JP2019015014A - Method for producing commingled yarn, commingled yarn, and method for producing woven fabric or knitted fabric - Google Patents
Method for producing commingled yarn, commingled yarn, and method for producing woven fabric or knitted fabric Download PDFInfo
- Publication number
- JP2019015014A JP2019015014A JP2018124045A JP2018124045A JP2019015014A JP 2019015014 A JP2019015014 A JP 2019015014A JP 2018124045 A JP2018124045 A JP 2018124045A JP 2018124045 A JP2018124045 A JP 2018124045A JP 2019015014 A JP2019015014 A JP 2019015014A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- thermoplastic resin
- yarn
- mixed
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02J—FINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
- D02J1/00—Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
- D02J1/08—Interlacing constituent filaments without breakage thereof, e.g. by use of turbulent air streams
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/22—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
- D02G3/40—Yarns in which fibres are united by adhesives; Impregnated yarns or threads
- D02G3/402—Yarns in which fibres are united by adhesives; Impregnated yarns or threads the adhesive being one component of the yarn, i.e. thermoplastic yarn
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/02—Moisture-responsive characteristics
- D10B2401/024—Moisture-responsive characteristics soluble
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
- D10B2505/02—Reinforcing materials; Prepregs
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Reinforced Plastic Materials (AREA)
- Woven Fabrics (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Knitting Of Fabric (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Description
本発明は、混繊糸の製造方法、混繊糸、及び織物又は編物の製造方法に関する。 The present invention relates to a method for producing a blended yarn, a blended yarn, and a method for producing a woven fabric or a knitted fabric.
各種機械や自動車等の構造部品、圧力容器、及び管状の構造物等には、樹脂材料にガラス繊維、炭素繊維等の強化材が添加された複合材料成形体が使用されている。複合材料成形体は、軽量化と強度を両立するために、任意の形状に追従することが求められている。 For structural parts such as various machines and automobiles, pressure vessels, and tubular structures, composite material molded bodies in which a reinforcing material such as glass fiber and carbon fiber is added to a resin material are used. The composite material molded body is required to follow an arbitrary shape in order to achieve both weight reduction and strength.
複合材料成形体を構成する材料としては、強化繊維と熱可塑性樹脂繊維を流体混合することによって、連続して均一に混じり合った混繊糸や混繊糸からなる布帛が提案されている(例えば、特許文献1)。混繊糸は成形時の含浸性を高めるために混繊度(繊維同士がまじりあっている度合)を高めることを主眼に混繊条件の検討が行われている(例えば特許文献2参照)。また、通常の有機繊維とは異なり、強化繊維は損傷による毛羽が生じやすいため、開繊・混合するための条件を精密にコントロールすることが必要とされている(例えば特許文献3参照)。また、強化繊維の加工を行う際に湿度が高いと嵩高くなりにくい、すなわち繊維が開きにくいことも知られている(例えば特許文献4参照)。 As a material constituting the composite material molded body, there are proposed mixed yarns and fabrics made of mixed yarns which are continuously mixed uniformly by fluid mixing of reinforcing fibers and thermoplastic resin fibers (for example, Patent Document 1). In order to increase the impregnation property at the time of molding, the mixing condition of the mixed yarn is mainly studied to increase the degree of mixing (the degree to which the fibers are mixed together) (for example, see Patent Document 2). Further, unlike ordinary organic fibers, the reinforcing fibers tend to cause fluff due to damage, and therefore it is necessary to precisely control the conditions for opening and mixing (for example, see Patent Document 3). It is also known that when processing the reinforcing fiber, if the humidity is high, the fiber is difficult to be bulky, that is, the fiber is difficult to open (for example, see Patent Document 4).
このように強化繊維を用いた混繊糸の製造の際には、強化繊維の損傷を抑え、混繊度を高めるという観点から、混繊中には湿気を除去するということが行われてきた。また、混繊糸に熱をかけて成形体を得る際に邪魔となる水分の吸着を抑制するという観点でも乾燥雰囲気下での取り扱いが常識とされてきた。 Thus, in the manufacture of mixed fiber using reinforcing fibers, it has been practiced to remove moisture during mixing from the viewpoint of suppressing damage to the reinforcing fibers and increasing the degree of mixing. In addition, handling in a dry atmosphere has been a common sense from the viewpoint of suppressing the adsorption of moisture that interferes when a blended yarn is heated to obtain a molded body.
しかしながら、従来知られている混繊糸や布帛は、混繊時の強化繊維の傷つきを防止すること、成形時に含浸性を高めるために混繊状態を改善することに主眼が置かれており、自動車材料等の構造材料に適用するためには更なる高強度化が求められている。 However, conventionally known blended yarns and fabrics are focused on preventing damage to the reinforcing fibers during blending and improving the blended state in order to improve impregnation during molding. In order to apply to structural materials such as automobile materials, higher strength is required.
本発明者らは、上述した従来技術の課題を解決するべく鋭意検討した結果、熱可塑性繊維と強化繊維を液体の存在下で気体によって混繊することで、成形体の高強度、高界面強度が発現することを見出し、本発明に至った。 As a result of intensive studies to solve the above-described problems of the prior art, the present inventors have mixed thermoplastic fibers and reinforcing fibers with gas in the presence of a liquid, so that high strength and high interfacial strength of the molded body can be obtained. Was found to have been achieved.
すなわち、本発明の混繊糸の製造方法は、少なくとも熱可塑性樹脂繊維と強化繊維とから構成される混繊糸の製造方法であって、液体の存在下で、かつ、気体による流体交絡法により熱可塑性樹脂繊維と強化繊維とを混繊する工程を含むものである That is, the method for producing a blended yarn of the present invention is a method for producing a blended yarn composed of at least a thermoplastic resin fiber and a reinforcing fiber, in the presence of a liquid and by a fluid entanglement method using a gas. It includes a process of blending thermoplastic resin fibers and reinforcing fibers.
強化繊維は液体を300質量%以下含むことが好ましい。
流体交絡法は流体攪乱法であることが好ましい。
強化繊維は、強化繊維に対して0.1〜5質量%の水溶性成分を含むことが好ましい。
強化繊維の親水度指数は8度以上であることが好ましい。
The reinforcing fiber preferably contains 300% by mass or less of the liquid.
The fluid entanglement method is preferably a fluid perturbation method.
The reinforcing fiber preferably contains 0.1 to 5% by mass of a water-soluble component with respect to the reinforcing fiber.
The hydrophilicity index of the reinforcing fiber is preferably 8 degrees or more.
別の態様として、本発明の混繊糸の製造方法は、少なくとも熱可塑性樹脂繊維と強化繊維とから構成される混繊糸の製造方法であって、熱可塑性樹脂繊維、及び/又は、強化繊維を液体で処理する工程の後に、気体による流体交絡法による混繊工程を含むものである。 As another aspect, the method for producing a blended yarn of the present invention is a method for producing a blended yarn composed of at least a thermoplastic resin fiber and a reinforcing fiber, and is a thermoplastic resin fiber and / or a reinforcing fiber. After the step of treating the liquid with a liquid, a fiber mixing step by a fluid entanglement method using a gas is included.
液体は有機物を含有していることが好ましい。
有機物を熱可塑性樹脂繊維に対して10質量%混合した場合の、熱可塑性樹脂繊維の表面張力の変化率は30%以下であることが好ましい。
流体交絡法による混繊工程で回収される液体を、液体で処理する工程中の液体に混合することが好ましい。
The liquid preferably contains an organic substance.
When the organic substance is mixed in an amount of 10% by mass with respect to the thermoplastic resin fiber, the change rate of the surface tension of the thermoplastic resin fiber is preferably 30% or less.
It is preferable to mix the liquid collected in the mixing process by the fluid entanglement method with the liquid in the process of treating with the liquid.
本発明の混繊糸は、少なくとも熱可塑性樹脂繊維と強化繊維とから構成される混繊糸であって、少なくとも2種類以上の有機物を含み、この2種類以上の有機物が、強化繊維と熱可塑性樹脂繊維の両方に付着しているものである。 The blended yarn of the present invention is a blended yarn composed of at least a thermoplastic resin fiber and a reinforcing fiber, and includes at least two kinds of organic substances. These two or more kinds of organic substances are composed of the reinforcing fibers and the thermoplastic. It is attached to both resin fibers.
強化繊維及び熱可塑性樹脂繊維の表面における有機物の分散度は5%以上であることが好ましい。
混繊糸の柔軟度は20度以上であることが好ましい。
混繊糸の空隙率は20%以上であることが好ましい。
有機物の合計量は混繊糸に対して2質量%未満であることが好ましい。
The degree of dispersion of the organic matter on the surfaces of the reinforcing fiber and the thermoplastic resin fiber is preferably 5% or more.
The flexibility of the blended yarn is preferably 20 degrees or more.
The porosity of the mixed yarn is preferably 20% or more.
The total amount of organic matter is preferably less than 2% by mass with respect to the mixed yarn.
本発明の織物又は編物の製造方法は、少なくとも熱可塑性樹脂と強化繊維から構成される織物又は編物の製造方法であって、強化繊維の織工程における強化繊維の含液率を0.1〜5質量%で行うものである。 The method for producing a woven fabric or knitted fabric of the present invention is a method for producing a woven fabric or knitted fabric comprising at least a thermoplastic resin and reinforcing fibers, and the liquid content of the reinforcing fibers in the reinforcing fiber weaving step is 0.1-5. It is performed by mass%.
本発明の混繊糸の製造方法や混繊糸、あるいは織物又は編物の製造方法によれば、任意の形状であって、強度に優れた繊維強化樹脂成形体を製造可能な混繊糸や織物、編物を得ることができる。 According to the method for producing a blended yarn, the blended yarn, or the method for producing a woven or knitted fabric of the present invention, the blended yarn or the woven fabric capable of producing a fiber-reinforced resin molded article having an arbitrary shape and excellent strength. You can get a knitted fabric.
以下、本発明について詳細に説明する。なお、本発明は、以下に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, the present invention will be described in detail. The present invention is not limited to the following, and can be implemented with various modifications within the scope of the gist.
<混繊糸>
本発明における混繊糸とは、少なくとも強化繊維と熱可塑性樹脂繊維から構成される糸のことを指す。強化繊維、及び/又は、熱可塑性樹脂繊維はマルチフィラメントであることが糸の強度や取り扱い性の観点から好ましい。強化繊維のマルチフィラメントの単糸の一部が切断されていてもよいが、強化繊維束としては連続していることが強度の観点からは好ましい。熱可塑性樹脂繊維はどのような形態でも構わないが、連続繊維の方が混繊工程の安定性の観点から好ましい。
<Mixed yarn>
The mixed fiber in the present invention refers to a thread composed of at least reinforcing fibers and thermoplastic resin fibers. The reinforcing fibers and / or thermoplastic resin fibers are preferably multifilaments from the viewpoint of yarn strength and handleability. A part of the multifilament single yarn of the reinforcing fiber may be cut, but the reinforcing fiber bundle is preferably continuous from the viewpoint of strength. The thermoplastic resin fibers may be in any form, but continuous fibers are preferred from the viewpoint of the stability of the fiber mixing process.
両繊維の混合状態は特に限定されず、両繊維が引き揃えられた状態、両繊維が単糸単位で混じり合った状態、片方の繊維がもう片方の繊維の周囲をカバーした状態、合撚状態等があげられる。成形時に含浸性を高め、かつ、高強度を発現させるためには両繊維の一部分のみが単糸単位で混じり合っていることが好ましい。混じり合いが少ないほど強化繊維の直進性が高まるため高強度が発現しやすい傾向であり、最低限の混じり合い部分を有することでそこを起点としてすばやく含浸を進めることができる。強化繊維の混じり合いの割合は、0.1〜20%であることが好ましく、0.2〜15%であることがより好ましく、0.3〜10%であることが更に好ましい。混じり合いの度合いは、強化繊維束の全本数に対する熱可塑性樹脂繊維に隣接する強化繊維の数の割合で定義され、混繊糸の任意の位置の断面を20点観察して算出する。 The mixed state of both fibers is not particularly limited, the two fibers are aligned, the two fibers are mixed in a single yarn unit, the one fiber covers the periphery of the other fiber, the twisted state Etc. In order to improve the impregnation property during molding and to develop high strength, it is preferable that only a part of both fibers are mixed in a single yarn unit. Since the straightness of the reinforcing fiber increases as the mixing amount decreases, high strength tends to be easily developed. By having the minimum mixing portion, the impregnation can be quickly advanced from there. The mixing ratio of the reinforcing fibers is preferably 0.1 to 20%, more preferably 0.2 to 15%, and still more preferably 0.3 to 10%. The degree of blending is defined by the ratio of the number of reinforcing fibers adjacent to the thermoplastic resin fibers to the total number of reinforcing fiber bundles, and is calculated by observing 20 cross-sections at arbitrary positions of the blended yarn.
混繊糸における強化繊維の熱可塑性樹脂繊維に対する体積比率は、高強度ときれいな外観を達成できるという観点から50〜900体積%であることが好ましく、66〜400体積%であることがより好ましく、81〜233体積%であることが更に好ましい。 The volume ratio of the reinforcing fiber to the thermoplastic resin fiber in the blended yarn is preferably 50 to 900% by volume, more preferably 66 to 400% by volume from the viewpoint that high strength and a clean appearance can be achieved. More preferably, it is 81-233 volume%.
