JP2019015930A - 電気光学光偏向器 - Google Patents
電気光学光偏向器 Download PDFInfo
- Publication number
- JP2019015930A JP2019015930A JP2017135029A JP2017135029A JP2019015930A JP 2019015930 A JP2019015930 A JP 2019015930A JP 2017135029 A JP2017135029 A JP 2017135029A JP 2017135029 A JP2017135029 A JP 2017135029A JP 2019015930 A JP2019015930 A JP 2019015930A
- Authority
- JP
- Japan
- Prior art keywords
- electro
- optic
- optic crystal
- crystal
- exit surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
【課題】出射されるビームの偏向の軌跡が直線となる電気光学光偏向器を提供すること。【解決手段】電気光学光偏向器300は、電気光学結晶302と2枚の反射防止膜303、2枚の高反射膜304、および電界印加用の電極305によって構成される。電界印加方向は、X軸方向に平行とする。電気光学結晶302の入射面および出射面は、互いに平行であり、入射面、出射面に入射する各ビームが、入射面および出射面のそれぞれに対してYZ平面において垂直に入射するようにする。すなわち、少なくとも出射面に入射するビームは、出射面とYZ平面との交線に対して垂直となる。また電気光学結晶302の高反射膜304が設置された対向する面は、電気光学結晶302を切削加工等により入射面および出射面に対して角度がつけられ、互いに平行とする。【選択図】図3
Description
本発明は、光の伝搬方向を変化させる電気光学光偏向器に関する。
光偏向器とは、光の伝搬方向を変化させるデバイスである。大きく分けて反射型と透過型がある。代表的な反射型光偏向器として、ガルバノミラーやポリゴンミラーなどの傾きが変化する反射鏡を利用したデバイスが挙げられる。
一方、透過型光偏向器は、回折型と屈折率分布型とに二分できる。回折型は、音響波によってできる屈折率変調が回折格子となって光を回折することでその伝搬方向が変化する。この音響波による光の回折現象は音響光学効果と呼ばれるため、この音響光学効果を利用した光偏向器を、ここでは音響光学光偏向器と呼ぶ。
また屈折率分布型は、偏向器内部の屈折率が特定の方向に単調変化し、それによって伝搬光の波面が傾斜することで伝搬方向が変化する。この屈折率変化は一般的に電気光学効果によって引き起こされるため、この電気光学効果を利用した光偏向器を、ここでは電気光学光偏向器と呼ぶ。
電気光学効果とは、電界の強さに依存して物質の屈折率が変化する現象を指し、電気光学効果を有する結晶は電気光学結晶と呼ばれる。何らかの方法により電気光学結晶の中に電子などの電荷を注入し、電荷が注入された電気光学結晶に対して電界を加えた場合、その内部では静電遮蔽により不均一な電界分布が形成される。この不均一な電界分布と電気光学効果の複合効果により、結晶の内部では電界分布に依存した屈折率分布が形成される。この屈折率分布を利用することで光の伝搬方向を結晶内部で変えることができる。
代表的な電気光学光偏向器に、タンタル酸ニオブ酸カリウム(KTN)を用いた光偏向器が挙げられる(特許文献1参照)。KTNは反転対称性を有するペロブスカイト型の単結晶であり、電気光学特性として2次の電気光学効果であるカー効果を示す。またKTNは特定の結晶温度において結晶構造が変化する構造相転移を示し、この際に結晶の誘電率はキュリーワイズの法則に従って著しく上昇するため、大きな電気光学効果を得ることができる。
光コヒーレンストモグラフィ(OCT)に用いられる波長掃引光源やラインセンサーなどの応用には、広い偏向角を持つ光偏向器が求められる。電気光学光偏向器の偏向角の大きさは、電界分布に依存した屈折率分布の中を光が伝搬する距離に比例するため、結晶内をより長い距離伝搬させることが広角化には重要である。このことは、結晶表面に反射膜を取り付け、結晶内部でビームを折り返すことで結晶を複数回通過させるマルチパス構成が広角化に対して有効であることがこれまでに実証されていることからも明らかである。このマルチパス構成を用いることにより、パス数倍の伝搬距離が得られ、広い偏向角を得ることができる。
また非特許文献1には、OCTに用いられる波長掃引光源が示されている。この光源は半導体光増幅器とKTN光偏向器と回折格子およびその他光学素子から成る。非特許文献1には光源性能が光偏向器の偏向角に依存することが示されており、広い偏向角を得るためにマルチパス構成が採用されている。
上野 雅浩、豊田 誠治、坂本 尊、佐々木 雄三 小林 潤也、「KTN光偏向器の広角化による200kHz波長掃引光源のコヒーレンス長伸長」、電子情報通信エレクトロニクスソサイエティ大会、2014年、C−3−26
しかしながら、従来のマルチパス構成の電気光学光偏向器では、偏向されたビームのスキャンの軌跡が直線から湾曲した曲線になるという課題がある。これはスキャン方向と直交する面上で結晶の境界面での光屈折を考えた場合、結晶の出射端面に対してビームが垂直に入射せず、斜入射するためである。
図1(a)に、従来の3パス型マルチパス構成の電気光学光偏向器の電界印加方向に垂直な断面図を示し、(b)に(a)のY軸方向から電気光学光偏向器を見た図を示す。電気光学光偏向器100の入射端面に対して入射するビームを傾けて斜入射し、結晶端面に設置した高反射膜103おいて反射させて結晶内でビームを折り返すことでマルチパス構成を実現している。また、電界印加用の電極104に電圧を印加することによりX軸方向に電界を印加する構成としている。
点線101はビームの軌跡を表しており、ベクトルD’は結晶に入射する入射ビームの方向ベクトル、ベクトルSは結晶の入射面の法線ベクトル、ベクトルIは結晶出射面に入射するビームの方向ベクトル、ベクトルDは結晶から出射される出射ビームの方向ベクトルを表す。それぞれのベクトルは単位ベクトルである。
結晶の入射面と出射面は平行であり、ベクトルIのY成分は0であってXZ平面内にあり、ベクトルD’のX成分は0であってYZ平面内にある。尚、X軸は図面に垂直となるようにとり、Z軸はベクトルIと平行となるようにとる。Y軸と結晶の入射面、出射面とのなす角はθとする。
この電気光学光偏向器100の電界印加方向、すなわち偏向方向はX軸方向であり、結晶内を伝搬するビームの方向ベクトルのX成分はX方向の屈折率分布dn/dXと結晶内の伝搬長Lの積によって決まり、偏向角、すなわちベクトルIとZ軸のなす角をφとする。以上の条件から各方向ベクトルは以下のように表される。
電気光学結晶を取り囲む空間の屈折率をn1とし、結晶の平均屈折率をn2とする。出射面において、これらのベクトルはスネルの法則により、以下の関係を満たす。
となる。この結果より、
となる。ただしN=n2/n1、A=cosθ/sinθである。ベクトルDは単位ベクトルであるため、
の関係を満たす。式(6)、(7)、(8)から、
が得られる。この式はDyについての2次方程式であるため、解の公式を使って解くと以下が得られる。
Dyは屈折光の伝搬方向ベクトルDのY成分であるため、Y軸とDのなす角θyはY軸の単位ベクトルとの内積を取ることで、
と表される。式(11)は式(10)から明らかなようにcosφを含むため、光偏向は本来のX軸方向の角度変化のみならず、Y軸方向の角度変化を伴うことを表す。この結果、従来のマルチパス構成の電気光学偏向器では、ビームスキャンの軌跡は直線ではなく湾曲した曲線となるという課題がある。
図2は、従来の電気光学光偏向器のθyの偏向角依存性の計算例を示している。計算に用いた数値例はθ=5.2°、n1=1、n2=2.2である。相対角度変化量とは偏向角φ=0のときのθyを基準とし、そこからの角度変化量を表している。この角度変化は本来意図していない方向への光偏向であるため、光偏向器にとって問題となる。
本発明は、このような課題に鑑みてなされたもので、その目的とするところは、出射されるビームの偏向の軌跡が直線となる電気光学光偏向器を提供することにある。
上記の課題を解決するために、本発明は、電気光学光偏向器であって、電界印加により屈折率が変化する電気光学結晶と、前記電気光学結晶に電界を印加するための電極と、を備え、前記電気光学結晶内から前記電気光学結晶の出射面に入射する光が、前記電気光学結晶の電界印加方向に垂直な面と前記出射面との交線に対して垂直となるように前記電気光学結晶が配置されることを特徴とする。
請求項2に記載の発明は、請求項1に記載の電気光学光偏向器において、前記電気光学結晶内を伝搬する光を反射して、前記電気光学結晶内の伝搬光路を折り返すマルチパス構造を有することを特徴とする。
請求項3に記載の発明は、請求項2に記載の電気光学光偏向器において、前記マルチパス構造は、前記電気光学結晶の互いに平行な2面を反射面とすることを特徴とする。
請求項4に記載の発明は、請求項3に記載の電気光学光偏向器において、前記電気光学結晶の入射面は、前記出射面と平行であり、前記入射面および前記出射面は前記反射面と非平行であることを特徴とする。
請求項5に記載の発明は、電気光学光偏向器であって、電界印加により屈折率が変化する電気光学結晶と、前記電気光学結晶に電界を印加するための電極と、前記電気光学結晶の入射面および出射面のそれぞれに接合された、前記電気光学結晶と同じ屈折率を有する2つのプリズムと、を備え、前記プリズム内から前記プリズムの出射面に入射する光が、前記電気光学結晶の電界印加方向に垂直な面と前記プリズムの出射面との交線に対して垂直となるように前記電気光学結晶および前記プリズムが配置されることを特徴とする。
請求項6に記載の発明は、請求項5に記載の電気光学光偏向器において、前記電気光学結晶内を伝搬する光を反射して、前記電気光学結晶内の伝搬光路を折り返すマルチパス構造を有することを特徴とする。
請求項7に記載の発明は、請求項6に記載の電気光学光偏向器において、前記マルチパス構造は、前記電気光学結晶の平行な2面を反射面とすることを特徴とする。
請求項8に記載の発明は、請求項7に記載の電気光学光偏向器において、前記プリズムの入射面は、前記プリズムの出射面と平行であり、前記プリズムの入射面および前記プリズムの出射面は前記反射面と非平行であることを特徴とする。
本発明の構成を取ることで、電気光学光偏向器から出射されるビームの偏向の軌跡を直線にすることが可能である。
以下、本発明の実施の形態について、詳細に説明する。
(実施形態1)
図3に本発明の実施形態1に係る電気光学光偏向器の電界印加方向に対して垂直な断面図を示し、図4にその斜視図を示す。
図3に本発明の実施形態1に係る電気光学光偏向器の電界印加方向に対して垂直な断面図を示し、図4にその斜視図を示す。
電気光学光偏向器300は、電気光学結晶302、2枚の反射防止膜303、2枚の高反射膜304、および電界印加用の電極305によって構成される。電界印加方向は、X軸方向に平行とする。
ビームは軌跡301を通り、電気光学結晶302に入射する際に一方の反射防止膜303を通過する。2枚の高反射膜304の間でビーム301は複数回、ここでは2回反射され、他方の反射防止膜303を通過して電気光学結晶302から出射される。
電気光学結晶302の入射面および出射面は、互いに平行であり、入射面、出射面に入射する各ビームが、入射面および出射面のそれぞれに対してYZ平面において垂直に入射するようにする。すなわち、少なくとも出射面に入射するビームは、出射面とYZ平面との交線に対して垂直となる。また電気光学結晶302の高反射膜304が設置された対向する面は、電気光学結晶302を切削加工等により入射面および出射面に対して角度がつけられ、互いに平行とする。この場合、出射面の法線ベクトルSは、
となり、ベクトルIと同様にY軸に対しても垂直になる。式(2)、(3)は本実施形態においても成り立つため、式(12)、(2)〜(4)から、
が得られる。これより、Dy=0であることが示される。つまりY軸方向に対してはスネルの法則の影響を受けないことから、電界分布に依存した屈折率分布によりY軸方向には偏向されず、X軸方向にのみ偏向されるためビームスキャンの軌跡は直線となる。
電気光学結晶302はタンタル酸ニオブ酸カリウム(KTN)などの高誘電率な結晶が好ましい。また反射防止膜303と高反射膜304は誘電体多層膜が好ましい。
電気光学結晶302内での反射回数は、本実施形態の2回に限定されることなく、2回以上とすることが可能であり、3パス以上のマルチパス構造を採用することも可能である。
(実施形態2)
図5に、本発明の実施形態2に係る電気光学光偏向器400の断面図を示す。図5は、図3と同様にX軸に対して垂直な断面を示すものである。電界印加方向は、実施形態1と同様に、X軸方向に平行とする。
図5に、本発明の実施形態2に係る電気光学光偏向器400の断面図を示す。図5は、図3と同様にX軸に対して垂直な断面を示すものである。電界印加方向は、実施形態1と同様に、X軸方向に平行とする。
電気光学光偏向器400は、電気光学結晶402と三角プリズム405とが組み合わされ、X軸方向の厚みが薄い立方体の形状をしている。電気光学結晶402のYZ平面に垂直で対向する平行な2面にそれぞれ反射防止膜403および高反射膜404が設置されており、反射防止膜403および高反射膜404に接するように、電気光学結晶402と同じ屈折率を有する三角プリズム405−1、405−2が固定されている。三角プリズム405−1、405−2の反射防止膜403および高反射膜404と接している面と対向する面には、反射防止膜403がそれぞれ設置され、それらは互いに平行である。
ビーム401は、三角プリズム405−1の反射防止膜403が設置された面に垂直に入射させる。電気光学結晶402と三角プリズム405とは屈折率が同じなので、三角プリズム405−1から電気光学結晶402に入射したビーム401は屈折せずに直進する。電気光学結晶402から三角プリズム405−2に入射するビームも同様に屈折せずに直進する。そのため、屈折の生じる入射面および出射面は、三角プリズム405−1、405−2の反射防止膜403が設置された面となり、入射面、出射面に入射する各ビームは、入射面および出射面のそれぞれに対し、YZ平面において垂直に入射する。すなわち、少なくとも出射面に入射するビームは、出射面とYZ平面との交線に対して垂直となる。
このようなことから実施形態2に係る電気光学光偏向器400でも、実施形態1と同様に、ビーム401は入射面および出射面のそれぞれに対し、YZ平面において垂直に入射するため式(13)が成り立つ。そのため、実施形態2に係る電気光学光偏向器400においても電界分布に依存した屈折率分布によりY軸方向には偏向されず、X軸方向にのみ偏向されるためビームスキャンの軌跡は直線となる。
尚、実施形態1、2においては、入射面と出射面とを平行とし、2つの高反射膜を平行とする構成としたが、重要なのは出射面に対して伝搬するビームが垂直に入射することであり、出射面に対して伝搬するビームが垂直に入射していれば、入射面と出射面とを平行とし、2つの高反射膜を平行とする必要はない。
100、300、400 電気光学光偏向器
102、302、402 電気光学結晶
103、304、404 高反射膜
303、403 反射防止膜
104、305 電極
405 三角プリズム
102、302、402 電気光学結晶
103、304、404 高反射膜
303、403 反射防止膜
104、305 電極
405 三角プリズム
Claims (8)
- 電界印加により屈折率が変化する電気光学結晶と、
前記電気光学結晶に電界を印加するための電極と、
を備え、前記電気光学結晶内から前記電気光学結晶の出射面に入射する光が、前記電気光学結晶の電界印加方向に垂直な面と前記出射面との交線に対して垂直となるように前記電気光学結晶が配置されることを特徴とする電気光学光偏向器。 - 前記電気光学結晶内を伝搬する光を反射して、前記電気光学結晶内の伝搬光路を折り返すマルチパス構造を有することを特徴とする請求項1に記載の電気光学光偏向器。
- 前記マルチパス構造は、前記電気光学結晶の互いに平行な2面を反射面とすることを特徴とする請求項2に記載の電気光学光偏向器。
- 前記電気光学結晶の入射面は、前記出射面と平行であり、前記入射面および前記出射面は前記反射面と非平行であることを特徴とする請求項3に記載の電気光学光偏向器。
- 電界印加により屈折率が変化する電気光学結晶と、
前記電気光学結晶に電界を印加するための電極と、
前記電気光学結晶の入射面および出射面のそれぞれに接合された、前記電気光学結晶と同じ屈折率を有する2つのプリズムと、
を備え、前記プリズム内から前記プリズムの出射面に入射する光が、前記電気光学結晶の電界印加方向に垂直な面と前記プリズムの出射面との交線に対して垂直となるように前記電気光学結晶および前記プリズムが配置されることを特徴とする電気光学光偏向器。 - 前記電気光学結晶内を伝搬する光を反射して、前記電気光学結晶内の伝搬光路を折り返すマルチパス構造を有することを特徴とする請求項5に記載の電気光学光偏向器。
- 前記マルチパス構造は、前記電気光学結晶の平行な2面を反射面とすることを特徴とする請求項6に記載の電気光学光偏向器。
- 前記プリズムの入射面は、前記プリズムの出射面と平行であり、前記プリズムの入射面および前記プリズムの出射面は前記反射面と非平行であることを特徴とする請求項7に記載の電気光学光偏向器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017135029A JP2019015930A (ja) | 2017-07-10 | 2017-07-10 | 電気光学光偏向器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017135029A JP2019015930A (ja) | 2017-07-10 | 2017-07-10 | 電気光学光偏向器 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019015930A true JP2019015930A (ja) | 2019-01-31 |
Family
ID=65359026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017135029A Pending JP2019015930A (ja) | 2017-07-10 | 2017-07-10 | 電気光学光偏向器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019015930A (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0611750A (ja) * | 1991-12-30 | 1994-01-21 | Philips Electron Nv | 光学装置及び光学式走査装置 |
JP2008107546A (ja) * | 2006-10-25 | 2008-05-08 | Seiko Epson Corp | 走査型光学装置 |
US20110149380A1 (en) * | 2009-12-18 | 2011-06-23 | Microvision, Inc. | Electro-Optical Deflection/Modulation |
JP2016038465A (ja) * | 2014-08-07 | 2016-03-22 | 日本電信電話株式会社 | 電気光学デバイス |
JP2016045400A (ja) * | 2014-08-25 | 2016-04-04 | 日本電信電話株式会社 | 電気光学デバイス |
-
2017
- 2017-07-10 JP JP2017135029A patent/JP2019015930A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0611750A (ja) * | 1991-12-30 | 1994-01-21 | Philips Electron Nv | 光学装置及び光学式走査装置 |
JP2008107546A (ja) * | 2006-10-25 | 2008-05-08 | Seiko Epson Corp | 走査型光学装置 |
US20110149380A1 (en) * | 2009-12-18 | 2011-06-23 | Microvision, Inc. | Electro-Optical Deflection/Modulation |
JP2016038465A (ja) * | 2014-08-07 | 2016-03-22 | 日本電信電話株式会社 | 電気光学デバイス |
JP2016045400A (ja) * | 2014-08-25 | 2016-04-04 | 日本電信電話株式会社 | 電気光学デバイス |
Non-Patent Citations (1)
Title |
---|
SAKAMOTO, T. ET AL.: "350 kHz large-angle scanning of laser light using KTa1-xNbxO3 optical deflector", ELECTRONICS LETTERS, vol. 50, no. 25, JPN6020027228, 4 December 2014 (2014-12-04), US, pages 1965 - 1966, XP006050306, ISSN: 0004314573, DOI: 10.1049/el.2014.1797 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7336746B2 (ja) | 光デバイスおよび光検出システム | |
TWM598414U (zh) | 具有中間視窗的近眼顯示器 | |
JP4068566B2 (ja) | 特に波長可変レーザのための再帰反射デバイス | |
JP7122659B2 (ja) | 光スキャンデバイス、光受信デバイス、および光検出システム | |
JP3070016B2 (ja) | 光導波路デバイス | |
CN109212733B (zh) | 一种光程折叠器件 | |
JP7162268B2 (ja) | 光スキャンデバイス、光受信デバイス、および光検出システム | |
JP2018128663A (ja) | 光スキャンデバイス、光受信デバイス、および光検出システム | |
US5377291A (en) | Wavelength converting optical device | |
US3506334A (en) | Phased array-type beam scanning | |
JP5285008B2 (ja) | 内部反射型光偏向器 | |
CN110908129A (zh) | 一种合束光学装置 | |
JP3488776B2 (ja) | テーパ導波路およびそれを用いた光導波路素子 | |
JP6223650B1 (ja) | レーザ発振装置 | |
JP2019015930A (ja) | 電気光学光偏向器 | |
US5684812A (en) | Laser mode control using external inverse cavity | |
WO2014122896A1 (ja) | 光偏向素子及び光偏向装置 | |
US3478277A (en) | Optical mode selector | |
JP3569777B1 (ja) | 光周波数線形チャープ量可変装置 | |
JP2016142996A (ja) | 光学素子およびテラヘルツ波発生光学デバイス | |
JP5742331B2 (ja) | レーザ光スキャナ | |
JP2013149850A (ja) | 波長可変光源 | |
US10908355B2 (en) | Wave plate and divided prism member | |
JP3666779B2 (ja) | フェイズドアレイ空間光フィルタ | |
US3502391A (en) | Optical beam deflector using diverging or converging beams |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190821 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200804 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210302 |