[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019060368A - Hermetically sealed structure - Google Patents

Hermetically sealed structure Download PDF

Info

Publication number
JP2019060368A
JP2019060368A JP2017183917A JP2017183917A JP2019060368A JP 2019060368 A JP2019060368 A JP 2019060368A JP 2017183917 A JP2017183917 A JP 2017183917A JP 2017183917 A JP2017183917 A JP 2017183917A JP 2019060368 A JP2019060368 A JP 2019060368A
Authority
JP
Japan
Prior art keywords
groove
resin ring
seal
contact width
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017183917A
Other languages
Japanese (ja)
Inventor
吉夫 東
Yoshio Azuma
吉夫 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2017183917A priority Critical patent/JP2019060368A/en
Publication of JP2019060368A publication Critical patent/JP2019060368A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sealing Devices (AREA)

Abstract

To provide a hermetically sealed structure which has low friction and exerts stable seal performance.SOLUTION: A groove side surface 30 of a low pressure side L of a seal concave groove 3 has a shape inclined toward the inside of the groove. A resin ring 4 mounted inside there has a low pressure side gradient surface 8 coming into abutting contact with the slope-like groove side surface 30 of the seal concave groove 3.SELECTED DRAWING: Figure 3

Description

本発明は、密封構造体に係り、特に、低摩擦の運動用密封構造体に関する。   The present invention relates to a sealing structure, and more particularly to a low friction moving sealing structure.

自動車の無段変速機(CVT)や、オートマチックトランスミッション(AT)等にあっては、流体密封構造として樹脂リングが使用され、低リーク,低摩耗性及び低トルク等の特性が要求される。
例えば、従来、図6に示すような横断面矩形の樹脂リング40が、横断面矩形のシール凹溝41に内装されて、相対的に回転R46又は直線運動N46する第1部材46と第2部材47の間隙42を密封する密封構造が用いられてきた。
近年、環境問題対策として自動車の低燃費化が要望され、上記樹脂リング40とシール凹溝41から成る密封構造体についても、摺動(摩擦)抵抗の低減が強く求められている。
従来例を示す図6に於て、樹脂リング40の第2部材47に対する接触幅W1 ´を小さく設定する程、摺動(摩擦)抵抗が低下できる。
即ち、樹脂リング40の底面40Aの受圧面積が、横断面矩形状の樹脂リング40の幅寸法(軸方向寸法)を小さくすれば、減少するため、第2部材47に対する押圧力Kは、接触幅W1 ´の小さな図6(B)の方が同図(A)よりも小さい。
In a continuously variable transmission (CVT) of an automobile, an automatic transmission (AT) and the like, a resin ring is used as a fluid-sealed structure, and characteristics such as low leak, low abrasion and low torque are required.
For example, conventionally, a resin ring 40 having a rectangular cross-sectional shape as shown in FIG. 6 is embedded in a seal groove 41 having a rectangular cross-sectional shape, and the first member 46 and the first member 46 that perform relative rotation R 46 or linear movement N 46 are Sealing structures have been used to seal the gap 42 between the two members 47.
In recent years, there has been a demand for reduction in fuel consumption of automobiles as a countermeasure against environmental problems, and a reduction in sliding (friction) resistance is strongly demanded also for a sealing structure composed of the resin ring 40 and the seal groove 41.
In FIG. 6 showing the conventional example, the sliding (friction) resistance can be reduced as the contact width W 1 ′ of the resin ring 40 with respect to the second member 47 is set smaller.
That is, since the pressure receiving area of the bottom surface 40A of the resin ring 40 is reduced if the width dimension (axial dimension) of the resin ring 40 having a rectangular cross section is reduced, the pressing force K against the second member 47 is the contact width The smaller FIG. 6 (B) of W 1 ′ is smaller than FIG. 6 (A).

しかしながら、図6(B)のように接触幅W1 ´を小さくすると、シール凹溝41内での樹脂リング40の姿勢が不安定となり、流体漏れの虞が生ずる。これは、樹脂リング40の全体の径が大きくなる程、顕著になる。後述する図5に於て、W1 ´= 1.1mmの樹脂リング40にあっては、試験中に姿勢が不安定となり流体漏れが多く、摩擦抵抗の測定ができなくなった。
そこで、従来、姿勢が安定して、流体漏れが少なく、かつ、摺動抵抗が小さい樹脂リング(シールリング)として複雑な切欠きや小孔や小凸部を形成したものが提案されている(特許文献1参照)。
However, if the contact width W 1 ′ is reduced as shown in FIG. 6B, the posture of the resin ring 40 in the seal groove 41 becomes unstable, which may cause a fluid leak. This becomes remarkable as the diameter of the whole resin ring 40 becomes large. In FIG. 5 described later, in the case of the resin ring 40 of W 1 ′ = 1.1 mm, the posture became unstable during the test, the fluid leaked a lot, and the frictional resistance could not be measured.
Therefore, conventionally, there has been proposed a resin ring (seal ring) having a stable posture, less fluid leakage and small sliding resistance and in which complicated notches, small holes and small convex portions are formed ( Patent Document 1).

国際公開第2014/196403号International Publication No. 2014/196403

上記特許文献1に記載の樹脂リングは、シール凹溝内での姿勢が安定して、摺動抵抗が小さいという利点があるが、複雑な切欠きや小孔や小凸部を有するため、応力集中による疲労破損を発生する虞があって、自動車のCVT,AT等の内部密封構造の故障や寿命の面で、不安があるといえる。
そこで、本発明は、接触幅を小さく設定して、摺動(摩擦)抵抗を十分低く抑制可能であり、しかも、姿勢が安定し、流体漏れを生じにくく、耐久性にも優れた密封構造体を提供することを、目的とする。
Although the resin ring described in Patent Document 1 has an advantage that the posture in the seal groove is stable and the sliding resistance is small, the resin ring has a complicated notch, a small hole, and a small convex portion, so that the stress is stressed. There is a risk that fatigue damage may occur due to concentration, and it can be said that there is concern in terms of failure or life of the internal sealing structure such as CVT or AT of the automobile.
Therefore, the present invention can set the contact width small, can suppress the sliding (friction) resistance sufficiently low, moreover, the sealed structure having a stable posture, less occurrence of fluid leakage, and excellent durability. The purpose is to provide

そこで、本発明は、シール凹溝と、該シール凹溝に内装される樹脂リングを、備えた密封構造体に於て;上記シール凹溝の低圧側の溝側面が、溝内方向へ傾いた傾斜状に形成され;上記樹脂リングは、上記溝側面に平行状に対応すると共に、受圧状態で上記溝側面に当接する低圧側勾配面を、備えている構成としている。   Therefore, in the present invention, in a sealing structure provided with a seal groove and a resin ring embedded in the seal groove; the groove side surface on the low pressure side of the seal groove is inclined toward the inside of the groove The resin ring has a low pressure side sloped surface which is parallel to the groove side surface and in contact with the groove side surface in a pressure receiving state.

本発明によれば、樹脂リングに複雑な切欠き、小孔、小凸部を有さないシンプルな横断面として、疲労破損の発生の虞がなく、耐久性と信頼性に優れ、かつ、摺動(摩擦)抵抗が安定して十分に低く抑えられ、シール凹溝内での姿勢も安定し、流体漏れも生じにくく、密封性能が優れている。   According to the present invention, as a simple cross section having no complicated notch, small hole and small convex portion in the resin ring, there is no possibility of occurrence of fatigue failure, excellent in durability and reliability, and sliding. The dynamic (friction) resistance is stably kept low enough, the posture in the seal groove is stable, the fluid does not easily leak, and the sealing performance is excellent.

本発明の実施の形態を作用と共に示した要部断面図であって、(A)は接触幅の大きい場合、(B)は接触幅の小さい場合を示す図である。It is principal part sectional drawing which showed embodiment of this invention with an effect | action, Comprising: (A) is a figure which shows the case where contact width is small, (B), when the contact width is large. 接触幅の大きい場合の圧力分布及び作用の説明のための拡大要部断面図である。It is an expanded principal part sectional view for explanation of pressure distribution in the case of a large contact width, and operation. 接触幅の小さい場合の圧力分布及び作用の説明のための拡大要部断面図である。It is an expanded principal part sectional view for explanation of pressure distribution in the case of small contact width, and operation. FEM解析によって押圧力Kの値を求めるための、横断面形状と寸法が相違する樹脂リングを、説明するための図である。It is a figure for demonstrating the resin ring in which cross-sectional shape and a dimension differ in order to obtain | require the value of the thrust K by FEM analysis. 横軸に圧力Pをとり、縦軸に摩擦抵抗Yをとって示したグラフ図であり、本発明と従来例とを比較したグラフ図である。It is a graph which took pressure P on the horizontal axis, and took friction resistance Y on the vertical axis, and is a graph which compared the present invention and a conventional example. 寸法・形状の異なる2種類の従来例を比較のために示した作用説明用要部断面図であって、(A)は接触幅が大きい場合、(B)は接触幅が小さい場合を示す。It is principal part sectional drawing for operation | movement explanatory which showed two types of conventional examples from which a dimension and a shape differ for comparison, Comprising: (A) shows a case where a contact width is small, when a contact width is large.

以下、図示の実施の形態に基づき本発明を詳説する。
図1〜図3に示すように、第1部材1にはシール凹溝3が設けられ、このシール凹溝3には樹脂リング4が内装微小間隙6を介して、又は、摺動自在に当接状として、第2部材2が、対面する。21,22は、相互に対面した対応面を示す。図1では、第1部材1が一軸心L1 廻りに回転R1 する回転軸や各種回転体から成り、又は、点線の矢印N1 とその逆方向に、直線移動するピストン等の直線往復体から成り、(図1に於ては、)対応面21は円形外周面を示し、対応面22は円形内周面を示す。
なお、逆に、第2部材2が回転軸や各種回転体とし、又は、直線往復体とすることも、自由であって、その場合には、対応面21は円形内周面、対応面22は円形外周面となる。
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.
As shown in FIGS. 1 to 3, the first member 1 is provided with a seal recess 3, and the resin ring 4 is in contact with the seal recess 3 via the internal minute gap 6 or in a slidable manner. The second member 2 faces in a contact manner. Reference numerals 21 and 22 indicate corresponding surfaces facing each other. In Figure 1, consists of the rotary shaft and various rotating body first member 1 is rotated R 1 to shaft center L 1 around, or in the opposite direction dotted arrows N 1 and linearly reciprocating pistons such that linear movement The corresponding surface 21 (shown in FIG. 1) exhibits a circular outer circumferential surface and the corresponding surface 22 exhibits a circular inner circumferential surface.
Conversely, the second member 2 may be a rotary shaft or various rotary members, or may be a linear reciprocator, in which case the corresponding surface 21 is a circular inner peripheral surface, a corresponding surface 22. Is a circular outer peripheral surface.

自動車のAT(Automatic Transmission )の内部に於て、作動油等を密封するのに使用され、あるいは、CVT(Continuously Variable Transmission)の内部に於て、作動油等を密封するのに使用される。   It is used to seal hydraulic fluid and the like inside automatic transmission (AT) of automobiles, or it is used to seal hydraulic fluid and the like inside continuous variable transmission (CVT).

図1〜図4に示すように、シール凹溝3の断面形状は、いわゆる(片)蟻溝状であって、溝底面11の幅寸法よりも、溝開口幅寸法が、小さく設定されている。
このシール凹溝3の低圧側Lの溝側面30は、溝内方向―――溝底面11に近づく方向―――に傾いた傾斜状として形成される。他方、シール凹溝3の高圧側Hの溝側面31は、断面形状に於て、溝底面11と直角を成す。
低圧側Lの上記溝側面30が溝底面11と成す角度θは、30°〜80°とする。好ましくは、35°〜70°であって、特に、望ましいのは、40°〜60°である。下限値未満では、シール凹溝3の(溝底面11寄りの)溝幅寸法が過大となり、コンパクト化を阻害する。逆に、上限値を越すと、(後述するところの)低摩擦効果がほとんど得られなくなる。
As shown in FIGS. 1 to 4, the cross-sectional shape of the seal groove 3 is a so-called (piece) dovetail shape, and the groove opening width dimension is set smaller than the width dimension of the groove bottom surface 11. .
The groove side surface 30 of the low-pressure side L of the seal recess groove 3 is formed as an inclined shape which is inclined in the in-groove direction --- a direction approaching the groove bottom surface 11--. On the other hand, the groove side surface 31 of the high-pressure side H of the seal groove 3 is perpendicular to the groove bottom surface 11 in cross-sectional shape.
The angle θ formed between the groove side surface 30 on the low pressure side L and the groove bottom surface 11 is 30 ° to 80 °. Preferably, it is 35 ° to 70 °, and particularly preferably 40 ° to 60 °. If it is less than the lower limit value, the groove width dimension (close to the groove bottom surface 11) of the seal recessed groove 3 becomes too large, which hinders the compactification. Conversely, when the upper limit is exceeded, the low friction effect (described later) can hardly be obtained.

そして、樹脂リング4は、横断面形状が、略台形状であって、傾斜状の上記溝側面30に、平行状に対応して、受圧状態で溝側面30に当接する低圧側勾配面8を、有する。材質は、充填材入りPPSやPTFEやPEEK等が使用される。また、樹脂リング4の全体形状は、閉円環状の場合と、円周一箇所に合せ目(切れ目)を有する円環状の場合が、ある。   The resin ring 4 has a substantially trapezoidal cross-sectional shape, and the low-pressure side sloped surface 8 in contact with the groove side surface 30 in the pressure receiving state corresponding to the inclined side surface 30 in parallel. Have. The material is PPS with filler, PTFE, PEEK or the like. Further, the overall shape of the resin ring 4 may be a closed circular ring or an annular ring having a seam (cut) at one circumferential position.

次に、図4に示したような従来例(従来品)(A)と、本発明実施品(B)(C)(D)について、流体圧力6MPa時の押圧力Kを、FEM解析によって求めた。なお、Tは厚さ寸法、W1 ´,W1 は接触幅を示す。
従来例(従来品)(A)と、本発明実施品(B)(C)(D)の各々が、第2部材47,2の対応面を押圧する力―――押圧力K―――の値は、次の表1の通りであった。

Figure 2019060368
Next, for the conventional example (conventional product) (A) as shown in FIG. 4 and the inventive products (B), (C) and (D), the pressing force K at a fluid pressure of 6 MPa is determined by FEM analysis The Here, T represents a thickness dimension, and W 1 ′ and W 1 represent a contact width.
Conventional Example (Conventional Product) (A) and Invention Implementation Products (B) (C) (D) Each Forces the Corresponding Surfaces of the Second Members 47 and 2 to Press---Pressing Force K-- The values of were as shown in Table 1 below.
Figure 2019060368

上記表1のFEM解析結果から以下のことが判る。
(i) 接触幅W1 ´,W1 の大小によって、押圧力Kは、大きく変化する。
(ii) 本発明に係る横断面形状であっても、従来品の矩形であっても、接触幅が同一ならば同一の押圧力Kが得られる。
(iii) 厚さ寸法Tは押圧力Kの大小に影響しない。
(iv) 接触幅W1 が最小の実施品Dの押圧力Kは最小値を示した。
(v) 第2部材47,2のシール摺接面(対応面22)と樹脂リング(A)(B)(C)(D)との摩擦係数μを同一と仮定すれば、摩擦抵抗Yは、Y=μ・Kとなる。従って、摩擦抵抗Yについては、接触幅W1 が最小の実施品Dが最小値を示し、従来品(A)及び実施品(B)(C)は(大き目の)同一値を示す。
From the FEM analysis results of Table 1 above, the following can be understood.
(i) The pressing force K changes largely depending on the magnitude of the contact widths W 1 ′ and W 1 .
(ii) The same pressing force K can be obtained if the contact width is the same regardless of the cross-sectional shape according to the present invention or the conventional product.
(iii) The thickness dimension T does not affect the magnitude of the pressing force K.
(iv) pressing force K of the contact width W 1 is the smallest of the embodiment sample D showed a minimum.
(v) Assuming that the coefficient of friction μ between the seal sliding surface (corresponding surface 22) of the second member 47, 2 (corresponding surface 22) and the resin rings (A), (B), (C), (D) is the same, the frictional resistance Y is , Y = μ · K. Therefore, the friction resistance Y, the embodiment sample D of the contact width W 1 is minimum indicates the minimum value, conventional product (A) and embodied products (B) (C) shows the same value (the larger).

以上のような考察 (i) 〜 (v) について、図2,図3に示した樹脂リング4の各部位に作用する流体圧力P、及び、第1・第2部材1,2から樹脂リング4に作用する反力を、技術的に分析・検討して、上記考察 (i) 〜 (v) に間違いのないことを、以下、説明する。
図2,図3に於て、本発明の樹脂リング4に作用する流体圧力P1 ,P2 ,P3 を3区域に分けて説明する。
Regarding the above considerations (i) to (v), the fluid pressure P acting on each portion of the resin ring 4 shown in FIGS. 2 and 3 and the resin ring 4 from the first and second members 1 and 2 In the following, technical analysis and examination of the reaction force acting on and the fact that the above considerations (i) to (v) are correct will be explained.
In FIG. 2 and FIG. 3, the fluid pressures P 1 , P 2 and P 3 acting on the resin ring 4 of the present invention will be described divided into three sections.

即ち、2点鎖線9をもって、樹脂リング4を矩形部12と三角形部13に仮に区画する。この2点鎖線9は、横断面台形状の樹脂リング4の上辺部14及び下辺部15に垂直に交わる直線である。
この三角形部13に作用する外力は、下辺の第2区域圧力P2 と、(図2,図3に於て2点鎖線9で示した)右辺に対して第3区域圧力P3 が矩形部12を介して伝達される圧力P3と、傾斜状溝側面30から勾配面8に作用する反力F20が、存在すると考えられる。
That is, the resin ring 4 is temporarily divided into the rectangular portion 12 and the triangular portion 13 by the two-dot chain line 9. The two-dot chain line 9 is a straight line that perpendicularly intersects the upper side portion 14 and the lower side portion 15 of the resin ring 4 having a trapezoidal cross section.
External force acting on the triangular portion 13, a second zone pressure P 2 of the lower side (FIG. 2, indicated by the two-dot chain line 9 At a 3) a third zone pressure P 3 is rectangular portion with respect to the right side 12 the pressure P 3 which is transmitted through the reaction force F 20 acting from the inclined groove side 30 in the inclined surface 8 is considered to be present.

しかし、第2区域圧力P2 と第3区域圧力P3 の合力は、反力F20と釣合う。言い換えると、第2区域圧力P2 は、傾斜状溝側面30からの反力F20の(図2,図3の)下方向への分力によって、打ち消される。即ち、この第2区域圧力P2 は、傾斜状溝側面30によって巧妙に打消され、第2部材2に対する押圧力K(図1及び図4(B)(C)(D)参照)の増大化に加担しない。
故に、第1区域圧力P1 のみが、第2部材2に対する押圧力Kとして、作用する。つまり、仮想矩形部12の上辺に対して、第2部材2の対応面22から作用する反力F0 は、第1区域圧力P1 と相等しくなる。
However, the resultant force of the second zone pressure P 2 and the third zone pressure P 3 is balanced with the reaction force F 20. In other words, the second zone pressure P 2 is the reaction force F 20 (in FIG. 2, FIG. 3) component force downward from the inclined groove side 30 is canceled. That is, the second zone pressure P 2 is expertly is canceled by the inclined groove sides 30, increase in the pressing force against the second member 2 K (FIGS. 1 and 4 (B) (C) ( D) refer) I do not support it.
Therefore, only the first zone pressure P 1 is, as a pressing force K with respect to the second member 2 acts. That is, the reaction force F 0 acting from the corresponding surface 22 of the second member 2 with respect to the upper side of the virtual rectangular portion 12 becomes equal to the first area pressure P 1 .

このように、前記考察 (i) 〜 (v) が技術的に正しいことが一層明らかとなった。
図3の実施例のものは、図2に比較して、接触幅W1 が小さく設定されているので、押圧力Kが小さくなり、これに比例して、摩擦抵抗Yが小さい。
Thus, it was further clarified that the above considerations (i) to (v) are technically correct.
Examples those of FIG. 3, as compared with FIG. 2, the contact width W 1 is set small, the pressing force K is reduced, in proportion to this, a small frictional resistance Y.

次に、図5は、横軸に流体圧力Pをとり、縦軸に摩擦抵抗Yをとって示したグラフ図である。なお、摩擦抵抗Yは、樹脂リングを2個使用した場合の数値である。
試験条件等は、次の通りである。
流体 : ATF油
速度 : 20mm/s
各樹脂リングの材質 : 充填剤入りPPS
各樹脂リングの全体の外径寸法 : 143mm
図5に於て、実線(イ)は図4(B)に示す実施品(B)であり、実線(ロ)は、図4(D)の接触幅W1 を、 1.1mmまで、さらに小さく設定したもの(図3参照)である。また、実線(ハ)は図4(A)に示す従来品である。破線(ニ)は図4(A)から接触幅W1 ´を減少して 1.1mmとしたものである(図6(B)相当品)。
なお、破線(ニ)は受圧状態で凹溝41内での姿勢が安定せず、流体漏れのため試験が続行不可であった。
Next, FIG. 5 is a graph showing the fluid pressure P on the horizontal axis and the frictional resistance Y on the vertical axis. In addition, frictional resistance Y is a numerical value at the time of using two resin rings.
The test conditions are as follows.
Fluid: ATF oil
Speed: 20 mm / s
Material of each resin ring: PPS with filler
Overall outer diameter of each resin ring: 143 mm
In FIG. 5, the solid line (b) is the embodiment (B) shown in FIG. 4 (B), and the solid line (b) is a smaller contact width W 1 of FIG. 4 (D) to 1.1 mm. It is set (see FIG. 3). The solid line (c) is the conventional product shown in FIG. 4 (A). The broken line (d) is obtained by reducing the contact width W 1 ′ from FIG. 4 (A) to 1.1 mm (equivalent to FIG. 6 (B)).
The broken line (d) indicates that the posture in the concave groove 41 is not stable in the pressure receiving state, and the test can not be continued because of fluid leakage.

この図5の実線(ロ)から、本発明の実施品は、凹溝3内で圧力Pの高低にかかわらず姿勢が安定しており、接触幅W1 を小さくして、摩擦抵抗Yを十分軽減することができることが、判る。しかも、流体漏れの少ない点も確認できた。さらに、スティックスリップの発生し難い利点も確認できた。 From the solid line in FIG. 5 (b), the embodiment sample of the present invention, grooves are posture regardless of the level of the pressure P is stabilized within 3, to reduce the contact width W 1, the frictional resistance Y sufficiently It can be seen that it can be mitigated. Moreover, it was also confirmed that there was little fluid leakage. Furthermore, the advantage that stick-slip does not occur easily was also confirmed.

ところで、本発明では、いわゆる蟻溝状のシール凹溝を有しているため、一体溝とすると樹脂リング4の装着が困難な場合もある。そのような場合には、シール凹溝を分割構造として、樹脂リング4の装着(組立て)を容易(可能)とすればよい。あるいは、樹脂リング4を、合せ部(合口)のある円環状とすればよい。
また、本発明に係る樹脂リング4は、その横断面形状が、くさび状であり、接触幅W1 を小さくして摩擦抵抗Yを十分低減できると共に、断面積を大きく確保可能なため、シール凹溝3内での姿勢が安定し、流体漏れが極めて少ない。
By the way, in the present invention, since it has a so-called dovetail-shaped seal ditch, there is a case where it is difficult to mount the resin ring 4 if it is an integral groove. In such a case, the seal groove may be divided and the mounting (assembly) of the resin ring 4 may be facilitated. Alternatively, the resin ring 4 may be formed into an annular shape having a joint portion (joint).
Further, the resin ring 4 according to the present invention, the cross-sectional shape is a wedge shape, it is possible to sufficiently reduce the frictional resistance Y by reducing the contact width W 1, for a cross-sectional area greater can be secured, sealed concave The posture in the groove 3 is stable and the fluid leakage is extremely small.

本発明は、以上詳述したように、シール凹溝3と、該シール凹溝3に内装される樹脂リング4を、備えた密封構造体に於て;上記シール凹溝3の低圧側Lの溝側面30が、溝内方向へ傾いた傾斜状に形成され;上記樹脂リング4は、上記溝側面30に平行状に対応すると共に、受圧状態で上記溝側面30に当接する低圧側勾配面8を、備えている構成であるので、接触幅W1 を小さく設定して、摩擦抵抗Yを十分低く抑えることが可能となる。しかも、シール凹溝3内で樹脂リング4の姿勢が常に安定し、上記接触幅W1 を小さく設定しても、樹脂リング4の剛性を十分に大きく設定可能である。このようにして、流体漏れも生じにくく、耐久性も優れ、安定した高い密封性能を発揮する。シール凹溝に、いわゆる蟻溝を適用するのは、従来は、静的な固定密封構造のみであったのに対し、本発明では、動的(摺動)部位の密封に、適用可能とした発明である。特に、自動車の無段変速機(CVT)、オートマチックトランスミッション(AT)等に好適であって、低トルク,低摩耗性,低リーク等の厳しい要求にも対応可能な密封構造体である。 According to the present invention, as described in detail above, in the sealing structure provided with the seal recess 3 and the resin ring 4 embedded in the seal recess 3, the low pressure side L of the seal recess 3 is provided. The groove side surface 30 is formed in an inclined shape which is inclined in the groove inward direction; the resin ring 4 corresponds to the groove side surface 30 in a parallel manner, and the low pressure side gradient surface 8 abuts against the groove side surface 30 in a pressure receiving state. and since it is in that configuration that includes, by setting smaller the contact width W 1, it can be suppressed sufficiently low frictional resistance Y. Moreover, always pose the resin ring 4 with the sealing grooves within 3 stably, setting small the contact width W 1, it is sufficiently large can be set the rigidity of the resin ring 4. In this way, fluid leakage is less likely to occur, durability is excellent, and stable high sealing performance is exhibited. In the prior art, it was only a static fixed sealing structure that applied so-called dovetail grooves to the seal groove, but in the present invention, the present invention is applicable to sealing of dynamic (sliding) parts. It is an invention. In particular, the sealing structure is suitable for a continuously variable transmission (CVT) of a car, an automatic transmission (AT) and the like, and can meet severe requirements such as low torque, low wear, and low leak.

3 シール凹溝
4 樹脂リング
8 低圧側勾配面
30 溝側面
L 低圧側
1 接触幅
3 Seal groove 4 Resin ring 8 Low pressure side gradient surface
30 Groove side L low pressure side W 1 contact width

Claims (1)

シール凹溝(3)と、該シール凹溝(3)に内装される樹脂リング(4)を、備えた密封構造体に於て、
上記シール凹溝(3)の低圧側(L)の溝側面(30)が、溝内方向へ傾いた傾斜状に形成され、
上記樹脂リング(4)は、上記溝側面(30)に平行状に対応すると共に、受圧状態で上記溝側面(30)に当接する低圧側勾配面(8)を、備えていることを特徴とする密封構造体。
In a sealing structure provided with a seal groove (3) and a resin ring (4) embedded in the seal groove (3),
The groove side surface (30) on the low pressure side (L) of the seal recess groove (3) is formed in an inclined shape inclining in the groove inward direction,
The resin ring (4) has a low pressure side gradient surface (8) corresponding to the groove side surface (30) in parallel and in contact with the groove side surface (30) in a pressure receiving state. Sealed structure.
JP2017183917A 2017-09-25 2017-09-25 Hermetically sealed structure Pending JP2019060368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017183917A JP2019060368A (en) 2017-09-25 2017-09-25 Hermetically sealed structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017183917A JP2019060368A (en) 2017-09-25 2017-09-25 Hermetically sealed structure

Publications (1)

Publication Number Publication Date
JP2019060368A true JP2019060368A (en) 2019-04-18

Family

ID=66177208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017183917A Pending JP2019060368A (en) 2017-09-25 2017-09-25 Hermetically sealed structure

Country Status (1)

Country Link
JP (1) JP2019060368A (en)

Similar Documents

Publication Publication Date Title
US10359114B2 (en) Sealing device
JP2017150674A (en) Seal ring
US9488280B2 (en) Seal assembly
WO2019208182A1 (en) Piston ring and compressor
JP2015158215A (en) seal ring
JP5801033B2 (en) Seal structure
JP2020046077A (en) Seal ring
JP6428916B2 (en) Seal ring
WO2016113923A1 (en) Seal ring and sealing structure
JP5807095B2 (en) SEAL RING AND SEALING DEVICE
JP2019060368A (en) Hermetically sealed structure
US10619501B2 (en) Sealing element
JP6432670B2 (en) Sealing device and sealing structure
JP2019039467A (en) Shaft seal device
WO2015020075A1 (en) Seal ring
JP2018076903A (en) Sealing device
JP6910260B2 (en) Sealed structure
JP2018173089A (en) Arrangement structure for sealant
JP6458905B2 (en) Seal ring
WO2022264255A1 (en) Sealing device
JP2017133571A (en) Sealing device
WO2016140056A1 (en) Seal ring
JP2017145878A (en) Sealing device and sealing structure
JP2017150504A (en) Sealing structure
JP2023017316A (en) Sealing device and pressure buffering seal