本発明の混繊糸は少なくとも2種類以上の有機物を含み、この2種類以上の有機物は、強化繊維、及び、熱可塑性樹脂繊維の両方に付着している。強化繊維と熱可塑性樹脂繊維の両方が2種類以上の同種の有機物を有していることにより、両繊維の親和性が高まり糸としての取り扱い性に優れると共に、成形時に含浸性を高める効果が得られる。これらの効果がさらに高まりやすいことから、有機物の少なくとも1種類は水溶性であることが好ましい。また、有機物の合計量が多すぎる場合には取り扱い性が低下する場合があることから、これらの有機物の合計量は混繊糸に対して2質量%未満であることが好ましく、1.7質量%以下であることがより好ましく、1.4質量%以下であることがさらに好ましく、1.1質量%以下であることが最も好ましい。 The mixed fiber of the present invention contains at least two kinds of organic substances, and these two or more kinds of organic substances are attached to both the reinforcing fiber and the thermoplastic resin fiber. Since both the reinforcing fiber and the thermoplastic resin fiber have two or more kinds of the same kind of organic matter, the affinity between both fibers is increased and the handleability as a yarn is improved, and the effect of improving the impregnation property at the time of molding is obtained. It is done. Since these effects are further enhanced, it is preferable that at least one of the organic substances is water-soluble. In addition, when the total amount of the organic matter is too large, the handleability may be deteriorated. Therefore, the total amount of these organic matter is preferably less than 2% by mass with respect to the mixed yarn. % Or less, more preferably 1.4% by mass or less, and most preferably 1.1% by mass or less.
混繊糸が付着している有機物の種類の数は、混繊糸から適切な溶媒を使用して抽出して、液体クロマトグラフィー質量分析法によって算出することができる。混繊糸中の強化繊維、及び、熱可塑性樹脂繊維に付着している有機物の量は、混繊糸から強化繊維と熱可塑性樹脂繊維を分離し、それぞれの繊維を水抽出の後、溶媒抽出しそれぞれ水溶性成分量、非水溶性成分量を定量化することができる。また、抽出分をNMR測定することによってその成分の由来、すなわち原料の強化繊維に含まれていた成分(A)、原料の熱可塑性樹脂繊維に含まれていた成分(B)、混繊に用いる液体に含まれていた成分(C)に分離することができる。強化繊維と熱可塑性樹脂繊維のそれぞれが(A)と(B)の両方の成分を含んでいることが、成形時の含浸特性と強度発現の観点から好ましい。 The number of types of organic matter to which the mixed fiber is attached can be calculated by liquid chromatography mass spectrometry after extracting from the mixed fiber using an appropriate solvent. The amount of organic matter adhering to the reinforcing fiber and thermoplastic resin fiber in the blended yarn is determined by separating the reinforcing fiber and thermoplastic resin fiber from the blended yarn, extracting each fiber with water, and then extracting with solvent. The amount of water-soluble component and the amount of water-insoluble component can be quantified, respectively. In addition, the NMR measurement of the extract is used for the origin of the component, that is, the component (A) contained in the raw material reinforcing fiber, the component (B) contained in the raw material thermoplastic resin fiber, and the mixed fiber. It can be separated into the component (C) contained in the liquid. It is preferable that each of the reinforcing fiber and the thermoplastic resin fiber contains both components (A) and (B) from the viewpoint of impregnation characteristics and strength development at the time of molding.
これらの有機物は、強化繊維や熱可塑性樹脂繊維の表面における分散度が5%以上の状態で付着していることが、成形時の含浸性と、成形体中の最終的な界面強度を高めるという観点から好ましい。分散度は10%以上であることがより好ましく、15%以上であることがさらに好ましい。分散度は以下のように算出することができる。混繊糸から有機物を抽出して質量を測定し、混繊糸の質量に対する有機物の質量の割合を計算する。任意の20か所について同様に測定を行い平均値と標準偏差を算出し、標準偏差を平均値で除した値を分散度とする。 These organic substances are attached with a dispersion degree of 5% or more on the surface of the reinforcing fiber or the thermoplastic resin fiber, which increases the impregnation property at the time of molding and the final interface strength in the molded body. It is preferable from the viewpoint. The degree of dispersion is more preferably 10% or more, and further preferably 15% or more. The degree of dispersion can be calculated as follows. The organic matter is extracted from the blended yarn, the mass is measured, and the ratio of the mass of the organic matter to the mass of the blended yarn is calculated. The measurement is performed in the same manner at any 20 locations to calculate the average value and the standard deviation, and the value obtained by dividing the standard deviation by the average value is defined as the degree of dispersion.
混繊糸の織、編、組などの際の取り扱い性の観点から、混繊糸の柔軟度は20度以上であることが好ましく、40度以上であることがより好ましく、60度以上であることがさらに好ましく、80度以上であることが最も好ましい。混繊糸の柔軟度は、混繊糸を20cm切り取り、端と端を幅1.5cmのテープにて固定して輪を作る。テープで固定した部分を持って垂直に吊り下げる。この時垂直にならない場合には、手で軽く抑えることで垂直にする。テープの部分を持ったまま垂直方向に180度ひっくり返し、テープ部分が下で混繊糸が垂直に立つようにする。混繊糸にはさわらず1分間保持し、垂直方向に対して混繊糸が垂れ下がった角度を測定する。なお、二段階に折れ曲がった場合には角度の大きい方を採用する。 From the viewpoint of handleability in the case of weaving, knitting, braiding, etc. of the blended yarn, the flexibility of the blended yarn is preferably 20 degrees or more, more preferably 40 degrees or more, and 60 degrees or more. More preferably, it is most preferably 80 degrees or more. The softness of the blended yarn is obtained by cutting the blended yarn by 20 cm and fixing the ends with a tape having a width of 1.5 cm to form a ring. Hold the part fixed with tape and hang it vertically. If it is not vertical at this time, hold it lightly with your hand to make it vertical. While holding the tape part, turn it 180 degrees vertically so that the mixed yarn stands vertically with the tape part underneath. Hold the blended yarn for 1 minute and measure the angle at which the blended yarn hangs down in the vertical direction. In addition, when it bends in two steps, the one with the larger angle is adopted.
混繊糸を織、編、組などのプロセスにかける際の取り扱い性と、その後の織物、編物、組み物としての取り扱い性のバランスをとるという観点から、混繊糸の柔軟性は吸湿によって値を変化できることが好ましい。吸湿前後の混繊糸の柔軟度の変化量は30度以上であることが好ましく、40度以上であることが好ましく、50度以上であることがさらに好ましい。 From the standpoint of balancing the handleability of the blended yarn in the process of weaving, knitting, and braiding, and the subsequent handling of the woven, knitted, and braided fabric, the flexibility of the blended yarn depends on moisture absorption. It is preferable that can be changed. The amount of change in the flexibility of the mixed yarn before and after moisture absorption is preferably 30 degrees or more, preferably 40 degrees or more, and more preferably 50 degrees or more.
混繊糸の織、編、組などの際の取り扱い性、及び、取り扱い時の損傷を抑制する観点から、混繊糸は内部に空隙を含んでいることが好ましく、空隙率は20%以上であることが好ましく、25%以上であることがより好ましく、30%以上であることがさらに好ましい。空隙率は、混繊糸をシュリンクチューブで包んだ後、着色したエポキシ樹脂をチューブ内に注入、硬化させた後、切削、研磨を行い断面観察することによって求めることができる。
空隙率=空隙の面積/混繊糸の外周の内側の面積×100
空隙の面積は、混繊糸の外周より内側の着色したエポキシ樹脂の面積であり、混繊糸の外周は一番外側にある繊維を結んだ線によって描かれる図形である。
From the viewpoints of handling properties during weaving, knitting, braiding, etc. of mixed fiber yarns and suppressing damage during handling, the mixed yarn preferably contains voids inside, and the porosity is 20% or more. Preferably, it is 25% or more, more preferably 30% or more. The porosity can be obtained by wrapping the mixed yarn with a shrink tube, injecting a colored epoxy resin into the tube and curing, cutting, polishing, and observing the cross section.
Porosity = Area of the void / area inside the outer periphery of the mixed yarn × 100
The area of the void is the area of the colored epoxy resin inside the outer periphery of the mixed yarn, and the outer periphery of the mixed yarn is a figure drawn by a line connecting the fibers on the outermost side.
混繊糸には強化繊維、熱可塑性樹脂繊維及び有機物以外のものを含んでいても構わない。成形体を使用する環境に応じて、酸化防止剤、紫外線吸収剤、着色剤、伝熱剤、熱安定剤等を添加することは好ましい。 The mixed yarn may contain fibers other than reinforcing fibers, thermoplastic resin fibers, and organic matter. It is preferable to add an antioxidant, an ultraviolet absorber, a colorant, a heat transfer agent, a heat stabilizer and the like depending on the environment in which the molded body is used.
<混繊糸の製造方法>
本発明における混繊糸は、液体の存在下で気体により強化繊維と熱可塑性樹脂繊維を混繊することで製造する。ここで液体とは加工条件の温度、圧力下で液状のものをいう。液体の種類は加工条件に応じて適宜選択すればよく、水、有機溶剤等を適宜使用できる。安定性の観点からは水が特に好ましい。気体とは、強化繊維、及び/又は、熱可塑性樹脂繊維に接触する直前に気体状であることを意味する。気体の種類は加工条件に応じて適宜選択すればよく、空気、スチーム、有機系ガスなどを適宜使用できる。安定性の観点からは空気が好ましい。
<Method for producing blended yarn>
The blended yarn in the present invention is produced by blending reinforcing fibers and thermoplastic resin fibers with gas in the presence of a liquid. Here, the liquid means a liquid under the temperature and pressure of the processing conditions. The type of liquid may be appropriately selected according to the processing conditions, and water, an organic solvent, or the like can be used as appropriate. Water is particularly preferable from the viewpoint of stability. The gas means that it is gaseous immediately before coming into contact with the reinforcing fiber and / or the thermoplastic resin fiber. The type of gas may be appropriately selected according to the processing conditions, and air, steam, organic gas, or the like can be used as appropriate. Air is preferable from the viewpoint of stability.
液体を積極的に加えることで混繊の時の強化繊維の損傷を抑えることができ、また、低い混合状態であっても成形時に樹脂が素早く強化繊維の間に含浸し、高い引張強度や界面強度が発現する。液体の量は特に限定されず、使用する強化繊維、熱可塑性樹脂の種類、単糸径、繊度等に応じて最適な量を調整することができる。液体の添加方法は、蒸気として加える方法、液体として加える方法があげられる。成形時の含浸性、及び、成形体の強度の観点からは液体で加えることが好ましい。強化繊維と熱可塑性樹脂繊維のどちらかが含液していればよいが、少なくとも強化繊維は含液していることが好ましく、両者が含液していることが更に好ましい。混繊を行う際に含液していることが好ましいため、混繊を行う直前に含液させる工程を含んでいることが好ましい。強化繊維と熱可塑性樹脂繊維の両方を含液させるために、両者を含液させる工程にかける必要はなく、例えば強化繊維を含液させる工程にかけた後に、熱可塑性樹脂繊維と引き揃えることで強化繊維の液体を熱可塑性樹脂繊維に移動させてもよい。 By aggressively adding liquid, it is possible to suppress damage to the reinforcing fibers during fiber mixing, and even in a low mixed state, the resin quickly impregnates the reinforcing fibers during molding, resulting in high tensile strength and interface. Strength develops. The amount of the liquid is not particularly limited, and an optimum amount can be adjusted according to the reinforcing fiber to be used, the kind of the thermoplastic resin, the single yarn diameter, the fineness, and the like. Examples of the liquid addition method include a method of adding as a vapor and a method of adding as a liquid. From the viewpoint of the impregnation property at the time of molding and the strength of the molded body, it is preferably added as a liquid. Either the reinforcing fiber or the thermoplastic resin fiber may be contained, but at least the reinforcing fiber is preferably contained, and more preferably both are contained. Since it is preferable that liquid mixing is performed at the time of fiber mixing, it is preferable to include a step of liquid mixing immediately before fiber mixing. In order to contain both reinforcing fiber and thermoplastic resin fiber, it is not necessary to go through the step of soaking both of them, for example, after going through the step of containing the reinforcing fiber, it is reinforced by aligning with the thermoplastic resin fiber. The fiber liquid may be moved to the thermoplastic resin fibers.
液体は有機物を含有していることが好ましい。含液させる工程で、液体に液体が含有する有機物とは異なる種類の有機物を含有していてもよい。この際の有機物は、強化繊維と熱可塑性樹脂繊維との親和性を高めるもの、親水性を付与することで静電気の発生を抑制するもの、成形体における着色や難燃性、耐熱性、耐候性などの機能を付与するもの、成形時の強化繊維の開繊を促進し含浸作用を高めるものなど、もともと強化繊維や熱可塑性樹脂繊維に付与しがたいものを添加することが好ましい。混繊工程後の有機物の混繊糸への残存効率を考慮すると、有機物は液体に対して微分散されていることが好ましく、水分散体であるエマルジョン状態であることがより好ましい。 The liquid preferably contains an organic substance. In the liquid containing step, the liquid may contain a different kind of organic substance from the organic substance contained in the liquid. The organic matter at this time is one that enhances the affinity between the reinforcing fiber and the thermoplastic resin fiber, one that suppresses the generation of static electricity by imparting hydrophilicity, coloring and flame retardancy, heat resistance, weather resistance in the molded product It is preferable to add materials that are difficult to impart to reinforcing fibers and thermoplastic resin fibers, such as those that impart functions such as those that promote the opening of reinforcing fibers during molding and enhance the impregnation action. Considering the remaining efficiency of the organic matter in the blended yarn after the blending step, the organic matter is preferably finely dispersed in the liquid, and more preferably in an emulsion state as an aqueous dispersion.
短時間成形で含浸、高物性を発揮させるためには、有機物は、有機物を熱可塑性樹脂繊維に対して10質量%混合した場合に、熱可塑性樹脂繊維の表面張力の変化率を30%以下とするものであることが好ましく、20%以下であることがより好ましく、15%以下であることが更に好ましく、10%以下であることが最も好ましい。
また、有機物と熱可塑性繊維との表面張力の差は22未満であることが好ましく、17未満であることがより好ましく、12未満であることがさらに好ましく、7未満であることが最も好ましい。表面張力は、有機物と熱可塑性樹脂繊維の融点のうち、高い方の温度より45℃高い温度にて測定したものである。
In order to achieve impregnation and high physical properties by molding in a short time, the organic substance has a rate of change of the surface tension of the thermoplastic resin fiber of 30% or less when the organic substance is mixed with 10 mass% of the thermoplastic resin fiber. Preferably 20% or less, more preferably 15% or less, and most preferably 10% or less.
