図1および図2に示すように、本実施形態の電動アクチュエータ10は、ケース11と、モータ20と、減速機構30と、出力部40と、回転検出装置60と、第1配線部材91と、第2配線部材92と、第1ベアリング51と、第2ベアリング54と、第3ベアリング55と、第4ベアリング56と、を備える。モータ20は、ロータ22と、ステータ23と、モータケース12と、制御基板70と、バスバー80と、回転検出部75と、を備える。ロータ22は、第1中心軸(中心軸)J1に沿って延びるモータシャフト21を有する。つまりモータ20は、モータシャフト21を有する。減速機構30は、モータシャフト21に連結される。出力部40は、減速機構30を介してモータシャフト21の回転が伝達される出力シャフト部41を有する。出力シャフト部41は、第1中心軸J1の軸方向に延びる。出力シャフト部41は、モータシャフト21が配置される軸方向の位置とは異なる軸方向の位置に配置される。本実施形態の例では、第1中心軸J1の軸方向が、上下方向である。
As shown in FIGS. 1 and 2, the electric actuator 10 according to the present embodiment includes a case 11, a motor 20, a reduction mechanism 30, an output unit 40, a rotation detection device 60, and a first wiring member 91. A second wiring member 92, a first bearing 51, a second bearing 54, a third bearing 55, and a fourth bearing 56 are provided. The motor 20 includes a rotor 22, a stator 23, a motor case 12, a control board 70, a bus bar 80, and a rotation detection unit 75. The rotor 22 has a motor shaft 21 extending along a first central axis (central axis) J1. That is, the motor 20 has a motor shaft 21. The reduction mechanism 30 is coupled to the motor shaft 21. The output unit 40 has an output shaft portion 41 to which the rotation of the motor shaft 21 is transmitted via the speed reduction mechanism 30. The output shaft portion 41 extends in the axial direction of the first central axis J1. The output shaft portion 41 is disposed at an axial position different from the axial position at which the motor shaft 21 is disposed. In the example of the present embodiment, the axial direction of the first central axis J1 is the vertical direction.
本実施形態では、第1中心軸J1に平行な方向を単に「軸方向」と呼ぶ。軸方向のうち、モータシャフト21から出力シャフト部41へ向かう方向を軸方向一方側と呼び、出力シャフト部41からモータシャフト21へ向かう方向を軸方向他方側と呼ぶ。軸方向一方側は、第1中心軸J1に沿ってモータ20から減速機構30および出力部40へ向かう方向である。軸方向他方側は、第1中心軸J1に沿って出力部40および減速機構30からモータ20へ向かう方向である。本実施形態の例では、軸方向一方側が下側であり、図1および図2の下側である。軸方向他方側は上側であり、図1および図2の上側である。なお、上側および下側とは、単に各部の相対位置関係を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。
In the present embodiment, the direction parallel to the first central axis J1 is simply referred to as the “axial direction”. Among the axial directions, the direction from the motor shaft 21 to the output shaft portion 41 is referred to as one axial direction side, and the direction from the output shaft portion 41 to the motor shaft 21 is referred to as the other axial direction side. One side in the axial direction is a direction from the motor 20 to the speed reduction mechanism 30 and the output unit 40 along the first central axis J1. The other side in the axial direction is a direction from the output unit 40 and the reduction mechanism 30 toward the motor 20 along the first central axis J1. In the example of this embodiment, one side in the axial direction is the lower side, and is the lower side in FIGS. 1 and 2. The other axial side is the upper side, which is the upper side of FIGS. 1 and 2. The upper side and the lower side are simply names for describing the relative positional relationship of each part, and the actual positional relationship may be a positional relationship other than the positional relationship etc. indicated by these names. .
第1中心軸J1を中心とする径方向を単に「径方向」と呼ぶ。径方向のうち、第1中心軸J1に接近する方向を径方向内側と呼び、第1中心軸J1から離れる方向を径方向外側と呼ぶ。第1中心軸J1を中心とする周方向を単に「周方向」と呼ぶ。
The radial direction centering on the first central axis J1 is simply referred to as "radial direction". Among the radial directions, the direction approaching the first central axis J1 is referred to as the radially inner side, and the direction away from the first central axis J1 is referred to as the radial outer side. The circumferential direction centering on the first central axis J1 is simply referred to as "circumferential direction".
ケース11は、モータケース12と、減速機構ケース13と、を有する。モータケース12および減速機構ケース13は、樹脂製である。つまり、ケース11は樹脂製である。図1に示すように、ケース11は、ブリーザ部17を有する。ブリーザ部17は、ケース11の内部と外部とを繋ぐ呼吸孔を有する。図2に示すように、モータケース12は、軸方向一方側に開口する第1開口部12iを有する。減速機構ケース13は、軸方向他方側に開口する第2開口部13jを有する。ケース11は、モータケース12と減速機構ケース13とが、各々の開口部を軸方向に対向させた状態で固定される構成を有する。つまり、モータケース12と減速機構ケース13とは、第1開口部12iと第2開口部13jとが軸方向に対向した状態で互いに固定される。モータケース12と減速機構ケース13とが互いに固定された状態において、第1開口部12iの内部と第2開口部13jの内部とは、互いに通じる。
The case 11 has a motor case 12 and a reduction mechanism case 13. The motor case 12 and the reduction mechanism case 13 are made of resin. That is, the case 11 is made of resin. As shown in FIG. 1, the case 11 has a breather unit 17. The breather unit 17 has a breathing hole that connects the inside and the outside of the case 11. As shown in FIG. 2, the motor case 12 has a first opening 12 i that opens to one side in the axial direction. The speed reduction mechanism case 13 has a second opening 13 j that opens to the other side in the axial direction. The case 11 has a configuration in which the motor case 12 and the reduction mechanism case 13 are fixed in a state in which the respective openings face each other in the axial direction. That is, the motor case 12 and the reduction mechanism case 13 are fixed to each other in a state where the first opening 12i and the second opening 13j are opposed in the axial direction. With the motor case 12 and the reduction mechanism case 13 fixed to each other, the inside of the first opening 12i and the inside of the second opening 13j communicate with each other.
モータケース12には、ロータ22、ステータ23、制御基板70、バスバー80、回転検出部75、第1配線部材91および第3ベアリング55が収容される。本実施形態では、モータケース12とステータ23とを別々に作製し、後述するように、モータケース12とステータ23とを組み立てにより固定する。モータケース12は、周壁部12aと、蓋体12gと、仕切り壁部12dと、ベアリング保持部12eと、コネクタ部12cと、第1配線保持部14と、を有する。
The motor case 12 accommodates the rotor 22, the stator 23, the control board 70, the bus bar 80, the rotation detection unit 75, the first wiring member 91, and the third bearing 55. In the present embodiment, the motor case 12 and the stator 23 are separately manufactured, and the motor case 12 and the stator 23 are assembled and fixed as described later. The motor case 12 has a peripheral wall 12 a, a lid 12 g, a partition wall 12 d, a bearing holder 12 e, a connector 12 c, and a first wiring holder 14.
周壁部12aは、第1中心軸J1を中心として軸方向に延びる筒状である。周壁部12aは、円筒状である。周壁部12aは、軸方向一方側の端部が開口する。周壁部12aは、軸方向他方側の端部が開口する。周壁部12aの軸方向一方面および軸方向他方面は、それぞれ開口する。つまり周壁部12aは、軸方向の両側に開口する。周壁部12aは、第1中心軸J1に沿って第1中心軸J1の周囲を覆う。
The peripheral wall portion 12a has a tubular shape extending in the axial direction centering on the first central axis J1. The peripheral wall portion 12a is cylindrical. The end portion on one axial side of the peripheral wall 12a is open. The end portion of the other side in the axial direction of the peripheral wall portion 12a is open. The one axial direction surface and the other axial direction surface of the peripheral wall portion 12a are respectively opened. That is, the peripheral wall portion 12a opens on both sides in the axial direction. The peripheral wall portion 12a covers the periphery of the first central axis J1 along the first central axis J1.
周壁部12aには、ステータ23が収容される。周壁部12aは、ステータ23の径方向外側を囲む。周壁部12aの内部は、後述する仕切り壁部12dにより軸方向一方側の部分と軸方向他方側の部分とに仕切られる。周壁部12aの内部のうち、仕切り壁部12dよりも軸方向一方側の部分は、ステータ収容部である。周壁部12aの内部のうち、仕切り壁部12dよりも軸方向他方側の部分は、制御基板収容部12fである。本実施形態の例では、制御基板収容部12fの内径が、ステータ収容部の内径よりも大きい。
The stator 23 is accommodated in the peripheral wall portion 12a. The circumferential wall 12 a surrounds the radially outer side of the stator 23. The inside of the peripheral wall portion 12a is divided into a portion on one axial side and a portion on the other axial side by a partition wall 12d described later. Of the inside of the peripheral wall portion 12a, a portion on one axial side of the partition wall portion 12d is a stator accommodating portion. Of the inside of the peripheral wall portion 12a, the portion on the other side in the axial direction with respect to the partition wall portion 12d is a control substrate storage portion 12f. In the example of the present embodiment, the inner diameter of the control substrate housing portion 12 f is larger than the inner diameter of the stator housing portion.
図4〜図6に示すように、周壁部12aの内周面には、突起部26と、爪部27と、が設けられる。図4および図6に示すように、突起部26は、周壁部12aの内周面から径方向内側に向けて突出する。本実施形態では、突起部26が、周壁部12aの内周面において軸方向に延びるリブである。図示の例では、突起部26の周方向の幅が、径方向に沿って一定である。突起部26は、周壁部12aの内周面において周方向に互いに等間隔をあけて複数設けられる。図5に示すように、爪部27は、周壁部12aの内周面において周方向に互いに等間隔をあけて複数設けられる。本実施形態では、爪部27が、周壁部12aの内周面において周方向に互いに120度間隔をあけて3個設けられる。突起部26および爪部27については、別途後述する。
As shown in FIGS. 4 to 6, a protrusion 26 and a claw 27 are provided on the inner peripheral surface of the peripheral wall 12 a. As shown in FIGS. 4 and 6, the protrusion 26 protrudes radially inward from the inner peripheral surface of the peripheral wall 12 a. In the present embodiment, the protrusion 26 is a rib extending in the axial direction on the inner peripheral surface of the peripheral wall 12a. In the illustrated example, the circumferential width of the protrusion 26 is constant along the radial direction. A plurality of protrusions 26 are provided at equal intervals in the circumferential direction on the inner peripheral surface of the peripheral wall 12a. As shown in FIG. 5, a plurality of claws 27 are provided at equal intervals in the circumferential direction on the inner peripheral surface of the peripheral wall 12a. In the present embodiment, three claws 27 are provided at intervals of 120 degrees in the circumferential direction on the inner peripheral surface of the peripheral wall 12a. The protrusion 26 and the claw 27 will be described later separately.
図1および図2に示すように、蓋体12gは、板状である。蓋体12gは、周壁部12aの軸方向他方側に開口する開口部を塞ぐ。蓋体12gは、制御基板収容部12fの軸方向他方側の開口を塞ぐ。周壁部12aに対して蓋体12gは、ネジ16を用いて取り外し可能に装着される。
As shown in FIGS. 1 and 2, the lid 12 g has a plate shape. The lid 12g closes an opening that opens to the other side of the peripheral wall 12a in the axial direction. The lid 12g closes the opening on the other side in the axial direction of the control substrate housing 12f. The lid 12 g is removably attached to the peripheral wall 12 a using a screw 16.
図2に示すように、仕切り壁部12dは、周壁部12aの内周面から径方向内側に広がる円環板状である。仕切り壁部12dは、ステータ23を軸方向他方側から覆う。仕切り壁部12dは、ロータ22およびステータ23と、制御基板70と、の間に位置する。仕切り壁部12dは、軸方向に沿うロータ22およびステータ23と、制御基板70と、の間に配置される。
As shown in FIG. 2, the partition wall portion 12 d has an annular plate shape that extends inward in the radial direction from the inner peripheral surface of the peripheral wall portion 12 a. The partition wall 12 d covers the stator 23 from the other side in the axial direction. The partition wall 12 d is located between the rotor 22 and the stator 23 and the control board 70. The partition wall 12 d is disposed between the rotor 22 and the stator 23 in the axial direction and the control board 70.
図6および図8に示すように、仕切り壁部12dには、仕切り壁部12dを軸方向に貫通する連通孔12hが設けられる。連通孔12hには、例えばコイル線等(図示省略)が通される。コイル線は、後述するステータ23のコイル23c(図5参照)から延び、連通孔12h内を通って、制御基板70に電気的に接続される。仕切り壁部12dにおいて連通孔12hは、周方向に互いに等間隔をあけて複数設けられる。本実施形態では、連通孔12hが、周方向に互いに120度間隔をあけて2個乃至3個設けられる。
As shown in FIGS. 6 and 8, the partition wall 12 d is provided with a communication hole 12 h axially penetrating the partition wall 12 d. For example, a coil wire or the like (not shown) is passed through the communication hole 12 h. The coil wire extends from a coil 23c (see FIG. 5) of the stator 23 described later, passes through the communication hole 12h, and is electrically connected to the control substrate 70. In the partition wall portion 12d, a plurality of communication holes 12h are provided at equal intervals in the circumferential direction. In the present embodiment, two to three communication holes 12 h are provided at intervals of 120 degrees in the circumferential direction.
図8に示すように、連通孔12hと爪部27とは、軸方向から見て重なる位置に配置される。つまり、複数の連通孔12hと、複数の爪部27とが、軸方向から見てそれぞれ重なる位置に配置される。このため爪部27も、周方向に互いに間隔をあけて2個乃至3個設けられる。爪部27は、軸方向から見て、連通孔12hの開口に一致する周方向部分に配置される。なお、図8においては、連通孔12hに対する爪部27の配置をわかりやすくするため、ステータ23の図示を省略している。本実施形態では、3個の連通孔12hと、3個の爪部27とが、軸方向から見て重なる位置に配置される。本実施形態によれば、モータケース12の成形時において、軸方向一方側へ向けて図示しない金型(異形型)を爪部27の位置まで延ばすことにより、仕切り壁部12dに連通孔12hを成形しつつ、周壁部12aに爪部27を成形でき、製造が容易になる。本実施形態とは異なり、例えば、連通孔12hを利用せずに爪部27を成形する場合、以下に説明するように製造工程が複雑になる。すなわち、周壁部12aを成形する金型の爪部27の部分にあらかじめスリットを設け、スリットに特殊な異形型を挿入し、樹脂を充填して硬化した後、異形型を径方向に抜いてから、周壁部12aを成形する金型を軸方向に抜く必要が生じる。一方、本実施形態によれば、金型を軸方向に抜くのみでよく、製造工程を簡素化できる。
As shown in FIG. 8, the communication hole 12 h and the claw portion 27 are disposed at an overlapping position as viewed from the axial direction. That is, the plurality of communication holes 12 h and the plurality of claws 27 are disposed at positions where they overlap with each other as viewed in the axial direction. For this reason, two to three claws 27 are also provided at intervals in the circumferential direction. The claws 27 are arranged in the circumferential direction corresponding to the opening of the communication hole 12 h when viewed from the axial direction. In FIG. 8, the stator 23 is not shown in order to make it easy to understand the arrangement of the claws 27 with respect to the communication holes 12 h. In the present embodiment, the three communication holes 12 h and the three claws 27 are disposed at the position where they overlap with each other as viewed in the axial direction. According to the present embodiment, at the time of molding of the motor case 12, the communication hole 12 h is formed in the partition wall portion 12 d by extending a mold (not shown) toward the one side in the axial direction to the position of the claw portion 27. While forming, the claws 27 can be formed on the peripheral wall 12a, which facilitates manufacture. Unlike the present embodiment, for example, in the case where the claws 27 are formed without using the communication holes 12 h, the manufacturing process becomes complicated as described below. That is, a slit is provided in advance in the portion of the claw portion 27 of the mold for molding the peripheral wall portion 12a, a special deformed shape is inserted into the slit, resin is filled and cured, and then the deformed shape is pulled out in the radial direction The mold for forming the peripheral wall portion 12a needs to be removed in the axial direction. On the other hand, according to the present embodiment, it is only necessary to pull out the mold in the axial direction, and the manufacturing process can be simplified.
図2に示すように、ベアリング保持部12eは、筒状である。ベアリング保持部12eは、第1中心軸J1を中心として軸方向に延びる。ベアリング保持部12eは、仕切り壁部12dの径方向内縁部に設けられる。ベアリング保持部12eの内周面には、第3ベアリング55が固定される。ベアリング保持部12eは、第3ベアリング55を保持する。
As shown in FIG. 2, the bearing holding part 12e is cylindrical. The bearing holding portion 12e extends in the axial direction centering on the first central axis J1. The bearing holding portion 12e is provided on the radially inner edge portion of the partition wall portion 12d. The third bearing 55 is fixed to the inner circumferential surface of the bearing holding portion 12e. The bearing holder 12 e holds the third bearing 55.
図1に示すように、コネクタ部12cは、周壁部12aの外周面から径方向外側に突出する。コネクタ部12cは、径方向に延びる筒状である。コネクタ部12cは、径方向外側に開口する。本実施形態の例では、コネクタ部12cが、長円筒状である。コネクタ部12cの開口部の形状は、周方向の長さが軸方向の長さよりも長い長円形である。図2に示すように、コネクタ部12cは、仕切り壁部12dと径方向に重なる位置に配置される。コネクタ部12cは、後述するバスバー80を保持する。コネクタ部12cは、ケース11外の電気的配線との接続が行われる部分である。コネクタ部12cには、外部電源(図示省略)が接続される。
As shown in FIG. 1, the connector portion 12c protrudes radially outward from the outer peripheral surface of the peripheral wall portion 12a. The connector portion 12c has a tubular shape extending in the radial direction. The connector portion 12c opens radially outward. In the example of the present embodiment, the connector portion 12c has an elongated cylindrical shape. The shape of the opening of the connector portion 12c is an oval having a circumferential length longer than an axial length. As shown in FIG. 2, the connector portion 12 c is disposed at a position overlapping the partition wall portion 12 d in the radial direction. The connector portion 12c holds a bus bar 80 described later. The connector portion 12c is a portion where connection with the electrical wiring outside the case 11 is performed. An external power supply (not shown) is connected to the connector portion 12c.
図2および図3に示すように、第1配線保持部14は、周壁部12aから径方向外側に突出する。図2に示すように、第1配線保持部14は、軸方向に延びる。第1配線保持部14は、軸方向一方側に開口する。第1配線保持部14の軸方向他方側の端部の軸方向位置は、仕切り壁部12dの軸方向位置と同じである。第1配線保持部14の周方向位置は、コネクタ部12cの周方向位置と異なる。
As shown in FIGS. 2 and 3, the first wiring holding portion 14 protrudes radially outward from the peripheral wall portion 12 a. As shown in FIG. 2, the first wiring holding portion 14 extends in the axial direction. The first wiring holding portion 14 opens in one side in the axial direction. The axial position of the other axial end of the first wiring holding portion 14 is the same as the axial position of the partition wall 12 d. The circumferential position of the first wiring holding portion 14 is different from the circumferential position of the connector portion 12c.
減速機構ケース13には、後述する減速機構30の外歯ギア31および内歯ギア33、並びに、出力部40、回転検出装置60、第2配線部材92、第1ベアリング51、第2ベアリング54および第4ベアリング56が収容される。図1および図2に示すように、減速機構ケース13は、底壁部13aと、支持筒部13dと、取付け壁部13hと、突出筒部13cと、カバー筒部13bと、第2配線保持部15と、脚部13mと、を有する。
The reduction gear case 13 includes an external gear 31 and an internal gear 33 of the reduction gear 30, which will be described later, an output portion 40, a rotation detector 60, a second wiring member 92, a first bearing 51, a second bearing 54 and The fourth bearing 56 is accommodated. As shown in FIGS. 1 and 2, the reduction mechanism case 13 includes a bottom wall portion 13a, a support cylindrical portion 13d, an attachment wall portion 13h, a protruding cylindrical portion 13c, a cover cylindrical portion 13b, and a second wiring holding member. It has the part 15 and 13 m of legs.
図2に示すように、底壁部13aは、第1中心軸J1を中心とする円環板状である。底壁部13aは、外歯ギア31を軸方向一方側から覆う。底壁部13aの軸方向他方側を向く面は、外歯ギア31と軸方向に対向する。支持筒部13dは、底壁部13aの軸方向他方側を向く面から軸方向他方側に突出する筒状である。支持筒部13dは、円筒状である。支持筒部13dは、底壁部13aの径方向内縁部から軸方向他方側へ延びる。支持筒部13dは、軸方向他方側に開口する。支持筒部13dの軸方向他方側を向く端面13iは、第1中心軸J1に垂直に広がる平面状である。端面13iは、円環状の平面である。端面13iの軸方向位置は、後述するカバー筒部13bの軸方向他方端の軸方向位置よりも、軸方向一方側に配置される。
As shown in FIG. 2, the bottom wall portion 13 a has an annular plate shape centered on the first central axis J <b> 1. The bottom wall 13a covers the external gear 31 from one side in the axial direction. The surface of the bottom wall portion 13 a facing the other side in the axial direction axially faces the external gear 31. The support cylindrical portion 13 d has a cylindrical shape that protrudes from the surface facing the other side in the axial direction of the bottom wall portion 13 a to the other side in the axial direction. The support cylinder portion 13d is cylindrical. The support cylindrical portion 13d extends from the radial inner edge of the bottom wall portion 13a to the other side in the axial direction. The support cylindrical portion 13d is open to the other side in the axial direction. An end surface 13i facing the other side in the axial direction of the support cylindrical portion 13d is a planar shape that extends perpendicularly to the first central axis J1. The end face 13i is an annular flat surface. The axial position of the end face 13i is disposed on one side in the axial direction relative to the axial position of the other axial end of the cover cylindrical portion 13b described later.
取付け壁部13hは、底壁部13aの軸方向他方側を向く面から軸方向他方側に突出する。取付け壁部13hは、支持筒部13dの外周面から径方向外側に延びる。取付け壁部13hは、支持筒部13dから後述する第2配線保持部15内へ向けて延びる。取付け壁部13hの径方向内縁部は、支持筒部13dの外周面に接続する。取付け壁部13hの径方向外縁部は、第2配線保持部15内に配置される。取付け壁部13hの径方向外縁部の径方向位置は、後述するカバー筒部13bの内周面の径方向位置よりも、径方向外側に配置される。取付け壁部13hの軸方向他方側を向く面は、支持筒部13dの端面13iよりも軸方向一方側に位置する。図示しないが、底壁部13aの軸方向他方側を向く面において取付け壁部13hは、周方向に互いに間隔をあけて複数設けられる。本実施形態の例では、取付け壁部13hが2個で一組とされ、一組の取付け壁部13h同士が、一定の間隔をあけて互いに平行に延びる。取付け壁部13hは、支持筒部13dから径方向外側に延びる例えば2本のリブである。取付け壁部13hは、後述する第1回転センサ62を周方向に挟んで固定する。
The mounting wall 13 h protrudes from the surface facing the other side in the axial direction of the bottom wall 13 a to the other side in the axial direction. The mounting wall 13 h extends radially outward from the outer peripheral surface of the support cylinder 13 d. The mounting wall portion 13 h extends from the support cylindrical portion 13 d into the second wiring holding portion 15 described later. The radially inner edge portion of the mounting wall portion 13 h is connected to the outer peripheral surface of the support cylindrical portion 13 d. The radially outer edge portion of the mounting wall portion 13 h is disposed in the second wiring holding portion 15. The radial direction position of the radial direction outer edge portion of the mounting wall portion 13 h is disposed radially outward of the radial direction position of the inner peripheral surface of the cover cylindrical portion 13 b described later. The surface of the mounting wall 13 h facing the other side in the axial direction is located on one side in the axial direction with respect to the end face 13 i of the support cylinder 13 d. Although not shown, a plurality of mounting wall portions 13h are provided in the circumferential direction at intervals in a surface facing the other side in the axial direction of the bottom wall portion 13a. In the example of the present embodiment, two mounting wall portions 13 h form one set, and one set of mounting wall portions 13 h extend in parallel with each other at a constant interval. The mounting wall portion 13 h is, for example, two ribs extending radially outward from the support cylindrical portion 13 d. The mounting wall 13 h sandwiches and fixes a first rotation sensor 62 described later in the circumferential direction.
突出筒部13cは、底壁部13aの径方向内縁部から軸方向一方側に突出する筒状である。突出筒部13c内には、出力シャフト部41が配置される。カバー筒部13bは、底壁部13aの径方向外縁部から軸方向他方側に突出する筒状である。カバー筒部13bは、円筒状である。カバー筒部13bは、軸方向他方側に開口する。カバー筒部13bは、第1中心軸J1に沿って第1中心軸J1の周囲を覆う。カバー筒部13bの軸方向他方側の端部は、周壁部12aの軸方向一方側の端部に接触して固定される。
The protruding cylindrical portion 13c has a cylindrical shape that protrudes in one axial direction from the radial inner edge portion of the bottom wall portion 13a. The output shaft portion 41 is disposed in the projecting cylindrical portion 13c. The cover cylinder portion 13b has a cylindrical shape that protrudes from the radial outer edge portion of the bottom wall portion 13a to the other side in the axial direction. The cover cylinder 13b is cylindrical. The cover cylinder portion 13b is open to the other side in the axial direction. The cover cylinder 13b covers the periphery of the first central axis J1 along the first central axis J1. The end of the cover cylinder 13b on the other side in the axial direction is fixed in contact with the end on one side of the peripheral wall 12a in the axial direction.
図2および図3に示すように、第2配線保持部15は、カバー筒部13bから径方向外側に突出する。図2に示すように、第2配線保持部15は、軸方向他方側に開口する箱状である。第2配線保持部15の内部は、カバー筒部13bの内部と通じる。第2配線保持部15の軸方向一方側の端部の軸方向位置は、底壁部13aの軸方向位置と同じである。第2配線保持部15は、第1配線保持部14と軸方向に対向する。第2配線保持部15の内部は、第1配線保持部14の内部と通じる。
As shown in FIGS. 2 and 3, the second wiring holding portion 15 protrudes radially outward from the cover cylindrical portion 13 b. As shown in FIG. 2, the second wiring holding portion 15 is in the form of a box that opens to the other side in the axial direction. The inside of the second wiring holding portion 15 communicates with the inside of the cover cylindrical portion 13b. The axial position of the end portion on one axial side of the second wiring holding portion 15 is the same as the axial position of the bottom wall portion 13a. The second wiring holding portion 15 axially faces the first wiring holding portion 14. The inside of the second wiring holding portion 15 communicates with the inside of the first wiring holding portion 14.
図1および図3に示すように、脚部13mは、カバー筒部13bから径方向外側に突出する。カバー筒部13bの外周面において脚部13mは、周方向に互いに間隔をあけて複数設けられる。本実施形態の例では、3個の脚部13mが、周方向に互いに不等間隔をあけて配置される。また、3個の脚部13mのカバー筒部13bからの突出長さが、互いに異なる。脚部13mを用いて、電動アクチュエータ10を例えば車両等の対象物に装着することができる。
As shown in FIGS. 1 and 3, the leg 13m protrudes radially outward from the cover cylinder 13b. A plurality of leg portions 13m are provided in the circumferential direction on the outer peripheral surface of the cover cylindrical portion 13b at intervals. In the example of the present embodiment, the three legs 13m are arranged at unequal intervals in the circumferential direction. Moreover, the protrusion length from the cover cylinder part 13b of three leg parts 13m mutually differs. The electric actuator 10 can be attached to an object such as a vehicle by using the leg 13m.
図2に示すように、ロータ22は、モータシャフト21と、ロータコアと、ロータマグネットと、バランスウェイト24と、を有する。モータシャフト21は、第1ベアリング51および第3ベアリング55によって、第1中心軸J1回りに回転可能に支持される。第1ベアリング51は、モータシャフト21の軸方向一方側の端部に嵌め合わされる。第3ベアリング55は、モータシャフト21の軸方向他方側の部分に嵌め合わされる。モータシャフト21と減速機構30とは、第4ベアリング56を介して、第2中心軸J2回りに相互に回転可能に連結される。第4ベアリング56は、軸方向に沿う第1ベアリング51と第3ベアリング55との間に配置されて、モータシャフト21に嵌め合わされる。第1ベアリング51、第3ベアリング55および第4ベアリング56は、例えば、ボール軸受である。モータシャフト21の軸方向他方側の端部は、ベアリング保持部12e内から軸方向他方側に突出する。モータシャフト21の軸方向他方側の端部は、仕切り壁部12dよりも軸方向他方側に突出する。
As shown in FIG. 2, the rotor 22 has a motor shaft 21, a rotor core, a rotor magnet, and a balance weight 24. The motor shaft 21 is rotatably supported by the first bearing 51 and the third bearing 55 about the first central axis J1. The first bearing 51 is fitted to one axial end of the motor shaft 21. The third bearing 55 is fitted to a portion on the other side in the axial direction of the motor shaft 21. The motor shaft 21 and the reduction gear mechanism 30 are rotatably connected to each other around the second central axis J2 via the fourth bearing 56. The fourth bearing 56 is disposed between the first bearing 51 and the third bearing 55 along the axial direction, and fitted to the motor shaft 21. The first bearing 51, the third bearing 55, and the fourth bearing 56 are, for example, ball bearings. The other axial end of the motor shaft 21 projects from the inside of the bearing holding portion 12 e to the other axial side. The end of the motor shaft 21 on the other side in the axial direction protrudes on the other side in the axial direction with respect to the partition wall 12 d.
モータシャフト21は、ロータコア固定軸部21aと、偏芯軸部21bと、ウェイト取付軸部21cと、大径部21dと、を有する。ロータコア固定軸部21aは、第1中心軸J1を中心として軸方向に延びる。ロータコア固定軸部21aの外周面には、ロータコアが固定される。ロータコア固定軸部21aにおいてロータコアよりも軸方向他方側に位置する部分には、第3ベアリング55が嵌め合わされる。
The motor shaft 21 has a rotor core fixed shaft 21a, an eccentric shaft 21b, a weight mounting shaft 21c, and a large diameter portion 21d. The rotor core fixed shaft portion 21a extends in the axial direction centering on the first central axis J1. The rotor core is fixed to the outer peripheral surface of the rotor core fixing shaft portion 21a. The third bearing 55 is fitted to a portion of the rotor core fixed shaft portion 21 a located on the other side in the axial direction with respect to the rotor core.
偏芯軸部21bは、ロータコア固定軸部21aよりも軸方向一方側に位置する。偏芯軸部21bは、モータシャフト21の軸方向一方側の端部に、軸方向他方側から接続する。偏芯軸部21bは、第1中心軸J1に対して偏芯する。偏芯軸部21bは、第1中心軸J1に対して偏芯した第2中心軸J2を中心として延びる。第2中心軸J2は、第1中心軸J1と平行である。よって偏芯軸部21bは、軸方向に延びる。偏芯軸部21bは、第4ベアリング56内に嵌め合わされる。偏芯軸部21bは、第4ベアリング56を介して、減速機構30の外歯ギア31を支持する。
The eccentric shaft 21b is positioned on one side in the axial direction with respect to the rotor core fixing shaft 21a. The eccentric shaft 21 b is connected to an end of the motor shaft 21 on one side in the axial direction from the other side in the axial direction. The eccentric shaft 21b is eccentric to the first central axis J1. The eccentric shaft portion 21b extends around the second central axis J2 which is eccentric to the first central axis J1. The second central axis J2 is parallel to the first central axis J1. Thus, the eccentric shaft 21b extends in the axial direction. The eccentric shaft 21 b is fitted in the fourth bearing 56. The eccentric shaft 21 b supports the external gear 31 of the speed reduction mechanism 30 via the fourth bearing 56.
ウェイト取付軸部21cは、軸方向に沿うロータコア固定軸部21aと偏芯軸部21bとの間に配置される。ウェイト取付軸部21cは、偏芯軸部21bに軸方向他方側から接続する。ウェイト取付軸部21cは、偏芯軸部21bよりも大きい径を有する。ウェイト取付軸部21cは、第4ベアリング56の軸方向他方側に配置されて、第4ベアリング56の内輪と軸方向に対向する。
The weight mounting shaft 21c is disposed between the rotor core fixing shaft 21a and the eccentric shaft 21b in the axial direction. The weight mounting shaft 21c is connected to the eccentric shaft 21b from the other side in the axial direction. The weight mounting shaft 21c has a diameter larger than that of the eccentric shaft 21b. The weight mounting shaft portion 21 c is disposed on the other side in the axial direction of the fourth bearing 56 and axially faces the inner ring of the fourth bearing 56.
大径部21dは、ウェイト取付軸部21cの軸方向他方側に配置される。大径部21dは、ウェイト取付軸部21cに軸方向他方側から接続する。大径部21dは、ロータコア固定軸部21aの軸方向一方側に配置される。大径部21dは、ロータコア固定軸部21aに軸方向一方側から接続する。大径部21dは、ウェイト取付軸部21cよりも大きい径を有する。本実施形態の例では、大径部21dが、モータシャフト21において最も大径の部分である。
The large diameter portion 21 d is disposed on the other side in the axial direction of the weight attaching shaft portion 21 c. The large diameter portion 21 d is connected to the weight mounting shaft portion 21 c from the other side in the axial direction. The large diameter portion 21 d is disposed on one side in the axial direction of the rotor core fixed shaft portion 21 a. The large diameter portion 21 d is connected to the rotor core fixed shaft portion 21 a from one side in the axial direction. The large diameter portion 21 d has a diameter larger than that of the weight attaching shaft portion 21 c. In the example of the present embodiment, the large diameter portion 21 d is the portion of the motor shaft 21 having the largest diameter.
ロータコアは、筒状であり、ロータコア固定軸部21aの外周面に固定される。ロータマグネットは、ロータコアの外周面に固定される。図2および図3に示すように、バランスウェイト24は、ウェイト取付軸部21cに取り付けられる。バランスウェイト24は、第1中心軸J1に対して偏芯する重心軸を有する。バランスウェイト24の重心軸は、偏芯軸部21bの重心軸(第2中心軸J2)と周方向に180度間隔をあけて配置される。図2に示すように、バランスウェイト24は、大径部21dの軸方向一方側を向く面に接触する。
The rotor core is cylindrical, and is fixed to the outer peripheral surface of the rotor core fixing shaft portion 21a. The rotor magnet is fixed to the outer peripheral surface of the rotor core. As shown in FIGS. 2 and 3, the balance weight 24 is attached to the weight attachment shaft 21c. The balance weight 24 has a center of gravity axis which is eccentric to the first central axis J1. The center of gravity axis of the balance weight 24 is disposed at an interval of 180 degrees in the circumferential direction from the center of gravity axis (second central axis J2) of the eccentric shaft 21b. As shown in FIG. 2, the balance weight 24 is in contact with the surface of the large diameter portion 21 d facing one side in the axial direction.
ステータ23は、ロータ22と径方向に隙間をあけて対向する。ステータ23は、ロータ22の径方向外側を囲む環状のステータコアと、ステータコアに装着される複数のコイル23cと、を有する。図4および図5に示すように、ステータコアは、バックヨーク23aと、ティース23bと、を有する。バックヨーク23aは、周方向に延びる環状である。ティース23bは、バックヨーク23aから径方向内側へ向けて延び、周方向に互いに間隔をあけて複数配置される。つまりステータ23は、バックヨーク23aと、複数のティース23bと、を有する。
The stator 23 opposes the rotor 22 with a gap in the radial direction. The stator 23 has an annular stator core surrounding the radially outer side of the rotor 22, and a plurality of coils 23c attached to the stator core. As shown in FIGS. 4 and 5, the stator core has a back yoke 23a and teeth 23b. The back yoke 23a is an annular shape extending in the circumferential direction. The teeth 23b extend radially inward from the back yoke 23a, and are arranged in plural numbers at intervals in the circumferential direction. That is, the stator 23 has a back yoke 23a and a plurality of teeth 23b.
図7に示すように、ステータ23の外周面には、径方向内側に向けて窪み軸方向に延びる溝部25が設けられる。本実施形態の例では、ステータ23の外周面のうち、軸方向の両端部間に位置する中間部分が、軸方向の両端部よりも径方向外側に突出する。溝部25は、ステータ23の外周面における軸方向の中間部分に配置される。図4に示すように、溝部25には、周壁部12aの突起部26が挿入される。図5および図6に示すように、周壁部12aの爪部27が、ステータ23に対して軸方向一方側から接触する。本実施形態では、モータ20および電動アクチュエータ10の製造時において、樹脂インサート成形を用いない。モータケース12とステータ23とを別々に作製し、突起部26と溝部25とを軸方向に対向させた状態で、モータケース12の周壁部12a内に、ステータ23を軸方向他方側へ向けて挿入する。この際、突起部26が溝部25内に挿入され、周壁部12aに対してステータ23が軸方向の所定位置まで挿入されることにより、爪部27がステータ23に対して軸方向一方側から接触する。これによりステータ23は、モータケース12に固定される。
As shown in FIG. 7, the outer peripheral surface of the stator 23 is provided with a groove 25 extending radially inward and extending in the axial direction. In the example of the present embodiment, an intermediate portion of the outer circumferential surface of the stator 23 located between both axial ends projects radially outward from the axial opposite ends. The groove 25 is disposed at an axial intermediate portion of the outer peripheral surface of the stator 23. As shown in FIG. 4, the protrusion 26 of the peripheral wall 12 a is inserted into the groove 25. As shown in FIGS. 5 and 6, the claws 27 of the peripheral wall 12 a contact the stator 23 from one side in the axial direction. In the present embodiment, resin insert molding is not used at the time of manufacturing the motor 20 and the electric actuator 10. In a state where the motor case 12 and the stator 23 are separately manufactured and the protrusion 26 and the groove 25 are axially opposed, the stator 23 is directed to the other side in the axial direction in the peripheral wall 12a of the motor case 12 insert. At this time, the projection 26 is inserted into the groove 25 and the stator 23 is inserted to a predetermined position in the axial direction with respect to the peripheral wall 12 a, whereby the claw 27 contacts the stator 23 from one side in the axial direction. Do. The stator 23 is thereby fixed to the motor case 12.
本実施形態によれば、突起部26が溝部25に挿入されるので、モータケース12とステータ23とが周方向に相対移動することを抑制できる。爪部27がステータ23に接触するので、モータケース12からステータ23が軸方向一方側へ抜け出さない。このためインサート成形を用いることなく、樹脂製のモータケース12にステータ23を固定できる。したがって製造が容易であり、製造コストが削減される。
According to the present embodiment, since the protrusion 26 is inserted into the groove 25, relative movement of the motor case 12 and the stator 23 in the circumferential direction can be suppressed. Since the claws 27 contact the stator 23, the stator 23 does not come out of the motor case 12 in the axial direction. Therefore, the stator 23 can be fixed to the resin motor case 12 without using insert molding. Therefore, the manufacturing is easy and the manufacturing cost is reduced.
本実施形態では、突起部26が、周壁部12aの内周面において軸方向に延びるリブである。このため、溝部25に対して突起部26が軸方向の広い範囲で接触して、回り止め機能が安定する。図4、図5および図7に示すように、溝部25は、ステータ23の外周面において周方向に互いに等間隔をあけて複数設けられる。突起部26は、周壁部12aの内周面において周方向に互いに等間隔をあけて複数設けられる。本実施形態では、溝部25が複数設けられるので、回り止め機能がより安定する。また製造時において、ステータ23とモータケース12との組み立ての位置合わせが周方向の1箇所に限定されない構成にできるため、製造が容易である。突起部26が複数設けられるので、回り止め機能がより安定する。
In the present embodiment, the protrusion 26 is a rib extending in the axial direction on the inner peripheral surface of the peripheral wall 12a. Therefore, the projection 26 contacts the groove 25 in a wide range in the axial direction, and the anti-rotation function is stabilized. As shown in FIGS. 4, 5 and 7, a plurality of groove portions 25 are provided at equal intervals in the circumferential direction on the outer peripheral surface of stator 23. A plurality of protrusions 26 are provided at equal intervals in the circumferential direction on the inner peripheral surface of the peripheral wall 12a. In the present embodiment, since a plurality of groove portions 25 are provided, the anti-rotation function is more stable. Further, at the time of manufacture, since the alignment of the assembly of the stator 23 and the motor case 12 can be configured not to be limited to one place in the circumferential direction, the manufacture is easy. Since a plurality of projections 26 are provided, the anti-rotation function is more stable.
突起部26の数は、溝部25の数と同一または溝部25の数よりも少ない。つまり突起部26の数は、溝部25の数に比べて同等以下である。突起部26の数が溝部25の数よりも少ない場合には、突起部26の数が溝部25の数の約数であり、かつ周方向等間隔に配置されることが好ましい。
The number of protrusions 26 is the same as the number of grooves 25 or less than the number of grooves 25. That is, the number of protrusions 26 is equal to or less than the number of grooves 25. When the number of protrusions 26 is smaller than the number of grooves 25, it is preferable that the number of protrusions 26 is a divisor of the number of grooves 25 and arranged at equal intervals in the circumferential direction.
溝部25は、径方向外側の端部から径方向内側に向かうにしたがい周方向の幅が大きくなる。溝部25の幅が径方向内側へ向かうにしたがい広くなるので、溝部25と突起部26との接触面積を小さくでき、モータケース12内にステータ23を挿入するときに溝部25と突起部26とが引っ掛かりにくい。また、溝部25の径方向外端において溝部25と突起部26とが接触するので、回り止め機能がより安定する。
The width of the groove 25 increases in the circumferential direction from the radially outer end toward the radially inner side. Since the width of the groove 25 becomes wider as it goes radially inward, the contact area between the groove 25 and the protrusion 26 can be reduced, and when the stator 23 is inserted into the motor case 12, the groove 25 and the protrusion 26 It is hard to get caught. In addition, since the groove 25 and the protrusion 26 are in contact with each other at the radially outer end of the groove 25, the anti-rotation function is more stabilized.
図6に示すように、ステータ23は、仕切り壁部12dと爪部27との間に軸方向から挟まれて固定される。このため、簡素な構造により、モータケース12に対してステータ23を軸方向に固定できる。図5に示すように、溝部25は、バックヨーク23aの外周面において、径方向から見てティース23bに重なる位置に配置される。
As shown in FIG. 6, the stator 23 is sandwiched and fixed in the axial direction between the partition wall 12 d and the claws 27. Therefore, the stator 23 can be axially fixed to the motor case 12 by a simple structure. As shown in FIG. 5, the groove 25 is disposed on the outer peripheral surface of the back yoke 23 a so as to overlap the teeth 23 b when viewed from the radial direction.
爪部27は、周壁部12aの内周面において周方向に互いに等間隔をあけて複数設けられる。このため、複数の爪部27がステータ23を周方向均等に押さえて、抜け止め機能が安定する。本実施形態では、爪部27が、周壁部12aの内周面において周方向に互いに120度間隔をあけて3個設けられる。この場合、3個の爪部27がステータ23を周方向均等に押さえて、抜け止め機能の安定性が確保され、構成のバランスがよく、かつ構造が簡素化される。
A plurality of claws 27 are provided at equal intervals in the circumferential direction on the inner peripheral surface of the peripheral wall 12a. Therefore, the plurality of claws 27 uniformly press the stator 23 in the circumferential direction, and the retaining function is stabilized. In the present embodiment, three claws 27 are provided at intervals of 120 degrees in the circumferential direction on the inner peripheral surface of the peripheral wall 12a. In this case, the three claws 27 uniformly press the stator 23 in the circumferential direction, the stability of the retaining function is ensured, the balance of the configuration is good, and the structure is simplified.
図6に示すように、爪部27は、支持面27aと、ガイド面27bと、を有する。支持面27aは、ステータ23に対して軸方向一方側から接触する。支持面27aは、軸方向に垂直な平面状である。ガイド面27bは、支持面27aの径方向内端から軸方向一方側へ向かうにしたがい径方向外側へ向けて延びる。ガイド面27bは、軸方向に対して傾斜する傾斜面状である。本実施形態によれば、ガイド面27bが傾斜しているので、製造時において周壁部12a内にステータ23を挿入しやすい。また支持面27aが軸方向に垂直な平面状であるので、爪部27によるステータ23の抜け止め機能が安定する。
As shown in FIG. 6, the claw portion 27 has a support surface 27a and a guide surface 27b. The support surface 27 a contacts the stator 23 from one side in the axial direction. The support surface 27a has a planar shape perpendicular to the axial direction. The guide surface 27b extends radially outward from the radially inner end of the support surface 27a toward one axial side. The guide surface 27b is in the form of an inclined surface which is inclined with respect to the axial direction. According to the present embodiment, since the guide surface 27b is inclined, the stator 23 can be easily inserted into the peripheral wall 12a at the time of manufacture. Further, since the support surface 27a is planar in a direction perpendicular to the axial direction, the retaining function of the stator 23 by the claws 27 is stabilized.
爪部27は、ステータ23の軸方向一方端よりも軸方向他方側においてステータ23に接触する。本実施形態の例では、ステータ23の外周面のうち、軸方向の両端部間に位置する中間部分が、軸方向の両端部よりも径方向外側に突出する。ステータ23の外周面の中間部分における軸方向一方側を向く面に対して、爪部27が軸方向一方側から接触する。これにより、爪部27の軸方向位置が、ステータ23の軸方向位置に重なる。つまり、ステータ23の軸方向の長さ内に爪部27を配置することができ、周壁部12aに爪部27を設けたことによるモータ20の軸方向の外形の増大を抑制できる。
The claws 27 contact the stator 23 on the other side in the axial direction with respect to one axial end of the stator 23. In the example of the present embodiment, an intermediate portion of the outer circumferential surface of the stator 23 located between both axial ends projects radially outward from the axial opposite ends. The claws 27 contact from one side in the axial direction with respect to a surface of the intermediate portion of the outer peripheral surface of the stator 23 that faces in the axial direction. As a result, the axial position of the claws 27 overlaps the axial position of the stator 23. That is, the claws 27 can be disposed within the axial length of the stator 23, and an increase in the axial external shape of the motor 20 due to the provision of the claws 27 on the peripheral wall 12a can be suppressed.
図2に示すように、制御基板70は、板状である。制御基板70の板面は軸方向を向き、軸方向に垂直に広がる。制御基板70は、制御基板収容部12f内に収容される。制御基板70は、仕切り壁部12dの軸方向他方側に配置される。本実施形態の例では、制御基板70が、仕切り壁部12dから軸方向他方側に離れて配置される。制御基板70は、ステータ23と電気的に接続される。制御基板70には、ステータ23のコイル23cのコイル線が接続される。制御基板70には、例えば、インバータ回路が搭載される。
As shown in FIG. 2, the control substrate 70 has a plate shape. The plate surface of the control board 70 is directed in the axial direction and spreads perpendicularly to the axial direction. The control board 70 is accommodated in the control board accommodation portion 12 f. The control board 70 is disposed on the other side in the axial direction of the partition wall 12 d. In the example of the present embodiment, the control substrate 70 is disposed apart from the partition wall 12 d on the other side in the axial direction. Control board 70 is electrically connected to stator 23. A coil wire of the coil 23 c of the stator 23 is connected to the control board 70. For example, an inverter circuit is mounted on the control board 70.
バスバー80は、コネクタ部12cに保持される。バスバー80は、コネクタ部12cに埋め込まれる。バスバー80の両端部のうち、第1端部は、制御基板70に固定される。図1に示すように、バスバー80の両端部のうち、第2端部は、コネクタ部12cの径方向外側の開口部内に配置されて、ケース11の外部に露出する。バスバー80は、コネクタ部12cに接続される外部電源と電気的に接続される。バスバー80および制御基板70を通して、外部電源からステータ23のコイル23cに電源が供給される。
The bus bar 80 is held by the connector portion 12c. The bus bar 80 is embedded in the connector portion 12c. Among the both ends of the bus bar 80, the first end is fixed to the control board 70. As shown in FIG. 1, of the both ends of the bus bar 80, the second end is disposed in the radial outer opening of the connector portion 12 c and exposed to the outside of the case 11. The bus bar 80 is electrically connected to an external power supply connected to the connector portion 12c. Power is supplied to the coil 23 c of the stator 23 from an external power supply through the bus bar 80 and the control board 70.
回転検出部75は、ロータ22の回転を検出する。図2に示すように、回転検出部75は、制御基板収容部12f内に配置される。回転検出部75は、仕切り壁部12dと制御基板70との間のスペースに配置される。回転検出部75は、取付部材73と、第2マグネット74と、第2回転センサ71と、を有する。
The rotation detection unit 75 detects the rotation of the rotor 22. As shown in FIG. 2, the rotation detection unit 75 is disposed in the control substrate storage unit 12 f. The rotation detection unit 75 is disposed in the space between the partition wall 12 d and the control substrate 70. The rotation detection unit 75 includes an attachment member 73, a second magnet 74, and a second rotation sensor 71.
取付部材73は、例えば、非磁性体製である。なお取付部材73は、磁性体製であってもよい。取付部材73は、第1中心軸J1を中心とする円環状である。取付部材73の内周面は、モータシャフト21の外周面における軸方向他方側の端部に固定される。取付部材73は、第3ベアリング55およびベアリング保持部12eの軸方向他方側に配置される。取付部材73の径方向外縁部は、径方向外縁部の径方向内側に位置する部分よりも軸方向一方側に位置する。
The attachment member 73 is made of, for example, a nonmagnetic material. The mounting member 73 may be made of magnetic material. The mounting member 73 has an annular shape centered on the first central axis J1. The inner circumferential surface of the mounting member 73 is fixed to the other axial end of the outer circumferential surface of the motor shaft 21. The mounting member 73 is disposed on the other axial side of the third bearing 55 and the bearing holder 12e. The radially outer edge portion of the mounting member 73 is located on one side in the axial direction relative to the radially inner portion of the radially outer edge portion.
第2マグネット74は、周方向に延びる環状である。第2マグネット74は、第1中心軸J1を中心とする円環板状である。第2マグネット74の板面は軸方向を向き、軸方向に垂直に広がる。第2マグネット74は、周方向に沿って交互に配置されるN極とS極とを有する。第2マグネット74は、取付部材73に取り付けられる。第2マグネット74は、取付部材73の径方向外縁部において軸方向他方側を向く面に固定される。第2マグネット74は、例えば接着剤等により、取付部材73に固定される。第2マグネット74の軸方向他方側および径方向外側は、マグネットカバーによって覆われる。取付部材73および第2マグネット74は、モータシャフト21とともに第1中心軸J1回りに回転する。
The second magnet 74 is annular and extends in the circumferential direction. The second magnet 74 has an annular plate shape centered on the first central axis J1. The plate surface of the second magnet 74 is directed in the axial direction, and spreads perpendicularly to the axial direction. The second magnet 74 has N poles and S poles alternately arranged along the circumferential direction. The second magnet 74 is attached to the attachment member 73. The second magnet 74 is fixed to a surface facing the other side in the axial direction at the radial outer edge portion of the mounting member 73. The second magnet 74 is fixed to the mounting member 73 by, for example, an adhesive. The other axial side and the radially outer side of the second magnet 74 are covered by a magnet cover. The mounting member 73 and the second magnet 74 rotate around the first central axis J1 together with the motor shaft 21.
第2回転センサ71は、第2マグネット74に隙間をあけて対向する。第2回転センサ71は、第2マグネット74と軸方向に対向する。第2回転センサ71は、第2マグネット74の軸方向他方側に位置する。第2回転センサ71は、第2マグネット74によって生じる磁界を検出する。第2回転センサ71は、例えばホール素子である。第2回転センサ71は、周方向に互いに等間隔をあけて複数設けられる。第2回転センサ71は、例えば、周方向に互いに120度間隔をあけて3個設けられる。第2マグネット74によって生じる磁界は、第2マグネット74がモータシャフト21とともに回転することにより変化する。この磁界の変化を第2回転センサ71が検出することにより、モータシャフト21の回転を検出できる。第2回転センサ71は、例えば、ケース11に対するモータシャフト21の周方向の回転角度位置を検出する。第2回転センサ71は、例えば、回転角度位置検出センサまたは回転角センサ等と言い換えてもよい。第2回転センサ71は、制御基板70の軸方向一方側を向く板面に実装される。第2回転センサ71、第2マグネット74、取付部材73の径方向外縁部およびベアリング保持部12eは、軸方向から見て互いに重なる位置に配置される。
The second rotation sensor 71 opposes the second magnet 74 with a gap. The second rotation sensor 71 axially faces the second magnet 74. The second rotation sensor 71 is located on the other side in the axial direction of the second magnet 74. The second rotation sensor 71 detects a magnetic field generated by the second magnet 74. The second rotation sensor 71 is, for example, a Hall element. A plurality of second rotation sensors 71 are provided at equal intervals in the circumferential direction. For example, three second rotation sensors 71 are provided at intervals of 120 degrees in the circumferential direction. The magnetic field generated by the second magnet 74 changes as the second magnet 74 rotates with the motor shaft 21. The rotation of the motor shaft 21 can be detected by the second rotation sensor 71 detecting a change in the magnetic field. The second rotation sensor 71 detects, for example, a rotational angle position of the motor shaft 21 in the circumferential direction with respect to the case 11. The second rotation sensor 71 may be rephrased as, for example, a rotation angle position detection sensor or a rotation angle sensor. The second rotation sensor 71 is mounted on a plate surface facing the axial direction one side of the control substrate 70. The second rotation sensor 71, the second magnet 74, the radial outer edge portion of the mounting member 73, and the bearing holding portion 12e are disposed at positions overlapping with each other as viewed from the axial direction.
減速機構30は、モータシャフト21の軸方向一方側の部分に連結される。減速機構30は、モータシャフト21の軸方向一方側の部分の径方向外側に配置される。減速機構30は、径方向から見て偏芯軸部21bに重なる位置に配置される。減速機構30は、軸方向に沿う底壁部13aとステータ23との間に配置される。
The reduction mechanism 30 is connected to a portion on one axial side of the motor shaft 21. The speed reduction mechanism 30 is disposed radially outward of a portion on one axial side of the motor shaft 21. The speed reduction mechanism 30 is disposed at a position overlapping with the eccentric shaft 21b when viewed from the radial direction. The speed reduction mechanism 30 is disposed between the bottom wall 13 a and the stator 23 in the axial direction.
図2および図3に示すように、減速機構30は、外歯ギア31と、内歯ギア33と、減速機構ケース13と、環状板部40cと、を有する。外歯ギア31は、第2中心軸J2を中心とする略円環板状である。外歯ギア31の板面は軸方向を向き、軸方向に垂直に広がる。外歯ギア31の外周面には、歯車部が設けられる。外歯ギア31は、偏芯軸部21bに第4ベアリング56を介して接続する。つまり減速機構30は、第4ベアリング56を介してモータシャフト21に連結される。第4ベアリング56は、外歯ギア31内に嵌め合わされる。第4ベアリング56は、モータシャフト21と外歯ギア31とを、第2中心軸J2回りに相互に回転可能に連結する。
As shown in FIGS. 2 and 3, the reduction gear mechanism 30 has an external gear 31, an internal gear 33, a reduction gear case 13, and an annular plate portion 40 c. The external gear 31 has a substantially annular plate shape centering on the second central axis J2. The plate surface of the external gear 31 faces in the axial direction and spreads perpendicularly to the axial direction. A gear portion is provided on the outer peripheral surface of the external gear 31. The external gear 31 is connected to the eccentric shaft 21 b via a fourth bearing 56. That is, the reduction mechanism 30 is coupled to the motor shaft 21 via the fourth bearing 56. The fourth bearing 56 is fitted in the external gear 31. The fourth bearing 56 connects the motor shaft 21 and the external gear 31 rotatably around the second central axis J2.
外歯ギア31は、複数のピン32を有する。ピン32は、外歯ギア31の軸方向一方側を向く面から軸方向一方側に突出する円柱状である。複数のピン32は、第2中心軸J2を中心とする周方向に沿って等間隔に配置される。本実施形態の例では、ピン32が8個設けられる。
The external gear 31 has a plurality of pins 32. The pin 32 has a cylindrical shape that protrudes from the surface facing the axial direction one side of the external gear 31 to the axial direction one side. The plurality of pins 32 are arranged at equal intervals along the circumferential direction around the second central axis J2. In the example of the present embodiment, eight pins 32 are provided.
内歯ギア33は、外歯ギア31の径方向外側を囲んで減速機構ケース13に固定される。内歯ギア33は、第1中心軸J1を中心とする円環状である。内歯ギア33は、カバー筒部13bの内周面の窪み部13n内に配置されて、カバー筒部13bに固定される。窪み部13nは、カバー筒部13bの内周面における軸方向他方側の端部に位置し、軸方向他方側および径方向内側に開口する。図示しないが、内歯ギア33の外周面は、軸方向から見て多角形状である。内歯ギア33の外周面は、周方向に並ぶ複数の平面部を有する。窪み部13nの内周面には、内歯ギア33の平面部に対して径方向外側から接触する凸部が設けられる。内歯ギア33の平面部と、窪み部13nの凸部とが接触することで、減速機構ケース13に対する内歯ギア33の回転が抑制される。本実施形態では、電動アクチュエータ10の製造時において、樹脂インサート成形を用いない。減速機構ケース13と内歯ギア33とを別々に作製し、減速機構ケース13と内歯ギア33とを組み立てにより固定する。内歯ギア33の軸方向一方側を向く面は、窪み部13nにおいて軸方向他方側を向く面に接触する。内歯ギア33の軸方向他方側を向く面は、周壁部12aの軸方向一方側を向く端面に接触する。
The internal gear 33 is fixed to the speed reduction mechanism case 13 so as to surround the radially outer side of the external gear 31. The internal gear 33 has an annular shape centered on the first central axis J1. The internal gear 33 is disposed in the recess 13 n of the inner peripheral surface of the cover cylinder 13 b and is fixed to the cover cylinder 13 b. The recess 13 n is located at the other axial end of the inner circumferential surface of the cover cylinder 13 b and opens in the other axial direction and radially inward. Although not shown, the outer peripheral surface of the internal gear 33 has a polygonal shape as viewed from the axial direction. The outer peripheral surface of the internal gear 33 has a plurality of flat portions aligned in the circumferential direction. On the inner peripheral surface of the recess 13 n, a convex that contacts the flat surface of the internal gear 33 from the radial direction outer side is provided. The rotation of the internal gear 33 with respect to the speed reduction mechanism case 13 is suppressed by the contact between the flat portion of the internal gear 33 and the convex portion of the recessed portion 13 n. In the present embodiment, resin insert molding is not used at the time of manufacturing the electric actuator 10. The reduction mechanism case 13 and the internal gear 33 are separately manufactured, and the reduction mechanism case 13 and the internal gear 33 are assembled and fixed. The surface facing the axial direction one side of the internal gear 33 is in contact with the surface facing the other axial direction in the recess 13 n. The surface of the internal gear 33 facing the other side in the axial direction is in contact with the end face of the peripheral wall 12 a facing the one side in the axial direction.
内歯ギア33は、外歯ギア31と噛み合う。内歯ギア33の内周面には、歯車部が設けられる。内歯ギア33の歯車部は、外歯ギア31の歯車部と噛み合う。内歯ギア33の歯車部は、周方向の一部(図2および図3の各左側部分)において外歯ギア31の歯車部と噛み合う。内歯ギア33の歯車部の歯数と、外歯ギア31の歯車部の歯数とは、互いに異なる。内歯ギア33の歯車部の歯数は、外歯ギア31の歯車部の歯数よりも多い。
The internal gear 33 meshes with the external gear 31. A gear portion is provided on the inner peripheral surface of the internal gear 33. The gear portion of the internal gear 33 meshes with the gear portion of the external gear 31. The gear portion of the internal gear 33 meshes with the gear portion of the external gear 31 in a part in the circumferential direction (the left portions in FIGS. 2 and 3). The number of teeth of the gear portion of the internal gear 33 and the number of teeth of the gear portion of the external gear 31 are different from each other. The number of teeth of the gear portion of the internal gear 33 is larger than the number of teeth of the gear portion of the external gear 31.
環状板部40cは、出力部40の一部である。環状板部40cは、減速機構30と出力部40とを連結する連結部である。図2に示すように、環状板部40cは、外歯ギア31の軸方向一方側に配置される。環状板部40cは、第1中心軸J1を中心とする円環板状である。環状板部40cのうち径方向外側の部分は、径方向内側の部分よりも軸方向他方側に位置する。環状板部40cの径方向外側の部分は、環状板部40cの径方向内側の部分よりも軸方向の厚さが厚い。環状板部40cは、環状板部40cを軸方向に貫通する複数の孔40dを有する。孔40dは、環状板部40cの径方向外側の部分に配置される。
The annular plate portion 40 c is a part of the output portion 40. The annular plate portion 40 c is a connecting portion that connects the speed reduction mechanism 30 and the output portion 40. As shown in FIG. 2, the annular plate portion 40 c is disposed on one side in the axial direction of the external gear 31. The annular plate portion 40c has an annular plate shape centered on the first central axis J1. The radially outer portion of the annular plate portion 40c is located on the other axial direction side of the radially inner portion. The radially outer portion of the annular plate portion 40c is thicker in the axial direction than the radially inner portion of the annular plate portion 40c. The annular plate portion 40c has a plurality of holes 40d axially penetrating the annular plate portion 40c. The holes 40d are disposed in the radially outer portion of the annular plate portion 40c.
図3に示すように、複数の孔40dは、第1中心軸J1を中心とする周方向に沿って等間隔に配置される。本実施形態の例では、孔40dが8個設けられる。孔40dの数は、ピン32の数と同じである。孔40dは、円孔状である。孔40dの内径は、ピン32の外径よりも大きい。複数の孔40dには、複数のピン32がそれぞれ挿入される。ピン32の外周面は、孔40dの内周面と内接する。つまりピン32の外周面と、孔40dの内周面とは、周面の一部において接触する。孔40dの内周面は、ピン32を介して、外歯ギア31を揺動可能に支持する。
As shown in FIG. 3, the plurality of holes 40d are arranged at equal intervals along the circumferential direction centering on the first central axis J1. In the example of the present embodiment, eight holes 40 d are provided. The number of holes 40d is the same as the number of pins 32. The holes 40d are circular holes. The inner diameter of the hole 40 d is larger than the outer diameter of the pin 32. The plurality of pins 32 are respectively inserted into the plurality of holes 40 d. The outer peripheral surface of the pin 32 is inscribed in the inner peripheral surface of the hole 40d. That is, the outer peripheral surface of the pin 32 contacts the inner peripheral surface of the hole 40d at a part of the peripheral surface. The inner circumferential surface of the hole 40 d pivotally supports the external gear 31 via the pin 32.
出力部40は、電動アクチュエータ10の駆動力を出力する部分である。図2に示すように、出力部40は、筒状壁部40bと、環状板部40cと、出力シャフト部41と、を有する。筒状壁部40bは、第1中心軸J1を中心として軸方向に延びる筒状である。筒状壁部40bは、環状板部40cの径方向内縁部から軸方向一方側に延びる円筒状である。筒状壁部40bは、軸方向他方側に開口する有底の円筒状である。筒状壁部40bの内周面における軸方向一方側の端部には、第1ベアリング51が嵌め合わされる。これにより第1ベアリング51は、モータシャフト21と出力部40とを相互に回転可能に連結する。第1ベアリング51は、モータシャフト21と出力部40とを、第1中心軸J1回りに相対的に回転可能に連結する。筒状壁部40bの内部には、モータシャフト21の軸方向一方側の端部が位置する。モータシャフト21の軸方向一方側を向く端面は、筒状壁部40bの底部の軸方向他方側を向く面に、隙間をあけて対向する。
The output unit 40 is a portion that outputs the driving force of the electric actuator 10. As shown in FIG. 2, the output unit 40 includes a cylindrical wall 40 b, an annular plate 40 c, and an output shaft 41. The cylindrical wall portion 40b has a cylindrical shape extending in the axial direction centering on the first central axis J1. The cylindrical wall portion 40b has a cylindrical shape extending in the axial direction from the radially inner edge portion of the annular plate portion 40c. The cylindrical wall portion 40 b has a bottomed cylindrical shape that opens to the other side in the axial direction. The first bearing 51 is fitted to the end portion on one side in the axial direction of the inner peripheral surface of the cylindrical wall portion 40 b. Thus, the first bearing 51 rotatably connects the motor shaft 21 and the output unit 40 to each other. The first bearing 51 couples the motor shaft 21 and the output unit 40 relatively rotatably around the first central axis J1. An end of the motor shaft 21 on one side in the axial direction is located inside the cylindrical wall portion 40 b. The end face of the motor shaft 21 facing in the axial direction is opposite to the surface of the bottom of the cylindrical wall 40 b facing the other in the axial direction with a gap.
筒状壁部40bは、支持筒部13d内に配置される。筒状壁部40bと支持筒部13dとの間には、第2ベアリング54が配置される。支持筒部13dには、第2ベアリング54が嵌合される。つまり支持筒部13d内に、第2ベアリング54が嵌め合わされる。第2ベアリング54内には、筒状壁部40bが嵌め合わされる。第2ベアリング54は、筒状壁部40bの外周面と、支持筒部13dの内周面との間に挟まれる。第2ベアリング54は、ケース11に対して出力部40を回転可能に支持する。
The cylindrical wall portion 40b is disposed in the support cylindrical portion 13d. A second bearing 54 is disposed between the cylindrical wall portion 40b and the support cylindrical portion 13d. The second bearing 54 is fitted to the support cylindrical portion 13 d. That is, the second bearing 54 is fitted in the support cylindrical portion 13d. The cylindrical wall portion 40 b is fitted in the second bearing 54. The second bearing 54 is sandwiched between the outer peripheral surface of the cylindrical wall portion 40b and the inner peripheral surface of the support cylindrical portion 13d. The second bearing 54 rotatably supports the output unit 40 with respect to the case 11.
筒状壁部40bは、第1ベアリング51と第2ベアリング54との間に径方向から挟まれる。径方向に沿う支持筒部13dと第1ベアリング51との間に、第2ベアリング54および筒状壁部40bが挟まれる。第1ベアリング51、筒状壁部40b、第2ベアリング54および支持筒部13dは、径方向に重なる位置に配置される。つまり、第1ベアリング51、出力部40、第2ベアリング54および支持筒部13dは、径方向から見て互いに重なる位置に配置される。
The cylindrical wall portion 40 b is interposed between the first bearing 51 and the second bearing 54 in the radial direction. The second bearing 54 and the cylindrical wall portion 40 b are sandwiched between the support cylindrical portion 13 d and the first bearing 51 along the radial direction. The first bearing 51, the cylindrical wall portion 40b, the second bearing 54, and the support cylindrical portion 13d are disposed at positions overlapping in the radial direction. That is, the first bearing 51, the output portion 40, the second bearing 54, and the support cylindrical portion 13d are disposed at mutually overlapping positions as viewed in the radial direction.
第2ベアリング54は、軸方向に延びる筒状である。第2ベアリング54は、例えば、滑り軸受である。第2ベアリング54は、ベアリング筒部54aと、ベアリングフランジ部54bと、を有する。ベアリング筒部54aは、第1中心軸J1を中心として軸方向に延びる円筒状である。ベアリング筒部54aは、筒状壁部40bと支持筒部13dとの間に径方向から挟まれる。
The second bearing 54 has a tubular shape extending in the axial direction. The second bearing 54 is, for example, a sliding bearing. The second bearing 54 has a bearing cylinder 54 a and a bearing flange 54 b. The bearing cylindrical portion 54a has a cylindrical shape extending in the axial direction centering on the first central axis J1. The bearing cylindrical portion 54a is sandwiched between the cylindrical wall portion 40b and the support cylindrical portion 13d in the radial direction.
ベアリングフランジ部54bは、第1中心軸J1を中心とする円環板状である。ベアリングフランジ部54bは、ベアリング筒部54aの軸方向他方側の端部から径方向外側に広がる。ベアリングフランジ部54bの板面は軸方向を向き、軸方向に垂直に広がる。ベアリングフランジ部54bは、支持筒部13dの軸方向他方側を向く端面13iと、環状板部40cとの間に軸方向から挟まれる。ベアリングフランジ部54bの軸方向一方側を向く面は、支持筒部13dの端面13iに接触する。ベアリングフランジ部54bの軸方向他方側を向く面は、環状板部40cの径方向内側の部分の軸方向一方側を向く面に接触する。第2ベアリング54は、ケース11に対して径方向および軸方向に移動することが抑制される。
The bearing flange portion 54b is in the form of an annular plate centered on the first central axis J1. The bearing flange portion 54 b extends radially outward from the other axial end of the bearing cylindrical portion 54 a. The plate surface of the bearing flange portion 54b faces in the axial direction and extends perpendicularly to the axial direction. The bearing flange portion 54b is sandwiched in the axial direction between an end face 13i facing the other side in the axial direction of the support cylindrical portion 13d and the annular plate portion 40c. The surface of the bearing flange portion 54b facing in the axial direction contacts the end surface 13i of the support cylindrical portion 13d. The surface of the bearing flange portion 54b facing the other axial side contacts the surface of the radially inner portion of the annular plate portion 40c facing the one axial direction. The second bearing 54 is restrained from moving in the radial and axial directions with respect to the case 11.
環状板部40cは、筒状壁部40bの軸方向他方側の端部から径方向外側に広がる。出力シャフト部41は、軸方向に延び、モータシャフト21の軸方向一方側に配置される。出力シャフト部41は、第1中心軸J1を中心とする円柱状である。出力シャフト部41は、筒状壁部40bの底部から軸方向一方側に延びる。出力シャフト部41は、突出筒部13c内に挿入される。出力シャフト部41の軸方向一方側の部分は、突出筒部13cよりも軸方向一方側に突出する。出力シャフト部41の軸方向一方側の部分には、電動アクチュエータ10の駆動力が出力される他の部材が取り付けられる。本実施形態において出力部40は、単一の部材である。
The annular plate portion 40c extends radially outward from the other end of the cylindrical wall portion 40b in the axial direction. The output shaft portion 41 extends in the axial direction and is disposed on one side in the axial direction of the motor shaft 21. The output shaft portion 41 has a cylindrical shape centered on the first central axis J1. The output shaft portion 41 extends in the axial direction from the bottom of the cylindrical wall portion 40b. The output shaft portion 41 is inserted into the projecting cylindrical portion 13c. A portion on one axial side of the output shaft portion 41 protrudes on one axial side with respect to the projecting cylindrical portion 13 c. Another member to which the driving force of the electric actuator 10 is output is attached to a portion on one side in the axial direction of the output shaft portion 41. In the present embodiment, the output unit 40 is a single member.
モータシャフト21が第1中心軸J1回りに回転させられると、偏芯軸部21b(第2中心軸J2)は、第1中心軸J1を中心として周方向に公転する。偏芯軸部21bの公転は、第4ベアリング56を介して外歯ギア31に伝達され、外歯ギア31は、内歯ギア33内で第1中心軸J1回りに公転する。外歯ギア31は、孔40dの内周面とピン32の外周面との内接する位置が変化しつつ、揺動する。このとき、外歯ギア31の歯車部と内歯ギア33の歯車部とが噛み合う位置が、周方向に変化する。外歯ギア31の歯数と内歯ギア33の歯数とは互いに異なり、かつ、内歯ギア33は、減速機構ケース13に固定されて回転しない。このため、外歯ギア31が、内歯ギア33に対して第2中心軸J2回りに自転する。
When the motor shaft 21 is rotated about the first central axis J1, the eccentric shaft 21b (second central axis J2) revolves circumferentially about the first central axis J1. The revolution of the eccentric shaft 21b is transmitted to the external gear 31 through the fourth bearing 56, and the external gear 31 revolves around the first central axis J1 in the internal gear 33. The external gear 31 swings while the inscribed position of the inner peripheral surface of the hole 40 d and the outer peripheral surface of the pin 32 changes. At this time, the position at which the gear portion of the external gear 31 meshes with the gear portion of the internal gear 33 changes in the circumferential direction. The number of teeth of the external gear 31 and the number of teeth of the internal gear 33 are different from each other, and the internal gear 33 is fixed to the reduction mechanism case 13 and does not rotate. Therefore, the external gear 31 rotates about the second central axis J2 with respect to the internal gear 33.
外歯ギア31が自転する向きは、モータシャフト21が回転する向きと反対方向となる。外歯ギア31の第2中心軸J2回りの回転(自転)は、孔40dとピン32とを介して、環状板部40cに伝達される。これにより、環状板部40cが第1中心軸J1回りに回転し、出力部40が第1中心軸J1回りに回転する。このように、モータシャフト21の回転が、減速機構30を介して出力シャフト部41に伝達される。
The direction in which the external gear 31 rotates is opposite to the direction in which the motor shaft 21 rotates. The rotation (rotation) of the external gear 31 around the second central axis J2 is transmitted to the annular plate portion 40c via the hole 40d and the pin 32. As a result, the annular plate portion 40c rotates around the first central axis J1, and the output unit 40 rotates around the first central axis J1. Thus, the rotation of the motor shaft 21 is transmitted to the output shaft portion 41 via the speed reduction mechanism 30.
出力部40の回転は、減速機構30によって、モータシャフト21の回転に対して減速される。具体的に、本実施形態の減速機構30では、モータシャフト21の回転に対する出力部40の回転の減速比Rが、R=−(N2−N1)/N2で表される。減速比Rを表す式の右辺の先頭の負符号は、モータシャフト21の回転方向に対して、減速される出力部40の回転方向が逆向きになることを示す。N1は、外歯ギア31の歯数であり、N2は、内歯ギア33の歯数である。一例として、外歯ギア31の歯数N1が59で、内歯ギア33の歯数N2が60の場合、減速比Rは、−1/60となる。このように、本実施形態の減速機構30は、モータシャフト21の回転に対する出力部40の回転の減速比Rを大きくできる。これにより、出力部40の回転トルクを大きくできる。
The rotation of the output unit 40 is decelerated by the reduction mechanism 30 with respect to the rotation of the motor shaft 21. Specifically, in the reduction gear mechanism 30 of the present embodiment, the reduction ratio R of the rotation of the output unit 40 with respect to the rotation of the motor shaft 21 is represented by R = − (N2−N1) / N2. The negative sign at the top of the right side of the equation representing the reduction ratio R indicates that the rotational direction of the output unit 40 to be decelerated is opposite to the rotational direction of the motor shaft 21. N1 is the number of teeth of the external gear 31, and N2 is the number of teeth of the internal gear 33. As an example, when the number N1 of teeth of the external gear 31 is 59 and the number N2 of teeth of the internal gear 33 is 60, the reduction ratio R is −1/60. Thus, the reduction mechanism 30 of the present embodiment can increase the reduction ratio R of the rotation of the output unit 40 with respect to the rotation of the motor shaft 21. Thereby, the rotational torque of the output unit 40 can be increased.
回転検出装置60は、出力部40の回転を検出する。図2に示すように、回転検出装置60は、第1マグネット63と、第1回転センサ62と、を有する。第1マグネット63は、周方向に延びる環状である。第1マグネット63は、第1中心軸J1を中心とする円筒状である。第1マグネット63は、周方向に沿って交互に配置されるN極とS極とを有する。第1マグネット63は、環状板部40cの軸方向一方側を向く面に取り付けられる。第1マグネット63は、環状板部40cの径方向外側の部分に固定される。つまり、第1マグネット63は、出力部40に固定される。第1マグネット63は、環状板部40cとともに第1中心軸J1回りに回転する。
The rotation detection device 60 detects the rotation of the output unit 40. As shown in FIG. 2, the rotation detection device 60 has a first magnet 63 and a first rotation sensor 62. The first magnet 63 has an annular shape extending in the circumferential direction. The first magnet 63 has a cylindrical shape centered on the first central axis J1. The first magnet 63 has N poles and S poles alternately arranged along the circumferential direction. The first magnet 63 is attached to the surface of the annular plate portion 40 c facing one side in the axial direction. The first magnet 63 is fixed to a radially outer portion of the annular plate portion 40c. That is, the first magnet 63 is fixed to the output unit 40. The first magnet 63 rotates around the first central axis J1 together with the annular plate portion 40c.
第1マグネット63は、径方向から見て、支持筒部13dと重なる位置に配置される。第1マグネット63は、支持筒部13dの径方向外側に対向する位置に配置される。第1マグネット63は、支持筒部13dの径方向外側を囲む。第1マグネット63の内周面と、支持筒部13dの外周面との間には、隙間が設けられる。第1マグネット63は、径方向に沿う支持筒部13dとカバー筒部13bとの間に位置する。第1マグネット63は、支持筒部13dの径方向外側のスペースに配置される。第1マグネット63は、環状板部40cと底壁部13aとの間のスペースに配置される。
The first magnet 63 is disposed at a position overlapping the support cylindrical portion 13 d when viewed from the radial direction. The first magnet 63 is disposed at a position facing the radially outer side of the support cylindrical portion 13 d. The first magnet 63 surrounds the radially outer side of the support cylindrical portion 13 d. A gap is provided between the inner peripheral surface of the first magnet 63 and the outer peripheral surface of the support cylindrical portion 13 d. The first magnet 63 is positioned between the support cylindrical portion 13 d and the cover cylindrical portion 13 b along the radial direction. The first magnet 63 is disposed in a space on the radially outer side of the support cylindrical portion 13 d. The first magnet 63 is disposed in the space between the annular plate portion 40c and the bottom wall portion 13a.
第1回転センサ62は、第1マグネット63に隙間をあけて対向する。第1回転センサ62は、第1マグネット63と軸方向に対向する。第1回転センサ62は、第1マグネット63の軸方向一方側に位置する。第1回転センサ62は、第1マグネット63によって生じる磁界を検出する。第1回転センサ62は、例えばホール素子である。第1マグネット63によって生じる磁界は、第1マグネット63が出力部40とともに回転することにより変化する。この磁界の変化を第1回転センサ62が検出することにより、出力部40の回転を検出できる。第1回転センサ62は、例えば、ケース11に対する出力部40の周方向の回転角度位置を検出する。第1回転センサ62は、例えば、回転角度位置検出センサまたは回転角センサ等と言い換えてもよい。
The first rotation sensor 62 faces the first magnet 63 with a gap. The first rotation sensor 62 faces the first magnet 63 in the axial direction. The first rotation sensor 62 is located on one side in the axial direction of the first magnet 63. The first rotation sensor 62 detects a magnetic field generated by the first magnet 63. The first rotation sensor 62 is, for example, a Hall element. The magnetic field generated by the first magnet 63 changes as the first magnet 63 rotates with the output unit 40. The rotation of the output unit 40 can be detected by the first rotation sensor 62 detecting a change in the magnetic field. The first rotation sensor 62 detects, for example, a rotational angle position of the output unit 40 in the circumferential direction with respect to the case 11. The first rotation sensor 62 may be rephrased as, for example, a rotation angle position detection sensor or a rotation angle sensor.
第1回転センサ62は、径方向から見て、支持筒部13dと重なる位置に配置される。第1回転センサ62は、支持筒部13dの径方向外側に対向する位置に配置される。第1回転センサ62は、底壁部13aの軸方向他方側に位置する。第1回転センサ62は、底壁部13aと第1マグネット63との間に配置される。第1回転センサ62は、取付け壁部13hに取り付けられる。第1回転センサ62は、取付け壁部13hに保持される。第1回転センサ62は、互いに平行に延びる一組の取付け壁部13h同士の間に架け渡されて、固定される。第1回転センサ62と底壁部13aとの間には、隙間が設けられる。図示を省略するが、第1回転センサ62には、3個のセンサ端子が設けられる。3個のセンサ端子は、電源用のセンサ端子と、信号伝達用のセンサ端子と、接地用のセンサ端子と、である。
The first rotation sensor 62 is disposed at a position overlapping the support cylindrical portion 13 d when viewed from the radial direction. The first rotation sensor 62 is disposed at a position facing the radially outer side of the support cylindrical portion 13 d. The first rotation sensor 62 is located on the other side in the axial direction of the bottom wall portion 13a. The first rotation sensor 62 is disposed between the bottom wall 13 a and the first magnet 63. The first rotation sensor 62 is attached to the attachment wall 13 h. The first rotation sensor 62 is held by the mounting wall 13 h. The first rotation sensor 62 is bridged and fixed between a pair of mounting wall portions 13 h extending in parallel with each other. A gap is provided between the first rotation sensor 62 and the bottom wall 13a. Although not shown, the first rotation sensor 62 is provided with three sensor terminals. The three sensor terminals are a sensor terminal for power supply, a sensor terminal for signal transmission, and a sensor terminal for grounding.
第1配線部材91および第2配線部材92は、制御基板70と第1回転センサ62とを電気的に接続する。第1配線部材91および第2配線部材92は、3本の配線をそれぞれ有する。第1配線部材91は、モータケース12に保持される。第1配線部材91は、第1配線保持部14を通る。第1配線部材91の少なくとも一部は、第1配線保持部14に埋め込まれる。第1配線部材91は、制御基板70と第2配線部材92とに電気的に接続される。第2配線部材92は、減速機構ケース13に保持される。第2配線部材92は、第2配線保持部15を通る。第2配線部材92の少なくとも一部は、第2配線保持部15に埋め込まれる。第2配線部材92は、第1回転センサ62と第1配線部材91とに電気的に接続される。モータケース12と減速機構ケース13とが組み立てられることで、第1配線部材91と第2配線部材92とは、互いに電気的に接続される。
The first wiring member 91 and the second wiring member 92 electrically connect the control substrate 70 and the first rotation sensor 62. The first wiring member 91 and the second wiring member 92 each have three wires. The first wiring member 91 is held by the motor case 12. The first wiring member 91 passes through the first wiring holding portion 14. At least a portion of the first wiring member 91 is embedded in the first wiring holding portion 14. The first wiring member 91 is electrically connected to the control substrate 70 and the second wiring member 92. The second wiring member 92 is held by the speed reduction mechanism case 13. The second wiring member 92 passes through the second wiring holding portion 15. At least a portion of the second wiring member 92 is embedded in the second wiring holding portion 15. The second wiring member 92 is electrically connected to the first rotation sensor 62 and the first wiring member 91. By assembling the motor case 12 and the reduction mechanism case 13, the first wiring member 91 and the second wiring member 92 are electrically connected to each other.
なお、本発明は前述の実施形態に限定されず、例えば下記に説明するように、本発明の趣旨を逸脱しない範囲において構成の変更等が可能である。
The present invention is not limited to the above-described embodiment. For example, as described below, changes in configuration and the like are possible without departing from the spirit of the present invention.
前述の実施形態では、モータ20が電動アクチュエータ10に設けられる例を挙げたが、これに限定されない。モータ20は、電動アクチュエータ10以外の装置等に設けられてもよい。モータ20は、他の装置等に設けられずに、モータ20単体で構成されてもよい。ただし、前述の実施形態のようにモータ20が電動アクチュエータ10に設けられる場合には、下記の作用効果が得られる。例えば、電動アクチュエータ10が車両等に設けられる場合には、軽量化や形状の自由度等により、樹脂製のケース11が採用される場合がある。本発明のモータ20を、樹脂製のケース11を有する電動アクチュエータ10に用いることにより、製造を容易化でき、製造コストを削減できる。
In the above-mentioned embodiment, although the example in which motor 20 was provided in electric actuator 10 was mentioned, it is not limited to this. The motor 20 may be provided in a device other than the electric actuator 10 or the like. The motor 20 may be configured as a single motor 20 without being provided in other devices and the like. However, when the motor 20 is provided to the electric actuator 10 as in the above-described embodiment, the following effects can be obtained. For example, when the electric actuator 10 is provided in a vehicle or the like, the case 11 made of resin may be adopted due to weight reduction, freedom of shape, and the like. By using the motor 20 of the present invention for the electric actuator 10 having the case 11 made of resin, the manufacturing can be facilitated and the manufacturing cost can be reduced.
前述の実施形態では、突起部26の周方向の幅が、径方向に沿って一定である例を挙げたが、これに限定されない。例えば、突起部26の周方向の幅は、径方向内側へ向かうにしたがい大きくなってもよい。また、突起部26が、周壁部12aの内周面において軸方向に延びるリブであるが、これに限定されない。突起部26は、周壁部12aの内周面において径方向内側に向けて突出する単なる突起等でもよい。また、溝部25および突起部26がそれぞれ複数設けられる例を挙げたが、それぞれ1個でもよい。また、溝部25が、バックヨーク23aの外周面において周方向に隣り合うティース23b間に位置する部分に配置される例を挙げたが、これに限定されない。溝部25は、バックヨーク23aの外周面においてティース23bと径方向に重なる位置に配置されてもよい。
Although the width in the circumferential direction of the protrusions 26 is constant in the radial direction in the above embodiment, the present invention is not limited to this. For example, the circumferential width of the protrusion 26 may increase as it goes radially inward. Moreover, although the protrusion part 26 is a rib extended in an axial direction in the internal peripheral surface of the surrounding wall part 12a, it is not limited to this. The protrusion 26 may be a simple protrusion or the like projecting radially inward on the inner peripheral surface of the peripheral wall 12a. Moreover, although the example in which the groove part 25 and the protrusion part 26 were provided with two or more each was mentioned, one piece may each be sufficient. Further, although the example in which the groove portion 25 is disposed in the portion positioned between the teeth 23b adjacent in the circumferential direction on the outer peripheral surface of the back yoke 23a has been described, the invention is not limited thereto. The groove 25 may be disposed at a position overlapping the teeth 23 b in the radial direction on the outer peripheral surface of the back yoke 23 a.
前述の実施形態では、爪部27の支持面27aが、軸方向に垂直な平面状である例を挙げたが、これに限定されない。例えば、支持面27aは、周壁部12aの内周面から径方向内側に向かうにしたがい軸方向他方側に延びてもよい。また、爪部27が、ステータ23の軸方向一方端よりも軸方向他方側においてステータ23に接触する例を挙げたが、これに限定されない。爪部27は、ステータ23の軸方向一方側の端面に接触してもよい。
Although the support surface 27a of the claw part 27 mentioned the example which is planar shape perpendicular | vertical to an axial direction in the above-mentioned embodiment, it is not limited to this. For example, the support surface 27a may extend to the other side in the axial direction as it extends radially inward from the inner peripheral surface of the circumferential wall 12a. Moreover, although the example which the nail | claw part 27 contacts the stator 23 in the axial direction other side rather than the axial direction one end of the stator 23 was mentioned, it is not limited to this. The claws 27 may be in contact with the end face on one side in the axial direction of the stator 23.
前述の実施形態では、第1回転センサ62が、取付け壁部13hに取り付けられる例を挙げたが、これに限定されない。例えば、第1回転センサ62は、底壁部13aに取り付けられてもよい。第1回転センサ62は、出力部40の回転を検出できればよく、例えば磁気抵抗素子であってもよい。第2回転センサ71は、モータシャフト21の回転を検出できればよく、例えば磁気抵抗素子であってもよい。
In the above-mentioned embodiment, although the example in which the 1st rotation sensor 62 was attached to attachment wall 13h was mentioned, it is not limited to this. For example, the first rotation sensor 62 may be attached to the bottom wall 13a. The first rotation sensor 62 only needs to detect the rotation of the output unit 40, and may be, for example, a magnetoresistive element. The second rotation sensor 71 only needs to be able to detect the rotation of the motor shaft 21 and may be, for example, a magnetoresistive element.
また、回転検出装置60が、図示しない回路基板を有してもよい。この場合、回路基板は、減速機構ケース13内に配置される。第1回転センサ62は回路基板に電気的に接続され、回路基板は制御基板70に電気的に接続される。
Also, the rotation detection device 60 may have a circuit board (not shown). In this case, the circuit board is disposed in the speed reduction mechanism case 13. The first rotation sensor 62 is electrically connected to the circuit board, and the circuit board is electrically connected to the control board 70.
また、減速機構30は、モータシャフト21の回転を減速させて出力部40に伝達することで、トルクを増大させる機能を有すればよく、前述の実施形態で説明した構成に限定されない。
Further, the reduction mechanism 30 only needs to have a function of increasing the torque by reducing the rotation of the motor shaft 21 and transmitting it to the output unit 40, and is not limited to the configuration described in the above embodiment.
前述の実施形態では、出力部40が単一の部材であるが、これに限定されない。例えば、出力部40の環状板部40cおよび筒状壁部40bと、出力シャフト部41とが、溶接等により固定されてもよい。
In the above-mentioned embodiment, although output part 40 is a single member, it is not limited to this. For example, the annular plate portion 40c and the cylindrical wall portion 40b of the output portion 40 and the output shaft portion 41 may be fixed by welding or the like.
その他、本発明の趣旨から逸脱しない範囲において、前述の実施形態、変形例およびなお書き等で説明した各構成(構成要素)を組み合わせてもよく、また、構成の付加、省略、置換、その他の変更が可能である。また本発明は、前述した実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
In addition, without departing from the spirit of the present invention, each configuration (component) described in the above-described embodiment, modification, and note may be combined, and addition, omission, replacement, and other configurations can be made. Changes are possible. Moreover, this invention is not limited by embodiment mentioned above, It is limited only by the claim.