に連続して並んだ複数の熱交換管(5)からなる少なくとも1つ、ここでは1つの熱交換パス(P1)(P2)が設けられており、凝縮部(2)に設けられた熱交換パス(P1)が凝縮用熱交換パスとなり、過冷却部(3)に設けられた熱交換パス(P2)が過冷却用熱交換パスとなっている。そして、各熱交換パス(P1)(P2)を構成する全ての熱交換管(5)の冷媒流れ方向が同一となっているとともに、隣り合う2つの熱交換パスの熱交換管(5)の冷媒流れ方向が異なっている。ここで、凝縮部(2)の熱交換パス(P1)を第1熱交換パスといい、過冷却部(3)の熱交換パス(P2)を第2熱交換パスというものとする。   The condenser (2) and the supercooling section (3) of the condenser (1) are each provided with at least one heat exchange path (here, one heat exchange path ( P1) (P2) is provided, the heat exchange path (P1) provided in the condensing part (2) becomes a heat exchange path for condensation, and the heat exchange path (P2) provided in the supercooling part (3) Is a heat exchange path for supercooling. And the refrigerant | coolant flow direction of all the heat exchange pipe | tubes (5) which comprise each heat exchange path | pass (P1) (P2) is the same, and the heat exchange pipe | tube (5) of two adjacent heat exchange paths | paths The refrigerant flow direction is different. Here, the heat exchange path (P1) of the condensing part (2) is referred to as a first heat exchange path, and the heat exchange path (P2) of the supercooling part (3) is referred to as a second heat exchange path.

両ヘッダタンク(6)(7)内は、第1熱交換パス(P1)と第2熱交換パス(P2)との間でかつ下側の同一高さ位置に設けられたアルミニウム製仕切部材(11)により上下方向に並んだ2つの区画に仕切られており、コンデンサ(1)における両仕切部材(11)よりも上方に位置する部分が凝縮部(2)となり、両仕切部材(11)よりも下方に位置する部分が過冷却部(3)となっている。凝縮部(2)に1つの第1熱交換パス(P1)が設けられているので、右側ヘッダタンク(6)における仕切部材(11)よりも上方の区画が凝縮部入口ヘッダ(12)となっているとともに、左側ヘッダタンク(7)における仕切部材(11)よりも上方の区画が凝縮部出口ヘッダ(13)となっている。また、過冷却部(3)に1つの第2熱交換パス(P2)が設けられているので、左側ヘッダタンク(7)における仕切部材(11)よりも下方の区画が過冷却部入口ヘッダ(14)となっているとともに、右側ヘッダタンク(6)における仕切部材(11)よりも下方の区画が過冷却部出口ヘッダ(15)となっている。   Both header tanks (6) and (7) have aluminum partition members (at the same height position between the first heat exchange path (P1) and the second heat exchange path (P2)). 11) is divided into two compartments lined up and down, and the part located above the two partition members (11) in the capacitor (1) becomes the condensing part (2), and from the two partition members (11) The lower part is also the supercooling part (3). Since the first heat exchange path (P1) is provided in the condensing part (2), the section above the partition member (11) in the right header tank (6) becomes the condensing part inlet header (12). In addition, a section above the partition member (11) in the left header tank (7) is a condenser outlet header (13). In addition, since one second heat exchange path (P2) is provided in the supercooling section (3), the section below the partition member (11) in the left header tank (7) is the subcooling section inlet header ( 14) and the section below the partition member (11) in the right header tank (6) is the supercooling section outlet header (15).

凝縮部入口ヘッダ(12)の周壁外周面における長手方向中央部(X)よりも一端側に偏った部分、ここでは下端側に偏った部分に、両端が開口した冷媒流入路(17)を有し、かつ冷媒を凝縮部入口ヘッダ(12)内に流入させるアルミニウム製入口部材(16)がろう付されている。また、過冷却部出口ヘッダ(15)の周壁外面における長手方向中央部よりも上端側に偏った部分に、両端が開口した冷媒流出路(19a)を有し、かつ冷媒を過冷却部出口ヘッダ(15)に形成された冷媒出口(18)を通して外部に流出させるアルミニウム製出口部材(19)がろう付されている。   The condenser inlet header (12) has a refrigerant inflow passage (17) open at both ends at a portion of the outer peripheral surface of the peripheral wall that is biased toward one end relative to the longitudinal central portion (X), in this case, that is biased toward the lower end. In addition, an aluminum inlet member (16) for allowing the refrigerant to flow into the condenser inlet header (12) is brazed. The supercooling section outlet header (15) has a refrigerant outflow passage (19a) having both ends open at a portion of the outer peripheral surface of the peripheral wall that is biased toward the upper end side of the longitudinal central portion, and the refrigerant is supplied to the supercooling section outlet header. An aluminum outlet member (19) that flows out through the refrigerant outlet (18) formed in (15) is brazed.

したがって、コンデンサ(1)の凝縮部(2)は、長手方向を上下方向に向けた状態で左右方向に間隔をおいて配置された凝縮部入口ヘッダ(12)および凝縮部出口ヘッダ(13)と、両ヘッダ(12)(13)間に配置され、かつ長手方向の両端が凝縮部入口ヘッダ(12)および凝縮部出口ヘッダ(13)に接続されるとともに凝縮部入口ヘッダ(12)に接続された一端の開口(5a)から冷媒が流入するようになされた複数の熱交換管(5)からなる第1熱交換パス(P1)と、凝縮部入口ヘッダ(12)にろう付されかつ凝縮部入口ヘッダ(12)内に冷媒を流入させるアルミニウム製入口部材(16)とを有している。コンデンサ(1)の過冷却部(3)は、長手方向を上下方向に向けた状態で左右方向に間隔をおいて配置された過冷却部入口ヘッダ(14)および過冷却部出口ヘッダ(15)と、両ヘッダ(14)(15)間に配置され、かつ長手方向の両端が過冷却部入口ヘッダ(14)および過冷却部出口ヘッダ(15)に接続されるとともに過冷却部出口ヘッダ(15)に接続された一端から冷媒が流出するようになされた複数の熱交換管(5)からなる第2熱交換パス(P2)と、過冷却部出口ヘッダ(15)に接合されかつ過冷却部出口ヘッダ(15)内から冷媒を流出させる出口部材(19)とを有している。   Accordingly, the condenser (2) of the condenser (1) includes a condenser inlet header (12) and a condenser outlet header (13) that are spaced apart from each other in the left-right direction with the longitudinal direction directed vertically. , Disposed between both headers (12) and (13), and both ends in the longitudinal direction are connected to the condenser inlet header (12) and the condenser outlet header (13) and to the condenser inlet header (12). The first heat exchange path (P1) composed of a plurality of heat exchange tubes (5) through which the refrigerant flows from the opening (5a) at one end, and the condenser inlet header (12) brazed and the condenser And an aluminum inlet member (16) for allowing the refrigerant to flow into the inlet header (12). The supercooling section (3) of the condenser (1) has a supercooling section inlet header (14) and a supercooling section outlet header (15) arranged with a space in the left-right direction with the longitudinal direction thereof directed vertically. Between the headers (14) and (15) and both ends in the longitudinal direction are connected to the supercooling section inlet header (14) and the supercooling section outlet header (15) and the supercooling section outlet header (15 ) Connected to the second heat exchange path (P2) composed of a plurality of heat exchange pipes (5) so that the refrigerant flows out from one end connected to the supercooling part outlet header (15) and the supercooling part And an outlet member (19) for allowing the refrigerant to flow out from the outlet header (15).

この実施形態においては、凝縮部(2)および過冷却部(3)にそれぞれ1つの熱交換パスが設けられているが、熱交換パスの数はこれに限定されるものではなく、凝縮部(2)の冷媒流れ方向最下流側の熱交換パスの熱交換管(5)における冷媒流れ方向下流側端部と、過冷却部(3)の冷媒流れ方向最上流側の熱交換パスの熱交換管(5)における冷媒流れ方向上流側端部とが、左右いずれか同じ側に位置するのであれば、適宜変更可能である。ここでは、凝縮部(2)および過冷却部(3)のそれぞれ1つの熱交換パス(P1)(P2)が設けられているので、第1熱交換パス(P1)が、凝縮部(2)の冷媒流れ方向最上流側の熱交換パスであると同時に、冷媒流れ方向最下流側の熱交換パスとなり、第2熱交換パス(P2)が、過冷却部(3)の冷媒流れ方向最上流側の熱交換パスであると同時に、冷媒流れ方向最下流側の熱交換パスとなっている。   In this embodiment, one heat exchange path is provided for each of the condensing part (2) and the subcooling part (3), but the number of heat exchanging paths is not limited to this, and the condensing part ( Heat exchange between the downstream end of the refrigerant flow direction in the heat exchange pipe (5) of the heat exchange path on the most downstream side in the refrigerant flow direction in (2) and the heat exchange path on the most upstream side in the refrigerant flow direction of the subcooling section (3). If the upstream end of the pipe (5) in the refrigerant flow direction is located on either the left or right side, it can be changed as appropriate. Here, since one heat exchange path (P1) (P2) is provided for each of the condensing unit (2) and the subcooling unit (3), the first heat exchanging path (P1) is used as the condensing unit (2). The heat exchange path on the most upstream side in the refrigerant flow direction and the heat exchange path on the most downstream side in the refrigerant flow direction, and the second heat exchange path (P2) is the most upstream in the refrigerant flow direction in the subcooling section (3) At the same time as the heat exchange path on the side, the heat exchange path is located on the most downstream side in the refrigerant flow direction.

受液器(4)はアルミニウム製であって、長手方向を上下方向に向けるとともに上下両端が閉鎖された円筒状であり、左側ヘッダタンク(7)(凝縮部出口ヘッダ(13)および過冷却部入口ヘッダ(14))と別個に設けられて左側ヘッダタンク(7)に固定されている。図示は省略したが、受液器(4)内には冷媒から異物を除去するフィルタや乾燥材が入れられている。凝縮部出口ヘッダ(13)内の下部と受液器(4)内の下部、および過冷却部入口ヘッダ(14)内の上部と受液器(4)内の下部が、それぞ左側ヘッダタンク(7)および受液器(4)にろう付されたアルミニウム製連通部材(21)(22)により通じさせられており、凝縮部出口ヘッダ(13)から流出した冷媒が、受液器(4)を経て過冷却部入口ヘッダ(14)内に流入するようになされている。   The liquid receiver (4) is made of aluminum and has a cylindrical shape with the longitudinal direction oriented vertically and closed at both upper and lower ends. The left header tank (7) (condenser outlet header (13) and supercooler It is provided separately from the inlet header (14)) and fixed to the left header tank (7). Although not shown, a filter and a desiccant for removing foreign substances from the refrigerant are placed in the liquid receiver (4). The lower part in the condenser outlet header (13) and the lower part in the receiver (4), and the upper part in the supercooler inlet header (14) and the lower part in the receiver (4) are the left header tank. (7) and the aluminum communication member (21) (22) brazed to the liquid receiver (4), and the refrigerant flowing out from the condenser outlet header (13) is passed through the liquid receiver (4 ) Through the supercooling section inlet header (14).

図3および図4に示すように、入口部材(16)の冷媒流入路(17)は、冷媒が外部から流入する1つの流入口(23)と、上下方向に間隔をおいて形成されるとともに、冷媒が凝縮部入口ヘッダ(12)内に流出する複数、ここでは2つの流出口(24)とを有している。冷媒流入路(17)は、流入口(23)に通じる1つの第1流路部分(25)、および当該第1流路部分(25)の冷媒流れ方向下流側端部と流出口(24)とを通じさせる流出口(24)と同数の第2流路部分(26)とを有している。   As shown in FIGS. 3 and 4, the refrigerant inflow passage (17) of the inlet member (16) is formed with a single inlet (23) through which refrigerant flows in from the outside and is spaced apart in the vertical direction. , And a plurality of, here two, outlets (24) through which the refrigerant flows out into the condenser inlet header (12). The refrigerant inflow passage (17) includes one first flow path portion (25) communicating with the inflow port (23), and the downstream end portion of the first flow path portion (25) in the refrigerant flow direction and the outflow port (24). And the same number of second flow path portions (26).

入口部材(16)の冷媒流入路(17)の第1流路部分(25)は、一端が入口部材(16)の右方を向いた平坦な外面に開口しかつ左方に真っ直ぐに延びた円筒状の有底穴からなり、有底穴の右方を向いた一端開口が流入口(23)となっている。第1流路部分(25)となる有底穴の横断面形状は全長にわたって同一であり、流入口(23)の形状が有底穴の横断面形状と同一である。また、第1流路部分(25)の流路断面積は全長にわたって等しくなっている。   The first flow path portion (25) of the refrigerant inflow passage (17) of the inlet member (16) has one end opened to a flat outer surface facing the right side of the inlet member (16) and straightly extended to the left side. It consists of a cylindrical bottomed hole, and one end opening facing the right side of the bottomed hole is an inflow port (23). The cross-sectional shape of the bottomed hole serving as the first flow path portion (25) is the same over the entire length, and the shape of the inflow port (23) is the same as the cross-sectional shape of the bottomed hole. Further, the channel cross-sectional area of the first channel portion (25) is the same over the entire length.

入口部材(16)の冷媒流入路(17)の両第2流路部分(26)は、右端が第1流路部分(25)となる有底穴の底面に開口するとともに、他端が入口部材(16)の左方を向いた凹状の部分円筒面に開口した真っ直ぐな貫通穴からなり、貫通穴の左端開口が流出口(24)となっている。流出口(24)は、凝縮部入口ヘッダ(12)に形成された開口(27)を通して凝縮部入口ヘッダ(12)内に臨んでいる。第2流路部分(26)となる貫通穴の横断面形状および流出口(24)の形状は、通風方向の寸法が上下方向の寸法よりも大きくなった扁平状である。2つの第2流路部分(26)の横断面形状は全長にわたって同一であり、各流出口(24)の形状は各第2流路部分(26)の横断面形状と同一である。したがって、2つの第2流路部分(26)の流路断面積は全長にわたって互いに等しくなっているとともに、2つの流出口(24)の大きさは互いに等しくなっている。   Both the second flow path portions (26) of the refrigerant inflow passage (17) of the inlet member (16) open to the bottom surface of the bottomed hole whose right end is the first flow path portion (25), and the other end is the inlet. The member (16) consists of a straight through-hole opened in the concave partial cylindrical surface facing the left, and the left end opening of the through-hole serves as an outlet (24). The outlet (24) faces the condenser inlet header (12) through an opening (27) formed in the condenser inlet header (12). The cross-sectional shape of the through hole serving as the second flow path portion (26) and the shape of the outlet (24) are flat with the size in the ventilation direction larger than the size in the vertical direction. The cross-sectional shape of the two second flow path portions (26) is the same over the entire length, and the shape of each outlet (24) is the same as the cross-sectional shape of each second flow path portion (26). Accordingly, the channel cross-sectional areas of the two second channel portions (26) are equal to each other over the entire length, and the sizes of the two outlets (24) are equal to each other.

入口部材(16)の冷媒流入路(17)における第1流路部分(25)の長手方向と、第2流路部分(26)の長手方向とは同方向、ここでは左右方向を向いている。したがって、扁平直管状である熱交換管(5)の中心線(O1)、ならびに入口部材(16)の冷媒流入路(17)の第1流路部分(25)および第2流路部分(26)の中心線(O2)(O3)が直線状であり、熱交換管(5)の中心線(O1)と、第1流路部分(25)および第2流路部分(26)の中心線(O2)(O3)とが平行となっている。   The longitudinal direction of the first flow path portion (25) in the refrigerant inflow passage (17) of the inlet member (16) and the longitudinal direction of the second flow path portion (26) are the same direction, in this case, the left-right direction. . Accordingly, the center line (O1) of the heat exchange pipe (5) which is a flat straight tube, and the first flow path part (25) and the second flow path part (26 of the refrigerant inflow path (17) of the inlet member (16). ) Center line (O2) (O3) is straight, the center line (O1) of the heat exchange pipe (5), and the center lines of the first flow path part (25) and the second flow path part (26) (O2) and (O3) are parallel.

そして、両流出口(24)間には、少なくとも1つ、ここでは1つの熱交換管(5)が位置している。すなわち、各流出口(24)の全高さ部分のうちの少なくとも一部、ここでは全部が、第1熱交換パス(P1)の熱交換管(5)における凝縮部入口ヘッダ(12)に接続されるとともに冷媒が流入する右端開口(5a)の上下方向の範囲外に位置するとともに、各流出口(24)の上下方向の中央部と第1熱交換パス(P1)の熱交換管(5)の冷媒が流入する前記右端開口(5a)の上下方向の中央部とが上下方向にずれている。   At least one, here, one heat exchange pipe (5) is located between the two outlets (24). That is, at least a part of the total height of each outlet (24), here all, is connected to the condenser inlet header (12) in the heat exchange pipe (5) of the first heat exchange path (P1). And located outside the vertical range of the right end opening (5a) through which the refrigerant flows, and the vertical center of each outlet (24) and the heat exchange pipe (5) of the first heat exchange path (P1) The central portion in the vertical direction of the right end opening (5a) into which the refrigerant flows is shifted in the vertical direction.

コンデンサ(1)は、圧縮機、膨張弁(減圧器)およびエバポレータとともに冷凍サイクルを構成し、カーエアコンとして車両に搭載される。   The condenser (1) constitutes a refrigeration cycle together with a compressor, an expansion valve (decompressor) and an evaporator, and is mounted on a vehicle as a car air conditioner.

上述した構成のコンデンサ(1)において、圧縮機により圧縮された高温高圧の気相冷媒が、入口部材(16)の流入口(23)から冷媒流入路(17)に入り、第1流路部分(25)を経て第2流路部分(26)に入り、流出口(24)および凝縮部入口ヘッダ(12)の開口(27)を通って凝縮部入口ヘッダ(12)内に流入し、その後凝縮部入口ヘッダ(12)に接続された第1熱交換パス(P1)の熱交換管(5)に流入する。このとき、流出口(24)の全高さ部分が、熱交換管(5)の冷媒が流入する右端開口(5a)の上下方向の範囲外に位置するとともに、各流出口(24)の上下方向の中央部と熱交換管(5)の冷媒が流入する右端開口(5a)の上下方向の中央部とが上下方向にずれているので、流出口(24)に最も近い位置にある熱交換管(5)内に冷媒が流入しにくくなるとともに、第1熱交換パス(P1)の流出口(24)に最も近い位置にある熱交換管(5)を除いた他の熱交換管(5)内にも冷媒が流入しやすくなる。したがって、入口部材(16)の冷媒流入路(17)を通って凝縮部入口ヘッダ(12)内に流入する冷媒を、凝縮部入口ヘッダ(12)内の長手方向の全体に行き渡らせることが可能になり、第1熱交換パス(P1)の全熱交換管(5)への冷媒の流入量を均一化することができる。   In the condenser (1) having the above-described configuration, the high-temperature and high-pressure gas-phase refrigerant compressed by the compressor enters the refrigerant inflow path (17) from the inlet (23) of the inlet member (16), and the first flow path portion. Enters the second flow path portion (26) via (25), flows into the condenser inlet header (12) through the outlet (24) and the opening (27) of the condenser inlet header (12), and then It flows into the heat exchange pipe (5) of the first heat exchange path (P1) connected to the condenser inlet header (12). At this time, the entire height portion of the outlet (24) is located outside the vertical range of the right end opening (5a) into which the refrigerant of the heat exchange pipe (5) flows, and the vertical direction of each outlet (24) The center part of the heat exchange pipe and the center part of the right end opening (5a) into which the refrigerant flows in the vertical direction are displaced in the vertical direction, so the heat exchange pipe closest to the outlet (24) (5) Other heat exchange pipes (5) excluding the heat exchange pipe (5) located closest to the outlet (24) of the first heat exchange path (P1) while making it difficult for refrigerant to flow into The refrigerant easily flows into the inside. Therefore, the refrigerant flowing into the condenser inlet header (12) through the refrigerant inlet passage (17) of the inlet member (16) can be spread over the entire length in the condenser inlet header (12). Thus, the amount of refrigerant flowing into the total heat exchange pipe (5) of the first heat exchange path (P1) can be made uniform.

第1熱交換パス(P1)の熱交換管(5)内に流入した冷媒は、第1熱交換パス(P1)の熱交換管(5)内を左方に流れて凝縮部出口ヘッダ(13)内に流入する。凝縮部出口ヘッダ(13)内に流入した冷媒は、連通部材(21)を通って受液器(4)内に流入する。受液器(4)内に流入した冷媒は、気液混相冷媒であり、当該気液混相冷媒のうち液相主体混相冷媒は重力により受液器(4)内の下部に溜まり、連通部材(22)を通って過冷却部入口ヘッダ(14)内に入る。過冷却部入口ヘッダ(14)内に入った冷媒は、第2熱交換パス(P2)の熱交換管(5)内に入り、第2熱交換パス(P2)の熱交換管(5)の流路を右方に流れる間に過冷却された後、過冷却部出口ヘッダ(15)内に入り、冷媒流出口(24)(18)および出口部材(23)の冷媒流入路(17)を通って流出し、膨張弁を経てエバポレータに送られる。   The refrigerant that has flowed into the heat exchange pipe (5) of the first heat exchange path (P1) flows to the left in the heat exchange pipe (5) of the first heat exchange path (P1) and flows into the condenser outlet header (13 ) Flows in. The refrigerant flowing into the condenser outlet header (13) flows into the liquid receiver (4) through the communication member (21). The refrigerant that has flowed into the liquid receiver (4) is a gas-liquid mixed-phase refrigerant, and the liquid-phase main mixed-phase refrigerant of the gas-liquid mixed-phase refrigerant accumulates in the lower part of the liquid receiver (4) due to gravity, and the communication member ( 22) through the supercooling section inlet header (14). The refrigerant that has entered the supercooling section inlet header (14) enters the heat exchange pipe (5) of the second heat exchange path (P2) and enters the heat exchange pipe (5) of the second heat exchange path (P2). After being supercooled while flowing to the right in the flow path, it enters the supercooling section outlet header (15) and passes through the refrigerant inflow path (17) of the refrigerant outlet (24) (18) and outlet member (23). It flows out through the expansion valve and is sent to the evaporator.

図5および図6は図1および図2に示すコンデンサ(1)に用いられる入口部材(16)の変形例を示す。   5 and 6 show a modification of the inlet member (16) used in the capacitor (1) shown in FIGS.

図5および図6に示す入口部材(30)の場合、入口部材(30)の冷媒流入路(17)の一方の流出口(24A)の面積および当該流出口(24A)に通じる第2流路部分(26A)の流路断面積は互いに等しく、かつ他方の流出口(24)の面積および当該流出口(24)に通じる第2流路部分(26)の流路断面積よりも小さくなっている。両流出口(24)(24A)の形状および両第2流路部分(26)(26A)の形状は、通風方向の寸法が上下方向の寸法よりも大きくなった扁平状である。   In the case of the inlet member (30) shown in FIGS. 5 and 6, the area of one outlet (24A) of the refrigerant inlet passage (17) of the inlet member (30) and the second flow path leading to the outlet (24A). The channel cross-sectional area of the part (26A) is equal to each other and smaller than the area of the other outlet (24) and the channel cross-sectional area of the second channel part (26) leading to the outlet (24). Yes. The shape of both outlets (24) and (24A) and the shape of both second flow path portions (26) and (26A) are flat shapes in which the dimension in the ventilation direction is larger than the dimension in the vertical direction.

なお、入口部材(30)のその他の構成は図3および図4に示す入口部材(16)と同様であり、入口部材(30)の冷媒流入路(17)における第1流路部分(25)の長手方向と、両第2流路部分(26)(26A)の長手方向とは同方向、ここでは左右方向を向いており、熱交換管(5)の中心線(O1)と、第1流路部分(25)および両第2流路部分(26)(26A)の中心線(O2)(O3)とが平行となっている。   The other structure of the inlet member (30) is the same as that of the inlet member (16) shown in FIGS. 3 and 4, and the first flow path portion (25) in the refrigerant inflow passage (17) of the inlet member (30). And the longitudinal direction of both the second flow path portions (26) and (26A) are in the same direction, in this case the left and right direction, and the center line (O1) of the heat exchange pipe (5) and the first direction The flow path part (25) and the center lines (O2) and (O3) of the second flow path parts (26) and (26A) are parallel to each other.

図7および図8はこの発明によるコンデンサの他の実施形態を示す。図7はこの発明によるコンデンサの他の実施形態の全体構成を具体的に示し、図8は図7のコンデンサを模式的に示す。図8においては、個々の熱交換管(5)の図示は省略されるとともに、コルゲートフィンおよびサイドプレートの図示も省略されている。   7 and 8 show another embodiment of the capacitor according to the present invention. FIG. 7 specifically shows the overall configuration of another embodiment of the capacitor according to the present invention, and FIG. 8 schematically shows the capacitor of FIG. In FIG. 8, the illustration of the individual heat exchange tubes (5) is omitted, and the illustration of the corrugated fins and the side plates is also omitted.

図7および図8において、コンデンサ(40)は、凝縮部(2)と、凝縮部(2)の下方に設けられた過冷却部(3)と、長手方向を上下方向に向けた状態で凝縮部(2)と過冷却部(3)との間に設けられ、かつ気液分離機能を有する受液部(41)とを備えている。   7 and 8, the condenser (40) is condensed with the condensing part (2), the supercooling part (3) provided below the condensing part (2), and the longitudinal direction thereof being directed vertically. A liquid receiving part (41) provided between the part (2) and the supercooling part (3) and having a gas-liquid separation function.

コンデンサ(40)の凝縮部(2)および過冷却部(3)には、それぞれ上下に連続して並んだ複数の熱交換管(5)からなる少なくとも1つ、ここでは1つの熱交換パス(P1)(P2)が設けられており、凝縮部(2)に設けられた熱交換パス(P1)が凝縮用熱交換パスとなり、過冷却部(3)に設けられた熱交換パス(P2)が過冷却用熱交換パスとなっている。そして、各熱交換パス(P1)(P2)を構成する全ての熱交換管(5)の冷媒流れ方向が同一となっているとともに、隣り合う2つの熱交換パスの熱交換管(5)の冷媒流れ方向が異なっている。ここで、凝縮部(2)の熱交換パス(P1)を第1熱交換パス(P1)といい、過冷却部(3)の熱交換パス(P2)を第2熱交換パス(P2)というものとする。なお、この実施形態においては、凝縮部(2)に1つの第1熱交換パス(P1)が設けられているので、第1熱交換パス(P1)が、凝縮部(2)の冷媒流れ方向最上流側の熱交換パスであると同時に、冷媒流れ方向最下流側の熱交換パスとなっている。   The condenser section (2) and the supercooling section (3) of the condenser (40) are each provided with at least one heat exchange path (here, one heat exchange path (5) that is continuously arranged vertically. P1) (P2) is provided, the heat exchange path (P1) provided in the condensing part (2) becomes a heat exchange path for condensation, and the heat exchange path (P2) provided in the supercooling part (3) Is a heat exchange path for supercooling. And the refrigerant | coolant flow direction of all the heat exchange pipe | tubes (5) which comprise each heat exchange path | pass (P1) (P2) is the same, and the heat exchange pipe | tube (5) of two adjacent heat exchange paths | paths The refrigerant flow direction is different. Here, the heat exchange path (P1) of the condensing part (2) is called a first heat exchange path (P1), and the heat exchange path (P2) of the supercooling part (3) is called a second heat exchange path (P2). Shall. In this embodiment, since the condensing part (2) is provided with one first heat exchange path (P1), the first heat exchanging path (P1) is the refrigerant flow direction of the condensing part (2). It is a heat exchange path on the most upstream side and at the same time a heat exchange path on the most downstream side in the refrigerant flow direction.

コンデンサ(40)の右端部側には、第1および第2熱交換パス(P1)(P2)を構成する全ての熱交換管(5)の右端部が接続される第1ヘッダタンク(42)が配置されている。第1ヘッダタンク(42)内は、第1熱交換パス(P1)と第2熱交換パス(P2)との間の高さ位置に設けられたアルミニウム製仕切部材(43)により上下2つの区画に分割されている。第1ヘッダタンク(42)の仕切部材(43)よりも上方の区画に、凝縮部(2)の第1熱交換パス(P1)の冷媒流れ方向上流側端部が通じる凝縮部入口ヘッダ(12)が設けられ、同じく下方の区画に、過冷却部(3)の第2熱交換パス(P2)の冷媒流れ方向下流側端部が通じる過冷却部出口ヘッダ(15)が設けられている。   The first header tank (42) connected to the right end of the condenser (40) is the right end of all the heat exchange pipes (5) constituting the first and second heat exchange paths (P1) (P2). Is arranged. The first header tank (42) is divided into two upper and lower sections by an aluminum partition member (43) provided at a height between the first heat exchange path (P1) and the second heat exchange path (P2). It is divided into A condensing unit inlet header (12) that communicates with the upstream end of the first heat exchange path (P1) of the condensing unit (2) in the refrigerant flow direction upstream of the partition member (43) of the first header tank (42). ), And a subcooling section outlet header (15) that communicates with the downstream end of the second heat exchange path (P2) of the subcooling section (3) in the refrigerant flow direction.

コンデンサ(40)の左端側には、凝縮部(2)に設けられた第1熱交換パス(P1)の全熱交換管(5)の左端部がろう付により接続された第2ヘッダタンク(44)と、過冷却部(3)に設けられた第2熱交換パス(P2)の熱交換管(5)の左端部がろう付により接続された第3ヘッダタンク(45)とが、第3ヘッダタンク(45)が左右方向外側に位置するように別個に設けられている。第3ヘッダタンク(45)の上端は第2ヘッダタンク(44)の下端よりも上方、ここでは第2ヘッダタンク(44)の上端とほぼ同一高さ位置にある。また、第3ヘッダタンク(45)の下端は第2ヘッダタンク(44)の下端よりも下方に位置しており、第3ヘッダタンク(45)における第2ヘッダタンク(44)よりも下方に位置する部分に、第2熱交換パス(P2)を構成する第2熱交換管(5)がろう付により接続されている。第3ヘッダタンク(45)は、凝縮部(2)で凝縮した液相主体冷媒を貯留するとともに液相主体冷媒を過冷却部(3)に供給する液溜部の機能を有する受液部(41)を兼ねている。   On the left end side of the condenser (40) is a second header tank (with the left end of the total heat exchange pipe (5) of the first heat exchange path (P1) provided in the condenser (2) connected by brazing. 44) and a third header tank (45) in which the left end of the heat exchange pipe (5) of the second heat exchange path (P2) provided in the supercooling section (3) is connected by brazing. The three header tanks (45) are provided separately so as to be located on the outer side in the left-right direction. The upper end of the third header tank (45) is above the lower end of the second header tank (44), and here is substantially at the same height as the upper end of the second header tank (44). The lower end of the third header tank (45) is located below the lower end of the second header tank (44), and is located below the second header tank (44) in the third header tank (45). The second heat exchange pipe (5) constituting the second heat exchange path (P2) is connected to the portion to be brazed by brazing. The third header tank (45) stores the liquid phase main refrigerant condensed in the condensing unit (2) and also has a liquid receiving unit functioning as a liquid storage unit for supplying the liquid phase main refrigerant to the supercooling unit (3). 41).

第2ヘッダタンク(44)の全体に、凝縮部(2)の第1熱交換パス(P1)の冷媒流れ方向下流側端部が通じる凝縮部出口ヘッダ(13)が設けられている。第3ヘッダタンク(45)における第2ヘッダタンク(44)の下端よりも下方に位置する部分に、過冷却部(3)の第2熱交換パス(P2)の冷媒流れ方向上流側端部が通じる過冷却部入口ヘッダ(14)が設けられている。そして、第2ヘッダタンク(44)の凝縮部出口ヘッダ(13)内の下端部と、第3ヘッダタンク(45)内における過冷却部入口ヘッダ(14)よりも上方の部分とが連通部材(46)により通じさせられている。なお、第3ヘッダタンク(45)内における過冷却部入口ヘッダ(14)よりも上方の部分と、過冷却部入口ヘッダ(14)とは、第3ヘッダタンク(45)内で通じている。   The second header tank (44) is provided with a condensing unit outlet header (13) through which the downstream end of the first heat exchange path (P1) of the condensing unit (2) passes in the refrigerant flow direction. In the portion of the third header tank (45) located below the lower end of the second header tank (44), the upstream end in the refrigerant flow direction of the second heat exchange path (P2) of the subcooling section (3) A supercooling section inlet header (14) is provided. And the lower end part in the condensation part exit header (13) of a 2nd header tank (44) and the part above the supercooling part inlet header (14) in a 3rd header tank (45) are communication members ( 46). The portion above the supercooling section inlet header (14) in the third header tank (45) and the supercooling section inlet header (14) communicate with each other in the third header tank (45).

凝縮部入口ヘッダ(12)の周壁外周面における長手方向中央部よりも一端側に偏った部分、ここでは下端側に偏った部分に、第1の実施形態のコンデンサ(1)に用いられているアルミニウム製入口部材(16)がろう付されている。   It is used for the capacitor (1) of the first embodiment in a portion that is biased toward one end of the outer peripheral surface of the peripheral wall of the condensing portion inlet header (12), that is, a portion that is biased toward the lower end here. An aluminum inlet member (16) is brazed.

その他の構成は第1の実施形態のコンデンサと同様である。なお、この実施形態において、図5および図6に示す入口部材(30)が用いられてもよい。   Other configurations are the same as those of the capacitor of the first embodiment. In this embodiment, the inlet member (30) shown in FIGS. 5 and 6 may be used.

コンデンサ(40)は、圧縮機、膨張弁(減圧器)およびエバポレータとともに冷凍サイクルを構成し、カーエアコンとして車両に搭載される。   The condenser (40) constitutes a refrigeration cycle together with a compressor, an expansion valve (decompressor) and an evaporator, and is mounted on the vehicle as a car air conditioner.

上述した構成のコンデンサ(40)において、圧縮機により圧縮された高温高圧の気相冷媒が、入口部材(16)の流入口(23)から冷媒流入路(17)に入り、第1流路部分(25)を経て第2流路部分(26)に入り、流出口(24)および凝縮部入口ヘッダ(12)の開口(27)を通って凝縮部入口ヘッダ(12)内に流入し、その後凝縮部入口ヘッダ(12)に接続された第1熱交換パス(P1)の熱交換管(5)に流入する。このとき、流出口(24)の全高さ部分が、熱交換管(5)の冷媒が流入する右端開口(5a)の上下方向の範囲外に位置するとともに、各流出口(24)の上下方向の中央部と熱交換管(5)の冷媒が流入する右端開口(5a)の上下方向の中央部とが上下方向にずれているので、流出口(24)に最も近い位置にある熱交換管(5)内に冷媒が流入しにくくなるとともに、第1熱交換パス(P1)の流出口(24)に最も近い位置にある熱交換管(5)を除いた他の熱交換管(5)内にも冷媒が流入しやすくなる。したがって、入口部材(16)の冷媒流入路(17)を通って凝縮部入口ヘッダ(12)内に流入する冷媒を、凝縮部入口ヘッダ(12)内の長手方向の全体に行き渡らせることが可能になり、第1熱交換パス(P1)の全熱交換管(5)への冷媒の流入量を均一化することができる。   In the condenser (40) having the above-described configuration, the high-temperature and high-pressure gas-phase refrigerant compressed by the compressor enters the refrigerant inflow path (17) from the inlet (23) of the inlet member (16), and the first flow path portion. Enters the second flow path portion (26) via (25), flows into the condenser inlet header (12) through the outlet (24) and the opening (27) of the condenser inlet header (12), and then It flows into the heat exchange pipe (5) of the first heat exchange path (P1) connected to the condenser inlet header (12). At this time, the entire height portion of the outlet (24) is located outside the vertical range of the right end opening (5a) into which the refrigerant of the heat exchange pipe (5) flows, and the vertical direction of each outlet (24) The center part of the heat exchange pipe and the center part of the right end opening (5a) into which the refrigerant flows in the vertical direction are displaced in the vertical direction, so the heat exchange pipe closest to the outlet (24) (5) Other heat exchange pipes (5) excluding the heat exchange pipe (5) located closest to the outlet (24) of the first heat exchange path (P1) while making it difficult for refrigerant to flow into The refrigerant easily flows into the inside. Therefore, the refrigerant flowing into the condenser inlet header (12) through the refrigerant inlet passage (17) of the inlet member (16) can be spread over the entire length in the condenser inlet header (12). Thus, the amount of refrigerant flowing into the total heat exchange pipe (5) of the first heat exchange path (P1) can be made uniform.

第1熱交換パス(P1)の熱交換管(5)内に流入した冷媒は、第1熱交換パス(P1)の熱交換管(5)内を左方に流れて第2ヘッダタンク(44)の凝縮部出口ヘッダ(13)内に流入する。第2ヘッダタンク(44)の凝縮部出口ヘッダ(13)内に流入した冷媒は、連通部材(46)を通って第3ヘッダタンク(45)内における過冷却部入口ヘッダ(14)よりも上方の部分に流入する。   The refrigerant that has flowed into the heat exchange pipe (5) of the first heat exchange path (P1) flows to the left in the heat exchange pipe (5) of the first heat exchange path (P1) and flows into the second header tank (44). ) Flows into the condenser outlet header (13). The refrigerant that has flowed into the condensing unit outlet header (13) of the second header tank (44) passes through the communication member (46) and is above the supercooling unit inlet header (14) in the third header tank (45). Flows into the part.

第3ヘッダタンク(45)内における過冷却部入口ヘッダ(14)よりも上方の部分に流入した冷媒は、気液混相冷媒であり、当該気液混相冷媒のうち液相主体混相冷媒は重力により第3ヘッダタンク(45)の過冷却部入口ヘッダ(14)内に溜まり、第2熱交換パス(P2)の熱交換管(5)内に入る。第2熱交換パス(P2)の熱交換管(5)内に入った液相主体混相冷媒は第2熱交換管(5)内を右方に流れる間に過冷却された後、第1ヘッダタンク(42)の過冷却部出口ヘッダ(15)内に入り、冷媒出口(18)および出口部材(19)の冷媒流出路(19a)を通って流出し、膨張弁を経てエバポレータに送られる。   The refrigerant that has flowed into the portion above the supercooling section inlet header (14) in the third header tank (45) is a gas-liquid mixed phase refrigerant, and among the gas-liquid mixed phase refrigerant, the liquid-phase main mixed phase refrigerant is caused by gravity. It accumulates in the supercooling section inlet header (14) of the third header tank (45) and enters the heat exchange pipe (5) of the second heat exchange path (P2). The liquid phase main mixed refrigerant entering the heat exchange pipe (5) of the second heat exchange path (P2) is supercooled while flowing rightward in the second heat exchange pipe (5), and then the first header. The refrigerant enters the supercooling section outlet header (15) of the tank (42), flows out through the refrigerant outlet (18) and the refrigerant outlet passage (19a) of the outlet member (19), and is sent to the evaporator through the expansion valve.

この発明によるコンデンサは、自動車に搭載されるカーエアコンに好適に用いられる。   The capacitor | condenser by this invention is used suitably for the car air conditioner mounted in a motor vehicle.

(1)(40):コンデンサ
(5):熱交換管
(5a):開口
(12):凝縮部入口ヘッダ
(16):入口部材
(23):流入口
(24)(24A):流出口
(25):第1流路部分
(26)(26A):第2流路部分
(O1):熱交換管の中心線
(O2):第1流路部分の中心線
(O3):第2流路部分の中心線
(P1):第1熱交換パス(凝縮用熱交換パス)
(1) (40): Capacitor
(5): Heat exchange pipe
(5a): Opening
(12): Condenser inlet header
(16): Entrance member
(23): Inlet
(24) (24A): Outlet
(25): First flow path part
(26) (26A): Second flow path part
(O1): Center line of heat exchange pipe
(O2): Center line of the first flow path
(O3): Center line of the second flow path
(P1): 1st heat exchange path (heat exchange path for condensation)

Claims (8)

長手方向を上下方向に向けて配置された凝縮部入口ヘッダと、長手方向を左右方向に向けるとともに上下方向に間隔をおいて並列状に配置され、かつ長手方向の一端が凝縮部入口ヘッダに接続されるとともに凝縮部入口ヘッダに接続された一端の開口から冷媒が流入するようになされた複数の熱交換管からなる熱交換パスとを備えており、凝縮部入口ヘッダに、凝縮部入口ヘッダ内に冷媒を流入させる入口部材が接合され、入口部材に、冷媒が外部から流入する流入口と、冷媒が凝縮部入口ヘッダ内へ流出する流出口とを有する冷媒流入路が形成されており、入口部材の冷媒流入路を通って凝縮部入口ヘッダ内に流入した冷媒が、凝縮部入口ヘッダに接続された熱交換管の前記一端開口から熱交換管内に流入するようになっているコンデンサにおいて、
入口部材が、1つの流入口および上下方向に間隔をおいて形成された複数の流出口を備えており、冷媒流入路が、流入口に通じる1つの第1流路部分、および当該第1流路部分の冷媒流れ方向下流側端部と流出口とを通じさせる流出口と同数の第2流路部分を有し、各流出口の全高さ部分のうちの少なくとも一部が、各流出口に最も近い位置にある熱交換管における冷媒が流入する前記一端開口の上下方向の範囲外に位置しているコンデンサ。
Condenser inlet header arranged with the longitudinal direction facing up and down, and arranged in parallel with the longitudinal direction facing left and right and spaced in the vertical direction, and one end in the longitudinal direction connected to the condenser inlet header And a heat exchange path composed of a plurality of heat exchange tubes adapted to allow refrigerant to flow from an opening at one end connected to the condenser inlet header. An inlet member for allowing the refrigerant to flow into is joined to the inlet member, and a refrigerant inflow passage having an inlet for the refrigerant to flow in from the outside and an outlet for the refrigerant to flow into the condenser inlet header is formed at the inlet member. A condenser in which the refrigerant flowing into the condenser inlet header through the refrigerant inlet passage of the member flows into the heat exchanger pipe from the one end opening of the heat exchanger pipe connected to the condenser inlet header Oite,
The inlet member includes one inflow port and a plurality of outflow ports formed at intervals in the vertical direction, and the refrigerant inflow path is one first flow path portion communicating with the inflow port, and the first flow There are as many second flow path portions as the outlets through which the downstream end portion of the passage direction in the refrigerant flow direction and the outlets pass, and at least a part of the total height of each outlet is the most in each outlet. A capacitor located outside a range in a vertical direction of the one end opening into which a refrigerant flows in a heat exchange pipe at a close position.
各流出口の全高さ部分が、各流出口に最も近い位置にある熱交換管における冷媒が流入する前記一端開口の上下方向の範囲外に位置している請求項1記載のコンデンサ。 The capacitor according to claim 1, wherein the entire height portion of each outlet is located outside the range in the vertical direction of the one end opening into which the refrigerant flows in the heat exchange pipe located closest to each outlet. 熱交換管が直管からなるとともに熱交換管の中心線が直線状であり、入口部材の冷媒流入路の第1流路部分および第2流路部分の中心線が直線状であり、熱交換管の中心線と、第1流路部分および第2流路部分の中心線とが平行となっている請求項1または2記載のコンデンサ。 The heat exchange pipe is a straight pipe, the center line of the heat exchange pipe is straight, the center lines of the first flow path portion and the second flow path portion of the refrigerant inflow path of the inlet member are straight, and heat exchange The capacitor according to claim 1 or 2, wherein the center line of the tube is parallel to the center lines of the first flow path portion and the second flow path portion. 上下方向に隣接する流出口間の範囲内に、少なくとも1つの熱交換管が位置している請求項3記載のコンデンサ。 The capacitor according to claim 3, wherein at least one heat exchange tube is located within a range between the outlets adjacent in the vertical direction. 入口部材の冷媒流入路の第2流路部分の流路断面積が全長にわたって同一であり、入口部材の冷媒流入路の各流出口の形状が前記第2流路部分の横断面形状と同一であり、前記各流出口の形状および前記第2流路部分の横断面形状が、通風方向の寸法が上下方向の寸法よりも大きくなった扁平状である請求項1〜4のうちのいずれかに記載のコンデンサ。 The flow path cross-sectional area of the second flow path portion of the refrigerant inflow path of the inlet member is the same over the entire length, and the shape of each outlet of the refrigerant flow path of the inlet member is the same as the cross-sectional shape of the second flow path section. The shape of each outlet and the cross-sectional shape of the second flow path portion are flat shapes in which the dimension in the ventilation direction is larger than the dimension in the vertical direction. The capacitor described. 入口部材の全流出口のうちの少なくとも1つの流出口の大きさが、他の流出口の大きさと異なっている請求項1〜5のうちのいずれかに記載のコンデンサ。 The capacitor according to any one of claims 1 to 5, wherein a size of at least one outlet among all outlets of the inlet member is different from a size of other outlets. 入口部材の冷媒流入路の第1流路部分が、一端が入口部材の外面に開口した有底穴からなり、当該有底穴の一端開口が流入口となっており、第2流路部分が、一端が第1流路部分となる有底穴の底面に開口するとともに他端が凝縮部入口ヘッダ内に開口した貫通穴からなり、当該貫通穴の凝縮部入口ヘッダ側開口が流出口となっている請求項1〜6のうちのいずれかに記載のコンデンサ。 The first flow path portion of the refrigerant inflow passage of the inlet member is composed of a bottomed hole whose one end is open to the outer surface of the inlet member, the one end opening of the bottomed hole is an inflow port, and the second flow path portion is The one end has a through hole that opens to the bottom surface of the bottomed hole that becomes the first flow path portion and the other end has an opening in the condensing unit inlet header, and the condensing unit inlet header side opening of the through hole serves as an outlet. The capacitor according to claim 1. 第1流路部分になる有底穴の長手方向と、第2流路部分になる貫通穴の長手方向とが同方向を向いている請求項7記載のコンデンサ。
The capacitor according to claim 7, wherein the longitudinal direction of the bottomed hole serving as the first flow path portion and the longitudinal direction of the through hole serving as the second flow path portion are oriented in the same direction.
JP2017147797A 2017-07-31 2017-07-31 Condenser Pending JP2019027685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017147797A JP2019027685A (en) 2017-07-31 2017-07-31 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017147797A JP2019027685A (en) 2017-07-31 2017-07-31 Condenser

Publications (2)

Publication Number Publication Date
JP2019027685A true JP2019027685A (en) 2019-02-21
JP2019027685A5 JP2019027685A5 (en) 2020-07-09

Family

ID=65477846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017147797A Pending JP2019027685A (en) 2017-07-31 2017-07-31 Condenser

Country Status (1)

Country Link
JP (1) JP2019027685A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220196255A1 (en) * 2020-12-23 2022-06-23 Samsung Electronics Co., Ltd. Heat exchanger and air conditioner including the same
US12140326B2 (en) * 2020-12-23 2024-11-12 Samsung Electronics Co., Ltd. Heat exchanger and air conditioner including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312492A (en) * 1992-05-14 1993-11-22 Showa Alum Corp Heat exchanger
JPH0829091A (en) * 1994-07-14 1996-02-02 Sharp Corp Heat exchanger
JPH11325784A (en) * 1998-03-16 1999-11-26 Denso Corp Heat exchanger
US20080190134A1 (en) * 2006-11-29 2008-08-14 Parker-Hannifin Corporation Refrigerant flow distributor
JP3195404U (en) * 2014-10-31 2015-01-15 株式会社ヴァレオジャパン Refrigerant condenser
JP2015200478A (en) * 2014-04-10 2015-11-12 株式会社ケーヒン・サーマル・テクノロジー Condenser

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312492A (en) * 1992-05-14 1993-11-22 Showa Alum Corp Heat exchanger
JPH0829091A (en) * 1994-07-14 1996-02-02 Sharp Corp Heat exchanger
JPH11325784A (en) * 1998-03-16 1999-11-26 Denso Corp Heat exchanger
US20080190134A1 (en) * 2006-11-29 2008-08-14 Parker-Hannifin Corporation Refrigerant flow distributor
JP2015200478A (en) * 2014-04-10 2015-11-12 株式会社ケーヒン・サーマル・テクノロジー Condenser
JP3195404U (en) * 2014-10-31 2015-01-15 株式会社ヴァレオジャパン Refrigerant condenser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220196255A1 (en) * 2020-12-23 2022-06-23 Samsung Electronics Co., Ltd. Heat exchanger and air conditioner including the same
US12140326B2 (en) * 2020-12-23 2024-11-12 Samsung Electronics Co., Ltd. Heat exchanger and air conditioner including the same

Similar Documents

Publication Publication Date Title
JP5501242B2 (en) Capacitor
JP6259703B2 (en) Capacitor
JP6039946B2 (en) Capacitor
US10094601B2 (en) Condenser
JP4358981B2 (en) Air conditioning condenser
WO2018116929A1 (en) Heat exchanger and air conditioner
JP2012247148A (en) Condenser
US20170050489A1 (en) Condenser
JP5412195B2 (en) Heat exchanger
JP6572040B2 (en) Capacitor
JP5194279B2 (en) Evaporator
JP6850058B2 (en) Capacitor
JP2018080862A (en) Condenser
JP2010065880A (en) Condenser
JP5622411B2 (en) Capacitor
JP2018200132A (en) Condenser
JP2016217565A (en) Condenser
JP2008267753A (en) Heat exchanger
JP2013029257A (en) Condenser
JP6572031B2 (en) Capacitor
JP2019027685A (en) Condenser
JP2007078292A (en) Heat exchanger, and dual type heat exchanger
JP2014052163A (en) Heat exchanger
JP6626693B2 (en) Capacitors
JP2015117878A (en) Capacitor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220105