Further, the difference in surface tension between the organic matter and the thermoplastic fiber is preferably less than 22, more preferably less than 17, further preferably less than 12, and most preferably less than 7. The surface tension is measured at a temperature 45 ° C. higher than the higher temperature among the melting points of the organic substance and the thermoplastic resin fiber.
含浸後に良好な物性を発現するためには、熱可塑性樹脂繊維と有機物のSP値(溶解性パラメーター)の差は3(cal/cm3)未満であることが好ましく、2未満であることがより好ましく、1.5未満であることがさらに好ましく、1未満であることが最も好ましい。 In order to develop good physical properties after impregnation, the difference in SP value (solubility parameter) between the thermoplastic resin fiber and the organic substance is preferably less than 3 (cal / cm 3 ), more preferably less than 2. Preferably, it is less than 1.5, more preferably less than 1.
これらを満たす好ましい有機物として、熱可塑性樹脂繊維と同系のポリマーやオリゴマーは特に好ましく用いられる。ここでいう同系とは熱可塑性樹脂繊維の繰り返し単位が有する官能基を有機物が保有していることを意味する。例えば熱可塑性樹脂繊維がポリアミド66であれば、アミド結合を有する有機物が好ましく適用される。 As a preferable organic substance satisfying these, polymers and oligomers similar to thermoplastic resin fibers are particularly preferably used. Here, the same system means that the organic substance has a functional group that the repeating unit of the thermoplastic resin fiber has. For example, when the thermoplastic resin fiber is polyamide 66, an organic substance having an amide bond is preferably applied.
有機物の添加量を制御する観点から、含液させる工程は有機物を含有した液体を噴霧し残量は回収する方法、流通状態の液体に浸漬し濃度管理する方法が好ましい。気体による混繊工程において余剰の液体と共に余剰の有機物が回収されるため、この回収物を含液させる工程にリサイクルすることが好ましい。 From the viewpoint of controlling the amount of organic matter added, the step of containing liquid is preferably a method of spraying a liquid containing organic matter and recovering the remaining amount, or a method of immersing in a liquid in a circulating state to control the concentration. Since excess organic matter is recovered together with the excess liquid in the fiber mixing step by gas, it is preferable to recycle the recovered product into a liquid-containing step.
含液量は特に制限されず、上記の効果が得られる程度の量を適宜選択すればよいが、生産性を高める観点や廃液を抑制する観点から、強化繊維に対する液体の含液量は300質量%以下であることが好ましく、250質量%以下であることがより好ましく、200質量%以下であることが更に好ましく、150質量%以下であることが最も好ましい。含液量は工程が安定している状態でラインを停止し、混繊工程の手前部分を切り取って重量を測定し、その後液体を除去した状態で重量を測定することで求めることができる。 The liquid content is not particularly limited, and may be appropriately selected in such an amount that the above-mentioned effects can be obtained. From the viewpoint of increasing productivity and suppressing waste liquid, the liquid content of the reinforcing fibers is 300 mass. % Or less, more preferably 250% by mass or less, still more preferably 200% by mass or less, and most preferably 150% by mass or less. The liquid content can be obtained by stopping the line in a state where the process is stable, cutting off the front part of the fiber mixing step and measuring the weight, and then measuring the weight in a state where the liquid is removed.
混繊糸中の強化繊維の界面せん断応力は、原料の強化繊維の界面せん断応力に対して変化することは好ましく、原料の強化繊維の界面せん断応力に対して5%以上増加することがより好ましく、10%以上増加することが更に好ましく、15%以上増加することが最も好ましい。界面せん断応力を変化させるには、液体によって強化繊維に付着している収束剤などの成分を移動させることで可能となる。界面せん断応力はマイクロドロップレット法によって測定することができる。 The interfacial shear stress of the reinforcing fiber in the mixed yarn is preferably changed with respect to the interfacial shear stress of the raw reinforcing fiber, and more preferably increased by 5% or more with respect to the interfacial shear stress of the raw reinforcing fiber. More preferably, it increases by 10% or more, and most preferably increases by 15% or more. In order to change the interfacial shear stress, it is possible to move components such as a sizing agent adhering to the reinforcing fiber by the liquid. The interfacial shear stress can be measured by the micro droplet method.
強化繊維の解舒方法は適宜選択でき、内取り、外取り、転がし取りなどがあげられる。糸道中での損傷を抑える観点から、解舒前の強化繊維が含液状態であることは好ましい。強化繊維を製造した際に収束剤を塗布した際に含液状態に保っていてもよいし、使用する際に含液させてから使用してもよい。含液させる方法は、所定の液体に浸漬させてもよいし、霧吹き等で液体を噴霧してもよいし、高湿度化に所定時間保持しておいてもよい。含液状態にしてから使用することが困難な場合には、強化繊維の撚りを入れずに解舒できる転がし取りが好ましい。解舒時の含液量は特に制限されないが、解舒直後の強化繊維の柔軟度を、5度以上にすることが好ましく、10度以上にすることがより好ましく、15度以上にすることが更に好ましい。柔軟度は前述の混繊糸の柔軟度と同様に測定することができる。 The method for unraveling the reinforcing fibers can be selected as appropriate, and examples thereof include interior removal, exterior removal and rolling. From the viewpoint of suppressing damage in the yarn path, it is preferable that the reinforcing fiber before unwinding is in a liquid-containing state. When the reinforcing fiber is produced, the sizing agent may be applied when the sizing agent is applied, or it may be used after it has been impregnated. As a method of impregnating the liquid, the liquid may be immersed in a predetermined liquid, the liquid may be sprayed by spraying or the like, or the humidity may be maintained for a predetermined time. When it is difficult to use after making it into a liquid-containing state, rolling that can be unwound without twisting the reinforcing fiber is preferable. The liquid content during unwinding is not particularly limited, but the flexibility of the reinforcing fiber immediately after unwinding is preferably 5 degrees or more, more preferably 10 degrees or more, and 15 degrees or more. Further preferred. The softness can be measured in the same manner as the softness of the mixed yarn described above.
混繊する方法は、混繊糸の構造に応じて公知の方法を利用でき、いくつかの混繊工程を併用してもよい。以下に好ましい混繊糸の形態である強化繊維と熱可塑性樹脂繊維を混繊糸、又は強化繊維と熱可塑性樹脂繊維とが単糸単位で混合された混繊糸を製造するための方法について説明する。 As a method for mixing fibers, a known method can be used according to the structure of the mixed yarn, and several mixing steps may be used in combination. The following describes a method for producing a blended yarn in which reinforcing fibers and thermoplastic resin fibers, which are preferable in the form of blended yarn, are blended, or a blended yarn in which reinforcing fibers and thermoplastic resin fibers are mixed in single yarn units. To do.
例えば、静電気力や流体噴霧による圧力、ローラー等に押し付ける圧力等による外力によって開繊した後、強化繊維束と熱可塑性樹脂繊維を開繊したままの状態で合糸・引き揃える開繊合糸法、流体交絡法が挙げられる。混繊しながら気体により余剰の液体を除去することができる流体交絡法が好ましく使用される。流体交絡法とは流体の作用により繊維同士を交絡する方法であり、流体攪乱法やインターレース法(糸に対して横方向にエアーをかける)などがあげられる。強化繊維として側面からの外力によって損傷しやすい炭素繊維を用いる場合は流体攪乱法が好ましく使用され、糸の進行方向に対して同一方向にエアーをかけるタスラン(登録商標)法が特に好ましく使用される。原料となる強化繊維束の太さ、本数を適宜調整し、あわせて製造条件は調整する。 For example, after opening by external force due to electrostatic force, pressure by fluid spraying, pressure applied to rollers, etc., and then opening and closing the reinforcing fiber bundle and the thermoplastic resin fiber, the opening and combining yarn method And fluid entanglement method. A fluid entanglement method that can remove excess liquid by gas while mixing is preferably used. The fluid entanglement method is a method in which fibers are entangled by the action of a fluid, and examples thereof include a fluid disturbance method and an interlace method (air is applied to the yarn in the transverse direction). When carbon fiber that is easily damaged by external force from the side is used as the reinforcing fiber, the fluid disturbance method is preferably used, and the Taslan (registered trademark) method in which air is applied in the same direction as the yarn traveling direction is particularly preferably used. . The thickness and number of reinforcing fiber bundles as raw materials are appropriately adjusted, and the production conditions are adjusted accordingly.
以下、本発明の好ましい形態であるタスラン加工について説明する。タスラン加工とは芯糸、浮糸より送られた糸をエアーの力によって嵩高く、ループ状に強く結束させる手法である。例えば図1に示すようにローラーの回転によって送られた芯糸、浮糸がタスランボックス内に取り付けられたノズル内を通過するときに、エアーの力で撹乱しフィラメント同士が結束する。芯糸はタスラン糸の芯となる糸で、その周りに浮糸が密に絡み付く。ローラーによる供給糸の送り量は通常芯側よりも浮側を多く設定することが好ましい。ノズルは主にハウジングとコアからできており、コア内部にあるオリフィスと呼ばれる穴からエアーが噴出し、結束させる。 Hereinafter, taslan processing which is a preferred embodiment of the present invention will be described. Taslan processing is a technique in which the yarn sent from the core yarn and float yarn is bulky by the force of air and is strongly bound in a loop shape. For example, as shown in FIG. 1, when the core yarn and floating yarn sent by the rotation of the roller pass through the nozzle attached in the Taslan box, the filaments are bound by being disturbed by the force of air. The core yarn is the yarn that becomes the core of Taslan yarn, and the floating yarn is entangled closely around it. It is preferable to set the feeding amount of the supply yarn by the roller more on the floating side than on the normal core side. The nozzle is mainly composed of a housing and a core, and air is blown out from a hole called an orifice in the core and bound.
芯糸、浮糸は強化繊維、熱可塑性樹脂繊維のどちらでも構わないが、強度の観点から芯糸に強化繊維、浮糸に熱可塑性樹脂繊維を用いることが好ましい。混繊糸の強度と生産性の観点から、糸速度は10〜1000m/分であることが好ましく、20〜700m/分であることがより好ましく、30〜500m/分であることが更に好ましく、50〜300m/分であることが最も好ましい。 The core yarn and the float yarn may be either a reinforcing fiber or a thermoplastic resin fiber, but from the viewpoint of strength, it is preferable to use the reinforcing fiber as the core yarn and the thermoplastic resin fiber as the float. From the viewpoint of the strength and productivity of the mixed yarn, the yarn speed is preferably 10 to 1000 m / min, more preferably 20 to 700 m / min, and further preferably 30 to 500 m / min. Most preferably, it is 50-300 m / min.
強化繊維の送りは、糸の直線性を高めることで成形体の強度を向上させるという観点から、糸速度に対して0〜10%であることが好ましく、0.1〜5%であることがより好ましく、0.2〜3%であることが更に好ましく、0.3〜1.8%であることが最も好ましい。熱可塑性樹脂繊維の送りは、強化繊維との絡み合いを調整する観点で任意に調整すればよく、1〜15%であることが好ましく、2〜10%であることがより好ましく、3〜7%であることが更に好ましく、4〜6%であることが最も好ましい。芯糸に対する浮糸の送り量は、100〜600%であることが好ましく、110〜500%であることがより好ましく、150〜400%であることが最も好ましい。エアー圧は強化繊維の損傷を抑え、適度な交絡状態を作り出すと共に、液体を適度に吹き飛ばすという観点から0.5〜10kgf/cm2であることが好ましく、1〜5kgf/cm2であることがより好ましく、1.5〜3kgf/cm2であることが更に好ましい。タスランボックスの前に強化繊維、及び/又は、熱可塑性樹脂繊維を含液させておき、エアーにより混繊しながら液体を吹き飛ばすことにより液体含有量をコントロールすることができる。 The feeding of the reinforcing fiber is preferably 0 to 10%, preferably 0.1 to 5% with respect to the yarn speed from the viewpoint of improving the strength of the formed body by increasing the linearity of the yarn. More preferably, it is more preferably 0.2 to 3%, and most preferably 0.3 to 1.8%. The feed of the thermoplastic resin fiber may be arbitrarily adjusted from the viewpoint of adjusting the entanglement with the reinforcing fiber, preferably 1 to 15%, more preferably 2 to 10%, and more preferably 3 to 7%. More preferably, it is 4 to 6%. The float feed amount with respect to the core yarn is preferably 100 to 600%, more preferably 110 to 500%, and most preferably 150 to 400%. Air pressure is suppressed damage reinforcing fibers, with creating a proper confounding conditions, it is preferably 0.5~10kgf / cm 2 from the viewpoint of moderately blow the liquid, to be 1~5kgf / cm 2 More preferably, it is 1.5-3 kgf / cm < 2 >. The liquid content can be controlled by blowing reinforced fibers and / or thermoplastic resin fibers before the taslan box and blowing off the liquid while mixing with air.
<水溶性成分について>
本発明における混繊糸は、水溶性成分を含んでいることが好ましい。水溶性成分とは23℃において100gの水に対して10g以上の溶解度を示す化合物のことを指す。例えば、水溶性高分子であるポリビニルピロリドン、ポリエチレングリコールやその誘導体やその共重合物、ポリアクリル酸、ポリスルホン酸、ポリビニルアルコール、ポリビニルアセトアミド、セルロース誘導体、でんぷん誘導体等、反応性基を有する低分子化合物であるエポキシ樹脂、アクリレート樹脂は好ましく使用される。
<About water-soluble ingredients>
The mixed yarn in the present invention preferably contains a water-soluble component. A water-soluble component refers to a compound that exhibits a solubility of 10 g or more in 100 g of water at 23 ° C. For example, low molecular weight compounds having reactive groups such as water-soluble polymers such as polyvinyl pyrrolidone, polyethylene glycol and derivatives and copolymers thereof, polyacrylic acid, polysulfonic acid, polyvinyl alcohol, polyvinyl acetamide, cellulose derivatives, starch derivatives, etc. An epoxy resin and an acrylate resin are preferably used.
水溶性成分は混繊糸中の強化繊維、及び/又は、熱可塑性樹脂繊維に含有されていればよいが、両者に含有されていると両者の密着性が高まり、成形時に含浸しやすくなるため好ましい。また、強化繊維の表面に対しては、不均一に付着していると成形体中において強化繊維とマトリックスとなる熱可塑性樹脂との界面強度が高まりやすくなるため好ましい。含浸性と界面強度のバランスの観点から水溶性成分は、強化繊維に対して0.1〜5質量%であることが好ましく、0.3〜4質量%であることがより好ましく、0.5〜3質量%であることが更に好ましく、1〜2質量%であることが最も好ましい。 The water-soluble component only needs to be contained in the reinforcing fiber and / or the thermoplastic resin fiber in the mixed yarn, but if it is contained in both, the adhesion between the two is increased and it becomes easy to impregnate during molding. preferable. Moreover, it is preferable that the surface of the reinforcing fiber is non-uniformly attached because the interface strength between the reinforcing fiber and the thermoplastic resin serving as the matrix tends to increase in the molded body. From the viewpoint of the balance between the impregnation property and the interfacial strength, the water-soluble component is preferably 0.1 to 5% by mass, more preferably 0.3 to 4% by mass with respect to the reinforcing fiber, More preferably, it is -3 mass%, and it is most preferable that it is 1-2 mass%.
水溶性成分は原料に加えておいてもよいし、混繊を行う際に加えてもよいし、混繊糸を製造した後に加えてもよい。強化繊維の表面に対して不均一に付着させやすいという観点から原料の強化繊維に加えておくことが好ましい。強化繊維が水溶性成分を含有していると、混繊工程において液体と接触した際に水溶性成分が液体によって移動する。これにより強化繊維の表面において水溶性成分に分布が生じると共に、熱可塑性樹脂繊維にも移動する。 The water-soluble component may be added to the raw material, may be added when blending, or may be added after producing the blended yarn. It is preferable to add to the reinforcing fiber of the raw material from the viewpoint that it tends to adhere nonuniformly to the surface of the reinforcing fiber. When the reinforcing fiber contains a water-soluble component, the water-soluble component moves by the liquid when it comes into contact with the liquid in the fiber mixing step. As a result, the water-soluble component is distributed on the surface of the reinforcing fiber and also moves to the thermoplastic resin fiber.
<強化繊維について>
強化繊維は、通常の強化繊維複合材料成形体に使用されるものを用いることができ、以下に限定されるものではないが、例えば、ガラス繊維、炭素繊維、アラミド繊維、超高強力ポリエチレン繊維、ポリベンザゾール系繊維、液晶ポリエステル繊維、ポリケトン繊維、金属繊維、セラミックス繊維からなる群から選ばれる少なくとも1種が好ましいものとして挙げられる。機械的物性、熱的特性、汎用性の観点から、ガラス繊維、炭素繊維、アラミド繊維が好ましく、弾性率の観点から炭素繊維が好ましい。
<About reinforcing fibers>
Reinforcing fibers may be those used for ordinary reinforcing fiber composite material molded products, and are not limited to the following, but include, for example, glass fibers, carbon fibers, aramid fibers, ultra-high strength polyethylene fibers, Preferred examples include at least one selected from the group consisting of polybenzazole fibers, liquid crystal polyester fibers, polyketone fibers, metal fibers, and ceramic fibers. Glass fibers, carbon fibers, and aramid fibers are preferable from the viewpoint of mechanical properties, thermal characteristics, and versatility, and carbon fibers are preferable from the viewpoint of elastic modulus.
強化繊維の単糸径については特に制限されないが、成形体の強度と取り扱い性の観点から1〜22μmであることが好ましく、3〜17μmであることがより好ましく、5〜12μmであることが更に好ましい。強化繊維束としてのフィラメント数は取り扱い性に応じて適宜設定することができ、3000本、6000本、12000本、24000本のものが好ましく使用される。 The single yarn diameter of the reinforcing fiber is not particularly limited, but is preferably 1 to 22 μm, more preferably 3 to 17 μm, and further preferably 5 to 12 μm from the viewpoint of the strength and handleability of the molded body. preferable. The number of filaments as the reinforcing fiber bundle can be appropriately set according to the handleability, and those of 3000, 6000, 12000, and 24000 are preferably used.
強化繊維には集束剤を用いることが好ましく、強化繊維と熱可塑性樹脂の界面を形成するためのカップリング剤、強化繊維の取り扱い性を向上すると共に熱可塑性樹脂とカップリング剤の界面形成を補助するための結束剤、強化繊維の取り扱い性を向上させるための潤滑剤等が好ましく使用される。 It is preferable to use a sizing agent for the reinforcing fiber, a coupling agent for forming the interface between the reinforcing fiber and the thermoplastic resin, and improving the handleability of the reinforcing fiber and assisting the formation of the interface between the thermoplastic resin and the coupling agent. For example, a bundling agent for improving the handling property of the reinforcing fiber and a lubricant for improving the handling property of the reinforcing fiber are preferably used.
集束剤によって強化繊維の表面状態が変化する。強化繊維が混繊工程で使用する液体と親和性の高い状態であることが、混繊糸の強度、及び、成形体の強度の観点から好ましい。ここで強化繊維が液体と親和性の高い状態であるとは、強化繊維束を5cm程度に切り出して液体槽に入れた場合に、強化繊維束が広がってバラバラになるような状態のことをいう。 The surface condition of the reinforcing fiber is changed by the sizing agent. It is preferable from the viewpoint of the strength of the mixed fiber and the strength of the molded body that the reinforcing fiber is in a state of high affinity with the liquid used in the fiber mixing step. Here, the state in which the reinforcing fiber is in a state having high affinity with the liquid means a state in which the reinforcing fiber bundle spreads and falls apart when the reinforcing fiber bundle is cut out to about 5 cm and placed in a liquid tank. .
集束剤は、強化繊維に均一に塗布する観点から、液状、又は、気体状として適用することが好ましい。融点、沸点が高い化合物を使用する場合は、加熱を行いながら塗布してもよいし、溶剤に溶解させて塗布してもよい。その他の成分として、酸化防止剤、紫外線吸収剤、着色剤、伝熱剤、熱安定剤等を含んでいてもよい。
集束剤の種類を選定する方法としては、例えば特開2015−67926号公報に記載されているようなマイクロドロップレット試験によるマトリックス樹脂との界面強度の利用があげられる。ただし、集束剤が熱によって揮発したり、変質したりする場合があるため、成形時の熱履歴をかけた上で、同試験を行うことが好ましい。先にあげた水溶性成分を集束剤として用いることは好ましい。
The sizing agent is preferably applied as a liquid or a gas from the viewpoint of uniformly coating the reinforcing fiber. When using a compound having a high melting point and boiling point, it may be applied while heating, or may be applied after being dissolved in a solvent. As other components, an antioxidant, an ultraviolet absorber, a colorant, a heat transfer agent, a heat stabilizer and the like may be contained.
As a method for selecting the type of sizing agent, for example, use of the interfacial strength with the matrix resin by a microdroplet test as described in JP-A-2015-67926 can be mentioned. However, since the sizing agent may be volatilized or denatured by heat, it is preferable to perform the test after applying a heat history during molding. It is preferable to use the water-soluble component mentioned above as a sizing agent.
潤滑剤は、強化繊維の調整及び損傷防止性向上、開繊性向上に寄与する。潤滑剤としては、目的に適した通常の液体又は固体の任意の潤滑材料が使用可能であり、特に制限されないが、例えば、カルナウバワックスやラノリンワックス等の動植物系又は鉱物系のワックス;脂肪酸アミド、脂肪酸エステル、脂肪酸エーテル、芳香族系エステル、芳香族系エーテル等の界面活性剤から選択される1種以上を用いることができる。 The lubricant contributes to the adjustment of the reinforcing fibers, the improvement of damage prevention, and the improvement of the spreadability. As the lubricant, any ordinary liquid or solid lubricating material suitable for the purpose can be used, and is not particularly limited. For example, animal or plant or mineral wax such as carnauba wax or lanolin wax; fatty acid amide One or more selected from surfactants such as fatty acid esters, fatty acid ethers, aromatic esters, and aromatic ethers can be used.
結束剤は、強化繊維の集束性向上及び界面接着強度向上に寄与する。結束剤としては、目的に適したポリマー、熱可塑性樹脂が使用可能である。ポリマーとしては、特に制限されないが、例えば、ビスフェノールA型エポキシ樹脂等のエポキシ樹脂;各種フェノール類とホルマリンを反応させて得られるフェノール樹脂;尿素とホルマリンを反応させて得られるユリア樹脂;メラミンとホルマリンを反応させて得られるメラミン樹脂等の熱硬化性樹脂が挙げられる。また、例えば、m−キシリレンジイソシアナート、4,4’−メチレンビス(シクロヘキシルイソシアナート)及びイソホロンジイソシアナート等のイソシアネートとポリエステル系やポリエーテル系のジオールとから合成されるポリウレタン樹脂も好適に使用される。 The binding agent contributes to the improvement of the binding property of the reinforcing fiber and the improvement of the interfacial adhesive strength. As the binder, a polymer or a thermoplastic resin suitable for the purpose can be used. Although it does not restrict | limit especially as a polymer, For example, Epoxy resins, such as a bisphenol A type epoxy resin; Phenol resin obtained by making various phenols and formalin react; Urea resin obtained by making urea and formalin react; Melamine and formalin And thermosetting resins such as melamine resins obtained by reacting with. In addition, for example, polyurethane resins synthesized from isocyanates such as m-xylylene diisocyanate, 4,4′-methylenebis (cyclohexyl isocyanate) and isophorone diisocyanate, and polyester or polyether diols are also preferably used. Is done.
結束剤として用いられる熱可塑性樹脂としては、特に制限されないが、例えば、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルフォン、ポリフェニレンサルファイド、熱可塑性ポリエーテルイミド、熱可塑性フッ素系樹脂、及びこれらを変性させた変性熱可塑性樹脂等が挙げられる。混繊糸を形成する熱可塑性樹脂繊維と同種の熱可塑性樹脂及び/又は変性熱可塑性樹脂であると、複合材料成形体となった後、強化繊維と熱可塑性樹脂繊維との接着性が向上し好ましい。 The thermoplastic resin used as the binder is not particularly limited. For example, polyolefin resin, polyamide resin, polyacetal resin, polycarbonate resin, polyester resin, polyether ketone, polyether ether ketone, polyether sulfone. , Polyphenylene sulfide, thermoplastic polyetherimide, thermoplastic fluororesin, and modified thermoplastic resins obtained by modifying these. If the same kind of thermoplastic resin and / or modified thermoplastic resin as the thermoplastic fiber forming the mixed yarn is used, the adhesion between the reinforcing fiber and the thermoplastic resin fiber is improved after the composite material is formed. preferable.
混繊工程の効率を高める観点から、本発明に用いる強化繊維の親水度指数は8度以上であることが好ましく、30度以上であることがより好ましく、60度以上であることがさらに好ましい。ここでいう親水度指数とは、本発明の混繊プロセスへの適合性のための独自の指標である。親水度指数は混繊糸の柔軟度と同様の測定を、実施例に示すような乾燥時と湿潤時に行い両者の差で表されるものである。 From the viewpoint of increasing the efficiency of the fiber mixing process, the hydrophilicity index of the reinforcing fiber used in the present invention is preferably 8 degrees or more, more preferably 30 degrees or more, and further preferably 60 degrees or more. The hydrophilicity index here is a unique index for adaptability to the mixed fiber process of the present invention. The hydrophilicity index is measured by the same measurement as the softness of the blended yarn at the time of drying and wetness as shown in the examples, and is expressed by the difference between the two.
<熱可塑性樹脂繊維について>
熱可塑性樹脂繊維は、通常、複合材料に用いられるマトリックス樹脂を繊維化したものが使用できる。例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ポリアミド6、ポリアミド66、ポリアミド46等のポリアミド系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート等のポリエステル系樹脂;ポリオキシメチレン等のポリアセタール系樹脂;ポリカーボネート系樹脂;ポリエーテルケトン;ポリエーテルエーテルケトン;ポリエーテルスルフォン;ポリフェニレンサルファイド;熱可塑性ポリエーテルイミド;テトラフルオロエチレン−エチレン共重合体等の熱可塑性フッ素系樹脂、及びこれらを変性させた変性熱可塑性樹脂から選ばれた少なくとも1種の熱可塑性樹脂を溶融紡糸して得られた連続繊維であることが好ましい。
<About thermoplastic resin fibers>
As the thermoplastic resin fiber, one obtained by fiberizing a matrix resin usually used for a composite material can be used. For example, polyolefin resins such as polyethylene and polypropylene; polyamide resins such as polyamide 6, polyamide 66 and polyamide 46; polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polytrimethylene terephthalate; polyacetal resins such as polyoxymethylene Polycarbonate resin; polyether ketone; polyether ether ketone; polyether sulfone; polyphenylene sulfide; thermoplastic polyetherimide; thermoplastic fluororesin such as tetrafluoroethylene-ethylene copolymer; It is preferably a continuous fiber obtained by melt spinning at least one kind of thermoplastic resin selected from thermoplastic resins.
これらの熱可塑性樹脂の中でも、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルフォン、ポリフェニレンサルファイド、熱可塑性ポリエーテルイミド、及び熱可塑性フッ素系樹脂が好ましく、ポリオレフィン系樹脂、変性ポリオレフィン系樹脂、ポリアミド系樹脂及びポリエステル系樹脂が、機械的物性、汎用性の観点からより好ましく、熱的物性の観点を加えるとポリアミド系樹脂及びポリエステル系樹脂が更に好ましい。また、繰り返し荷重負荷に対する耐久性の観点からポリアミド系樹脂がより更に好ましく、脂肪族ポリアミド系樹脂、特にポリアミド6、ポリアミド66を好適に用いることができる。
熱可塑性樹脂繊維は、潤滑剤、酸化防止剤、紫外線吸収剤、着色剤、伝熱剤、熱安定剤等を含んでいてもよく、混繊時の液体と親和性の高い化合物を付与しておくことが、混繊効率を高め、又、この化合物を強化繊維と共有することで含浸性が高まるため好ましい。
Among these thermoplastic resins, polyolefin resins, polyamide resins, polyester resins, polyether ketones, polyether ether ketones, polyether sulfones, polyphenylene sulfides, thermoplastic polyether imides, and thermoplastic fluorine resins are preferable. Polyolefin resins, modified polyolefin resins, polyamide resins and polyester resins are more preferable from the viewpoints of mechanical properties and general versatility, and polyamide resins and polyester resins are more preferable from the viewpoint of thermal properties. In addition, a polyamide-based resin is more preferable from the viewpoint of durability against repeated load application, and an aliphatic polyamide-based resin, particularly polyamide 6 and polyamide 66 can be suitably used.
The thermoplastic resin fiber may contain a lubricant, an antioxidant, an ultraviolet absorber, a colorant, a heat transfer agent, a heat stabilizer, etc., and gives a compound having a high affinity with the liquid at the time of fiber mixing. It is preferable to increase the fiber mixing efficiency and to improve the impregnation property by sharing this compound with the reinforcing fiber.
<織物、編物について>
本発明の混繊糸を用いて布状に加工し、それを繊維強化樹脂成形体を得るための中間材料として用いることは好ましい。布の形態は特に限定されないが、混繊糸を特定の方向に引き揃えた一方向強化材、複合糸を用いた布帛、例えば織物や編物、レース、フェルト、不織布、フィルムや板状体等が挙げられる。中間材料としては、繊維強化樹脂成形体を製造する際の、金型内での形状追従性の観点から、柔軟性のある一方向強化材、織物、編物、レース、フェルト、不織布が好ましく、強化繊維の屈曲が少なく強度が出やすいことから、編物、一方向強化材、織物形状がより好ましく、形態安定性の観点から編物、織物形状が更に好ましい。
<About fabric and knitting>
It is preferable to use the blended yarn of the present invention as a cloth and use it as an intermediate material for obtaining a fiber-reinforced resin molded product. Although the form of the cloth is not particularly limited, a unidirectional reinforcing material obtained by aligning mixed yarns in a specific direction, a cloth using a composite thread, such as a woven fabric, a knitted fabric, a lace, a felt, a nonwoven fabric, a film, a plate-like body, and the like Can be mentioned. As the intermediate material, a flexible unidirectional reinforcing material, woven fabric, knitted fabric, lace, felt, and non-woven fabric is preferable from the viewpoint of shape followability in the mold when manufacturing a fiber-reinforced resin molded body. A knitted fabric, a unidirectional reinforcing material, and a woven fabric shape are more preferable since the fibers are less bent and strength is easily obtained, and a knitted fabric and a woven fabric shape are more preferable from the viewpoint of form stability.
織物は二軸織物でもよいし、三軸織物でもよい。織物の織り方は特に限定されず、平織、綾織、朱子織、綟り織、紗等が挙げられる。
繊維強化樹脂成形体の強度の観点から、強化繊維のクリンプ率が低くなる綾織がより好ましい。
編物は例えば、ノンクリンプファブリックといわれるような多軸挿入編物が強度の観点から好ましく、編物のステッチはトリコット、コンビネーション等があげられる。
The woven fabric may be a biaxial woven fabric or a triaxial woven fabric. The weaving method of the woven fabric is not particularly limited, and examples thereof include plain weave, twill weave, satin weave, weave weave, and reed.
From the viewpoint of the strength of the fiber-reinforced resin molded body, a twill weave in which the crimp ratio of the reinforcing fibers is low is more preferable.
As the knitted fabric, for example, a multi-axis insertion knitted fabric called non-crimp fabric is preferable from the viewpoint of strength, and the stitch of the knitted fabric includes tricot, combination, and the like.
<織、編工程について>
布状の中間材料を得る方法は特に限定されず、用途、目的に応じて選定することができる。
例えば、織物は、シャトル織機、レピア織機、エアージェット織機、ウォータージェット織機等の製織機を用い、少なくとも一部に混繊糸を含んでいればよい。例えば、混繊糸を含む繊維を配列させた経糸に、緯糸を打ち込むことによって得る方法が好ましい方法として挙げられる。中でも強化繊維の損傷を抑え、安定的に織物を得るという観点からレピア織機が好ましい。織物のテンションを安定化させ、均一な品質の織物が得られやすいことから、レピア織機の幅は60cm以上であることが好ましく、80cm以上であることがより好ましく、100cm以上であることが更に好ましい。幅が一定以上の大きさであれば品質は安定するが、使用する糸に合わせて使いやすい幅に設定することが好ましい。強化繊維束にガラス繊維や炭素繊維を用いた場合には、幅6m以下であることが好ましく、5m以下であることがより好ましく、4m以下であることが更に好ましく、3m以下であることが最も好ましい。
<About weaving and knitting processes>
The method for obtaining the cloth-like intermediate material is not particularly limited, and can be selected according to the use and purpose.
For example, the woven fabric may use a weaving machine such as a shuttle loom, a rapier loom, an air jet loom, a water jet loom, etc., and may contain mixed yarn at least partially. For example, a preferable method is a method obtained by driving a weft into a warp in which fibers including mixed yarn are arranged. Among these, a rapier loom is preferable from the viewpoint of suppressing damage of reinforcing fibers and stably obtaining a woven fabric. The width of the rapier loom is preferably 60 cm or more, more preferably 80 cm or more, and even more preferably 100 cm or more, since the tension of the fabric is stabilized and a uniform quality fabric is easily obtained. . If the width is a certain size or larger, the quality is stable, but it is preferable to set the width to be easy to use according to the yarn used. When glass fiber or carbon fiber is used for the reinforcing fiber bundle, the width is preferably 6 m or less, more preferably 5 m or less, still more preferably 4 m or less, and most preferably 3 m or less. preferable.
編物は、丸編み機、横編み機、トリコット編み機、ラッシェル編み機等の編み機を用い、少なくとも一部に複合糸を含む繊維を編成することによって得られる。
不織布は、少なくとも一部に複合糸を含む繊維をウェブと呼ばれるシート状の繊維集合体とした後、ニードルパンチ機、ステッチボンド機、柱状流機等の物理作用やエンボスロール等による熱作用や接着剤によって繊維同士を結合させることによって得られる。
その他の中間材料の形態等については、適宜特開2015−101794号公報に記載の方法を用いることができる。
The knitted fabric is obtained by knitting a fiber containing a composite yarn at least partially using a knitting machine such as a circular knitting machine, a flat knitting machine, a tricot knitting machine, or a Raschel knitting machine.
Non-woven fabric is a sheet-like fiber assembly called a web made of fibers containing at least a part of composite yarn, followed by physical action such as a needle punch machine, stitch bond machine, column flow machine, etc. It is obtained by bonding fibers with an agent.
Regarding the form of other intermediate materials, the method described in JP-A-2015-101794 can be used as appropriate.
本発明において、織物、編物を得る工程は、強化繊維が含液している状態で行うことが好ましい。含液状態で取り扱うことにより、毛羽立ちの防止ができるだけでなく、織物、編物の中の強化繊維の直進状態を高めることができ、結果として成形体の強度を高めることができる。強度と取り扱い性の関係から含液率は強化繊維に対して0.1〜5質量%であることが好ましく、0.2〜4質量%であることがより好ましく、0.3〜3質量%であることが更に好ましい。 In the present invention, the step of obtaining a woven fabric or a knitted fabric is preferably performed in a state in which the reinforcing fibers contain liquid. By handling in a liquid-containing state, not only fuzz can be prevented, but also the straightness of the reinforcing fibers in the woven fabric and knitted fabric can be increased, and as a result, the strength of the molded body can be increased. From the relationship between strength and handleability, the liquid content is preferably 0.1 to 5% by mass, more preferably 0.2 to 4% by mass, and 0.3 to 3% by mass with respect to the reinforcing fiber. More preferably.
強化繊維はどのタイミングで含液させてもよく、混繊糸を製造する工程でもよいし、混繊糸を製造し巻き取りを行った状態で行ってもよいし、巻き取りを行った後に別工程として加液工程を設けてもよい。また、織や編の準備工程として整経工程でおこなってもよいし、経通しや筬通しの段階でもよいし、緯糸を打ち込む直前に行ってもよい。混繊糸を製造する前に強化繊維を含液し、混繊時に液体量の調整を行い、織、編工程を行うことが、強度、含浸性の観点から好ましい。 The reinforcing fiber may be liquid-impregnated at any timing, may be a step of manufacturing a mixed fiber, may be performed in a state in which the mixed fiber is manufactured and wound, or may be separated after winding. A liquid addition step may be provided as a step. Further, it may be performed in a warping process as a preparation process for weaving or knitting, may be performed in a warp or threading stage, or may be performed immediately before the weft is driven. It is preferable from the viewpoints of strength and impregnation that a reinforcing fiber is contained before the mixed fiber is produced, the amount of liquid is adjusted at the time of mixing, and the weaving and knitting processes are performed.
本発明においては、織物、又は編物を製造した後、これらの布を液体に浸漬することによって含浸性を高め、界面強度、及び、成形体の強度を高めることもできる。この時の布は強化繊維のみから構成されていてもよいし、強化繊維と熱可塑性樹脂から構成されていてもよい。熱可塑性樹脂は、粉末状、フィルム状、織物上、繊維状のいずれの形態でも構わないが、強化繊維との距離を短くするという観点から粉末状、繊維状が好ましく、布の安定性の観点から繊維状が好ましい。繊維状の熱可塑性樹脂は、強化繊維と混繊させておいても構わないし、混織や混編の状態でも構わない。液体に浸漬した際に絞りを入れることにより、強化繊維の状態を適宜調整することができる。 In the present invention, after the woven fabric or the knitted fabric is manufactured, the impregnation property can be improved by immersing these fabrics in the liquid, and the interfacial strength and the strength of the molded body can be increased. The cloth at this time may be composed only of reinforcing fibers, or may be composed of reinforcing fibers and a thermoplastic resin. The thermoplastic resin may be in the form of powder, film, woven fabric, or fiber, but from the viewpoint of shortening the distance from the reinforcing fiber, powder and fiber are preferable, and the viewpoint of fabric stability The fibrous form is preferred. The fibrous thermoplastic resin may be mixed with reinforcing fibers, or may be in a mixed woven or mixed knitted state. The state of the reinforcing fiber can be appropriately adjusted by putting a squeeze when immersed in the liquid.
<成形方法>
上述した混繊糸や、中間材料を構成材料として繊維強化樹脂成形体を製造することができる。なお、繊維強化樹脂成形体の製造方法は、以下に限定されるものではなく、種々の方法を適用することができる。
<Molding method>
A fiber-reinforced resin molded body can be manufactured using the above-described mixed yarn or an intermediate material as a constituent material. In addition, the manufacturing method of a fiber reinforced resin molded object is not limited to the following, A various method is applicable.
例えば、繊維強化樹脂成形体を構成する基材、好ましくは織物形状や編物形状の基材を、所望の成形体に合わせて裁断し、目的とする製品の厚みを考慮して必要枚数積層させ、金型形状にあわせてセットする。この時、上述の中間材料を用いることにより、一般的な強化繊維に樹脂が含浸された従来の複合板に比して、金型に対して自由度を高くすることができ、成形体において高低差がある場合でも、形状自由度を高く成形することができる。金型にセットする前には基材を乾燥させる工程を含んでもよい。乾燥工程は、裁断の前、及び/又は、裁断の後に行うことができる。 For example, a base material constituting a fiber reinforced resin molded body, preferably a woven or knitted base material, is cut according to a desired molded body, and the necessary number of products are laminated in consideration of the desired product thickness, Set according to the mold shape. At this time, by using the above-mentioned intermediate material, it is possible to increase the degree of freedom with respect to the mold as compared with a conventional composite plate in which a resin is impregnated with a general reinforcing fiber. Even when there is a difference, it is possible to mold with a high degree of shape freedom. A step of drying the substrate may be included before setting in the mold. The drying step can be performed before cutting and / or after cutting.
基材の裁断は、1枚ずつ行ってもよいし、所望の枚数を重ねてから行ってもよい。生産性の観点からは、重ねた状態で裁断することが好ましい。裁断する方法は任意の方法でよく、例えば、ウォータージェット、刃プレス機、熱刃プレス機、レーザー、プロッター等があげられる。
基材を金型にセットした後に金型を閉じて圧縮する。そして、繊維強化樹脂成形体を構成する熱可塑性樹脂の融点以上の温度に金型を温調して熱可塑性樹脂を溶融させ賦型する。型締め圧力に特に規定はないが、好ましくは1MPa以上、より好ましくは3MPa以上である。
The cutting of the base material may be performed one by one or after a desired number of sheets are stacked. From the viewpoint of productivity, it is preferable to cut in an overlapped state. The cutting method may be any method, and examples thereof include a water jet, a blade press, a hot blade press, a laser, and a plotter.
After setting the substrate in the mold, the mold is closed and compressed. Then, the mold is heated to a temperature equal to or higher than the melting point of the thermoplastic resin constituting the fiber-reinforced resin molded body, and the thermoplastic resin is melted and molded. The clamping pressure is not particularly specified, but is preferably 1 MPa or more, more preferably 3 MPa or more.
繊維強化樹脂成形体の製造工程においては、金型内に中間材料をセットして金型を閉じ、加圧し、所定の時間後に、更に所定の熱可塑性樹脂組成物を射出充填して成形し、熱可塑性樹脂繊維と、所定の熱可塑性樹脂組成物とを接合させることにより、ハイブリッド成形体を製造してもよい。 In the manufacturing process of the fiber reinforced resin molded body, an intermediate material is set in the mold and the mold is closed and pressurized, and after a predetermined time, a predetermined thermoplastic resin composition is injected and filled, and then molded. You may manufacture a hybrid molded object by joining a thermoplastic resin fiber and a predetermined thermoplastic resin composition.
<用途>
繊維強化樹脂成形体は、航空機、車、建設材料、スポーツ用品等の構造材料用途に好適に使用することができる。
車用途においては、以下に限定されるものではないが、例えば、シャーシ/フレーム、足回り、駆動系部品、内装部品、外装部品、機能部品、その他部品に使用できる。
<Application>
The fiber reinforced resin molded article can be suitably used for structural material applications such as aircraft, cars, construction materials, and sports equipment.
In a car application, although not limited to the following, for example, it can be used for a chassis / frame, a suspension, a drive system component, an interior component, an exterior component, a functional component, and other components.
以下に本発明の具体的な実施例及び比較例を示すが、本発明は下記の実施例に限定されるものではない。 Specific examples and comparative examples of the present invention are shown below, but the present invention is not limited to the following examples.
<炭素繊維(CF)>
炭素繊維A(CF−A):
単糸径7μm、フィラメント数12000本、密度1.81g/cm3の標準弾性率のPAN(ポリアクリロニトリル)系炭素繊維に集束剤としてポリビニルピロリドン(水溶性成分)を2.9質量%付着させた。水に浸して集束剤を除去し単糸単位に分離し5cmの長さで引張試験を実施したところ破断時の荷重は6.2gであった。すなわち糸束の強度としては約2000MPaと計算された。親水度指数は80であった。
炭素繊維B(CF−B):
単糸径7μm、フィラメント数12000本、密度1.81g/cm3の標準弾性率のPAN(ポリアクリロニトリル)系炭素繊維に集束剤として水溶性成分であるビスフェノールA(ポリエチレングリコール)エーテル(ポリエチレングリコール平均繰り返し数9.3)0.11質量%、非水溶性成分である長鎖炭化水素化合物を0.1質量%を付着させた。糸束の強度は4500MPa、親水度指数は12であった。
炭素繊維C(CF−C):
集束剤のポリビニルピロリドンの量を0.08質量%とする以外は炭素繊維Aと同様の炭素繊維を用意した。親水度指数は50であった。
<Carbon fiber (CF)>
Carbon fiber A (CF-A):
Polyvinylpyrrolidone (water-soluble component) as a sizing agent was attached to 2.9% by mass as a sizing agent on a PAN (polyacrylonitrile) carbon fiber having a single yarn diameter of 7 μm, a filament count of 12,000, and a density of 1.81 g / cm 3 . . The sizing agent was removed by immersion in water, separated into single yarn units, and a tensile test was conducted with a length of 5 cm. As a result, the load at break was 6.2 g. That is, the yarn bundle strength was calculated to be about 2000 MPa. The hydrophilicity index was 80.
Carbon fiber B (CF-B):
Bisphenol A (polyethylene glycol) ether (polyethylene glycol average) which is a water-soluble component as a sizing agent on a standard elastic modulus PAN (polyacrylonitrile) carbon fiber having a single yarn diameter of 7 μm, a filament count of 12,000, and a density of 1.81 g / cm 3 9.3) 0.11% by mass, 0.1% by mass of a long-chain hydrocarbon compound which is a water-insoluble component was adhered. The yarn bundle had a strength of 4500 MPa and a hydrophilicity index of 12.
Carbon fiber C (CF-C):
A carbon fiber similar to the carbon fiber A was prepared except that the amount of the polyvinylpyrrolidone as a sizing agent was 0.08% by mass. The hydrophilicity index was 50.
<熱可塑性樹脂繊維>
レオナ(登録商標)470/144BAU(旭化成せんい(株)製)、繊度470dtex、単糸数144本レオナを使用した。水溶性成分0.9%を含んでいた。
<Thermoplastic resin fiber>
Leona (registered trademark) 470 / 144BAU (manufactured by Asahi Kasei Fibers Co., Ltd.), fineness 470 dtex, 144 single yarns Leona was used. It contained 0.9% water soluble component.
<一方向材の成形方法>
幅20mm、長さ200mm、厚み1mmをターゲットとして、以下に示す手順により試験片を得た。1度の成形にて、2個の試験片(成形体)を得た。成形機は、最大型締め力50トンの油圧成形機(株式会社ショージ)を使用した。
図2のようにアルミ製の型枠に混繊糸を巻きつけた。アルミの型枠の厚みは5mm、巻きつける回数は混繊糸の断面積の合計が20mm2以上になる最小回数とした。これを図3に示すようなCOR(コア)とCAV(キャビティ)からなるクリアランス0.5mmの金型にセットした。
成形機内温度を300℃に加熱し、金型を投入し、次いで型締め力5MPaで型締めし、圧縮成形を行った。成形時間はマトリックス樹脂の主成分の融点(ポリアミド66であれば265℃)に達してから10分とし、金型を急冷したのちに金型を開放し、成形体を取り出した。
<Method of forming unidirectional material>
A test piece was obtained by the following procedure using a width of 20 mm, a length of 200 mm, and a thickness of 1 mm as targets. Two test pieces (molded bodies) were obtained by molding once. As the molding machine, a hydraulic molding machine (Shoji Co., Ltd.) having a maximum clamping force of 50 tons was used.
As shown in FIG. 2, the mixed yarn was wound around an aluminum mold. The thickness of the aluminum mold was 5 mm, and the number of times of winding was the minimum number of times that the total cross-sectional area of the mixed yarn was 20 mm 2 or more. This was set in a mold having a clearance of 0.5 mm made up of COR (core) and CAV (cavity) as shown in FIG.
The temperature inside the molding machine was heated to 300 ° C., a mold was inserted, and then the mold was clamped with a clamping force of 5 MPa to perform compression molding. The molding time was 10 minutes after reaching the melting point of the main component of the matrix resin (265 ° C. in the case of polyamide 66). After rapidly cooling the mold, the mold was opened and the molded body was taken out.
<織物の成形方法>
成形機は、最大型締め力50トンの油圧成形機(株式会社ショージ)を使用した。
縦10cm、横20cm、厚み2mmの金型に、縦9.5cm、横19.5cmに切り取った織物を所定枚数仕込んだ。なお、枚数は織物の体積が40cm3以上となる最小の枚数とした。
成形機内温度を300℃に加熱し、金型を投入し、次いで型締め力5MPaで型締めし、圧縮成形を行った。成形時間はマトリックス樹脂の主成分の融点(ポリアミド66であれば265℃)に達してから10分とし、金型を急冷したのちに金型を開放し、成形体を取り出した。
<Fabric forming method>
As the molding machine, a hydraulic molding machine (Shoji Co., Ltd.) having a maximum clamping force of 50 tons was used.
A predetermined number of fabrics cut into a length of 9.5 cm and a width of 19.5 cm were charged into a mold having a length of 10 cm, a width of 20 cm, and a thickness of 2 mm. In addition, the number of sheets was the minimum number of sheets in which the volume of the fabric was 40 cm 3 or more.
The temperature inside the molding machine was heated to 300 ° C., a mold was inserted, and then the mold was clamped with a clamping force of 5 MPa to perform compression molding. The molding time was 10 minutes after reaching the melting point of the main component of the matrix resin (265 ° C. in the case of polyamide 66). After rapidly cooling the mold, the mold was opened and the molded body was taken out.
<一方向材の引張強度、引張弾性率及び強度発現率>
試験片は試験前に80℃にて2日間真空乾燥させた。試験片の両端にタブ間距離が100mmになるように厚み2mm、幅20mm、長さ50mmのガラス繊維強化樹脂(GFRP)製のタブを瞬間接着剤で取り付けた。試験片中央部に歪ゲージ(共和電業製KFGS-5-120-C1-23)を取り付けた。
インストロン製の100kNの引張試験器と共和電業製の動ひずみ計を用い、引っ張り速度1mm/分にて引張試験を行った。最大荷重を引張強度(MPa)とし、歪−荷重のカーブの最大の傾きを引張弾性率とした。
以下の式により算出される理論強度に対する引張強度の実測値を一方向材の強度発現率とした。
理論強度=強化繊維束の引張強度×強化繊維の体積比率+樹脂の引張強度×樹脂の体積比率
<Tensile strength, tensile modulus and strength expression rate of unidirectional material>
The test piece was vacuum-dried at 80 ° C. for 2 days before the test. Glass fiber reinforced resin (GFRP) tabs having a thickness of 2 mm, a width of 20 mm, and a length of 50 mm were attached to both ends of the test piece with an instantaneous adhesive so that the distance between the tabs was 100 mm. A strain gauge (Kyowa Dengyo KFGS-5-120-C1-23) was attached to the center of the specimen.
Using a 100 kN tensile tester manufactured by Instron and a dynamic strain meter manufactured by Kyowa Denki, a tensile test was performed at a pulling speed of 1 mm / min. The maximum load was the tensile strength (MPa), and the maximum slope of the strain-load curve was the tensile modulus.
The measured value of the tensile strength with respect to the theoretical strength calculated by the following formula was defined as the strength expression rate of the unidirectional material.
Theoretical strength = Tensile strength of reinforcing fiber bundle x Volume ratio of reinforcing fiber + Tensile strength of resin x Resin volume ratio
<織物の引張強度、引張弾性率および強度発現率>
試験片は試験前に80℃にて2日間真空乾燥させた。試験片をダンベル形状(長さ100mm,平行部6mm、厚さ2mm)に切削加工した。試験片の両端にタブ間距離が50mmになるように厚み2mm、幅13mm、長さ22.5mmのガラス繊維強化樹脂(GFRP)製のタブを瞬間接着剤で取り付けた。試験片中央部に歪ゲージ(共和電業製KFGS-5-120-C1-23)を取り付けた。
インストロン製の10kNの引張試験器と共和電業製の動ひずみ計を用い、0−90度方向にて引っ張り速度1mm/分にて引張試験を行った。最大荷重を引張強度(MPa)とし、歪−荷重のカーブの最大の傾きを引張弾性率とした。
以下の式により算出される理論強度に対する引張強度の実測値を強度発現率とした。複合材は繊維方向の強度が高く、繊維直行方向の強度は低くなる。今回の実施例、比較例においては経糸緯糸の密度が同じであるため、一方向材の半分の値を織物の引張強度の理論強度とした。
理論強度=(強化繊維束の引張強度×強化繊維の体積比率+樹脂の引張強度×樹脂の体積比率)/2
<Tensile strength, tensile elastic modulus and strength of fabric>
The test piece was vacuum-dried at 80 ° C. for 2 days before the test. The test piece was cut into a dumbbell shape (length 100 mm, parallel portion 6 mm, thickness 2 mm). A glass fiber reinforced resin (GFRP) tab having a thickness of 2 mm, a width of 13 mm, and a length of 22.5 mm was attached to both ends of the test piece with an instantaneous adhesive so that the distance between the tabs was 50 mm. A strain gauge (Kyowa Dengyo KFGS-5-120-C1-23) was attached to the center of the specimen.
Using a 10 kN tensile tester manufactured by Instron and a dynamic strain meter manufactured by Kyowa Dengyo Co., Ltd., a tensile test was performed at a pulling speed of 1 mm / min in the 0-90 degree direction. The maximum load was the tensile strength (MPa), and the maximum slope of the strain-load curve was the tensile modulus.
The measured value of the tensile strength with respect to the theoretical strength calculated by the following formula was used as the strength expression rate. The composite material has high strength in the fiber direction and low strength in the direction perpendicular to the fiber. In this example and the comparative example, since the density of the warp and the weft is the same, half the value of the unidirectional material is set as the theoretical strength of the tensile strength of the fabric.
Theoretical strength = (tensile strength of reinforcing fiber bundle × volume ratio of reinforcing fiber + tensile strength of resin × volume ratio of resin) / 2
<強化繊維の体積含有率>
JIS K7075の燃焼法にて測定を行った。
<Volume content of reinforcing fiber>
Measurement was performed by the combustion method of JIS K7075.
<未含浸率>
成形体の任意の位置から5断面を切り出し、エポキシ樹脂に包埋し、強化繊維が破損しないように注意しながら研磨を行った。マイクロスコープにより観察し、得られた画像から、繊維束、熱可塑性樹脂、空隙の占有面積を求め、全体の面積に対する空隙の面積の割合により算出した。なお、測定は1断面につき4か所行い、合計20点のデータから中央値を未含浸率とした。
<Unimpregnated rate>
Five sections were cut out from an arbitrary position of the molded body, embedded in an epoxy resin, and polished while taking care not to damage the reinforcing fibers. Observed with a microscope, the occupied area of the fiber bundle, the thermoplastic resin, and the voids was obtained from the obtained image, and calculated by the ratio of the void area to the total area. In addition, the measurement was performed at four places per cross section, and the median value was defined as the unimpregnated rate from the data of a total of 20 points.
<強化繊維、熱可塑性繊維、混繊糸の水溶性成分量>
繊維を3.5g採取し純水60mlに漬け込み80℃で8時間加熱した。ろ過を行い純水40mlで2回洗浄した。液は全部回収して混合することで分析液とし、凍結乾燥することにより液に溶解している成分を回収し、質量を測定することで水溶性成分の量を定量した。
<Water-soluble component amount of reinforcing fiber, thermoplastic fiber, blended yarn>
3.5 g of fiber was sampled and immersed in 60 ml of pure water and heated at 80 ° C. for 8 hours. Filtration was performed and the product was washed twice with 40 ml of pure water. All the liquids were collected and mixed to make an analysis liquid, and the components dissolved in the liquid were recovered by lyophilization, and the amount of the water-soluble component was quantified by measuring the mass.
<混繊糸中の強化繊維、熱可塑性樹脂繊維に付着している成分量>
混繊糸を適当な長さに切断し、強化繊維とポリアミド繊維を完全に分離した。それぞれの繊維から水抽出を行い、繊維に対する付着している水溶性成分の量を定量化した。その後、NMRを用いて強化繊維由来の成分(A)、ポリアミド繊維由来の成分(B)の比率を計算し、定量を行った。なお、強化繊維に付着している成分量については強化繊維質量に対しての百分率で、熱可塑性繊維に付着している成分量については熱可塑性繊維質量に対しての百分率で表した。
実施例2のみ原料の強化繊維が非水溶性成分を含んでいるため、水抽出の後にクロロホルムで抽出を行うことで同様に定量を行い、水溶性成分量と合算した。
実施例8のみ液体に有機成分(C)を加えている。この場合の(C)は強化繊維についてはヘキサフルオロ−2−プロパノールを用いて抽出、定量した。ポリアミド繊維については、長さ当たりの重量を測定し、原料と比較して増加した分を(C)の量とした。
<Amount of components adhering to reinforcing fiber and thermoplastic resin fiber in blended yarn>
The mixed yarn was cut into an appropriate length, and the reinforcing fiber and the polyamide fiber were completely separated. Water extraction was performed from each fiber, and the amount of the water-soluble component adhering to the fiber was quantified. Then, the ratio of the component (A) derived from a reinforcing fiber and the component (B) derived from a polyamide fiber was calculated using NMR, and quantified. In addition, about the component amount adhering to a reinforced fiber, it represented with the percentage with respect to the mass of a reinforced fiber, and about the component amount adhering to a thermoplastic fiber, it represented with the percentage with respect to the thermoplastic fiber mass.
Since only the reinforcing fiber of the raw material contains a water-insoluble component in Example 2, the amount was similarly determined by performing extraction with chloroform after water extraction, and the amount was combined with the amount of the water-soluble component.
Only in Example 8, the organic component (C) is added to the liquid. In this case, (C) was extracted and quantified with hexafluoro-2-propanol for the reinforcing fiber. For the polyamide fiber, the weight per length was measured, and the amount increased compared to the raw material was taken as the amount of (C).
<混繊糸中の強化繊維の混じり合いの割合>
混じり合いの度合いは、強化繊維束の全本数に対する熱可塑性樹脂繊維に隣接する強化繊維の数の割合で定義される。混繊糸をシュリンクチューブで包んだ状態で切断し、光学顕微鏡によって断面観察を行い、画像処理によって割合を算出した。任意の位置の断面を20点観察して平均値を計算した。
<Percentage of mixing of reinforcing fibers in blended yarn>
The degree of mixing is defined by the ratio of the number of reinforcing fibers adjacent to the thermoplastic resin fiber to the total number of reinforcing fiber bundles. The blended yarn was cut in a state wrapped with a shrink tube, cross-section was observed with an optical microscope, and the ratio was calculated by image processing. An average value was calculated by observing 20 cross sections at arbitrary positions.
<混繊糸の空隙率>
混繊糸をシュリンクチューブで包んだ後、着色したエポキシ樹脂をチューブ内に注入、硬化させた後、切削、研磨を行い断面観察した。
空隙率=空隙の面積/混繊糸の外周の内側の面積×100
空隙の面積は、混繊糸の外周より内側の着色したエポキシ樹脂の面積であり、混繊糸の外周は一番外側にある繊維を結んだ線によって描かれる図形である。
<Porosity of blended yarn>
After wrapping the mixed yarn with a shrink tube, a colored epoxy resin was poured into the tube and cured, and then cut and polished to observe the cross section.
Porosity = Area of the void / area inside the outer periphery of the mixed yarn × 100
The area of the void is the area of the colored epoxy resin inside the outer periphery of the mixed yarn, and the outer periphery of the mixed yarn is a figure drawn by a line connecting the fibers on the outermost side.
<有機物の分散度>
溶剤を用いて混繊糸から有機物を抽出して質量を測定し、混繊糸の質量に対する有機物の質量の割合を計算した。任意の20か所について同様に測定を行い平均値と標準偏差を算出し、標準偏差を平均値で除した値を分散度とした。
<Dispersion degree of organic matter>
The organic matter was extracted from the mixed yarn using a solvent, the mass was measured, and the ratio of the mass of the organic matter to the mass of the mixed yarn was calculated. The average value and the standard deviation were calculated in the same manner at 20 arbitrary locations, and the value obtained by dividing the standard deviation by the average value was defined as the degree of dispersion.
<混繊糸の柔軟度、強化繊維の親水度指数>
製造直後の混繊糸を20cm切り取り、端と端を幅1.5cmのテープにて固定して輪を作った。テープで固定した部分を持って垂直に吊り下げた。この時垂直にならない場合には、手で軽く抑えることで垂直にした。テープの部分を持ったまま垂直方向に180度ひっくり返し、テープ部分が下で混繊糸が垂直に立つようにした。混繊糸にはさわらず1分間保持し、垂直方向に対して混繊糸が垂れ下がった角度を測定した。なお、二段階に折れ曲がった場合には角度の大きい方を採用した。任意の箇所20点について測定し、平均値を算出した。
強化繊維の親水度指数は、乾燥時と湿潤時の強化繊維の柔軟度を同様に測定し、差を計算した。乾燥時は、25℃で2時間真空乾燥してから測定した。湿潤時については、日本製紙製キムタオル4つ折りに蒸留水50mlを均一に散布したものを用意し、乾燥時測定が終わったサンプルをキムタオルの間に挟み込み荷重をかけない状態で10秒間静置したのちに測定した。
<Softness of blended yarn, hydrophilicity index of reinforcing fiber>
A blended yarn immediately after production was cut 20 cm, and the ends were fixed with a tape having a width of 1.5 cm to form a loop. It was hung vertically holding the part fixed with tape. If it did not become vertical at this time, it was made vertical by holding it lightly with hands. While holding the tape part, it was turned 180 degrees in the vertical direction so that the mixed yarn was standing vertically under the tape part. It was kept for 1 minute regardless of the blended yarn, and the angle at which the blended yarn hanged in the vertical direction was measured. In the case of bending in two stages, the one with the larger angle was adopted. Measurements were made on 20 arbitrary points, and the average value was calculated.
For the hydrophilicity index of the reinforcing fibers, the softness of the reinforcing fibers when dried and wet was measured in the same manner, and the difference was calculated. At the time of drying, the measurement was performed after vacuum drying at 25 ° C. for 2 hours. When wet, prepare a Japanese paper kimto towel folded in half with 50 ml of distilled water, and place the sample that has been measured when dried between the kim towel and leave it for 10 seconds without applying any load. Measured.
<表面張力、表面張力の変化率>
共和界面科学社製接触角測定装置DM500を用い、懸適法(Laplace法)にて測定した。ポリアミド66の融点が265℃であるため、310℃にて、窒素雰囲気下で液滴を形成してから1分後に測定した。溶融密度は1g/ccとして算出した。なお前処理として充分に乾燥させておく必要があるため、ポリアミド66の場合は90℃にて2日間真空乾燥をしてから測定した。
ポリアミド66(熱可塑性樹脂繊維)に対して、混合する有機物を10質量%の割合で二軸の押し出し機を用いて、低シェア条件にて混合した。同様に表面張力を測定し、表面張力の変化率を算出した。
<Surface tension, rate of change of surface tension>
Using a contact angle measuring device DM500 manufactured by Kyowa Interface Science Co., Ltd., measurement was performed by a suspension method (Laplace method). Since the melting point of polyamide 66 is 265 ° C., the measurement was performed at 310 ° C. one minute after the droplet was formed in a nitrogen atmosphere. The melt density was calculated as 1 g / cc. In addition, since it was necessary to dry sufficiently as a pretreatment, in the case of polyamide 66, it was measured after vacuum drying at 90 ° C. for 2 days.
The organic material to be mixed with polyamide 66 (thermoplastic resin fiber) was mixed at a rate of 10% by mass using a biaxial extruder under low shear conditions. Similarly, the surface tension was measured, and the change rate of the surface tension was calculated.
<界面せん断応力の測定>
複合材料界面特性評価装置HM410(東栄産業(株)製)を使用し、マイクロドロップレット試験により測定した。
原料の強化繊維、又は混繊糸中の強化繊維より単糸を取り出し、複合材料界面特性評価装置にセッティングした。装置上で熱可塑性樹脂繊維の原料となる熱可塑性樹脂を溶融させたドロップを強化繊維単糸上に形成させ、室温で充分に冷却し、測定用の試料を得た。測定試料を装置に再度セッティングし、ドロップを装置ブレードで挟み、強化繊維単糸を装置上で0.06mm/分の速度で走行させ、ドロップを引き抜く際の最大引抜荷重f(N)を測定し、下記式により界面接着強度τを算出した。
界面接着強度τ=f/π・R・l
(f:最大引抜荷重(N)、R:強化繊維単糸径(m)、l:ドロップの引抜方向の粒子径(m))
界面せん断応力変化率は、原料の強化繊維の界面せん断応力に対して、混繊糸から取り出した強化繊維の界面せん断応力と原料の強化繊維の界面せん断応力の差の絶対値を百分率で算出した。
<Measurement of interfacial shear stress>
Using a composite material interface property evaluation apparatus HM410 (manufactured by Toei Sangyo Co., Ltd.), measurement was performed by a microdroplet test.
A single yarn was taken out from the reinforcing fiber of the raw material or the reinforcing fiber in the mixed yarn and set in the composite material interface property evaluation apparatus. A drop in which a thermoplastic resin serving as a raw material for the thermoplastic resin fiber was melted on the apparatus was formed on the reinforcing fiber single yarn and sufficiently cooled at room temperature to obtain a sample for measurement. Set the measurement sample in the device again, sandwich the drop with the device blade, run the reinforcing fiber single yarn on the device at a speed of 0.06 mm / min, and measure the maximum pulling load f (N) when pulling out the drop. The interfacial adhesive strength τ was calculated from the following formula.
Interfacial adhesive strength τ = f / π · R · l
(F: maximum pulling load (N), R: reinforcing fiber single yarn diameter (m), l: particle diameter (m) in the pulling direction of the drop)
The interfacial shear stress change rate was calculated as a percentage of the absolute value of the difference between the interfacial shear stress of the reinforcing fiber taken from the blended yarn and the interfacial shear stress of the raw reinforcing fiber with respect to the interfacial shear stress of the raw reinforcing fiber. .
(実施例1)
炭素繊維Aを1本、ポリアミド糸を10本用いすべての糸を引き揃えた後、45ml/分の流水を通過させた。ローラーを経由したのち、タスランボックスへ導入し空気圧2.0kgf/cm2にてタスラン加工を行い混繊糸を得た。巻き取りの糸速度は65m/分とし、原料の炭素繊維は66m/分、原料のポリアミド糸は68m/分にて送り込んだ。
Example 1
One carbon fiber A and 10 polyamide yarns were used to draw all the yarns, and then running water of 45 ml / min was passed therethrough. After passing through a roller, it was introduced into a taslan box and subjected to taslan processing at an air pressure of 2.0 kgf / cm 2 to obtain a mixed yarn. The winding yarn speed was 65 m / min, the raw carbon fiber was fed at 66 m / min, and the raw polyamide yarn was fed at 68 m / min.
(実施例2)
炭素繊維Bを使用する以外は実施例1と同様に混繊糸を得た。非水溶性成分は、混繊後も炭素繊維に残存していた。
(Example 2)
A mixed yarn was obtained in the same manner as in Example 1 except that carbon fiber B was used. The water-insoluble component remained in the carbon fiber even after fiber mixing.
(実施例3)
水の量を85ml/分とする以外は実施例1と同様に混繊糸を得た。
(Example 3)
A mixed yarn was obtained in the same manner as in Example 1 except that the amount of water was 85 ml / min.
(実施例4)
ポリアミド糸を6本とする以外は実施例1と同様に混繊糸を得た。
(Example 4)
A blended yarn was obtained in the same manner as in Example 1 except that the number of polyamide yarns was six.
(実施例5)
炭素繊維Aを1本、ポリアミド糸を10本用い、すべての糸を引き揃えた後、45ml/分の流水を通過させた。インターレース型流体交絡ノズル(京セラ製KC−AJI−L(1.5mm径、推進型))に導き、空気圧0.5kg/cm2、加工速度50m/分にて混繊糸を得た。
(Example 5)
One carbon fiber A and 10 polyamide yarns were used. After all the yarns were aligned, running water of 45 ml / min was passed. It was led to an interlace type fluid entanglement nozzle (Kyocera KC-AJI-L (1.5 mm diameter, propulsion type)), and a mixed yarn was obtained at an air pressure of 0.5 kg / cm 2 and a processing speed of 50 m / min.
(実施例6)
実施例1で得られた混繊糸を水槽に導入し巻き取ることでポリビニルピロリドンの量を0.08質量%まで低減させた。
(Example 6)
The amount of polyvinylpyrrolidone was reduced to 0.08% by mass by introducing and winding the mixed fiber obtained in Example 1 into a water tank.
(実施例7)
炭素繊維Aを湿度95%以下で3日間放置し吸湿させてから使用した。また、混繊糸製造中においても1分30秒ごとに霧吹きにて水30mlを炭素繊維ボビンを加湿しながら使用した。炭素繊維A1本を30ml/分の流水を通過させた。その後、炭素繊維をポリアミド糸を10本とを引き揃えた後、タスランボックスへ導入し空気圧2.0kgf/cm2にてタスラン加工を行い混繊糸を得た。巻き取りの糸速度は65m/分とし、原料の炭素繊維は66m/分、原料のポリアミド糸は68m/分にて送り込んだ。
(Example 7)
Carbon fiber A was used after being allowed to stand for 3 days at a humidity of 95% or less to absorb moisture. Further, even during the production of the mixed yarn, 30 ml of water was used by spraying every 1 minute and 30 seconds while humidifying the carbon fiber bobbin. One piece of carbon fiber A was allowed to pass running water at 30 ml / min. Thereafter, 10 polyamide yarns of carbon fibers were aligned, and then introduced into a taslan box and subjected to taslan processing at an air pressure of 2.0 kgf / cm 2 to obtain a mixed fiber yarn. The winding yarn speed was 65 m / min, the raw carbon fiber was fed at 66 m / min, and the raw polyamide yarn was fed at 68 m / min.
(実施例8)
流水の代わりにポリアミドエマルジョン(住友精化製セポルジョンPA200)を5倍に薄めて使用した以外は実施例7と同様に混繊糸を得た。
ポリアミド66の表面張力は29.9mN/m、ポリアミドエマルジョン中の固形分の表面張力は35mN/m、ポリアミド66にポリアミドエマルジョンの固形分を混ぜた際の表面張力は31.0mN/mdであり、表面張力変化率は3.7%であった。
成形時間は融点に達してから1分とした。
(Example 8)
A mixed yarn was obtained in the same manner as in Example 7 except that a polyamide emulsion (Separsion PA200 manufactured by Sumitomo Seika Co., Ltd.) was used diluted 5 times instead of running water.
The surface tension of the polyamide 66 is 29.9 mN / m, the surface tension of the solid content in the polyamide emulsion is 35 mN / m, and the surface tension when the polyamide emulsion is mixed with the solid content of the polyamide emulsion is 31.0 mN / md. The surface tension change rate was 3.7%.
The molding time was 1 minute after reaching the melting point.
(実施例9)
流水量を300ml/分とし、流水に接触した直後にタスランボックスに導入した以外は実施例1と同様に混繊糸を得た。
Example 9
A mixed yarn was obtained in the same manner as in Example 1 except that the amount of flowing water was set to 300 ml / min and was introduced into the Taslan box immediately after contact with the flowing water.
(実施例10)
ポリアミド糸を14本使用した以外は実施例7と同様に混繊糸を得た。
(Example 10)
A blended yarn was obtained in the same manner as in Example 7 except that 14 polyamide yarns were used.
(実施例11)
炭素繊維を乾燥してから使用し、巻き取り糸速度を45m/分、炭素繊維の送りを46m/分、ポリアミド糸の送りを48m/分とした以外は実施例1と同様に混繊糸を得た。解舒がスムーズでなかったため運転速度をおとした。
(Example 11)
The mixed fiber was used in the same manner as in Example 1 except that the carbon fiber was used after drying, the winding yarn speed was 45 m / min, the carbon fiber feed was 46 m / min, and the polyamide yarn feed was 48 m / min. Obtained. Since the unraveling was not smooth, the driving speed was reduced.
(比較例1)
水を使用しないこと以外は実施例1と同様に混繊糸を得た。環境中にCFの毛羽が発生した。
(Comparative Example 1)
A mixed yarn was obtained in the same manner as in Example 1 except that water was not used. CF fluff occurred in the environment.
(比較例2)
炭素繊維Aを1本、ポリアミド糸を10本用いすべての糸を引き揃えた後、そのまま巻き取った。環境中にCFの毛羽が発生した。
(Comparative Example 2)
One carbon fiber A and 10 polyamide yarns were used to draw all the yarns, and then wound up as they were. CF fluff occurred in the environment.
(比較例3)
炭素繊維Cとポリアミド糸10本を、タスランボックスへ導入し空気圧2.0kgf/cm2にてタスラン加工を行い混繊糸を得た。巻き取りの糸速度は65m/分とし、原料の炭素繊維は66m/分、原料のポリアミド糸は68m/分にて送り込んだ。環境中にCFの毛羽が発生した。
(Comparative Example 3)
Carbon fiber C and 10 polyamide yarns were introduced into a Taslan box, and Taslan processing was performed at an air pressure of 2.0 kgf / cm 2 to obtain a blended yarn. The winding yarn speed was 65 m / min, the raw carbon fiber was fed at 66 m / min, and the raw polyamide yarn was fed at 68 m / min. CF fluff occurred in the environment.
(比較例4)
炭素繊維Aを1本、ポリアミド糸を10本用いすべての糸を引き揃えた後、水を満たした水槽に導入した。水はポンプで20m/分となるように循環させ、水流によって開繊させた。開繊した繊維を重ね合わせた後、ウォータージェットノズルに導入し、10kg/cm2の水を供給し乱流処理により混繊した。糸の速度は20m/分とし、炭素繊維A、ポリアミド糸ともに22m/分で送り込んだ。巻き取った後、150℃にて10時間乾燥を行った。
(Comparative Example 4)
One carbon fiber A and 10 polyamide yarns were used to align all the yarns, which were then introduced into a water tank filled with water. Water was circulated with a pump at 20 m / min and opened by a water stream. The opened fibers were superposed, introduced into a water jet nozzle, supplied with 10 kg / cm 2 of water, and mixed by turbulent flow treatment. The yarn speed was 20 m / min, and both carbon fiber A and polyamide yarn were fed at 22 m / min. After winding, drying was performed at 150 ° C. for 10 hours.
(実施例12)
実施例1で得られた混繊糸を、レピア織機を用いて6本/インチの密度で4−4綾織の織物を得た。織工程における炭素繊維の含水率は5質量%であった。
(Example 12)
A 4-4 twill weave was obtained from the blended yarn obtained in Example 1 at a density of 6 strands / inch using a rapier loom. The moisture content of the carbon fiber in the weaving process was 5% by mass.
(比較例5)
比較例3で得られた混繊糸を用い、実施例12と同様の方法で織物を得た。
(Comparative Example 5)
Using the mixed yarn obtained in Comparative Example 3, a woven fabric was obtained in the same manner as in Example 12.
実施例1〜11の混繊糸による試験片は、引張強度、引張弾性率及び強度発現率が優れていた。また、比較例5で得られた織物は、毛羽立ちが多く、環境中へ炭素繊維の飛散がみられ、実施例12の織物による試験片に比べて、引張強度、引張弾性率及び強度発現率が低下した。 The test pieces using the mixed yarns of Examples 1 to 11 were excellent in tensile strength, tensile elastic modulus, and strength expression rate. In addition, the fabric obtained in Comparative Example 5 has a lot of fuzz, and carbon fibers are scattered in the environment. Compared with the test piece made of the fabric of Example 12, the tensile strength, tensile elastic modulus, and strength expression rate are higher. Declined.
本発明の混繊糸の製造方法、混繊糸、及び織物又は編物の製造方法によれば、各種機械や自動車等の構造部品等、高レベルでの機械的物性が要求される材料の補強材に好適に利用できる中間材料が得られ、産業上の利用可能性を有する。 According to the method for producing a blended yarn, the blended yarn, and the method for producing a woven fabric or a knitted fabric according to the present invention, a reinforcing material made of a material that requires high-level mechanical properties such as various machines and structural parts of automobiles and the like. An intermediate material that can be suitably used is obtained, and has industrial applicability.
Claims (15)
A method for producing a woven fabric or a knitted fabric comprising at least a thermoplastic resin and a reinforcing fiber, wherein the liquid content of the reinforcing fiber in the reinforcing fiber weaving step is 0.1 to 5% by mass. Method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017131704 | 2017-07-05 | ||
JP2017131704 | 2017-07-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019015014A true JP2019015014A (en) | 2019-01-31 |
JP7157571B2 JP7157571B2 (en) | 2022-10-20 |
Family
ID=64950151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018124045A Active JP7157571B2 (en) | 2017-07-05 | 2018-06-29 | Method for producing mixed yarn, method for producing mixed yarn, and woven or knitted fabric |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3650592B1 (en) |
JP (1) | JP7157571B2 (en) |
CN (1) | CN110770377B (en) |
TW (1) | TWI696733B (en) |
WO (1) | WO2019009196A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115896999A (en) * | 2022-01-26 | 2023-04-04 | 江苏恒科新材料有限公司 | Elastic different-shrinkage different-color cotton-like yarn and fabric and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0291240A (en) * | 1988-09-29 | 1990-03-30 | Toyobo Co Ltd | Blend yarn and production thereof |
JP2004270126A (en) * | 2003-02-19 | 2004-09-30 | Toray Ind Inc | Combined filament yarn, method for producing the same and woven or knitted fabric |
JP2016056478A (en) * | 2014-09-10 | 2016-04-21 | 国立大学法人岐阜大学 | Method for producing commingled yarn, commingled yarn, wound body, and woven fabric |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5943141A (en) | 1982-09-01 | 1984-03-10 | 日本電気硝子株式会社 | Bulky processing of glass long fiber strand |
JP2697008B2 (en) | 1988-10-21 | 1998-01-14 | 東洋紡績株式会社 | Molding method of fiber reinforced thermoplastic composite |
JPH03275729A (en) | 1990-03-26 | 1991-12-06 | Toyobo Co Ltd | Molding material for thermoplastic composite |
JP3018413B2 (en) * | 1990-07-12 | 2000-03-13 | 東洋紡績株式会社 | Method for producing mixed fiber yarn for composite |
JPH04222246A (en) | 1990-12-18 | 1992-08-12 | Unitika Ltd | Production of multiple interlaced yarn |
WO2008056645A1 (en) * | 2006-11-07 | 2008-05-15 | Teijin Fibers Limited | Polyester multifilament for resin reinforcement and process for producing the same |
JP6077758B2 (en) * | 2012-05-14 | 2017-02-08 | 旭化成株式会社 | Manufacturing method of composite yarn |
JP5978419B2 (en) * | 2012-06-07 | 2016-08-24 | 旭化成株式会社 | Compound yarn |
JP2014173196A (en) * | 2013-03-06 | 2014-09-22 | Gifu Univ | Mixed yarn, woven fabric and knitted fabric, composite material and method for manufacturing composite material |
JP6227956B2 (en) | 2013-09-30 | 2017-11-08 | 旭化成株式会社 | Compound yarn |
JP5802877B2 (en) * | 2013-10-18 | 2015-11-04 | 国立大学法人岐阜大学 | Mixed yarn and its manufacturing method, braid, woven fabric, knitted fabric and non-woven fabric |
JP6372996B2 (en) | 2013-11-20 | 2018-08-15 | 旭化成株式会社 | Method for manufacturing composite material molded body |
JP6297311B2 (en) * | 2013-11-20 | 2018-03-20 | 旭化成株式会社 | Cloth |
CN105696142B (en) * | 2016-03-07 | 2018-05-18 | 杭州翔盛高强纤维材料股份有限公司 | For the network silk device and operating method of modified ultra-high molecular weight polyethylene fiber |
-
2018
- 2018-06-29 EP EP18827915.2A patent/EP3650592B1/en active Active
- 2018-06-29 JP JP2018124045A patent/JP7157571B2/en active Active
- 2018-06-29 CN CN201880039436.8A patent/CN110770377B/en active Active
- 2018-06-29 WO PCT/JP2018/024790 patent/WO2019009196A1/en unknown
- 2018-07-03 TW TW107122951A patent/TWI696733B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0291240A (en) * | 1988-09-29 | 1990-03-30 | Toyobo Co Ltd | Blend yarn and production thereof |
JP2004270126A (en) * | 2003-02-19 | 2004-09-30 | Toray Ind Inc | Combined filament yarn, method for producing the same and woven or knitted fabric |
JP2016056478A (en) * | 2014-09-10 | 2016-04-21 | 国立大学法人岐阜大学 | Method for producing commingled yarn, commingled yarn, wound body, and woven fabric |
Also Published As
Publication number | Publication date |
---|---|
TW201907064A (en) | 2019-02-16 |
JP7157571B2 (en) | 2022-10-20 |
EP3650592B1 (en) | 2022-01-19 |
EP3650592A4 (en) | 2020-05-13 |
EP3650592A1 (en) | 2020-05-13 |
TWI696733B (en) | 2020-06-21 |
CN110770377B (en) | 2022-03-01 |
CN110770377A (en) | 2020-02-07 |
WO2019009196A1 (en) | 2019-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69626275T2 (en) | FLEXIBLE, LIGHT PRE-IMPREGNATED TAU | |
JP6083377B2 (en) | Carbon fiber composite material | |
KR20190095292A (en) | Process for preparing fibrous material preimpregnated with thermoplastic polymer in powder form | |
KR20190095291A (en) | Process for preparing fibrous material preimpregnated with thermoplastic polymer in dry powder form | |
US7867612B2 (en) | Composite material, method for the production and use thereof | |
KR20190095293A (en) | Method for producing fibrous material preimpregnated with thermoplastic polymer by spraying | |
CN103826819B (en) | With the flexible reinforcing fiber yarn of resin-dipping | |
US10683592B2 (en) | Hybrid woven textile for composite reinforcement | |
JP7121663B2 (en) | Hybrid fabrics for reinforcing composites | |
CN104937014B (en) | Reinforcing fiber yarn through dipping and its purposes in composite is produced | |
JP2014196584A (en) | Method for producing nonwoven fabric and method for producing composite material | |
JP7157571B2 (en) | Method for producing mixed yarn, method for producing mixed yarn, and woven or knitted fabric | |
JPH04183729A (en) | Molding material for thermoplastic composite | |
IT202100026366A1 (en) | PROCESS OF MANUFACTURING A NANOFIBER MEMBRANE REINFORCED COMPOSITE MATERIAL AND NANOFIBER MEMBRANE FOR SUCH A PROCESS | |
CN112840066A (en) | Method for producing precursor fiber bundle, method for producing carbon fiber bundle, and carbon fiber bundle | |
JP4992339B2 (en) | Method for producing carbon fiber fabric and fiber reinforced plastic | |
Venkataraman et al. | Tensile Properties of Glass Roving and Hybrid Tapes | |
JP5284602B2 (en) | Fiber reinforced tape and method for producing the same | |
JP3314826B2 (en) | Thermoplastic composite sheet | |
JP2010053477A (en) | Methods for producing carbon fiber woven fabric and fiber-reinforced plastic | |
JPH03119034A (en) | Conjugate fiber roving |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180709 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180723 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210226 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20210324 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210331 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220309 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20220322 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20220323 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20220323 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220727 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220818 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221005 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221007 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7157571 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |