JP2019061567A - Shape recognition program and shape recognition device for leaf-like crop - Google Patents
Shape recognition program and shape recognition device for leaf-like crop Download PDFInfo
- Publication number
- JP2019061567A JP2019061567A JP2017186895A JP2017186895A JP2019061567A JP 2019061567 A JP2019061567 A JP 2019061567A JP 2017186895 A JP2017186895 A JP 2017186895A JP 2017186895 A JP2017186895 A JP 2017186895A JP 2019061567 A JP2019061567 A JP 2019061567A
- Authority
- JP
- Japan
- Prior art keywords
- area
- leaf
- crop
- extracted
- stem
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000605 extraction Methods 0.000 claims abstract description 93
- 238000000034 method Methods 0.000 claims abstract description 53
- 238000007689 inspection Methods 0.000 claims abstract description 51
- 230000005484 gravity Effects 0.000 claims abstract description 42
- 241000037488 Coccoloba pubescens Species 0.000 description 38
- 238000003384 imaging method Methods 0.000 description 21
- 230000032258 transport Effects 0.000 description 12
- 239000000284 extract Substances 0.000 description 8
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000004197 pelvis Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Image Analysis (AREA)
Abstract
Description
本発明は、葉状農作物の形状を認識するための形状認識プログラム、及び形状認識装置に関する。 The present invention relates to a shape recognition program for recognizing the shape of leafy crops, and a shape recognition device.
従来から、葉状農作物の選別や包装等の作業を行うシステムが提供されており、例えば特許文献1では、葉状農作物を撮像した画像データから葉状農作物のサイズを判定し、そのサイズの判定結果に基づいて前記作業を行うようにシステムを動作させるプログラムが導入されている。 Conventionally, a system for performing operations such as sorting and packaging of leafy crops has been provided. For example, in Patent Document 1, the size of a leafy crop is determined from image data obtained by imaging the leafy crop, and the size is determined based on the determination result. A program has been introduced to operate the system to perform the task.
しかしながら、検査画像に映る葉状農作物の向きは常に一定であるとは限らないため、葉状農作物の形状やサイズの判定結果にばらつき(誤り)が生じると、前記システムにおける選別や包装等の作業が正しく行われなくなることがある。従って、葉状農作物を取り扱ううえでは、葉状農作物の形状を正確に認識することが重要である。 However, since the direction of foliage crops that appear in the inspection image is not always constant, if there is a variation (error) in the determination results of the shape or size of foliage crops, work such as sorting or packaging in the system is correct. Sometimes it does not happen. Therefore, when handling foliage crops, it is important to accurately recognize the shape of foliage crops.
そこで、本発明は、斯かる実情に鑑み、葉状農作物の形状を正確に認識できる葉状農作物の形状認識プログラム及び形状認識装置を提供することを課題とする。 Then, this invention makes it a subject to provide the shape recognition program and shape recognition apparatus of foliage crops which can recognize the shape of foliage crops correctly in view of such a situation.
本発明の葉状農作物の形状認識プログラムは、
コンピュータを、
検査画像に映る葉状農作物の像から葉柄の領域を抽出すべく、前記葉状農作物の重心を中心として径外方向に膨らむように湾曲する曲線領域を少なくとも含む走査領域を設定する領域設定処理、前記領域設定処理で設定した前記走査領域のうち前記葉状農作物と重なる重複領域を抽出する第一の抽出処理、前記第一の抽出処理で抽出した重複領域から所定の長さ以下の短小領域をさらに抽出する第二の抽出処理、のそれぞれの処理を前記曲線領域が前記重心を中心として前記径外方向に変位するように前記走査領域を拡張しながら複数回繰り返して実行した後に、前記第二の抽出処理で抽出した複数の短小領域を結合する領域結合処理を実行して前記葉柄の領域を抽出する葉柄領域抽出手段、
前記葉状農作物の像から前記葉柄領域抽出手段で抽出した前記葉柄の領域を除くことにより前記葉状農作物の葉身の領域を抽出する葉身領域抽出手段、として機能させる。
The foliage crop shape recognition program of the present invention is
Computer,
An area setting process for setting a scanning area including at least a curved area curving so as to expand radially outward around the center of gravity of the leaf crop in order to extract the stem area from the image of the leaf crop on the inspection image, the area A first extraction process for extracting an overlapping area overlapping with the leafy crop among the scanning areas set in the setting process, and further extracting a short area having a predetermined length or less from the overlapping area extracted in the first extraction process The second extraction process is performed after each process of the second extraction process is repeatedly performed a plurality of times while expanding the scanning area so that the curved area is displaced in the radial outer direction centering on the center of gravity A stalk area extraction unit that executes an area combination process that combines a plurality of short and small areas extracted in the above to extract the stalk area
It is made to function as a blade region extraction means for extracting a leaf blade region of the foliage crop by removing the stalk region extracted by the foliage crop region extraction means from the image of the foliage crop.
上記構成の形状認識プログラムによれば、検査画像に映る葉状農作物の像から葉柄の領域と葉身の領域、すなわち、葉柄の形状と葉身の形状とを別々に抽出することで、葉状農作物の形状を正確に認識できるようになる。 According to the shape recognition program of the above configuration, the area of the stem and the area of the leaf blade, that is, the shape of the stem and the shape of the leaf blade are separately extracted from the image of the leaf crop on the inspection image. It becomes possible to recognize the shape accurately.
また、本発明の葉状農作物の形状認識プログラムは、
前記コンピュータを、
前記葉柄領域抽出手段で抽出した前記葉柄の領域に関する情報、及び前記葉身領域抽出手段で抽出した前記葉身の領域に関する情報を用いて前記葉状農作物の向きを導出する向き導出手段、として機能させ、
前記向き導出手段は、前記葉柄領域抽出手段で抽出した前記葉柄の領域の重心と前記葉身領域抽出手段で抽出した前記葉身の領域の重心とを導出し、前記葉柄の領域の重心と前記葉身の領域の重心とを結ぶ直線の向きを前記葉状農作物の向きと判定するように構成されていてもよい。
Further, the shape recognition program for foliage crops of the present invention is
The computer,
Function as a direction deriving means for deriving the direction of the leafy crop using information on the area of the stem extracted by the stem area extracting means and information on the area of the leaf extracted by the leaf area extracting means ,
The direction deriving means derives the center of gravity of the area of the stem extracted by the stem area extracting means and the center of gravity of the area of the leaf extracted by the leaf area extracting means, and the center of gravity of the area of the stem and the The direction of the straight line connecting the center of gravity of the leaf area may be determined as the direction of the leafy crop.
葉状農作物の向きは葉柄の向きや位置が深く関係しているところ、上記構成の形状認識プログラムによれば、葉柄領域抽出手段で葉柄の領域を抽出したうえで、向き導出手段が葉状農作物の向きを導出するように構成されているため、葉柄の領域に関する情報を加味したうえで葉状農作物の向きを検出することができる。 The direction of foliage crops is deeply related to the direction and position of the stalks. According to the shape recognition program of the above configuration, after the stalk region is extracted by the stalk region extraction means, the direction deriving means is the direction of foliage crops Since it is comprised so that it may derive | lead-out, the direction of a leafy crop can be detected, considering the information regarding the area | region of a stalk.
また、葉柄の領域の重心と葉身の領域の重心とを結ぶ直線の向きを葉状農作物の向きと判定するため、葉状農作物の向きを簡単に求めることができる。 In addition, since the direction of the straight line connecting the center of gravity of the area of the stem and the center of gravity of the area of the leaf blade is determined as the direction of the leafy crop, the direction of the leafy crop can be easily determined.
本発明の葉状農作物の形状認識装置は、
葉状農作物が映る検査画像から該葉状農作物の形状を認識するための処理を実行する処理装置を備え、
前記処理装置は、
検査画像に映る前記葉状農作物の像から葉柄の領域を抽出すべく、前記葉状農作物の重心を中心として径外方向に膨らむように湾曲する曲線領域を少なくとも含む走査領域を設定する領域設定処理、前記領域設定処理で設定した前記走査領域のうち前記葉状農作物と重なる重複領域を抽出する第一の抽出処理、前記第一の抽出処理で抽出した重複領域から所定の長さ以下の短小領域をさらに抽出する第二の抽出処理、のそれぞれの処理を前記曲線領域が前記重心を中心として前記径外方向に変位するように前記走査領域を拡張しながら複数回繰り返して実行した後に、前記第二の抽出処理で抽出した複数の短小領域を結合する領域結合処理を実行して前記葉柄の領域を抽出する葉柄領域抽出手段と、
前記葉状農作物の像から前記葉柄領域抽出手段で抽出した前記葉柄の領域を除くことにより前記葉状農作物の葉身の領域を抽出する葉身領域抽出手段と、を有する。
The foliated crop shape recognition apparatus of the present invention is
A processing device for performing processing for recognizing the shape of the leafy crop from the inspection image on which the leafy crop is reflected;
The processing unit
An area setting process for setting a scan area including at least a curved area curving so as to expand radially outward around the center of gravity of the leafy crop in order to extract the area of the stem from the image of the leafy crop reflected in the inspection image; A first extraction process for extracting an overlapping area overlapping with the leafy crop among the scanning areas set in the area setting process, and further extracting a short area having a predetermined length or less from the overlapping area extracted in the first extraction process And the second extraction process is repeatedly performed a plurality of times while expanding the scanning area such that the curved area is displaced in the radially outward direction centering on the center of gravity. A stalk area extraction unit that executes an area combination process that combines a plurality of short and small areas extracted in the process to extract the stalk area.
And a leaf region extracting means for extracting a leaf region of the foliage crop by removing the pelvis region extracted by the foliage crop extraction means from the image of the foliage crop.
上記構成の形状認識装置によれば、検査画像に映る葉状農作物の像から葉柄の領域と葉身の領域、すなわち、葉柄の形状と葉身の形状とを別々に抽出することで、葉状農作物の形状を正確に認識できるようになる。 According to the shape recognition device of the above configuration, the area of the stalk and the area of the leaf blade, that is, the shape of the stalk and the shape of the leaf blade are separately extracted from the image of the foliage crop shown in the inspection image. It becomes possible to recognize the shape accurately.
また、本発明の葉状農作物の形状認識装置は、
前記葉柄領域抽出手段で抽出した前記葉柄の領域に関する情報、及び前記葉身領域抽出手段で抽出した前記葉身の領域に関する情報を用いて前記葉状農作物の向きを導出する向き導出手段を有し、
前記向き導出手段は、前記葉柄領域抽出手段で抽出した前記葉柄の領域の重心と前記葉身領域抽出手段で抽出した前記葉身の領域の重心とを導出し、前記葉柄の領域の重心と前記葉身の領域の重心とを結ぶ直線の向きを前記葉状農作物の向きと判定する、ように構成されていてもよい。
Moreover, the shape recognition apparatus of the foliated crop of the present invention is
It has direction deriving means for deriving the direction of the leafy crop using the information on the area of the stem extracted by the stem area extracting means and the information on the area of the leaf extracted by the leaf area extracting means,
The direction deriving means derives the center of gravity of the area of the stem extracted by the stem area extracting means and the center of gravity of the area of the leaf extracted by the leaf area extracting means, and the center of gravity of the area of the stem and the The direction of a straight line connecting the center of gravity of the leaf area may be determined as the direction of the leaf crop.
葉状農作物の向きは葉柄の向きや位置が深く関係しているところ、上記構成の形状認識装置によれば、葉柄領域抽出手段で葉柄の領域を抽出したうえで、向き導出手段が葉状農作物の向きを導出するように構成されているため、葉柄の領域に関する情報を加味したうえで葉状農作物の向きを導出することができる。 The direction of the foliage crop is deeply related to the direction and position of the stalk. According to the shape recognition device with the above configuration, after the stalk region is extracted by the stalk region extraction means, the direction deriving means is the direction of the foliage crop It is possible to derive the direction of leafy crops after adding information on the area of the stalk.
また、葉柄の領域の重心と、葉身の領域の重心とを結ぶ直線の向きを葉状農作物の向きと判定するため、葉状農作物の向きを簡単に求めることができる。 In addition, since the direction of the straight line connecting the center of gravity of the area of the stem and the center of gravity of the area of the leaf blade is determined as the direction of the leaf crop, the direction of the leaf crop can be easily determined.
以上のように、本発明の葉状農作物の形状認識プログラム及び形状認識装置によれば、葉状農作物の形状を正確に認識できるという優れた効果を奏し得る。 As described above, according to the shape recognition program and the shape recognition device for foliage crops of the present invention, it is possible to achieve an excellent effect that the shapes of foliage crops can be accurately recognized.
以下、本発明の一実施形態に係る葉状農作物の形状認識プログラム及び形状認識装置について、添付図面を参照しつつ説明する。 Hereinafter, a shape recognition program and a shape recognition apparatus for leafy crops according to an embodiment of the present invention will be described with reference to the attached drawings.
形状認識プログラムは、コンピュータを、葉状農作物を撮像して得た検査画像に基づいて葉状農作物の形状を特定するための葉状農作物の形状認識装置として機能させるように構成されたものである。 The shape recognition program is configured to cause the computer to function as a leaf shape crop shape recognition device for specifying the shape of a leaf shape crop based on an inspection image obtained by imaging the leaf shape crop.
また、形状認識装置は、例えば、葉状農作物の検査及び出荷準備を行うための葉状農作物の出荷システムに組み込まれる。 In addition, the shape recognition device is incorporated into, for example, a foliage crop shipping system for inspecting and shipping preparations of foliage crops.
本実施形態では、この出荷システムに形状認識装置が組み込まれていることを一例に挙げて、形状認識装置、及び形状認識プログラムの説明を行うこととする。なお、本実施形態に係る葉状農作物とは、大葉のことであるが、平面寸法に比べて厚み寸法の小さい葉であれば他種の葉状農作物であってもよい。 In the present embodiment, the shape recognition device and the shape recognition program will be described by taking as an example that the shape recognition device is incorporated into the shipping system. In addition, although the leafy crop which concerns on this embodiment is a large leaf, as long as it is a leaf whose thickness dimension is small compared with planar dimension, other types of leafy crop may be sufficient.
出荷システム1は、図1、及び図2に示すように、複数枚の大葉を収容する収容具2と、該収容具2から取り出した大葉の形状を認識するための形状認識装置3と、該形状認識装置3で形状を認識した大葉を搬送する搬送装置4と、該搬送装置4で搬送されている大葉を取得して出荷するための加工を行う加工装置5とを備えている。 As shown in FIGS. 1 and 2, the shipping system 1 includes a container 2 for storing a plurality of large leaves, a shape recognition device 3 for recognizing the shape of the large leaves taken out from the container 2, and The transport device 4 transports large leaves whose shape is recognized by the shape recognition device 3, and the processing device 5 performs processing for acquiring and shipping the large leaves transported by the transport device 4.
収容具2は、複数枚の大葉を積み上げた状態で内部に収容できるように構成されている。 The container 2 is configured so as to be able to be accommodated therein in a state in which a plurality of large leaves are stacked.
形状認識装置3は、図2、図3に示すように、撮像対象とする大葉を載置するステージ30と、該ステージ30に載置されている大葉を撮像する撮像装置31と、該撮像装置31で撮像した大葉の画像である検査画像に基づいて該大葉の形状を認識するための処理装置32と、該処理装置32に対して有線又は無線により接続された記憶装置33と、を備えている。 The shape recognition device 3 includes, as shown in FIGS. 2 and 3, a stage 30 on which a large leaf to be imaged is placed, an imaging device 31 for imaging a large leaf placed on the stage 30, and the imaging device A processing device 32 for recognizing the shape of the large leaf based on an inspection image which is an image of the large leaf captured in 31; and a storage device 33 connected to the processing device 32 by wire or wirelessly There is.
ステージ30には、収容具2から取り出された大葉が一枚ずつ載置される。なお、本実施形態では、収容具2内で積み上げられている複数の大葉のうち最上部に位置する大葉を吸引搬送する吸引搬送部(以下、第一の吸引搬送部と称する)P1により収容具2からステージ30まで運ばれている。 On the stage 30, large leaves taken out of the container 2 are placed one by one. In the present embodiment, the container is held by the suction conveyance unit (hereinafter, referred to as a first suction conveyance unit) P1 that suctions and conveys the large leaf located at the top of the plurality of large leaves stacked in the container 2 It is carried from 2 to stage 30.
なお、吸引搬送部は、大葉の表面又は裏面のうち上側を向いている一面を吸引することによって該大葉を保持し、大葉に対する吸引状態を解除すると、吸引搬送部から大葉が離れる(落ちる)ように構成されている。 In addition, the suction conveyance unit holds the large leaves by sucking one surface of the large leaves front or back facing upward, and when the suction state for the large leaves is released, the large leaves are separated (fall) from the suction conveyance unit. Is configured.
また、本実施形態に係るステージ30は、透明な載置板部300を有し、この載置板部300上に収容具2から取り出された大葉が載置される(図4参照)。 Moreover, the stage 30 which concerns on this embodiment has the transparent mounting board part 300, and the large leaf taken out from the container 2 is mounted on this mounting board part 300 (refer FIG. 4).
撮像装置31は、ステージ30の下方側、具体的には、載置板部300の下方側に配置されている。そして、撮像装置31は、載置板部300上に載置された大葉を、表面又は裏面のうち下側を向いている一面側(本実施形態では表面側)から撮像するように構成されている。 The imaging device 31 is disposed on the lower side of the stage 30, specifically, on the lower side of the mounting plate 300. Then, the imaging device 31 is configured to pick up an image of the large leaf placed on the placement plate portion 300 from one side (the front side in the present embodiment) of the front side or the back side facing downward. There is.
なお、撮像装置31は、ステージ30(載置板部300)の上方側に配置され、載置板部300上に載置された大葉を、表面又は裏面のうち上側を向いている一面側から撮像するように構成されていてもよい。 The imaging device 31 is disposed on the upper side of the stage 30 (the mounting plate 300), and the large leaf placed on the mounting plate 300 is viewed from one side facing the upper side of the front surface or the back surface. It may be configured to capture an image.
形状認識装置3では、処理装置32が形状認識プログラムを実行することにより、大葉の形状を認識するための各種手段を実行するように構成されている。 In the shape recognition device 3, the processing device 32 is configured to execute various means for recognizing the shape of the large leaf by executing the shape recognition program.
具体的に説明すると、形状認識装置3は、処理装置32で形状認識プログラムを実行することにより、図5に示すように、検査画像を取得する画像取得手段60、検査画像から大葉が映る領域全体(以下、葉領域と称する)を抽出する葉領域抽出手段61、検査画像に基づいて大葉の葉柄の領域(以下、葉柄領域と称する)を抽出する葉柄領域抽出手段62、検査画像に基づいて大葉の葉身の領域(以下、葉身領域と称する)を抽出する葉身領域抽出手段63、葉柄領域と葉柄領域とに基づいて大葉の向きを導出する向き導出手段64、として機能するように構成されている。 Specifically, as shown in FIG. 5, the shape recognition device 3 executes the shape recognition program with the processing device 32 to obtain an inspection image, an image acquisition unit 60, and the entire area where the large leaf appears from the inspection image. A leaf area extraction means 61 for extracting a leaf area (hereinafter referred to as a leaf area), a stalk area extraction means 62 for extracting an area of a large leaf stalk (hereinafter referred to as a stalk area) based on the inspection image Function as leaf blade region extraction means 63 for extracting a leaf blade region (hereinafter referred to as leaf blade region) and direction deriving means 64 for deriving the direction of large leaves based on the stem region and the stem region It is done.
画像取得手段60は、形状を認識する対象とする大葉が映る画像を取得するように構成されている。本実施形態に係る画像取得手段60は、載置板部300上に載置されている大葉を撮像するよう撮像装置31を制御し、さらに、撮像装置31によって撮像した大葉の画像を検査画像として取得するように構成されている。すなわち、画像取得手段60は、撮像装置31から直接的に検査画像を取得するように構成されている。 The image acquisition means 60 is configured to acquire an image in which a large leaf for which a shape is to be recognized appears. The image acquisition unit 60 according to the present embodiment controls the imaging device 31 to capture a large leaf placed on the placement plate unit 300, and further, uses an image of the large leaf captured by the imaging device 31 as an inspection image. It is configured to get. That is, the image acquisition unit 60 is configured to acquire an inspection image directly from the imaging device 31.
葉領域抽出手段61は、図6(a)及び図6(b)に示すように、検査画像Tから葉領域RE1と、該葉領域RE1の外側の領域(すなわち、背景が映っている領域)BEとを識別するように構成されている。本実施形態では、葉領域RE1の外側の領域BEを背景領域BEと称して以下の説明を行うこととする。 As shown in FIGS. 6 (a) and 6 (b), the leaf area extraction unit 61 determines from the inspection image T a leaf area RE1 and an area outside the leaf area RE1 (that is, an area in which the background appears). It is configured to identify the BE. In the present embodiment, the area BE outside the leaf area RE1 is referred to as a background area BE, and the following description will be made.
より具体的に説明すると、葉領域抽出手段61は、検査画像Tから背景領域BEを識別する背景領域識別処理と、検査画像Tから葉領域RE1を識別する葉領域識別処理とを実行するように構成されている。 More specifically, the leaf area extraction unit 61 executes background area identification processing for identifying the background area BE from the inspection image T and leaf area identification processing for identifying the leaf area RE1 from the inspection image T. It is configured.
葉領域抽出手段61は、背景領域識別処理において、検査画像Tの各領域に対して背景であるか否かを判断する基準となる背景領域識別情報に基づいて検査画像T全体の中から背景領域BEを識別するように構成されている。 The leaf area extraction means 61 selects a background area from among the entire inspection image T based on background area identification information serving as a reference for determining whether each area of the inspection image T is the background in the background area identification processing. It is configured to identify BE.
背景領域識別情報には、例えば、背景領域に含まれている色を示す情報(色情報)が設定され、葉領域抽出手段61は、検査画像Tのうちの背景領域識別情報が有する色情報に該当する色を有する領域を背景領域BEであると識別するように構成されていればよい。 For example, information (color information) indicating a color included in the background area is set in the background area identification information, and the leaf area extraction unit 61 uses color information included in the background area identification information of the inspection image T. It may be configured to identify the area having the corresponding color as the background area BE.
なお、背景領域識別情報に色情報を設定する場合は、大葉が載置されていない状態のステージ30を撮像した画像に含まれている色に基づいて色情報を決定することが可能である。また、色情報は、単色を示す情報であってもよいし、色域の範囲を示す情報であってもよい。 In the case where color information is set in the background area identification information, it is possible to determine the color information based on the color included in the image obtained by imaging the stage 30 in a state in which the large leaf is not placed. Further, the color information may be information indicating a single color, or information indicating a range of color gamut.
さらに、葉領域抽出手段61は、葉領域識別処理において、検査画像Tの各領域に対して大葉が映っている領域であるか否かを判断する基準となる葉領域識別情報に基づいて葉領域RE1を識別するように構成されている。 Furthermore, the leaf area extraction unit 61 determines the leaf area based on the leaf area identification information as a reference for determining whether or not the large leaf appears in each area of the inspection image T in the leaf area identification process. It is configured to identify RE1.
葉領域識別情報にも、例えば、色を示す情報(色情報)が設定されており、葉領域抽出手段61は、検査画像Tのうち、葉領域識別情報が有する色情報に該当する色を有する領域を背景領域BEであると識別するように構成されていてもよい。 In the leaf area identification information, for example, information (color information) indicating a color is set, and the leaf area extraction unit 61 has a color corresponding to the color information included in the leaf area identification information in the inspection image T. It may be configured to identify the area as the background area BE.
なお、葉領域識別情報に設定する色情報は、例えば、大葉を撮像した画像に基づいて設定でき、本実施形態では、撮像装置31で大葉を撮像した検査画像Tに基づいて葉領域識別情報が設定されている。 The color information to be set in the leaf area identification information can be set, for example, based on the image obtained by imaging the large leaf, and in the present embodiment, the leaf area identification information is based on the inspection image T obtained by imaging the large leaf by the imaging device 31 It is set.
また、本実施形態に係る葉領域抽出手段61は、背景領域識別処理で背景領域BEであると識別した領域と、葉領域識別処理で葉領域RE1であると識別した領域とを別々の色で示すように構成されている。すなわち、葉領域抽出手段61は、検査画像Tの葉領域RE1と背景領域BE内とを別々の色で色分けするように構成されている。 Further, the leaf area extraction unit 61 according to the present embodiment separates the area identified as the background area BE in the background area identification processing and the area identified as the leaf area RE1 in the leaf area identification processing in different colors. It is configured as shown. That is, the leaf area extraction unit 61 is configured to color-code the leaf area RE1 of the inspection image T and the inside of the background area BE with different colors.
葉柄領域抽出手段62は、前記葉状農作物の重心を中心として径外方向に膨らむように湾曲する曲線領域を少なくとも含む走査領域を設定する領域設定処理、事前に設定されている走査領域と葉領域RE1とが重なる重複領域を抽出する第一の抽出処理、前記第一の抽出処理で抽出した重複領域から所定の長さ以下の短小領域をさらに抽出する第二の抽出処理、事前に設定されている走査領域を拡張したうえで第一の抽出処理を実行する拡張処理、前記第二の抽出処理で抽出した複数の短小領域を結合して結合領域を作成する領域結合処理、領域結合処理により結合された領域のうち、最も寸法の長い領域を選出する選出処理、を実行するように構成されている。 The stalk area extraction means 62 is an area setting process for setting a scan area including at least a curved area curving so as to expand radially outward around the center of gravity of the leafy crop, a scan area and a leaf area RE1 set in advance. A first extraction process for extracting an overlap area overlapping with the second extraction process, a second extraction process for further extracting a short or small area having a predetermined length or less from the overlap area extracted in the first extraction process, and set in advance The expansion process is performed by expanding the scan area and then performing the first extraction process, combining the plurality of short areas extracted by the second extraction process to form a combined area, combining by area combining process It is comprised so that the selection process which chooses the area | region with the longest dimension among these area | regions may be performed.
本実施形態にかかる領域設定処理は、図7(a)に示すように、葉領域RE1の重心C1を中心とした環状(具体的には、周方向における全周に亘って曲率が一定の円環状)の走査領域PE1を設定するように構成されている。 In the area setting process according to the present embodiment, as shown in FIG. 7A, the area setting process has an annular shape centered on the center of gravity C1 of the leaf area RE1. An annular scan area PE1 is set.
第一の抽出手段は、上述のように、走査領域PE1と葉領域RE1とが重なる領域を重複領域PE2として抽出するように構成されている。なお、図7(b)には、一つの検査画像T上に複数の重複領域PE2が抽出されている状態を図示している。また、事前に設定されている走査領域とは、第一の抽出手段が実行される際に、既に設定されている走査領域(本実施形態では、領域設定処理で設定された走査領域、若しくは拡張処理によって拡張された走査領域)のことである。 As described above, the first extraction unit is configured to extract the overlapping area of the scanning area PE1 and the leaf area RE1 as the overlapping area PE2. FIG. 7B illustrates a state in which a plurality of overlapping areas PE2 are extracted on one inspection image T. Further, the scan area set in advance refers to the scan area set in advance when the first extraction unit is executed (in the present embodiment, the scan area set in the area setting process, or expansion Scan area) expanded by the process.
第二の抽出処理は、第一の抽出処理が重複領域PE2を抽出した場合に、該第一の抽出処理に続いて実行される。 The second extraction process is performed subsequent to the first extraction process when the first extraction process extracts the overlapping area PE2.
複数の重複領域PE2には、長尺な重複領域PE2や、短小な重複領域PE2が含まれているが、葉柄領域抽出手段62は、第二の抽出処理において、短小な重複領域PE2を短小領域PE3として抽出するように構成されている。なお、短小領域PE3であるか否かを判定する基準とする長さは、適宜変更可能であるが、2mm〜5mmの範囲内で設定されることが好ましい。 The plurality of overlapping areas PE2 includes a long overlapping area PE2 and a short overlapping area PE2, but the stalk area extracting unit 62 performs the short and small overlapping areas PE2 in the second extraction process. It is comprised so that it may extract as PE3. In addition, although the length used as a reference | standard which determines whether it is short area PE3 can be changed suitably, it is preferable to set in the range of 2 mm-5 mm.
拡張処理は、第二の抽出処理に続いて実行されるように構成されている。また、拡張処理は、図7(a)、図8(a)、図9(a)に示すように、事前に設定されている走査領域PE1の大きさを、曲線領域が葉領域RE1の重心C1を中心とする径外方向に変位するように拡張して設定し直すように構成されている。本実施形態に係る拡張処理では、走査領域PE1の幅を変えずに、走査領域PE1の直径のみが拡張される。 The expansion process is configured to be performed following the second extraction process. Further, as shown in FIG. 7A, FIG. 8A, and FIG. 9A, the expansion processing is performed in advance for the size of the scanning area PE1 set in advance, and the curved area is the center of gravity of the leaf area RE1. It is configured to be expanded and set so as to be displaced in the radial outward direction centering on C1. In the expansion process according to the present embodiment, only the diameter of the scan area PE1 is expanded without changing the width of the scan area PE1.
領域結合処理は、第二の抽出処理により重複領域PE2が抽出されなかった場合に、該第二の抽出処理に続いて実行されるように構成されている。葉柄領域抽出手段62は、例えば、拡張処理によって拡張された走査領域PE1全体が葉領域RE1よりも外側に位置するまで第一の抽出処理、第二の抽出処理、及び拡張処理をくり返し実行するように構成されていればよい。 The area combining process is configured to be performed subsequently to the second extraction process when the overlapping area PE2 is not extracted by the second extraction process. The stem area extraction means 62 repeatedly executes the first extraction process, the second extraction process, and the expansion process until, for example, the entire scan area PE1 expanded by the expansion process is positioned outside the leaf area RE1. It should just be comprised.
結合処理は、図10(a)に示すように、第二の抽出処理によって複数回に亘って抽出された短小領域PE3を一つの画像に重ねて表示するように構成されている。本実施形態では、結合処理で一つの画像に重ねて表示されている短小領域PE3を結合領域PE4と称する。 As shown in FIG. 10A, the combining process is configured to superimpose and display the short region PE3 extracted a plurality of times by the second extraction process on one image. In the present embodiment, the short area PE3 displayed superimposed on one image in the joining process is referred to as a joining area PE4.
図10(a)に示す検査画像Tには、複数の結合領域PE4が図示されているが、該複数の結合領域PE4には、単一の短小領域PE3で構成されている結合領域PE4と、複数の短小領域PE3が連続することで構成されている結合領域PE4とが含まれている。 In the inspection image T shown in FIG. 10A, a plurality of coupling regions PE4 are illustrated, but the plurality of coupling regions PE4 includes a coupling region PE4 configured of a single short region PE3, and A bonding region PE4 configured by a plurality of short regions PE3 being continuous is included.
選出処理は、領域結合処理に続いて実行されるように構成されている。葉柄領域抽出手段62は、図10(b)に示すように、選出処理において、結合領域PE4のうち、最も寸法の長い領域、すなわち、葉柄領域RE2を選出するように構成されている。 The selection process is configured to be performed subsequent to the area combination process. As shown in FIG. 10 (b), the stalk region extraction means 62 is configured to select the longest dimension region, that is, the stalk region RE2, of the combined region PE4 in the selection process.
葉身領域抽出手段63は、葉領域RE1と葉柄領域抽出手段62で抽出した葉柄領域RE2とに基づいて葉身領域RE3を抽出するように構成されており、本実施形態では、葉領域RE1から葉柄領域RE2に対応する領域を切り取り、残った領域を葉身領域RE3とするように構成されている。 The leaf region extraction means 63 is configured to extract a leaf region RE3 based on the leaf region RE1 and the stem region RE2 extracted by the stem region extraction means 62. In the present embodiment, the leaf region RE3 is extracted from the leaf region RE1. A region corresponding to the stalk region RE2 is cut out, and the remaining region is set as a blade region RE3.
これにより、一つの葉領域RE1を構成する葉柄領域RE2と、葉身領域RE3とが別々に抽出される(図11参照)。すなわち、葉柄の形状と、葉身の形状とが別々に認識される。 As a result, a stem region RE2 that constitutes one leaf region RE1 and a leaf blade region RE3 are separately extracted (see FIG. 11). That is, the shape of the stem and the shape of the leaf blade are recognized separately.
向き導出手段64は、図11に示すように、葉柄領域RE2の重心C2を導出し、葉身領域RE3の重心C3を導出し、それぞれの重心C2、C3を結ぶ直線Lの向きを大葉の向きとするように構成されている。 As shown in FIG. 11, the direction deriving means 64 derives the center of gravity C2 of the stem region RE2, derives the center of gravity C3 of the leaf region RE3, and directs the direction of the straight line L connecting the respective centers of gravity C2, C3 to the direction of the large leaf It is configured to be.
本実施形態に係る搬送装置4は、形状認識装置3で形状を認識した大葉を加工装置5に引き渡し可能な場所まで搬送するように構成されている。なお、形状認識装置3から搬送装置4への大葉の引き渡しも、吸引搬送部(以下、第二の吸引搬送部と称する)P2により行われる(図1参照)。 The transport device 4 according to the present embodiment is configured to transport a large leaf whose shape is recognized by the shape recognition device 3 to a place where it can be delivered to the processing device 5. The delivery of the large leaves from the shape recognition device 3 to the transfer device 4 is also performed by the suction transfer unit (hereinafter referred to as a second suction transfer unit) P2 (see FIG. 1).
加工装置5は、搬送装置4によって搬送されている大葉を取得して出荷するための加工を行うように構成されている。なお、搬送装置4から加工装置5への大葉の引き渡しも、吸引搬送部(以下、第三の吸引搬送部と称する)P3により行われる(図1参照)。 The processing device 5 is configured to perform processing for obtaining and shipping the large leaf transported by the transport device 4. The delivery of the large leaves from the transport device 4 to the processing device 5 is also performed by a suction transport unit (hereinafter, referred to as a third suction transport unit) P3 (see FIG. 1).
本実施形態において、大葉に対する出荷するための加工とは、複数枚の大葉を重ねて一束にまとめる加工、より具体的には、複数枚の大葉を重ねた状態で葉柄の部分を結束する加工のことであるが、例えば、大葉の包装や、タグ付け等の加工も一例として挙げられる。 In the present embodiment, the processing for shipping the large leaves refers to a process of stacking a plurality of large leaves into one bundle, more specifically, a process of bundling the petiole part in a state in which the plurality of large leaves are stacked. However, for example, packaging of large leaves, processing such as tagging, etc. may be mentioned as an example.
本実施形態に係る出荷システム1の構成は、以上の通りである。続いて、出荷システム1における形状認識装置3による大葉の形状認識処理(すなわち、形状認識プログラムを実行した場合の形状認識装置3の動作)についての説明を行うこととする。 The configuration of the shipping system 1 according to the present embodiment is as described above. Subsequently, the large leaf shape recognition process (that is, the operation of the shape recognition device 3 when the shape recognition program is executed) by the shape recognition device 3 in the shipping system 1 will be described.
出荷システム1では、収容具2から取り出した大葉の形状を形状認識装置3で認識した後、該大葉を搬送装置4により加工装置5まで搬送する。 In the shipping system 1, after the shape of the large leaf taken out from the container 2 is recognized by the shape recognition device 3, the large leaf is transported to the processing device 5 by the transport device 4.
形状認識装置3は、図12に示すように、画像取得手段60により検査画像Tを取得する(S1)。本実施形態では、収容具2から載置板部300上に載置された大葉を撮像装置31で撮像した画像を検査画像Tとして取得する。また、本実施形態では、検査画像Tを取得した後に該検査画像Tに基づいて葉領域識別情報を設定する。 The shape recognition device 3 acquires the inspection image T by the image acquisition means 60 as shown in FIG. 12 (S1). In the present embodiment, an image obtained by imaging the large leaf placed on the placement plate 300 from the container 2 by the imaging device 31 is acquired as the inspection image T. Further, in the present embodiment, after obtaining the inspection image T, leaf area identification information is set based on the inspection image T.
そして、葉領域抽出手段61が背景領域BE及び葉領域RE1を抽出する(S2)。葉領域抽出手段61では、図13に示すように、背景領域識別情報が選択され(S20)、選択した背景領域識別情報の色情報に該当する色の領域を背景領域BEであると識別する(S21)。また、葉領域抽出手段61では、葉領域識別情報の色情報に該当する領域を葉領域RE1であると識別する(S22)。 Then, the leaf area extraction unit 61 extracts the background area BE and the leaf area RE1 (S2). In the leaf area extraction means 61, as shown in FIG. 13, background area identification information is selected (S20), and an area of a color corresponding to color information of the selected background area identification information is identified as the background area BE S21). Further, the leaf area extraction means 61 identifies the area corresponding to the color information of the leaf area identification information as the leaf area RE1 (S22).
これにより、検査画像T内が葉領域RE1と背景領域BEとに区分け(色分け)される。 As a result, the inspection image T is divided (colored) into the leaf area RE1 and the background area BE.
続いて、図12に示すように、葉柄領域抽出手段62が葉柄領域RE2を抽出する(S3)。葉柄領域抽出手段62が葉柄領域RE2を抽出する処理では、図14に示すように、領域設定処理で検査画像T上に走査領域PE1を設定する(S30)。本実施形態では、領域設定処理で葉領域RE1の重心C1を中心とする円環状の走査領域PE1を設定する(図7(a)参照)。 Subsequently, as shown in FIG. 12, the stem region extraction means 62 extracts a stem region RE2 (S3). In the processing in which the stalk area extraction means 62 extracts the stalk area RE2, as shown in FIG. 14, the scan area PE1 is set on the inspection image T in the area setting process (S30). In the present embodiment, an annular scan area PE1 centered on the center of gravity C1 of the leaf area RE1 is set in the area setting process (see FIG. 7A).
次に、第一の抽出処理を行った結果、重複領域PE2が抽出された場合(S31でYes)、第二の抽出処理が重複領域PE2の中から短小領域PE3をさらに抽出する(S32)。 Next, as a result of performing the first extraction process, when the overlapping area PE2 is extracted (Yes in S31), the second extraction process further extracts the short / small area PE3 from the overlapping area PE2 (S32).
そして、第二の抽出処理が実行された後、拡張処理が走査領域PE1を拡張する(S33)。より具体的に説明すると、拡張処理は、走査領域PE1の幅を変えずに、走査領域PE1の直径のみを拡張する。 Then, after the second extraction process is executed, the extension process extends the scan area PE1 (S33). More specifically, the expansion process expands only the diameter of the scan area PE1 without changing the width of the scan area PE1.
さらに、拡張処理が実行された後は、新たな走査領域PE1を用いて第一の抽出処理、第二の抽出処理が再び実行される。 Furthermore, after the extension process is performed, the first extraction process and the second extraction process are performed again using the new scan area PE1.
第一の抽出処理、第二の抽出処理、拡張処理は、第一の抽出処理で重複領域PE2が抽出されている限り繰り返して実行される。そして、第一の抽出処理で重複領域PE2が抽出されなかった場合(S31でNo)は、領域結合処理において、第二の抽出処理で抽出した複数の短小領域PE3を一つの画像上に重ねて表示することで結合領域PE4とし(S34)、続いて、選出処理において、複数の結合領域PE4の中から最も寸法の長い領域を葉柄領域RE2として抽出する(S35)。 The first extraction process, the second extraction process, and the extension process are repeatedly performed as long as the overlapping area PE2 is extracted in the first extraction process. When the overlapping area PE2 is not extracted in the first extraction process (No in S31), a plurality of short areas PE3 extracted in the second extraction process are overlapped on one image in the area combining process. By displaying it, it is set as the bonding area PE4 (S34). Subsequently, in the selection process, the longest dimension area is extracted as the stalk area RE2 from the plurality of bonding areas PE4 (S35).
これにより、葉領域RE1の中から葉柄領域RE2が抽出される。すなわち、葉柄領域RE2(葉柄の形状)と、葉身領域RE3(葉身の形状)とが別々に認識される。 Thus, the stalk region RE2 is extracted from the leaf region RE1. That is, the stalk region RE2 (the shape of the stalk) and the blade region RE3 (the shape of the blade) are recognized separately.
葉柄領域抽出手段62が葉柄領域RE2を抽出した後、図12に示すように、葉身領域抽出手段63が葉身領域RE3を抽出する(S4)。 After the stem area extraction means 62 extracts the stem area RE2, as shown in FIG. 12, the leaf area extraction means 63 extracts a leaf area RE3 (S4).
葉身領域抽出手段63は、葉領域RE1から葉柄領域RE2に対応する領域を切り取り、残った領域を葉身領域RE3とする。これにより、葉領域RE1の中から葉身領域RE3も抽出され、大葉の葉柄、及び葉身の形状が認識(特定)される。 The blade region extraction means 63 cuts out the region corresponding to the stem region RE2 from the leaf region RE1, and sets the remaining region as a blade region RE3. As a result, the blade region RE3 is also extracted from the leaf region RE1, and the shapes of the large leaf petiole and the blade are recognized (specified).
続いて、向き導出手段64が大葉の向きを導出する(S5)。向き導出手段64は、図15に示すように、葉柄領域RE2の重心C2を導出し(S50)、葉身領域RE3の重心C3を導出し(S51)、それぞれの重心C2,C3を結ぶ直線の向きを大葉の向きとする(S52)。 Subsequently, the direction deriving means 64 derives the direction of the large leaf (S5). The direction deriving means 64 derives the center of gravity C2 of the stem region RE2 (S50), and derives the center of gravity C3 of the leaf blade region RE3 (S51), as shown in FIG. 15, and connects straight centers of gravity C2 and C3. The direction is the direction of the large leaf (S52).
以上のように、本実施形態に係る形状認識装置3によれば、検査画像Tに映る葉状農作物である大葉の像から葉柄領域RE2と葉身領域RE3、すなわち、葉柄の形状と葉身の形状とを別々に抽出することで、大葉の形状を正確に認識できるようになる。 As described above, according to the shape recognition device 3 according to the present embodiment, from the image of the large leaf which is a leaf crop on the inspection image T, the stem area RE2 and the leaf area RE3, that is, the shape of the stem and the shape of the leaf By separately extracting and, it becomes possible to accurately recognize the shape of the large leaf.
また、本実施形態では、走査領域PE1が円環状であるため、重複領域PE2に含まれている短小領域PE3を結合した結合領域PE4には、必ず葉柄領域RE2となる領域が含まれるようになっている。 Further, in the present embodiment, since the scan area PE1 has an annular shape, the joint area PE4 in which the short areas PE3 included in the overlap area PE2 are joined always includes the area to be the stalk area RE2. ing.
さらに、大葉の葉身の外周縁部は、先鋭に延出した複数の先鋭部が並ぶ形状となっているため、短小領域PE3には、葉柄領域RE2の一部に該当するものに加えて、葉身の先鋭部に該当するものも含まれることとなるが、本実施形態では、重複領域PE2から長尺な領域を除外する処理と、結合領域PE4のうち、最も寸法の長い領域を選出する処理とを行うことにより、葉柄領域RE2のみを高い精度で抽出することができる。 Furthermore, since the outer peripheral edge of the large leaf blade has a shape in which a plurality of sharpened tips are aligned, the short and small area PE3 includes a portion corresponding to a part of the stem area RE2. In this embodiment, a process of excluding a long area from the overlapping area PE2 and an area having the longest dimension in the coupling area PE4 are selected in this embodiment. By performing the process, it is possible to extract only the stem region RE2 with high accuracy.
また、本実施形態に係る形状認識装置3では、向き導出手段64が大葉の向きを導出するように構成されているため、向き導出手段64で導出した大葉の向きの情報を活用すれば、形状認識装置3で形状を認識した大葉に対して行われる搬送や加工等の作業の精度を高めることができる。 Further, in the shape recognition device 3 according to the present embodiment, since the direction deriving unit 64 is configured to derive the direction of the large leaf, if the information on the direction of the large leaf derived by the direction deriving unit 64 is utilized, The accuracy of operations such as conveyance and processing performed on large leaves whose shapes are recognized by the recognition device 3 can be enhanced.
本実施形態の出荷システム1は、複数枚の大葉を重ねた状態で葉柄の部分を結束する加工装置5を備えているため、形状認識装置3で形状を認識した大葉を結束する加工の精度を高めることができる。 The shipping system 1 according to the present embodiment includes the processing device 5 that bonds the stem part in a state in which a plurality of large leaves are stacked, so that the processing accuracy for binding the large leaves whose shape is recognized by the shape recognition device 3 It can be enhanced.
なお、本発明の形状認識プログラム及び形状認識装置は、上記一実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更を行うことは勿論である。 The shape recognition program and the shape recognition device of the present invention are not limited to the above embodiment, and it goes without saying that various changes can be made without departing from the scope of the present invention.
上記実施形態の出荷システム1では、形状認識装置3で形状を認識した大葉が搬送装置4に搬送するように構成されていたが、この構成に限定されない。出荷システム1は、例えば、形状認識装置3で形状を認識した大葉を、加工装置5や、その他の装置に直接搬送するように構成されていてもよい。 In the shipping system 1 of the above embodiment, the large leaf whose shape is recognized by the shape recognition device 3 is configured to be transported to the transport device 4, but the present invention is not limited to this configuration. The shipping system 1 may be configured, for example, to directly transport the large leaf whose shape is recognized by the shape recognition device 3 to the processing device 5 or another device.
上記実施形態において、形状認識プログラムは、撮像装置31で大葉を撮像するように構成されていたが、検査画像を取得することができれば、撮像装置31を制御するように構成されていなくてもよい。 In the above embodiment, the shape recognition program is configured to capture an image of the large leaf by the imaging device 31. However, the shape recognition program may not be configured to control the imaging device 31 as long as an inspection image can be acquired. .
上記実施形態において、画像取得手段60は、撮像装置31から直接的に検査画像を取得するように構成されていたが、この構成に限定されない。例えば、画像取得手段60は、撮像した検査画像を記憶装置33に記憶させておき、記憶装置33から必要に応じて検査画像を読み出すように構成されていてもよいし、形状認識装置3に対して有線接続されている外部の記憶装置に記憶されている検査画像や、形状認識装置3と無線通信可能な外部の記憶装置に記憶されている検査画像を読み出すように構成されていてもよい。 In the above embodiment, the image acquisition means 60 is configured to acquire the inspection image directly from the imaging device 31, but the present invention is not limited to this configuration. For example, the image acquiring unit 60 may be configured to store the captured inspection image in the storage device 33 and read out the inspection image from the storage device 33 as needed. The inspection image stored in the external storage device connected in a wired manner or the inspection image stored in the external storage device capable of wirelessly communicating with the shape recognition device 3 may be read out.
上記実施形態において、特に言及しなかったが、形状認識プログラムは、形状認識装置3の記憶装置33に記憶されていてもよいし、処理装置32がアクセス可能であれば、形状認識装置3に有線接続された外部の記憶装置に記憶されていてもよいし、形状認識装置3と無線通信可能な外部の記憶装置に記憶されていてもよい。 In the above embodiment, although not particularly mentioned, the shape recognition program may be stored in the storage device 33 of the shape recognition device 3 or if the processing device 32 can access, the shape recognition device 3 is wired It may be stored in a connected external storage device, or may be stored in an external storage device capable of wirelessly communicating with the shape recognition device 3.
また、上記実施形態では、背景領域識別情報と葉領域識別情報も形状認識装置3の記憶装置33に保存されていたが、処理装置32がアクセス可能であれば、形状認識装置3に有線接続された外部の記憶装置や、形状認識装置3と無線通信可能な外部の記憶装置に記憶されていてもよい。 In the above embodiment, the background area identification information and the leaf area identification information are also stored in the storage device 33 of the shape recognition device 3. However, if the processing device 32 can be accessed, the shape recognition device 3 is connected by wire. It may be stored in an external storage device or an external storage device capable of wirelessly communicating with the shape recognition device 3.
上記実施形態において、領域設定処理は、円環状の走査領域PE1を設定するように構成されていたが、この構成に限定されない。例えば、領域設定処理は、楕円環状の走査領域PE1を設定するように構成されていてもよいし、曲線領域のみで構成される曲線状の走査領域PE1を設定するように構成されていてもよい。 Although the area setting process is configured to set the annular scan area PE1 in the above embodiment, the present invention is not limited to this configuration. For example, the area setting process may be configured to set the scanning area PE1 having an elliptical ring shape, or may be configured to set the scanning area PE1 having a curved shape including only a curved area. .
1…出荷システム、2…収容具、3…形状認識装置、4…搬送装置、5…加工装置、30…ステージ、31…撮像装置、32…処理装置、33…記憶装置、60…画像取得手段、61…葉領域抽出手段、62…葉柄領域抽出手段、63…葉身領域抽出手段、64…向き導出手段、300…載置板部、BE…背景領域、C1…重心、C2…重心、C3…重心、L…直線、PE1…走査領域、PE2…重複領域、PE3…短小領域、PE4…結合領域、RE1…葉領域、RE2…葉柄領域、RE3…葉身領域、T…検査画像 DESCRIPTION OF SYMBOLS 1 ... shipment system, 2 ... accommodation tool, 3 ... shape recognition device, 4 ... conveyance device, 5 ... processing device, 30 ... stage, 31 ... imaging device, 32 ... processing device, 33 ... storage device, 60 ... image acquisition means , 61 leaf area extraction means 62 leaf area extraction means 63 leaf area extraction means 64 direction derivation means 300 placement plate portion BE background area C1 center of gravity C2 center of gravity C3 ... Center of gravity, L ... straight line, PE 1 ... scanning area, PE 2 ... overlapping area, PE 3 ... short and small area, PE 4 ... combined area, RE 1 ... leaf area, RE 2 ... leaf area, RE 3 ... leaf blade area, T ... inspection image
Claims (4)
検査画像に映る葉状農作物の像から葉柄の領域を抽出すべく、前記葉状農作物の重心を中心として径外方向に膨らむように湾曲する曲線領域を少なくとも含む走査領域を設定する領域設定処理、前記領域設定処理で設定した前記走査領域のうち前記葉状農作物と重なる重複領域を抽出する第一の抽出処理、前記第一の抽出処理で抽出した重複領域から所定の長さ以下の短小領域をさらに抽出する第二の抽出処理、のそれぞれの処理を前記曲線領域が前記重心を中心として前記径外方向に変位するように前記走査領域を拡張しながら複数回繰り返して実行した後に、前記第二の抽出処理で抽出した複数の短小領域を結合する領域結合処理を実行して前記葉柄の領域を抽出する葉柄領域抽出手段、
前記葉状農作物の像から前記葉柄領域抽出手段で抽出した前記葉柄の領域を除くことにより前記葉状農作物の葉身の領域を抽出する葉身領域抽出手段、として機能させる葉状農作物の形状認識プログラム。 Computer,
An area setting process for setting a scanning area including at least a curved area curving so as to expand radially outward around the center of gravity of the leaf crop in order to extract the stem area from the image of the leaf crop on the inspection image, the area A first extraction process for extracting an overlapping area overlapping with the leafy crop among the scanning areas set in the setting process, and further extracting a short area having a predetermined length or less from the overlapping area extracted in the first extraction process The second extraction process is performed after each process of the second extraction process is repeatedly performed a plurality of times while expanding the scanning area so that the curved area is displaced in the radial outer direction centering on the center of gravity A stalk area extraction unit that executes an area combination process that combines a plurality of short and small areas extracted in the above to extract the stalk area
A program for recognizing the shape of a leafy crop which functions as a blade region extracting means for extracting a leaf region of the leafy crop by removing the stalk region extracted by the stalk region extracting means from the image of the leafy crop.
前記葉柄領域抽出手段で抽出した前記葉柄の領域に関する情報、及び前記葉身領域抽出手段で抽出した前記葉身の領域に関する情報を用いて前記葉状農作物の向きを導出する向き導出手段、として機能させ、
前記向き導出手段は、前記葉柄領域抽出手段で抽出した前記葉柄の領域の重心と前記葉身領域抽出手段で抽出した前記葉身の領域の重心とを導出し、前記葉柄の領域の重心と前記葉身の領域の重心とを結ぶ直線の向きを前記葉状農作物の向きと判定する、請求項1に記載の葉状農作物の形状認識プログラム。 The computer,
Function as a direction deriving means for deriving the direction of the leafy crop using information on the area of the stem extracted by the stem area extracting means and information on the area of the leaf extracted by the leaf area extracting means ,
The direction deriving means derives the center of gravity of the area of the stem extracted by the stem area extracting means and the center of gravity of the area of the leaf extracted by the leaf area extracting means, and the center of gravity of the area of the stem and the The foliage crop shape recognition program according to claim 1, wherein the direction of the straight line connecting the center of gravity of the leaf blade region is determined as the direction of the foliage crop.
前記処理装置は、
検査画像に映る前記葉状農作物の像から葉柄の領域を抽出すべく、前記葉状農作物の重心を中心として径外方向に膨らむように湾曲する曲線領域を少なくとも含む走査領域を設定する領域設定処理、前記領域設定処理で設定した前記走査領域のうち前記葉状農作物と重なる重複領域を抽出する第一の抽出処理、前記第一の抽出処理で抽出した重複領域から所定の長さ以下の短小領域をさらに抽出する第二の抽出処理、のそれぞれの処理を前記曲線領域が前記重心を中心として前記径外方向に変位するように前記走査領域を拡張しながら複数回繰り返して実行した後に、前記第二の抽出処理で抽出した複数の短小領域を結合する領域結合処理を実行して前記葉柄の領域を抽出する葉柄領域抽出手段と、
前記葉状農作物の像から前記葉柄領域抽出手段で抽出した前記葉柄の領域を除くことにより前記葉状農作物の葉身の領域を抽出する葉身領域抽出手段と、を有する葉状農作物の形状認識装置。 A processing device for performing processing for recognizing the shape of the leafy crop from the inspection image on which the leafy crop is reflected;
The processing unit
An area setting process for setting a scan area including at least a curved area curving so as to expand radially outward around the center of gravity of the leafy crop in order to extract the area of the stem from the image of the leafy crop reflected in the inspection image; A first extraction process for extracting an overlapping area overlapping with the leafy crop among the scanning areas set in the area setting process, and further extracting a short area having a predetermined length or less from the overlapping area extracted in the first extraction process And the second extraction process is repeatedly performed a plurality of times while expanding the scanning area such that the curved area is displaced in the radially outward direction centering on the center of gravity. A stalk area extraction unit that executes an area combination process that combines a plurality of short and small areas extracted in the process to extract the stalk area.
A leaf shape crop area recognition device comprising leaf blade area extraction means for extracting a leaf blade area of the foliage crop by removing the stalk area extracted by the stalk crop area extraction means from the image of the foliage crop.
前記向き導出手段は、前記葉柄領域抽出手段で抽出した前記葉柄の領域の重心と前記葉身領域抽出手段で抽出した前記葉身の領域の重心とを導出し、前記葉柄の領域の重心と前記葉身の領域の重心とを結ぶ直線の向きを前記葉状農作物の向きと判定する、請求項3に記載の葉状農作物の形状認識装置。 It has direction deriving means for deriving the direction of the leafy crop using the information on the area of the stem extracted by the stem area extracting means and the information on the area of the leaf extracted by the leaf area extracting means,
The direction deriving means derives the center of gravity of the area of the stem extracted by the stem area extracting means and the center of gravity of the area of the leaf extracted by the leaf area extracting means, and the center of gravity of the area of the stem and the The foliage crop shape recognition device according to claim 3, wherein the direction of a straight line connecting the center of gravity of the leaf blade region is determined as the direction of the foliage crop.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017186895A JP6958810B2 (en) | 2017-09-27 | 2017-09-27 | Shape recognition program and shape recognition device for leaf-shaped crops |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017186895A JP6958810B2 (en) | 2017-09-27 | 2017-09-27 | Shape recognition program and shape recognition device for leaf-shaped crops |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019061567A true JP2019061567A (en) | 2019-04-18 |
JP6958810B2 JP6958810B2 (en) | 2021-11-02 |
Family
ID=66177451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017186895A Active JP6958810B2 (en) | 2017-09-27 | 2017-09-27 | Shape recognition program and shape recognition device for leaf-shaped crops |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6958810B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111623732A (en) * | 2020-06-03 | 2020-09-04 | 东北林业大学 | Method for measuring needle cluster ratio of coniferous forest blades |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10222680A (en) * | 1997-02-03 | 1998-08-21 | Matsushita Electric Ind Co Ltd | Method for recognizing position |
JP2002203242A (en) * | 2000-12-28 | 2002-07-19 | Japan Science & Technology Corp | Plant recognition system |
-
2017
- 2017-09-27 JP JP2017186895A patent/JP6958810B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10222680A (en) * | 1997-02-03 | 1998-08-21 | Matsushita Electric Ind Co Ltd | Method for recognizing position |
JP2002203242A (en) * | 2000-12-28 | 2002-07-19 | Japan Science & Technology Corp | Plant recognition system |
Non-Patent Citations (1)
Title |
---|
高木 一之、村上 伸一: "葉の形状認識を用いた樹木の識別に関する一検討", 映像情報メディア学会技術報告, vol. 第37巻、第8号, JPN6021035182, 19 February 2013 (2013-02-19), JP, pages 129 - 134, ISSN: 0004591511 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111623732A (en) * | 2020-06-03 | 2020-09-04 | 东北林业大学 | Method for measuring needle cluster ratio of coniferous forest blades |
Also Published As
Publication number | Publication date |
---|---|
JP6958810B2 (en) | 2021-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11983725B2 (en) | Collation/retrieval system, collation/retrieval server, image feature extraction apparatus, collation/retrieval method, and program | |
US10755134B2 (en) | Generation of training data for object-sorting work based on a difference between feature amounts of captured object images | |
JP5879725B2 (en) | Sheet metal work support system | |
EP2345515A1 (en) | Method for taking out work | |
JP5469491B2 (en) | Image processing apparatus and image processing method | |
US10325182B2 (en) | Classification of barcode tag conditions from top view sample tube images for laboratory automation | |
JP6011811B2 (en) | Distribution management system, distribution management method, and apparatus, label, and program used therefor | |
JP4866890B2 (en) | Work shape estimation device | |
JP6386311B2 (en) | Portable information terminal, information processing method, and program | |
EP2521077A1 (en) | Apparatus and method for reinspecting prescription drugs | |
JP2017088345A (en) | Inspection processing device, inspection system, inspection processing method and program | |
JP2019061567A (en) | Shape recognition program and shape recognition device for leaf-like crop | |
JP6950994B1 (en) | Fish fillet bone removal system | |
CN110672620B (en) | Chip defect detection method and system | |
US20170227448A1 (en) | Image-processing method and cell-sorting method | |
JP5441286B1 (en) | Map collation device, collation method and collation program | |
TWI569352B (en) | Marking method of wafer dies | |
KR20220069929A (en) | Pick-up robot, pick-up method and computer-readable storage medium | |
WO2020157879A1 (en) | Computer system, crop growth assistance method, and program | |
KR20190120076A (en) | Image identification apparatus, and product manufacturing apparatus provided with image identification apparatus | |
US20130214388A1 (en) | Semiconductor Wafer Adapted to Support Transparency in Partial Wafer Processing | |
JP2009135130A (en) | Apparatus and method for manufacturing semiconductor device | |
JP2000118637A (en) | Entry for storing device to decide item in accordance with shape of entered article | |
US11594047B2 (en) | Article distinguishing system | |
JP6247099B2 (en) | Food label inspection apparatus and control method for food label inspection apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171003 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200714 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200909 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210910 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210927 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6958810 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |