[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019019038A - Silver oxide and method for producing the same - Google Patents

Silver oxide and method for producing the same Download PDF

Info

Publication number
JP2019019038A
JP2019019038A JP2017140942A JP2017140942A JP2019019038A JP 2019019038 A JP2019019038 A JP 2019019038A JP 2017140942 A JP2017140942 A JP 2017140942A JP 2017140942 A JP2017140942 A JP 2017140942A JP 2019019038 A JP2019019038 A JP 2019019038A
Authority
JP
Japan
Prior art keywords
silver oxide
silver
heat
powder
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017140942A
Other languages
Japanese (ja)
Other versions
JP7083235B2 (en
Inventor
柳谷 高公
Takakimi Yanagiya
高公 柳谷
真司 當山
Shinji Toyama
真司 當山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP2017140942A priority Critical patent/JP7083235B2/en
Publication of JP2019019038A publication Critical patent/JP2019019038A/en
Application granted granted Critical
Publication of JP7083235B2 publication Critical patent/JP7083235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

【課題】新規な酸化銀の提供。【解決手段】濃度5.0質量%硝酸銀水溶液200gに、濃度0.4質量%の水酸化ナトリウム水溶液707.5g(反応当量の1.2モル倍)を約5分かけて混合し、15分間放置し、混合物を得て、デカンテーション洗浄により中性にし、スラリーを100℃で5時間処理し、酸化銀の粉末(平均粒径約4μm)を得て、酸化銀粉末を、一軸加圧により仮成形後、冷間等方圧加圧(圧力150MPa、4分)により、ペレット状(直径約16mm、厚さ約3mm)に成形し、ペレットを、溶液と接しない様に試料台を設けたテフロン内張オートクレーブに入れ、150〜200°Cで熱処理を行い、熱処理後、希硝酸(濃度3.0質量%)にて30秒間洗浄し、ペレット状の酸化銀を得て、得られた酸化銀(の表面)には、4〜5μm程度の空孔を有し、17%以上、好ましくは18〜25%の開気孔率となる酸化銀の製造方法。【選択図】図2PROBLEM TO BE SOLVED: To provide a new silver oxide. SOLUTION: 707.5 g (1.2 mol times of reaction equivalent) of a 0.4 mass% sodium hydroxide aqueous solution is mixed with 200 g of a 5.0 mass% silver nitrate aqueous solution over about 5 minutes for 15 minutes. The mixture is left to stand, neutralized by decantation washing, treated at 100 ° C. for 5 hours to obtain silver oxide powder (average particle size of about 4 μm), and the silver oxide powder is uniaxially pressurized. After tentative molding, cold isotropic pressure was applied (pressure 150 MPa, 4 minutes) to form pellets (diameter about 16 mm, thickness about 3 mm), and a sample table was provided so that the pellets did not come into contact with the solution. It was placed in a Teflon-lined autoclave, heat-treated at 150 to 200 ° C, and after the heat treatment, it was washed with dilute nitrate (concentration: 3.0% by mass) for 30 seconds to obtain pelletized silver oxide, and the obtained oxidation was obtained. A method for producing silver oxide, which has pores of about 4 to 5 μm on (the surface of) silver and has an open pore ratio of 17% or more, preferably 18 to 25%. [Selection diagram] Fig. 2

Description

本発明は、新規な酸化銀などに関する。   The present invention relates to novel silver oxide and the like.

酸化銀は、様々な産業分野において使用されうる材料である。   Silver oxide is a material that can be used in various industrial fields.

例えば、特許文献1には、平均粒径5〜30μmの単粒子からなり、嵩密度1.4g/cm以上、比表面積(BET値)0.04〜0.5m/gであって、解砕量15%以下の酸化銀が電池用として好適であること、嵩密度の上限が2.5g/cm程度であることが記載されている。 For example, Patent Document 1 includes single particles having an average particle diameter of 5 to 30 μm, a bulk density of 1.4 g / cm 3 or more, and a specific surface area (BET value) of 0.04 to 0.5 m 2 / g, It is described that silver oxide having a pulverization amount of 15% or less is suitable for a battery, and that the upper limit of the bulk density is about 2.5 g / cm 3 .

特許第3269427号公報(特許請求の範囲、段落[0001][014]、実施例)Japanese Patent No. 3269427 (claims, paragraphs [0001] [014], Examples)

本発明の目的は、新規な酸化銀を提供することにある。   An object of the present invention is to provide a novel silver oxide.

本発明の他の目的は、酸化銀の新規な製造方法を提供することにある。   Another object of the present invention is to provide a novel method for producing silver oxide.

本発明者らは、鋭意検討した結果、特定の方法を採用すること等により、新規な酸化銀(例えば、比較的高い開気孔率や嵩密度を有する酸化銀)が得られること等を見出し、本発明を完成した。   As a result of intensive studies, the present inventors have found that a novel silver oxide (for example, silver oxide having a relatively high open porosity and bulk density) can be obtained by adopting a specific method, etc. The present invention has been completed.

なお、前記特許文献1では、酸化銀粒子をアルカリ溶液中で加熱加圧処理することで、酸化銀粒子をアルカリ溶液中で粒成長させ、酸化銀粒子を得ることを目的としている。
このような方法は、酸化銀粒子の粒成長を伴うものであり、得られる粒子は、緻密なものとなる。実際、特許文献1では、開気孔を形成させること、ましてや開気孔率を高めることを全く想定していない。
In Patent Document 1, an object is to obtain silver oxide particles by subjecting silver oxide particles to heat and pressure treatment in an alkaline solution to grow silver oxide particles in an alkaline solution.
Such a method involves grain growth of silver oxide grains, and the resulting grains are dense. Actually, in Patent Document 1, it is not assumed at all to form open pores, and to increase the open porosity.

すなわち、本発明の酸化銀は、例えば、開気孔率が17%以上の酸化銀であってもよい。
本発明の酸化銀は、また、嵩密度が3g/cm以上の酸化銀であってもよい。
That is, the silver oxide of the present invention may be, for example, silver oxide having an open porosity of 17% or more.
The silver oxide of the present invention may also be a silver oxide having a bulk density of 3 g / cm 3 or more.

本発明の酸化銀は、回折角33°付近のピーク強度I33と、回折角44°付近のピーク強度I44との強度比I44/I33が、0.1以下の酸化銀であってもよい。 The silver oxide of the present invention is a silver oxide having an intensity ratio I 44 / I 33 between a peak intensity I 33 near a diffraction angle of 33 ° and a peak intensity I 44 near a diffraction angle of 44 ° of 0.1 or less. Also good.

代表的な本発明の酸化銀には、
開気孔率が18〜25%であり、
嵩密度が4〜7g/cmであり、
回折角33°付近のピーク強度I33と、回折角44°付近のピーク強度I44との強度比I44/I33が、0.05以下である、酸化銀などが含まれる。
Representative silver oxides of the present invention include
The open porosity is 18-25%,
The bulk density is 4-7 g / cm 3 ,
Silver oxide, etc., in which the intensity ratio I 44 / I 33 between the peak intensity I 33 near the diffraction angle 33 ° and the peak intensity I 44 near the diffraction angle 44 ° is 0.05 or less are included.

本発明の酸化銀は、成形品、例えば、粉体成形体(粉体成形品)であってもよい。   The silver oxide of the present invention may be a molded product, for example, a powder molded product (powder molded product).

本発明の酸化銀は、冷却材、電極材及び触媒から選択された少なくとも1種の用途に使用するための酸化銀であってもよい。   The silver oxide of the present invention may be silver oxide for use in at least one application selected from a coolant, an electrode material, and a catalyst.

本発明には、酸化銀(原料酸化銀)を水蒸気の存在下(又は水蒸気中)で熱処理し、酸化銀を製造する方法が含まれる。このような方法で製造される酸化銀は、上記酸化銀(例えば、開気孔率が17%以上の酸化銀)であってもよい。   The present invention includes a method for producing silver oxide by heat-treating silver oxide (raw material silver oxide) in the presence of water vapor (or in water vapor). The silver oxide produced by such a method may be the above-described silver oxide (for example, silver oxide having an open porosity of 17% or more).

このような方法では、酸化銀の成形体[特に、酸化銀の粉体成形体(例えば、酸化銀粉末のシップ(冷間等方圧加圧)成形体)など]を熱処理してもよい。   In such a method, a silver oxide compact [particularly, a silver oxide powder compact (for example, a silver oxide powder ship (cold isostatic pressing) compact) etc.]] may be heat-treated.

具体的には、本発明の方法は、原料酸化銀を成形[例えば、酸化銀を粉体成形(シップ成形)]する成形工程、得られた原料酸化銀の成形体を熱処理する熱処理工程とで構成してもよい。   Specifically, the method of the present invention includes a forming step of forming raw material silver oxide [for example, powder forming of silver oxide (ship forming)], and a heat treatment step of heat-treating the formed raw material silver oxide compact. It may be configured.

本発明の方法において、加圧又は飽和水蒸気圧下、120℃以上で熱処理してもよい。   In the method of the present invention, heat treatment may be performed at 120 ° C. or higher under pressure or saturated water vapor pressure.

本発明には、前記酸化銀(例えば、開気孔率が17%以上の酸化銀)[又はその還元物(すなわち銀)]を含む材料が含まれる。このような材料は、冷却材、電極材及び触媒材料から選択された少なくとも1種の用途に使用するための材料であってもよい。   The present invention includes a material containing the silver oxide (for example, silver oxide having an open porosity of 17% or more) [or a reduced product thereof (that is, silver)]. Such a material may be a material for use in at least one application selected from a coolant, an electrode material, and a catalyst material.

本発明では、新規な酸化銀(酸化銀(I)、AgO)を提供できる。
また、本発明では、酸化銀の新規な製造方法を提供できる。
In the present invention, novel silver oxide (silver oxide (I), Ag 2 O) can be provided.
Moreover, in this invention, the novel manufacturing method of silver oxide can be provided.

実施例において、熱処理前の酸化銀のSEM写真である。In an Example, it is a SEM photograph of the silver oxide before heat processing. 実施例1で得られた酸化銀のSEM写真である。2 is a SEM photograph of silver oxide obtained in Example 1. 実施例2で得られた酸化銀のSEM写真である。2 is a SEM photograph of silver oxide obtained in Example 2. 実施例3で得られた酸化銀のSEM写真である。3 is a SEM photograph of silver oxide obtained in Example 3. 実施例4で得られた酸化銀のSEM写真である。4 is a SEM photograph of silver oxide obtained in Example 4. 実施例5で得られた酸化銀のSEM写真である。4 is a SEM photograph of silver oxide obtained in Example 5. 参考例1で得られた酸化銀のSEM写真である。2 is a SEM photograph of silver oxide obtained in Reference Example 1.

[酸化銀]
本発明の酸化銀は、特定の物性(特性)を充足する。本発明の酸化銀が充足する物性は、少なくとも1つであればよく、2以上の物性を充足してもよい。なお、このような物性を充足する酸化銀は、例えば、後述の方法により製造しうる。
[Silver oxide]
The silver oxide of the present invention satisfies specific physical properties (characteristics). There may be at least one physical property that the silver oxide of the present invention satisfies, and two or more physical properties may be satisfied. In addition, the silver oxide satisfying such physical properties can be produced by, for example, a method described later.

酸化銀は気孔(又は空孔、特に開気孔)を有していてもよい。なお、気孔は、その全部又は一部が貫通孔であってもよい。開気孔を有する酸化銀の開気孔率は、例えば、10%以上(例えば、12%以上)の範囲から選択してもよく、15%以上(例えば、16%以上、16.5%以上)、好ましくは17%以上(例えば、17.5%以上)、さらに好ましくは18%以上(例えば、19%以上、20%以上など)であってもよい。   Silver oxide may have pores (or pores, particularly open pores). Note that all or part of the pores may be through holes. The open porosity of silver oxide having open pores may be selected from the range of, for example, 10% or more (for example, 12% or more), 15% or more (for example, 16% or more, 16.5% or more), It may be 17% or more (for example, 17.5% or more), more preferably 18% or more (for example, 19% or more, 20% or more, etc.).

酸化銀の開気孔率の上限値は、特に限定されないが、例えば、50%、45%、40%、35%、30%、25%、23%、22%などであってもよい。なお、範囲の上限値と下限値とを適宜組み合わせて範囲を設定してもよい(例えば、18〜30%など。以下同じ)。   Although the upper limit of the open porosity of silver oxide is not particularly limited, it may be, for example, 50%, 45%, 40%, 35%, 30%, 25%, 23%, 22%, or the like. Note that the range may be set by appropriately combining the upper limit value and the lower limit value of the range (for example, 18 to 30%, etc. The same applies hereinafter).

このような開気孔率(比較的多孔質)とすることで、比較的比表面積を大きくできる。このような大きい比表面積により、外部との接触点を増大できる。また、酸化銀(成形体)の内部まで媒体(ガスなど)を拡散や透過しやすくなる。そのため、冷却材、触媒、電極材料などの用途において好適に使用しうる材料となりうる。   By setting such an open porosity (relatively porous), the specific surface area can be relatively increased. Such a large specific surface area can increase the contact point with the outside. Moreover, it becomes easy to diffuse and permeate | transmit a medium (gas etc.) to the inside of silver oxide (molded object). Therefore, it can be a material that can be suitably used in applications such as coolants, catalysts, and electrode materials.

なお、開気孔率の測定方法は特に限定されないが、例えば、開気孔量(P)は、酸化銀(成形体)の乾燥重量(W)、および水中での重量(W)、含水させた際の重量(W)から、下記の式により求めてもよい。
P(%)=100×(W−W)/(W−W
The method for measuring the open porosity is not particularly limited. For example, the amount of open pores (P) is the dry weight (W 1 ) of silver oxide (molded product), and the weight in water (W 2 ). From the weight (W 3 ) at the time of heating, the following formula may be used.
P (%) = 100 × (W 3 −W 1 ) / (W 3 −W 2 )

なお、開気孔の大きさは、特に限定されず、例えば、孔径(気孔径)で1〜10μm程度であってもよい。   In addition, the magnitude | size of an open pore is not specifically limited, For example, about 1-10 micrometers may be sufficient by a hole diameter (pore diameter).

酸化銀の嵩密度は、例えば、2g/cm以上の範囲から選択してもよく、2.5g/cm以上(例えば、2.7g/cm以上)、好ましくは3g/cm以上(例えば、3.5g/cm以上)、さらに好ましくは4g/cm以上(例えば、4.5g/cm以上)であってもよく、5g/cm以上(例えば、5.2g/cm以上、5.3g/cm以上、5.4g/cm以上など)であってもよい。 The bulk density of silver oxide may be selected from the range of 2 g / cm 3 or more, for example, 2.5 g / cm 3 or more (for example, 2.7 g / cm 3 or more), preferably 3 g / cm 3 or more ( For example, it may be 3.5 g / cm 3 or more, more preferably 4 g / cm 3 or more (for example, 4.5 g / cm 3 or more), or 5 g / cm 3 or more (for example, 5.2 g / cm 3). The above may be 5.3 g / cm 3 or more, 5.4 g / cm 3 or more.

酸化銀の嵩密度の上限値は、特に限定されないが、例えば、7g/cm、6.5g/cm、6g/cm、5.8g/cm、5.7g/cmなどであってもよい。 The upper limit value of the bulk density of silver oxide is not particularly limited, and is, for example, 7 g / cm 3 , 6.5 g / cm 3 , 6 g / cm 3 , 5.8 g / cm 3 , 5.7 g / cm 3, etc. May be.

比較的大きい嵩密度とすることで、熱伝導性を上昇させやすくなり、蓄冷材用途等において好適に使用しうる材料となりうる。   By setting it as a comparatively large bulk density, it becomes easy to raise heat conductivity, and can become a material which can be used conveniently in a cool storage material use etc.

なお、嵩密度の測定方法は特に限定されないが、例えば、アルキメデス法により測定してもよい。   In addition, although the measuring method of bulk density is not specifically limited, For example, you may measure by Archimedes method.

酸化銀の理論密度比は、例えば、0.45以上の範囲から選択してもよく、0.5以上(例えば、0.55以上)、好ましくは0.6以上(例えば、0.65以上)、さらに好ましくは0.7以上(例えば、0.73以上、0.75以上、0.76以上、0.77以上など)であってもよい。   The theoretical density ratio of silver oxide may be selected from a range of 0.45 or more, for example, 0.5 or more (for example, 0.55 or more), preferably 0.6 or more (for example, 0.65 or more). More preferably, it may be 0.7 or more (for example, 0.73 or more, 0.75 or more, 0.76 or more, 0.77 or more, etc.).

酸化銀の理論密度比の上限値は、例えば、0.9、0.88、0.85、0.84、0.83、0.82、0.81、0.8、0.79などであってもよい。   The upper limit of the theoretical density ratio of silver oxide is, for example, 0.9, 0.88, 0.85, 0.84, 0.83, 0.82, 0.81, 0.8, 0.79, etc. There may be.

なお、理論密度比は、酸化銀の理論密度(理論最大密度)d(約7.2g/cm)に対する嵩密度(実際の密度)d1の比(d1/d)である。すなわち、理論密度比は、嵩密度を理論密度で除することで算出できる。 The theoretical density ratio is the ratio (d1 / d) of the bulk density (actual density) d1 to the theoretical density (theoretical maximum density) d (about 7.2 g / cm 3 ) of silver oxide. That is, the theoretical density ratio can be calculated by dividing the bulk density by the theoretical density.

酸化銀は、銀(不純物としての銀)を含んでいてもよい。このように銀を含む酸化銀において、銀の割合は、酸化銀の用途等において適宜選択できるが、本発明では、比較的銀の割合が低い酸化銀を効率よく提供しうる。   Silver oxide may contain silver (silver as an impurity). As described above, in the silver oxide containing silver, the proportion of silver can be appropriately selected depending on the use of silver oxide and the like, but the present invention can efficiently provide silver oxide having a relatively low proportion of silver.

このような銀の割合は、X線回折(XRD)により、酸化銀及び銀に対応するピークの強度比として見積もることができる。例えば、酸化銀のX線回折パターンにおいて、酸化銀に対応する回折角33°付近のピーク強度I33と、銀に対応する回折角44°付近のピーク強度I44との強度比I44/I33は、0.3以下、好ましくは0.2以下、さらに好ましくは0.1以下程度であってもよく、0.08以下、0.05以下、0.03以下、0.02以下、0.01以下などであってもよい。 Such a ratio of silver can be estimated as an intensity ratio of peaks corresponding to silver oxide and silver by X-ray diffraction (XRD). For example, in the X-ray diffraction pattern of silver oxide, the intensity ratio I 44 / I between the peak intensity I 33 near the diffraction angle 33 ° corresponding to silver oxide and the peak intensity I 44 near the diffraction angle 44 ° corresponding to silver. 33 may be 0.3 or less, preferably 0.2 or less, more preferably about 0.1 or less, 0.08 or less, 0.05 or less, 0.03 or less, 0.02 or less, 0 .01 or less.

なお、I44/I33の下限値は、特に限定されず、0、0.00001、0.0001、0.0003、0.0005、0.0007、0.001、0.0015などであってもよい。 The lower limit value of I 44 / I 33 is not particularly limited, and is 0, 0.00001, 0.0001, 0.0003, 0.0005, 0.0007, 0.001, 0.0015, etc. Also good.

後述のように、本発明の酸化銀には、成形体の形態、ひいては比較的大きなサイズを有する形態の酸化銀が含まれるが、一般的に、このような大きなサイズの酸化銀は、酸化銀の熱安定性などに起因してか成形過程において銀が含まれやすい。しかし、本発明では、意外なことに、成形体や大きなサイズの酸化銀であっても、高純度の(さらには高純度と上記のような高気孔率や高嵩密度とを両立しうる)酸化銀を提供しうる。   As will be described later, the silver oxide of the present invention includes silver oxide in the form of a molded body, and thus in a form having a relatively large size. Generally, such a large size silver oxide is a silver oxide. Silver is likely to be contained in the molding process due to the thermal stability of the steel. However, in the present invention, surprisingly, even a molded body or a large-sized silver oxide has a high purity (moreover, both high purity and the above-mentioned high porosity and high bulk density can be achieved). Silver oxide can be provided.

なお、後述するように、本発明の酸化銀を銀に変換(還元)して使用することも可能である。このような場合には、必ずしも酸化銀を上記のような高純度とする必要はない。   As will be described later, the silver oxide of the present invention can be used after being converted (reduced) into silver. In such a case, the silver oxide is not necessarily required to have a high purity as described above.

酸化銀の形態は、特に限定されないが、通常、複数の粒子を含む形態(二次粒子、凝集体、凝集粒子)であってもよい。   The form of silver oxide is not particularly limited, but may be usually a form containing a plurality of particles (secondary particles, aggregates, aggregated particles).

特に、本発明の酸化銀は成形体(酸化銀成形体)の形態であってもよい。例えば、酸化銀は、粉体成形体(粉体成形品)の形態であってもよい。このような成形体は、例えば、酸化銀の粉体(又は粉末)を、加圧下で成形することで得られる。   In particular, the silver oxide of the present invention may be in the form of a molded body (silver oxide molded body). For example, the silver oxide may be in the form of a powder molded body (powder molded product). Such a molded body is obtained, for example, by molding silver oxide powder (or powder) under pressure.

また、複数の粒子を含む形態や成形体の形態の酸化銀において、各粒子は融着又は焼結されていてもよい。   Moreover, in the silver oxide of the form containing a some particle | grain or the form of a molded object, each particle | grain may be melt | fused or sintered.

このような成形体の形状は、特に限定されず、用途に応じて適宜選択しうる。例えば、粒状(粒子状)、ペレット状などであってもよい。   The shape of such a molded body is not particularly limited, and can be appropriately selected depending on the application. For example, it may be granular (particulate), pelletized, or the like.

なお、成形体の大きさは、用途や成形法などに応じて適宜選択でき、特に限定されないが、例えば、径は30μm以上、40μm以上、50μm以上などであってもよい。より具体的な態様では、粒状の成形体(例えば、冷却材用途の粒状成形体など)の径は、50μm〜2mm程度であってもよい。また、ペレット状の成形体の径(直径、最大径)は、100μm以上(例えば、500μm以上、1mm以上、1.5mm以上、2mm以上など)であってもよい。   The size of the molded body can be appropriately selected according to the application and molding method, and is not particularly limited. For example, the diameter may be 30 μm or more, 40 μm or more, 50 μm or more. In a more specific aspect, the diameter of a granular molded body (for example, a granular molded body for use as a coolant) may be about 50 μm to 2 mm. Also, the diameter (diameter, maximum diameter) of the pellet-shaped molded body may be 100 μm or more (for example, 500 μm or more, 1 mm or more, 1.5 mm or more, 2 mm or more, etc.).

[酸化銀の製造方法]
本発明には、酸化銀の製造方法も含まれる。このような製造方法により得られる酸化銀は、上記のような物性を充足してもよく、しなくてもよい。特に、本発明の製造方法は、上記のような酸化銀を効率よく製造する方法として好適である。
[Method for producing silver oxide]
The method for producing silver oxide is also included in the present invention. Silver oxide obtained by such a production method may or may not satisfy the above physical properties. In particular, the production method of the present invention is suitable as a method for efficiently producing the above silver oxide.

本発明の製造方法は、酸化銀を水蒸気(又は水蒸気の存在下)で熱処理する工程(熱処理工程)を少なくとも含む。   The production method of the present invention includes at least a step of heat-treating silver oxide with water vapor (or in the presence of water vapor) (heat treatment step).

熱処理に供する酸化銀(原料酸化銀)としては、特に限定されず、合成したものを使用してもよく、市販品を使用してもよい。   It does not specifically limit as a silver oxide (raw material silver oxide) with which it heat-processes, What was synthesize | combined may be used and a commercial item may be used.

例えば、原料酸化銀は、金属銀及び/又は銀塩(硝酸銀など)と、アルカリ成分(水酸化ナトリウムなどのアルカリ金属水酸化物など)とを反応させることにより得てもよい。   For example, the raw material silver oxide may be obtained by reacting metal silver and / or a silver salt (such as silver nitrate) with an alkali component (such as an alkali metal hydroxide such as sodium hydroxide).

なお、アルカリ成分の割合は、特に限定されないが、確実に酸化銀(AgO)を形成させるため、金属銀及び/又は銀塩を構成する銀の当量以上[例えば、1モル当量以上(例えば、1.05モル当量以上、1.1モル当量以上、1.15モル当量以上など)]としてもよい。 The ratio of alkaline component is not particularly limited, in order to form a reliable silver oxide (Ag 2 O), or equivalent amount of silver constituting the metallic silver and / or silver salts [e.g., 1 molar equivalent or more (e.g. 1.05 molar equivalents or more, 1.1 molar equivalents or more, 1.15 molar equivalents or more)].

原料酸化銀は、銀などの他の成分を含んでいてもよいが、通常、実質的に酸化銀のみで構成してもよい。   The raw material silver oxide may contain other components such as silver, but usually it may be substantially composed of only silver oxide.

原料酸化銀の形態(形状)は、特に限定されず、粉末(粉状、粉体状、粒状)であってもよく、成形体(原料成形体)であってもよい。代表的には、原料酸化銀(熱処理に供する酸化銀)は、粉体成形体(粉体成形品)であってもよい。   The form (shape) of the raw material silver oxide is not particularly limited, and may be a powder (powder, powder, granular) or a formed body (raw material formed body). Typically, the raw material silver oxide (silver oxide to be subjected to heat treatment) may be a powder molded body (powder molded product).

このような原料成形体は、酸化銀(原料酸化銀)を適当な方法により成形することで得ることができる。   Such a raw material molded body can be obtained by molding silver oxide (raw material silver oxide) by an appropriate method.

例えば、粉体成形体は、原料酸化銀の粉末を、加圧成形することにより得てもよい。加圧成形(法)としては、特に限定されないが、シップ(CIP)成形(冷間等方圧加圧成形)を好適に使用してもよい。   For example, the powder compact may be obtained by pressure molding a raw material silver oxide powder. The pressure molding (method) is not particularly limited, but ship (CIP) molding (cold isostatic pressing) may be suitably used.

なお、加圧成形前に、原料酸化銀の粉末を仮成形してもよい。   Note that the raw material silver oxide powder may be temporarily molded before the pressure molding.

粉末状の原料酸化銀の粒径は、特に限定されないが、例えば、平均粒径で1〜10μm、好ましくは2〜8μm、さらに好ましくは3〜5μm程度であってもよい。   The particle size of the powdered raw material silver oxide is not particularly limited, but may be, for example, an average particle size of 1 to 10 μm, preferably 2 to 8 μm, and more preferably about 3 to 5 μm.

また、原料酸化銀[例えば、粉末状の原料酸化銀(又は粉体成形体)]は、適当なバインダー成分を含んでいてもよいが、本発明ではこのようなバインダー成分を含まない原料酸化銀を好適に使用してもよい。   Further, the raw material silver oxide [for example, powdery raw material silver oxide (or powder compact)] may contain an appropriate binder component, but in the present invention, the raw material silver oxide does not contain such a binder component. May be suitably used.

原料成形体の形状は、特に限定されず、用途に応じて適宜選択しうる。例えば、粒状(粒子状)、ペレット状などであってもよい。   The shape of the raw material molded body is not particularly limited, and can be appropriately selected depending on the application. For example, it may be granular (particulate), pelletized, or the like.

熱処理工程では、前記のように、原料酸化銀を水蒸気で熱処理する。このように水蒸気で熱処理することで、前記のような物性(例えば、高開気孔率、高嵩密度など)を有する酸化銀を効率よく得やすい。
また、熱処理工程では、本来、酸化銀が分解して銀へ還元する温度であっても、酸化銀の状態を保持したまま熱処理を行うことができる。
In the heat treatment step, the raw material silver oxide is heat treated with water vapor as described above. By heat-treating with water vapor in this way, it is easy to efficiently obtain silver oxide having the above physical properties (for example, high open porosity, high bulk density, etc.).
Further, in the heat treatment step, heat treatment can be performed while maintaining the state of silver oxide even at a temperature at which silver oxide is decomposed and reduced to silver.

熱処理は、水蒸気の存在下で行うことができれば、その温度は特に限定されず、例えば、70℃以上(例えば、80℃以上)程度の範囲から選択でき、100℃以上、好ましくは120℃以上、さらに好ましくは140℃以上であってもよく、160℃以上(例えば、180℃以上など)とすることもできる。
なお、温度の上限値は、特に限定されず、例えば、500℃、450℃、400℃、350℃、300℃、270℃、250℃、230℃などであってもよい。
As long as the heat treatment can be performed in the presence of water vapor, the temperature is not particularly limited. For example, the temperature can be selected from a range of about 70 ° C. or higher (eg, 80 ° C. or higher), 100 ° C. or higher, preferably 120 ° C. or higher. More preferably, it may be 140 ° C. or higher, and may be 160 ° C. or higher (for example, 180 ° C. or higher).
In addition, the upper limit of temperature is not specifically limited, For example, 500 degreeC, 450 degreeC, 400 degreeC, 350 degreeC, 300 degreeC, 270 degreeC, 250 degreeC, 230 degreeC etc. may be sufficient.

また、熱処理は、常圧下又は加圧下で行ってもよく、特に加圧下(加圧水蒸気、過熱水蒸気、水熱条件下)で行ってもよい。加圧下で行う場合、圧力(反応器内圧力、内圧)としては、温度にもよるが、例えば、0.12MPa以上、好ましくは0.15MPa以上、さらに好ましくは0.2MPa以上であってもよく、0.3MPa以上などであってもよい。   The heat treatment may be performed under normal pressure or under pressure, and particularly under pressure (pressurized steam, superheated steam, or hydrothermal conditions). When performed under pressure, the pressure (reactor internal pressure, internal pressure) depends on temperature, but may be, for example, 0.12 MPa or more, preferably 0.15 MPa or more, more preferably 0.2 MPa or more. , 0.3 MPa or more.

加圧下で行う場合、圧力の上限値は、特に限定されないが、例えば、22MPa、20MPaなどであってもよい。前記のように比較的高い開気孔率や嵩密度を有する酸化銀を効率良く得るためには、極端な高圧を作用させることなく熱処理してもよい。   When performed under pressure, the upper limit of the pressure is not particularly limited, but may be, for example, 22 MPa, 20 MPa, or the like. In order to efficiently obtain silver oxide having a relatively high open porosity and bulk density as described above, heat treatment may be performed without applying an extreme high pressure.

熱処理は、加圧又は飽和水蒸気圧下で行ってもよく、非飽和水蒸気圧下で行ってもよい。   The heat treatment may be performed under pressure or saturated water vapor pressure, or may be performed under non-saturated water vapor pressure.

なお、熱処理は、水蒸気の存在下で行うことができれば、水以外の成分の存在下で行ってもよい。例えば、水以外の成分(他の成分)を含む水溶液の蒸気中で、熱処理を行うこともできる。
このような他の成分としては、例えば、アルカリ成分(例えば、水酸化ナトリウム、水酸化カリウムなどの水酸化物など)などが含まれる。
The heat treatment may be performed in the presence of a component other than water as long as it can be performed in the presence of water vapor. For example, the heat treatment can be performed in a vapor of an aqueous solution containing components other than water (other components).
Examples of such other components include alkali components (for example, hydroxides such as sodium hydroxide and potassium hydroxide).

ただし、このような他の成分の存在下で熱処理することで、酸化銀(特に酸化銀成形体)を不均一化しやすい傾向があるようである(例えば、部位によって組織が密に成長するなど)。そのため、他の成分(例えば、アルカリ成分)の存在下で熱処理する場合でも、このような影響が生じない程度で他の成分を存在させるのが好ましく、特に、実質的に水蒸気のみで熱処理を行うのが好ましい。   However, it seems that the heat treatment in the presence of such other components tends to make the silver oxide (especially the silver oxide molded body) non-uniform (for example, the tissue grows densely depending on the site). . Therefore, even when heat treatment is performed in the presence of another component (for example, an alkali component), it is preferable that the other component is present to such an extent that such an influence does not occur. Is preferred.

熱処理(工程)を行う容器(反応器)は、特に限定されず、例えば、オートクレーブなどの加熱(及び加圧)可能な容器を使用してもよい。   The container (reactor) for performing the heat treatment (step) is not particularly limited, and for example, a heatable (and pressurized) container such as an autoclave may be used.

熱処理において、水蒸気の量は、特に限定されず、飽和状態又は非飽和状態であるか等に応じて適宜選択でき、例えば、水として容器内体積(系内の体積)の0.5体積%以上、好ましくは1体積%以上、さらに好ましくは2体積%以上などであってもよく、5体積%以上、10体積%以上、15体積%以上、20体積%以上、25体積%以上、30体積%以上などであってもよい。
なお、上限値としては、特に限定されないが、例えば、水として容器内体積(系内の体積)の90体積%、80体積%、70体積%、60体積%、50体積%などであってもよい。
In the heat treatment, the amount of water vapor is not particularly limited, and can be appropriately selected depending on whether it is in a saturated state or a non-saturated state, for example, 0.5% by volume or more of the volume in the container (volume in the system) as water The volume may be 1% by volume or more, more preferably 2% by volume or more, 5% by volume or more, 10% by volume or more, 15% by volume or more, 20% by volume or more, 25% by volume or more, 30% by volume. The above may be used.
The upper limit value is not particularly limited. For example, water may be 90% by volume, 80% by volume, 70% by volume, 60% by volume, 50% by volume, or the like of the volume in the container (volume in the system). Good.

熱処理時間は、原料酸化銀の形状や熱処理条件などに応じて適宜選択でき、特に限定されないが、例えば、10分以上(例えば、30分以上)、好ましくは1時間以上(例えば、1.5時間以上)、さらに好ましくは2時間以上(例えば、2.5時間以上)などであってもよい。   The heat treatment time can be appropriately selected according to the shape of the raw material silver oxide, the heat treatment conditions, and the like, and is not particularly limited. For example, it is 10 minutes or longer (for example, 30 minutes or longer), preferably 1 hour or longer (for example, 1.5 hours). Or more), more preferably 2 hours or more (for example, 2.5 hours or more).

なお、熱処理後の酸化銀は、必要に応じて、洗浄処理してもよい。   Note that the silver oxide after the heat treatment may be subjected to a washing treatment if necessary.

上記のようにして、酸化銀が得られる。特に、原料酸化銀が成形体である場合、当該成形体の形態(形状)を反映した酸化銀が得られる。   Silver oxide is obtained as described above. In particular, when the raw material silver oxide is a molded body, silver oxide reflecting the form (shape) of the molded body is obtained.

[酸化銀の用途]
本発明の酸化銀の用途は、特に限定されず、種々の用途[例えば、蓄冷材又は冷却材(冷凍機用の蓄冷材など)、電極材、触媒など]に使用できる。
[Use of silver oxide]
The use of the silver oxide of the present invention is not particularly limited, and can be used for various uses [for example, a regenerator material or a coolant (such as a regenerator material for a refrigerator), an electrode material, a catalyst, etc.).

特に、本発明の酸化銀は、比較的大きい開気孔率や嵩密度を有している(さらには高純度で酸化銀を含んでいる)場合が多く、このような物性を生かした用途に好適に使用しうる。   In particular, the silver oxide of the present invention often has a relatively large open porosity and bulk density (further high-purity and contains silver oxide), and is suitable for applications utilizing such physical properties. Can be used for

また、本発明の酸化銀は、そのまま使用する場合のみならず、銀に還元することで使用することもできる。   Moreover, the silver oxide of this invention can be used not only when using as it is, but by reducing to silver.

例えば、触媒用途などでは、本発明の酸化銀をそのままないし酸化銀を還元させた銀の状態で触媒として使用することもできる。   For example, in a catalyst application, the silver oxide of the present invention can be used as a catalyst as it is or in a silver state obtained by reducing silver oxide.

銀に還元しても、元の物性(比較的大きい開気孔率や嵩密度)や形状を保持しているため、このような物性や形状を有する銀原料として、本発明の酸化銀を使用することもできる。   Even if reduced to silver, the original physical properties (relatively large open porosity and bulk density) and shape are retained, so the silver oxide of the present invention is used as a silver raw material having such physical properties and shape. You can also.

次に、実験例、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。   Next, the present invention will be described more specifically with reference to experimental examples and examples. However, the present invention is not limited to these examples, and many modifications are within the technical idea of the present invention. This is possible by those with ordinary knowledge in the field.

なお、各種物性・特性は以下のように測定又は評価した。   Various physical properties and characteristics were measured or evaluated as follows.

(開気孔率)
開気孔量(P)は酸化銀(成形体)の乾燥重量(W)、および水中での重量(W)、含水させた際の重量(W)から、下記の式により求めた。
P(%)=100×(W−W)/(W−W
(嵩密度)
アルキメデス法により測定した。
(理論密度比)
アルキメデス法により測定した嵩密度と、酸化銀の理論密度から計算した。
(銀量及び結晶相)
X線回折(XRD)により、酸化銀の主ピーク(33°付近)強度I33と、銀の2番目に高いピーク(44°付近)強度I44との強度比I44/I33を測定した。
結晶相は、I44/I33の値が0.1以下であるとき、酸化銀の単一相と、0.1超であるとき酸化銀及び銀を含む相と決定した。
(Open porosity)
The amount of open pores (P) was determined by the following formula from the dry weight (W 1 ) of silver oxide (molded body), the weight in water (W 2 ), and the weight when containing water (W 3 ).
P (%) = 100 × (W 3 −W 1 ) / (W 3 −W 2 )
(The bulk density)
Measured by Archimedes method.
(Theoretical density ratio)
It was calculated from the bulk density measured by the Archimedes method and the theoretical density of silver oxide.
(Silver amount and crystal phase)
The intensity ratio I 44 / I 33 between the main peak (around 33 °) intensity I 33 of silver oxide and the second highest peak (around 44 °) intensity I 44 of silver was measured by X-ray diffraction (XRD). .
The crystal phase was determined to be a single phase of silver oxide when the value of I 44 / I 33 was 0.1 or less, and a phase containing silver oxide and silver when the value was more than 0.1.

(実施例1〜5、参考例1)
濃度5.0質量%硝酸銀水溶液200gに、濃度0.4質量%の水酸化ナトリウム水溶液707.5g(反応当量の1.2モル倍)を約5分かけて混合し、15分間放置(エージング)した。得られた混合物をデカンテーションにより中性になるまで洗浄後、得られたスラリーを100℃で5時間処理(エージング)し、酸化銀の粉末(平均粒径約4μm)を得た。
(Examples 1-5, Reference Example 1)
2007.5 g of a silver nitrate aqueous solution with a concentration of 5.0% by mass is mixed with 707.5 g of a sodium hydroxide aqueous solution with a concentration of 0.4% by mass (1.2 mole times the reaction equivalent) over about 5 minutes and left for 15 minutes (aging). did. The obtained mixture was washed by decantation until neutral, and the obtained slurry was treated (aged) at 100 ° C. for 5 hours to obtain a silver oxide powder (average particle diameter of about 4 μm).

得られた酸化銀粉末を、一軸加圧により仮成形した後、冷間等方圧加圧(CIP、圧力150MPa、時間4分)により、ペレット状(直径約16mm、厚さ約3mm)に成形した。   The obtained silver oxide powder is temporarily formed by uniaxial pressing, and then formed into pellets (diameter: about 16 mm, thickness: about 3 mm) by cold isostatic pressing (CIP, pressure 150 MPa, time 4 minutes). did.

得られたペレットを、溶液と接しないように試料台を設けたテフロン内張オートクレーブに入れ、表1に示した条件で熱処理を行った。熱処理後、希硝酸(濃度3.0質量%)にて30秒間洗浄し、ペレット状の酸化銀を得た。なお、実施例1〜5で得られた酸化銀(の表面)には、4〜5μm程度の空孔を確認できた。   The obtained pellets were placed in a Teflon-lined autoclave provided with a sample stage so as not to come into contact with the solution, and were subjected to heat treatment under the conditions shown in Table 1. After the heat treatment, it was washed with dilute nitric acid (concentration: 3.0% by mass) for 30 seconds to obtain pelleted silver oxide. In addition, about 4-5 micrometers void | hole was confirmed in the silver oxide (surface) obtained in Examples 1-5.

下記表に条件及び熱処理後の酸化銀の物性をまとめたものを示す。   The table below summarizes the conditions and physical properties of silver oxide after heat treatment.

また、熱処理前のペレット、実施例1〜5及び参考例1で得られた酸化銀の微細構造を、走査型電子顕微鏡(SEM)により確認した。SEM写真(5000倍)を図1〜7に示す。   Moreover, the pellet before heat processing, the fine structure of the silver oxide obtained in Examples 1-5 and Reference Example 1 were confirmed with the scanning electron microscope (SEM). SEM photographs (5000 times) are shown in FIGS.

表1の結果及び図からも明らかなように、実施例では、高い開気孔率等を有する酸化銀が得られた。   As is clear from the results in Table 1 and the drawings, silver oxide having a high open porosity and the like were obtained in the examples.

本発明によれば、新規な酸化銀を提供できる。   According to the present invention, novel silver oxide can be provided.

Claims (11)

開気孔率が17%以上である酸化銀。   Silver oxide having an open porosity of 17% or more. 嵩密度が3g/cm以上である請求項1記載の酸化銀。 The silver oxide according to claim 1, having a bulk density of 3 g / cm 3 or more. 回折角33°付近のピーク強度I33と、回折角44°付近のピーク強度I44との強度比I44/I33が、0.1以下である請求項1又は2記載の酸化銀。 3. The silver oxide according to claim 1, wherein an intensity ratio I 44 / I 33 between a peak intensity I 33 near a diffraction angle of 33 ° and a peak intensity I 44 near a diffraction angle of 44 ° is 0.1 or less. 開気孔率が18〜25%であり、
嵩密度が4〜7g/cmであり、
回折角33°付近のピーク強度I33と、回折角44°付近のピーク強度I44との強度比I44/I33が、0.05以下である請求項1〜3のいずれかに記載の酸化銀。
The open porosity is 18-25%,
The bulk density is 4-7 g / cm 3 ,
The intensity ratio I 44 / I 33 between the peak intensity I 33 near the diffraction angle of 33 ° and the peak intensity I 44 near the diffraction angle of 44 ° is 0.05 or less. Silver oxide.
粉体成形体である請求項1〜4のいずれかに記載の酸化銀。   The silver oxide according to any one of claims 1 to 4, which is a powder compact. 冷却材、電極材及び触媒から選択された少なくとも1種の用途に使用するための請求項1〜5のいずれかに記載の酸化銀。   The silver oxide in any one of Claims 1-5 for using it for at least 1 sort (s) of application selected from a coolant, an electrode material, and a catalyst. 酸化銀を水蒸気の存在下で熱処理し、請求項1〜6のいずれかに記載の酸化銀を製造する方法。   The method for producing silver oxide according to any one of claims 1 to 6, wherein the silver oxide is heat-treated in the presence of water vapor. 酸化銀の粉体成形体を熱処理する請求項7記載の製造方法。   The manufacturing method of Claim 7 which heat-processes the powder compact of silver oxide. 成形体が酸化銀粉末のシップ成形体である請求項8記載の製造方法。   The manufacturing method according to claim 8, wherein the compact is a ship compact of silver oxide powder. 加圧又は飽和水蒸気圧下、120℃以上で熱処理する請求項7〜9のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 7-9 heat-processed above 120 degreeC under pressurization or saturated water vapor pressure. 請求項1〜6のいずれかに記載の酸化銀を含む材料であって、冷却材、電極材及び触媒材料から選択された少なくとも1種の用途に使用するための材料。   A material comprising the silver oxide according to any one of claims 1 to 6, wherein the material is used for at least one application selected from a coolant, an electrode material, and a catalyst material.
JP2017140942A 2017-07-20 2017-07-20 Silver oxide and its manufacturing method Active JP7083235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017140942A JP7083235B2 (en) 2017-07-20 2017-07-20 Silver oxide and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017140942A JP7083235B2 (en) 2017-07-20 2017-07-20 Silver oxide and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019019038A true JP2019019038A (en) 2019-02-07
JP7083235B2 JP7083235B2 (en) 2022-06-10

Family

ID=65353640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017140942A Active JP7083235B2 (en) 2017-07-20 2017-07-20 Silver oxide and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7083235B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11208584B2 (en) 2018-09-18 2021-12-28 Kabushiki Kaisha Toshiba Heat regenerating material, regenerator, refrigerator, superconducting magnet, nuclear magnetic resonance imaging apparatus, nuclear magnetic resonance apparatus, cryopump, and magnetic field application type single crystal pulling apparatus

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111953A (en) * 1980-12-26 1982-07-12 Hitachi Maxell Ltd Silver-oxide secondary battery
JPH10188974A (en) * 1996-11-08 1998-07-21 Dowa Mining Co Ltd Silver oxide for battery and its manufacture as well as battery using the same
JP2000195512A (en) * 1998-12-25 2000-07-14 Mitsubishi Materials Corp Active material powder and electrode material for electrode of silver oxide battery and manufacture thereof
JP2001143687A (en) * 1999-11-11 2001-05-25 Kao Corp Positive electrode for non-aqueous secondary batteries
JP2001172017A (en) * 1999-12-16 2001-06-26 Dowa Mining Co Ltd Silver oxide powder for battery, method for producing the same, and battery using the same
JP2001278656A (en) * 2000-03-30 2001-10-10 Toshiba Corp Method for manufacturing sintered metal oxide
JP2002216750A (en) * 2001-01-22 2002-08-02 Shin Etsu Chem Co Ltd Hydrogen storage alloy molded article, hydrogen storage alloy molded article porous negative electrode, and nickel-hydrogen storage battery
JP2004265865A (en) * 2003-02-13 2004-09-24 Dowa Mining Co Ltd Silver oxide powder for alkaline battery and method for producing the same
JP2010177481A (en) * 2009-01-30 2010-08-12 Hitachi Ltd Electronic member, electronic component, and manufacturing method therefor
JP2010282832A (en) * 2009-06-04 2010-12-16 Hitachi Metals Ltd Bonding material, its manufacturing method, and mounting method using the same
JP2012235163A (en) * 2012-08-10 2012-11-29 Hitachi Ltd Electronic member, electronic component and manufacturing method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111953A (en) * 1980-12-26 1982-07-12 Hitachi Maxell Ltd Silver-oxide secondary battery
JPH10188974A (en) * 1996-11-08 1998-07-21 Dowa Mining Co Ltd Silver oxide for battery and its manufacture as well as battery using the same
JP2000195512A (en) * 1998-12-25 2000-07-14 Mitsubishi Materials Corp Active material powder and electrode material for electrode of silver oxide battery and manufacture thereof
JP2001143687A (en) * 1999-11-11 2001-05-25 Kao Corp Positive electrode for non-aqueous secondary batteries
JP2001172017A (en) * 1999-12-16 2001-06-26 Dowa Mining Co Ltd Silver oxide powder for battery, method for producing the same, and battery using the same
JP2001278656A (en) * 2000-03-30 2001-10-10 Toshiba Corp Method for manufacturing sintered metal oxide
JP2002216750A (en) * 2001-01-22 2002-08-02 Shin Etsu Chem Co Ltd Hydrogen storage alloy molded article, hydrogen storage alloy molded article porous negative electrode, and nickel-hydrogen storage battery
JP2004265865A (en) * 2003-02-13 2004-09-24 Dowa Mining Co Ltd Silver oxide powder for alkaline battery and method for producing the same
JP2010177481A (en) * 2009-01-30 2010-08-12 Hitachi Ltd Electronic member, electronic component, and manufacturing method therefor
JP2010282832A (en) * 2009-06-04 2010-12-16 Hitachi Metals Ltd Bonding material, its manufacturing method, and mounting method using the same
JP2012235163A (en) * 2012-08-10 2012-11-29 Hitachi Ltd Electronic member, electronic component and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11208584B2 (en) 2018-09-18 2021-12-28 Kabushiki Kaisha Toshiba Heat regenerating material, regenerator, refrigerator, superconducting magnet, nuclear magnetic resonance imaging apparatus, nuclear magnetic resonance apparatus, cryopump, and magnetic field application type single crystal pulling apparatus

Also Published As

Publication number Publication date
JP7083235B2 (en) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2017143978A1 (en) Method of producing a porous crystalline material with a highly uniform structure
Rufner et al. Synthesis and sintering behavior of ultrafine (< 10 nm) magnesium aluminate spinel nanoparticles
JP5578504B2 (en) Process for producing alkali metal niobate particles and alkali metal niobate particles
JP6744193B2 (en) Garnet type lithium-lanthanum-zirconium composite oxide and method for producing the same
Zamand et al. Size-controlled synthesis of SnO2 nanoparticles using reverse microemulsion method
Zhou et al. Investigation on the preparation and properties of monodispersed Al2O3ZrO2 nanopowder via Co-precipitation method
US4224302A (en) Process for producing an alumina catalyst carrier
Sronsri et al. Thermal decomposition kinetics of Mn0. 9Co0. 1HPO4· 3H2O using experimental-model comparative and thermodynamic studies
JP6379910B2 (en) Ammonia synthesis catalyst, method for producing ammonia synthesis catalyst, and ammonia synthesis method
JP6016431B2 (en) Method for producing sodium niobate fine particles
JP2019019038A (en) Silver oxide and method for producing the same
Chen et al. Low-temperature preparation of α-Al2O3 with the assistance of seeding a novel hydroxyl aluminum oxalate
CN106698511B (en) One kind mixes yttrium zirconium dioxide Jie and sees crystal and its preparation method and application
JP2004315273A (en) Nickel oxide powder with high specific surface area and excellent sintering property and its manufacturing method
Chen et al. Low-temperature preparation of nanoplated bismuth titanate microspheres by a sol–gel-hydrothermal method
JP2001010867A (en) Method for producing ceramic raw material particle
JP2021024778A (en) Surface three-dimensional nanostructure powder, dense body thereof, and method for manufacturing the same
JP2010208881A (en) Inorganic agglomerated particle
JP2017171544A (en) Oxygen storage material and method for producing the same
KR102359159B1 (en) Method for producing metal nanoparticles by combustion process
CN110776020A (en) A synthetic method of rod-assembled NiMnO3 nanoflowers
JP4621887B2 (en) Carbon dioxide absorbing material
EP3349894B1 (en) A method for production of a catalyst supporting material
JPH02271919A (en) Production of fine powder of titanium carbide
Krimech et al. Monoclinic Li2TiO3 Nano-particles via sol-gel method: Structure and impedance spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220415

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220415

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220426

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220531

R150 Certificate of patent or registration of utility model

Ref document number: 7083235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150