JP2019054613A - Motor controller, motor device, motor control method, and lifting device - Google Patents
Motor controller, motor device, motor control method, and lifting device Download PDFInfo
- Publication number
- JP2019054613A JP2019054613A JP2017176536A JP2017176536A JP2019054613A JP 2019054613 A JP2019054613 A JP 2019054613A JP 2017176536 A JP2017176536 A JP 2017176536A JP 2017176536 A JP2017176536 A JP 2017176536A JP 2019054613 A JP2019054613 A JP 2019054613A
- Authority
- JP
- Japan
- Prior art keywords
- value
- speed
- limit
- software
- speed limit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Control Of Electric Motors In General (AREA)
Abstract
Description
本発明は、製造分野の製造組立て設備、運輸分野の移送設備などに用いるモータの制御装置及びモータと制御装置を有するモータ装置に関するものである。 The present invention relates to a motor control device used for manufacturing assembly equipment in the manufacturing field, transfer equipment in the transportation field, and the like, and a motor device having the motor and the control device.
製造分野の製造組立て設備に用いる産業用ロボット、運輸分野の移送設備などに用いるパワーアシスト機器などでは、例えば関節のような可動部分にサーボモータが用いられている。このようなモータにトルクセンサを繋げて動力の出力軸のねじりトルクを測定して、出力軸のねじりトルクを制御できるモータ装置によって、円滑かつ安全性を高めた機器が公知である。このモータ装置の制御においてトルク制御を行う方法が開示されている。(特許文献1) In industrial robots used in manufacturing and assembly equipment in the manufacturing field, power assist devices used in transport equipment in the transportation field, etc., servo motors are used for movable parts such as joints. There is known a device that is smooth and improved in safety by a motor device that can connect a torque sensor to such a motor, measure the torsion torque of the output shaft of the power, and control the torsion torque of the output shaft. A method of performing torque control in the control of the motor device is disclosed. (Patent Document 1)
このモータ装置は、例えば重量の大きい荷役物を昇降させる昇降装置に採用され、例えばロープやチェーンを巻胴に巻回して鉛直上下方向にモータによるアシストで重量バランスさせ僅かな操作力で昇降移動させるバランス型昇降装置が開示されている。(特許文献2) For example, this motor device is used in a lifting device that lifts and lowers heavy loads. For example, a rope or a chain is wound around a winding drum, and the weight is balanced with the assistance of a motor in the vertical vertical direction and moved up and down with a slight operating force. A balance type lifting device is disclosed. (Patent Document 2)
しかしながら、このようなバランス型昇降装置では、種々の作業を行うために、モータのねじりトルクを制御して荷役物の重量バランスをとるだけでなく、昇降速度の制限や停止位置の設定などが必要とされている。すなわちこのような装置に組み込まれるモータ装置はねじりトルク制御と同時に、速度や位置の制御を随時行う必要があって、従来の単なるねじりトルク制御だけでは対応が困難であった。 However, in such a balance type lifting device, in order to perform various operations, it is necessary not only to control the torsional torque of the motor to balance the weight of the cargo but also to limit the lifting speed and set the stop position. It is said that. That is, a motor device incorporated in such a device needs to perform speed and position control as needed at the same time as torsion torque control, and it has been difficult to cope with only conventional torsion torque control.
このような問題に鑑みて、本発明は、ねじりトルク制御と同時に、速度や位置の制限を加えた動作を行うためのモータ制御装置、モータ装置、及びモータ制御方法を提供することを目的としている。 In view of such a problem, an object of the present invention is to provide a motor control device, a motor device, and a motor control method for performing an operation with speed and position restrictions simultaneously with torsion torque control. .
請求項1に記載のモータ制御装置は、上記の目的を達成するために、モータ部と、
モータ部の出力軸に発生させるねじりトルクを検出してねじりトルク値を出力するトルク検出部と、
モータ部の回転位置を検出して位置値を出力する位置検出部と、
電気的にそれぞれに繋がってモータ部の制御を行うモータ制御装置であって、
トルク目標値に応じて、トルク検出部からのねじりトルク値を基に第1の制御値を算出するトルク制御部と、
モータ部の回転速度の範囲を規定する制限速度値を設定する制限速度設定部と、
位置検出部から取得した位置値を速度に変換して得た速度値を基にして、速度値が制限速度値を超過した時には速度値から制限速度値を減算した速度補正値を、速度値が制限速度値内の時にはゼロの速度補正値を算出する制限速度補正部と、
第1の制御値から制限速度値を減算した第2の制御値に基づいてモータ部に出力する電流指令値を算出するモータ制御指令部と、を備えている。
In order to achieve the above object, the motor control device according to
A torque detector that detects torsion torque generated on the output shaft of the motor unit and outputs a torsion torque value;
A position detection unit that detects the rotational position of the motor unit and outputs a position value;
A motor control device that controls the motor unit electrically connected to each other,
A torque control unit that calculates a first control value based on a torsional torque value from the torque detection unit according to a torque target value;
A speed limit setting unit for setting a speed limit value that defines a range of the rotation speed of the motor unit;
Based on the speed value obtained by converting the position value acquired from the position detector to speed, when the speed value exceeds the speed limit value, the speed correction value obtained by subtracting the speed limit value from the speed value is A speed limit correction unit that calculates a speed correction value of zero when it is within the speed limit value;
A motor control command unit that calculates a current command value to be output to the motor unit based on a second control value obtained by subtracting the speed limit value from the first control value.
請求項2に記載のモータ制御装置は、上記の目的を達成するために、制限速度設定部は、位置検出部から取得したモータ部の位置値に応じて、制限速度値の上下端をなす第1制限速度値と第2制限速度値を設定して制限速度補正部へ出力するように構成されている。 According to a second aspect of the present invention, in order to achieve the above-mentioned object, the speed limit setting unit is configured to set upper and lower ends of the speed limit value according to the position value of the motor unit acquired from the position detection unit. The first speed limit value and the second speed limit value are set and output to the speed limit correction unit.
請求項3に記載のモータ制御装置は、上記の目的を達成するために、モータ制御装置は、モータ部の回転範囲を第1のソフトウエアリミット位置と第2のソフトウエアリミット位置とで規定し、
制限速度設定部は、
モータ部の回転位置が、第1のソフトウエアリミット位置よりも第2のソフトウエアリミット位置のある側で第1のソフトウエアリミット位置と第1の所定距離にある第1の位置から、第2のソフトウエアリミット位置よりも第1のソフトウエアリミット位置のある側で第2のソフトウエアリミット位置と第2の所定距離にある第2の位置までの区間では、第1制限速度値を第1の速度値とし、第2制限速度値を第2の速度値とし、
モータ部の回転位置が、第2の位置から、第2のソフトウエアリミット位置までの区間では、第1制限速度値を、第1の速度値からその絶対値を徐々に減少させて第2のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とし、第2制限速度値を第2の速度値とし、
モータ部の回転位置が、第2のソフトウエアリミット位置を越えて第2のソフトウエアリミット位置と第3の所定距離にある第3の位置から、第2のソフトウエアリミット位置までの区間では、第1制限速度値を、第2の速度値からその絶対値を徐々に減少させて第2のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とし、第2制限速度値を第2の速度値とし、
モータ部の回転位置が、第1の位置から、第1のソフトウエアリミット位置までの区間では、第1制限速度値を第1の速度値とし、第2制限速度値を、第2の速度値からその絶対値を徐々に減少させて第1のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とし、
モータ部の回転位置が、第1のソフトウエアリミット位置を越えて第1のソフトウエアリミット位置と第4の所定距離にある第4の位置から、第1のソフトウエアリミット位置までの区間では、第1制限速度値を第1の速度値とし、第2制限速度値を、第1の速度値からその絶対値を徐々に減少させて第1のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とするように構成している。
In order to achieve the above object, the motor control device according to
The speed limit setting section
The rotation position of the motor unit is changed from the first position at the first predetermined distance from the first software limit position to the second position on the side where the second software limit position is located with respect to the first software limit position. In the section from the second software limit position to the second position at the second predetermined distance on the side where the first software limit position is located, the first speed limit value is set to the first speed limit value. And the second speed limit value as the second speed value,
When the rotational position of the motor unit is from the second position to the second software limit position, the first speed limit value is gradually decreased from the first speed value to the second speed limit. The speed is on the virtual line that is zero at the software limit position, the second speed limit value is the second speed value,
In the section from the third position where the rotational position of the motor part exceeds the second software limit position and is at a third predetermined distance from the second software limit position to the second software limit position, The absolute value of the first speed limit value is gradually decreased from the second speed value to be a speed on an imaginary line that becomes zero at the second software limit position, and the second speed limit value is set to the second speed limit value. Speed value,
In a section where the rotational position of the motor unit is from the first position to the first software limit position, the first speed limit value is the first speed value, and the second speed limit value is the second speed value. The absolute value is gradually reduced to a speed on the imaginary line that becomes zero at the first software limit position,
In the section from the fourth position at which the rotational position of the motor unit exceeds the first software limit position and is at a fourth predetermined distance from the first software limit position to the first software limit position, The first speed limit value is set as the first speed value, and the second speed limit value is gradually reduced from the first speed value to an absolute value that is zero at the first software limit position. It is configured to have a certain speed.
請求項4に記載のモータ制御装置は、上記の目的を達成するために、制限速度設定部は、モータ部の回転位置がモータ部の移動目標位置と第1のソフトウエアリミット位置の中間にある時は、
モータ部の回転位置が、第1の位置から、移動目標位置よりも第1のソフトウエアリミット位置のある側で移動目標位置と第5の所定距離にある第5の位置までの区間では、第1制限速度値を第1の速度値とし、第2制限速度値を第2の速度値とし、
モータ部の回転位置が、第5の位置から、移動目標位置までの区間では、第1制限速度値を第1の速度値からその絶対値を徐々に減少させて移動目標位置にてゼロとなる仮想線上にある速度とし、第2制限速度値を第2の速度値とし、
モータ部の回転位置が、移動目標位置よりも第2のソフトウエアリミット位置のある側で移動目標位置と第6の所定距離にある第6の位置から、移動目標位置までの区間では、第1制限速度値を第2の速度値からその絶対値を徐々に減少させて第2のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とし、第2制限速度値を第2の速度値とする設定を行うように構成している。
In the motor control device according to
In the section from the first position to the fifth position at the fifth predetermined distance from the movement target position on the side where the first software limit position is located with respect to the movement target position, the rotation position of the motor unit is 1 speed limit value is the first speed value, 2 speed limit value is the second speed value,
In the section from the fifth position to the movement target position, the rotation position of the motor unit gradually decreases the absolute value of the first speed limit value from the first speed value to zero at the movement target position. The speed is on the imaginary line, the second speed limit value is the second speed value,
In the section from the sixth position at the sixth predetermined distance to the movement target position on the side where the second software limit position is located with respect to the movement target position to the movement target position, the rotation position of the motor unit is the first. The absolute value of the speed limit value is gradually decreased from the second speed value to obtain a speed on an imaginary line that becomes zero at the second software limit position, and the second speed limit value is set to the second speed value. It is configured to perform settings.
請求項5に記載のモータ制御装置は、上記の目的を達成するために、制限速度設定部は、モータ部の回転位置がモータ部の移動目標位置と第2のソフトウエアリミット位置の中間にある時は、
モータ部の回転位置が、移動目標位置よりも第2のソフトウエアリミット位置のある側で移動目標位置と第7の所定距離にある第7の位置から、第2の位置までの区間では、第1制限速度値を第1の速度値とし、第2制限速度値を第2の速度値とし、
モータ部の回転位置が、第7の位置から、移動目標位置までの区間では、第1制限速度値を第1の速度値とし、第2制限速度値を第2の速度値からその絶対値を徐々に減少させて移動目標位置にてゼロとなる仮想線上にある速度とし、
モータ部の回転位置が、移動目標位置よりも第1のソフトウエアリミット位置のある側で移動目標位置と第8の所定距離にある第8の位置から、移動目標位置までの区間では、第1制限速度値を第1の速度値とし、第2制限速度値を第1の速度値からその絶対値を徐々に減少させて移動目標位置にてゼロとなる仮想線上にある速度とする設定を行うように構成している。
を有している。
In the motor control device according to
In the section from the seventh position where the rotational position of the motor unit is at the seventh predetermined distance from the movement target position on the side where the second software limit position is located relative to the movement target position, to the second position, 1 speed limit value is the first speed value, 2 speed limit value is the second speed value,
When the rotational position of the motor unit is from the seventh position to the movement target position, the first speed limit value is the first speed value, and the second speed limit value is the absolute value from the second speed value. Decrease gradually and make the speed on the imaginary line zero at the movement target position,
In the section from the eighth position at the eighth predetermined distance to the movement target position on the side where the first software limit position is located with respect to the movement target position to the movement target position, the rotation position of the motor unit is the first. The speed limit value is set as the first speed value, and the second speed limit value is set so that the absolute value is gradually decreased from the first speed value so that the speed is on the virtual line that becomes zero at the movement target position. It is configured as follows.
have.
請求項6に記載のモータ装置は、上記の目的を達成するために、請求項1から5のいずれか一項に記載のモータ制御装置と、
モータ制御装置に電気的にそれぞれ接続される、モータ部と、トルク検出部と、位置検出部とを備えている。
In order to achieve the above object, the motor device according to
A motor unit, a torque detection unit, and a position detection unit that are electrically connected to the motor control device are provided.
請求項7に記載の昇降装置は、上記の目的を達成するために、請求項6に記載のモータ装置を備えている。 A lifting device according to a seventh aspect includes the motor device according to the sixth aspect in order to achieve the above object.
請求項8に記載のモータ制御方法は、上記の目的を達成するために、トルク目標値の入力に応じてモータ部に接続された出力軸に生じるねじりトルクをトルク検出部で検出して、トルク目標値からトルク検出部の出力値を減算して第1の制御値を算出する第1のステップと、
モータ部の回転速度の制限速度値を設定する制限速度値設定ステップと、
モータ部の回転位置を検出する位置検出部から取得した位置値から速度値を演算する速度演算ステップと、
速度値が制限速度値を超過した時には速度値から制限速度値を減算したものを、速度値が制限速度値内の時にはゼロを、速度補正値として出力する制限速度補正ステップと、
第1の制御値から速度補正値を減算して第2の制御値を算出して、第2の制御値に基づいてモータ部に入力する電流指令値を算出する第2のステップと、
を含んでいる。
In order to achieve the above object, the motor control method according to claim 8 detects torsion torque generated in the output shaft connected to the motor unit according to the input of the torque target value, and detects the torque by the torque detection unit. A first step of subtracting the output value of the torque detector from the target value to calculate a first control value;
A speed limit setting step for setting a speed limit value of the rotation speed of the motor unit;
A speed calculation step for calculating a speed value from a position value acquired from a position detection unit for detecting a rotation position of the motor unit;
A speed limit correction step that outputs a value obtained by subtracting the speed limit value from the speed value when the speed value exceeds the speed limit value, zero as a speed correction value when the speed value is within the speed limit value,
A second step of subtracting the speed correction value from the first control value to calculate a second control value, and calculating a current command value to be input to the motor unit based on the second control value;
Is included.
請求項9に記載のモータ制御方法は、上記の目的を達成するために、制限速度値設定ステップが、位置検出部から取得したモータ部の位置値に応じて、制限速度値の上下端をなす第1制限速度値と第2制限速度値を設定して制限速度補正ステップへ出力するように構成している。 In the motor control method according to claim 9, in order to achieve the above object, the speed limit value setting step forms upper and lower limits of the speed limit value according to the position value of the motor unit acquired from the position detection unit. The first speed limit value and the second speed limit value are set and output to the speed limit correction step.
請求項10に記載のモータ制御方法は、上記の目的を達成するために、モータ部は第1のソフトウエアリミット位置と第2のソフトウエアリミット位置とで回転範囲を規定され、
制限速度値設定ステップは、
モータ部の回転位置が、第1のソフトウエアリミット位置よりも第2のソフトウエアリミット位置のある側で第1のソフトウエアリミット位置と第1の所定距離にある第1の位置から、第2のソフトウエアリミット位置よりも第1のソフトウエアリミット位置のある側で第2のソフトウエアリミット位置と第2の所定距離にある第2の位置までの区間では、第1制限速度値を第1の速度値とし、かつ第2制限速度値を第2の速度値とし、
モータ部の回転位置が、第2の位置から、第2のソフトウエアリミット位置までの区間では、第1制限速度値を第1の速度値からその絶対値を徐々に減少させて第2のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とし、かつ第2制限速度値を第2の速度値とし、
モータ部の回転位置が、第2のソフトウエアリミット位置を越えて第2のソフトウエアリミット位置と第3の所定距離にある第3の位置から、第2のソフトウエアリミット位置までの区間では、第1制限速度値を、第2の速度値からその絶対値を徐々に減少させて第2のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とし、かつ第2制限速度値を第2の速度値とし、
モータ部の回転位置が、第1の位置から、第1のソフトウエアリミット位置までの区間では、第1制限速度値を第1の速度値とし、かつ第2制限速度値を第2の速度値からその絶対値を徐々に減少させて第1のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とし、
モータ部の回転位置が、第1のソフトウエアリミット位置を越えて第1のソフトウエアリミット位置と第4の所定距離にある第4の位置から、第1のソフトウエアリミット位置までの区間では、第1制限速度値を第1の速度値とし、かつ第2制限速度値を、第1の速度値からその絶対値を徐々に減少させて第1のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とする設定をそれぞれ行うように構成している。
In the motor control method according to
The speed limit value setting step
The rotation position of the motor unit is changed from the first position at the first predetermined distance from the first software limit position to the second position on the side where the second software limit position is located with respect to the first software limit position. In the section from the second software limit position to the second position at the second predetermined distance on the side where the first software limit position is located, the first speed limit value is set to the first speed limit value. And the second speed limit value is the second speed value,
In the interval from the second position to the second software limit position, the rotation speed of the motor unit is gradually decreased from the first speed value to the second software limit position. The speed is on a virtual line that is zero at the wear limit position, and the second speed limit value is the second speed value.
In the section from the third position where the rotational position of the motor part exceeds the second software limit position and is at a third predetermined distance from the second software limit position to the second software limit position, The absolute value of the first speed limit value is gradually reduced from the second speed value to a speed on the imaginary line that becomes zero at the second software limit position, and the second speed limit value is set to the second speed value. Speed value of
In a section where the rotational position of the motor unit is from the first position to the first software limit position, the first speed limit value is the first speed value, and the second speed limit value is the second speed value. The absolute value is gradually reduced to a speed on the imaginary line that becomes zero at the first software limit position,
In the section from the fourth position at which the rotational position of the motor unit exceeds the first software limit position and is at a fourth predetermined distance from the first software limit position to the first software limit position, On the imaginary line where the first speed limit value is the first speed value and the second speed limit value is gradually reduced from the first speed value to its absolute value and becomes zero at the first software limit position. The speed is set so as to be set respectively.
請求項11に記載のモータ制御方法は、上記の目的を達成するために、制限速度値設定ステップは、
モータ部の回転位置がモータ部の移動目標位置と第1のソフトウエアリミット位置の中間にある時は、
モータ部の回転位置が、第1の位置から、移動目標位置よりも第1のソフトウエアリミット位置のある側で移動目標位置と第5の所定距離にある第5の位置までの区間では、第1制限速度値を第1の速度値とし、かつ第2制限速度値を第2の速度値とし、
モータ部の回転位置が、第5の位置から、移動目標位置までの区間では、第1制限速度値を第1の速度値からその絶対値を徐々に減少させて移動目標位置にてゼロとなる仮想線上にある速度とし、かつ第2制限速度値を第2の速度値とし、
モータ部の回転位置が、移動目標位置よりも第2のソフトウエアリミット位置のある側で移動目標位置と第6の所定距離にある第6の位置から、移動目標位置までの区間では、第1制限速度値を第2の速度値からその絶対値を徐々に減少させて第2のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とし、かつ第2制限速度値を第2の速度値とする設定をそれぞれ行うように構成している。
In the motor control method according to
When the rotational position of the motor unit is between the movement target position of the motor unit and the first software limit position,
In the section from the first position to the fifth position at the fifth predetermined distance from the movement target position on the side where the first software limit position is located with respect to the movement target position, the rotation position of the motor unit is 1 speed limit value is the first speed value and 2 speed limit value is the second speed value,
In the section from the fifth position to the movement target position, the rotation position of the motor unit gradually decreases the absolute value of the first speed limit value from the first speed value to zero at the movement target position. The speed is on the imaginary line, and the second speed limit value is the second speed value.
In the section from the sixth position at the sixth predetermined distance to the movement target position on the side where the second software limit position is located with respect to the movement target position to the movement target position, the rotation position of the motor unit is the first. The absolute value of the speed limit value is gradually decreased from the second speed value to obtain a speed on a virtual line that becomes zero at the second software limit position, and the second speed limit value is set to the second speed value. Are configured to perform each of the following settings.
請求項12に記載のモータ制御方法は、上記の目的を達成するために、制限速度値設定ステップは、
モータ部の回転位置がモータ部の移動目標位置と第2のソフトウエアリミット位置の中間にある時は、
モータ部の回転位置が、移動目標位置よりも移動目標位置の第2のソフトウエアリミット位置のある側で移動目標位置と第7の所定距離にある第7の位置から、第2の位置までの区間では、第1制限速度値を第1の速度値とし、かつ第2制限速度値を第2の速度値とし、
モータ部の回転位置が、第7の位置から、移動目標位置までの区間では、第1制限速度値を第1の速度値とし、かつ第2制限速度値を第2の速度値からその絶対値を徐々に減少させて移動目標位置にてゼロとなる仮想線上にある速度とし、
モータ部の回転位置が、移動目標位置よりも第1のソフトウエアリミット位置のある側で移動目標位置と第8の所定距離にある第8の位置から、移動目標位置までの区間では、第1制限速度値を第1の速度値とし、かつ第2制限速度値を第1の速度値からその絶対値を徐々に減少させて移動目標位置にてゼロとなる仮想線上にある速度とする設定を行うように構成している。
In order to achieve the above object, the motor control method according to
When the rotation position of the motor unit is between the movement target position of the motor unit and the second software limit position,
The rotation position of the motor unit is from the seventh position at the seventh predetermined distance to the movement target position on the side where the second software limit position of the movement target position is located from the movement target position to the second position. In the section, the first speed limit value is the first speed value, and the second speed limit value is the second speed value.
In a section where the rotational position of the motor unit is from the seventh position to the movement target position, the first speed limit value is the first speed value, and the second speed limit value is the absolute value from the second speed value. Is gradually reduced to a speed on the imaginary line that becomes zero at the movement target position,
In the section from the eighth position at the eighth predetermined distance to the movement target position on the side where the first software limit position is located with respect to the movement target position to the movement target position, the rotation position of the motor unit is the first. Setting the speed limit value as the first speed value and setting the second speed limit value as the speed on the imaginary line that is zero at the movement target position by gradually decreasing the absolute value from the first speed value. Configured to do.
請求項1に記載の発明のモータ制御装置によれば、モータ部の現在速度と設定された第1制限速度及び第2制限速度を両端リミットとした制限速度範囲とを比較して、制限速度範囲を超過している場合は、これをキャンセルする補正値を用いてモータ部を制御するように構成したので、ねじりトルク制御と同時に、速度制限を加えた動作を可能にするモータ制御装置を提供できる。 According to the motor control device of the first aspect of the present invention, the current speed of the motor unit is compared with the speed limit range in which the set first speed limit and the second speed limit are both end limits, and the speed limit range is set. Since the motor unit is controlled by using a correction value for canceling this when it exceeds the torsional torque control, it is possible to provide a motor control device that enables an operation with speed limitation simultaneously with the torsional torque control. .
請求項2に記載の発明のモータ制御装置によれば上記効果に加えて、位置検出部から取得したモータ部の位置値に応じて、制限速度値を設定することから、ねじりトルク制御と同時に、モータ部の位置に対応した速度の制限を可能にするモータ制御装置を提供できる。 According to the motor control device of the second aspect of the present invention, in addition to the above effect, the speed limit value is set according to the position value of the motor unit acquired from the position detection unit. It is possible to provide a motor control device that can limit the speed corresponding to the position of the motor unit.
請求項3に記載の発明のモータ制御装置によれば上記効果に加えて、ソフトウエアリミット位置付近での減速から停止までの動作を円滑にするモータ制御装置を提供できる。 According to the motor control apparatus of the third aspect of the present invention, in addition to the above effects, a motor control apparatus that smoothes the operation from deceleration to stop in the vicinity of the software limit position can be provided.
請求項4又は5に記載の発明のモータ制御装置によれば上記効果に加えて、移動目標位置付近での減速から停止までの動作を円滑にするモータ制御装置を提供できる。
According to the motor control device of the invention described in
以下、本発明の実施形態に係るモータ制御装置とモータ装置について、図面を基に詳細な説明を行う。図1は本発明の実施形態であるモータ装置の構成模式図である。 Hereinafter, a motor control device and a motor device according to embodiments of the present invention will be described in detail based on the drawings. FIG. 1 is a schematic configuration diagram of a motor device according to an embodiment of the present invention.
本発明のモータ装置1は、モータ部3と、モータ部3の負荷側に接続されたトルク検出部6と、モータ部3の反負荷側に接続された位置検出部4と、トルク検出部6、モータ部3及び位置検出部4に配線8a、8b、8cにてそれぞれ電気的に接続されるモータ制御装置2とで構成されている。
The
モータ部3は例えば減速機5を取り付けたサーボモータであって、モータによって発生するトルクを減速機5によってモータの回転を減速すると共に負荷を駆動するのに必要なトルクに増幅させている。本発明の実施形態では減速機5は波動歯車減速機を使用している。波動歯車減速機は、外周が楕円状のウエーブジェネレータと、外周に多数の外歯が形成されウエーブジェネレータに外嵌されてウエーブジェネレータの回転により円周方向へ撓まされる位置が変化するようにした弾性変形可能なフレクスプラインと、フレクスプラインの外周側にあってフレクスプラインの外歯と嵌合する内歯を備えたサーキュラスプラインとからなる。そして動力は、フレクスプラインを回転出力として繋げたスプロケット回転軸に取り出されて伝達する。
The
トルク検出部6は例えばモータ部3の負荷側の出力すなわち減速機5の出力に直列に連結され、回転を出力する出力軸7に繋がった回転軸を有する。この回転軸には歪みゲージが貼付されていて、回転軸の剪断によるねじりトルクを検出してねじりトルク値を出力する。なおトルク検出部6はこれに限らず、鼓形状でモータ部3に加わる反力を検出するものであっても良いし、その他ロードセルを用いる等の変形のものでも良い。またねじりトルクを検出は歪みゲージによるものに限らず、静電容量式若しくは磁歪式などであっても良い。
For example, the
モータの回転位置を検出する位置検出部4が、モータ部3の反負荷側に取り付けられている。この位置検出部4は、本実施形態ではモータ部3の反負荷側に配置した光学式エンコーダであるが、減速機5によって減速された出力軸7に設けてあっても、まだ両方に設けても良い。また本実施形態では位置検出部4は光学的な反射によるエンコーダであるがこれに限らず、透過式ものであっても良いし、また磁力によるものであっても良い。
A
モータ制御装置2は、配線8a、8b、8cにより、それぞれトルク検出部6、モータ部3、位置検出部4と電気的に接続されていて、モータ部3の駆動回路も含んでいる。配線8a、8b、8cは入力用の配線と出力用の配線などのように複数本の配線を有していても良い。なお図1では各配線8a、8b、8cを便宜上1本の線として示している。モータ制御装置2は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、その他の記憶装置及び入出力装置を備えている。
The
モータ制御装置2の基本の制御は、トルク目標値が例えば図7に示す操作指令部17のような指令手段から入力されると、出力軸7に発生するねじりトルクがトルク目標値に追従するようにモータ部3を制御する。すなわちモータ制御装置2は、トルク目標値とトルク検出部6のトルク出力値とに基づいて算出した電流指令値をモータ部3に出力してモータ部3を駆動して、ねじりトルクの大きさを制御する。ここでは、電流指令値をモータ部3に出力するということは、電流指令値に応じた電流をモータ部3に供給することを意味している。
The basic control of the
次いで、本発明の実施形態のモータ制御装置2とこのモータ制御方法について、図2に示す制御ブロック図を用いて説明する。図2はモータ制御装置2の制御構成とこれと接続されてモータ制御装置2により制御される要素を模式的に示したものである。なおモータ制御装置2は、LSIなどを用いたハードウェアによって実現してもよく、コンピュータープログラムを用いたソフトウェアによって実現してもよい。
Next, the
モータ制御装置2は、トルク制御部20と、制限速度設定部24と、速度演算器30と、制限速度補正部25と、モータ制御指令部29を含んで構成されている。
The
トルク制御部20には、例えば図7に示す操作指令部17からの指令に基づいて出力されたトルク目標値τrefが入力され、トルク検出部6から出力値τsが入力されるように構成されている。操作指令部17は、例えば釦やキーボード、ダイヤルなどの入力手段を有し、出力軸7に発生させたいねじりトルクの値を、入力手段を介して入力できるように構成されている。操作指令部17は、入力された値をトルク目標値τrefとして出力する。もちろん予め操作指令部17によってモータ制御装置2の記憶部に記憶されたトルク目標値τrefを、操作指令部17の指令により読み出してこれを使用しても良い。
For example, a torque target value τ ref output based on a command from the
トルク目標値τrefと出力値τsが、減算器21に入力される。減算器21は、トルク目標値τrefから出力値τsを減算し、トルク目標値τrefと出力値τsの偏差を出力する。トルク目標値τrefと出力値τsの偏差出力は比例ゲインK1を有する乗算器22によって比例ゲインK1が乗算される。乗算器22は乗算結果を第1の制御値p1として出力する。このトルク目標値τrefと出力値τsから第1の制御値p1を出力するのが第1のステップである。
The torque target value τ ref and the output value τ s are input to the
一方、モータ制御装置2は、位置検出部4から出力されたモータ部3の回転位置情報である位置値rcを取得し、これを制限速度設定部24の入力としている。制限速度設定部24は位置値rcを制限速度の設定のために使用することがあって、モータ部3の第1制限速度値vL1及び第2制限速度値vL2を出力する。この第1制限速度値vL1及び第2制限速度値vL2は、モータ部3の回転速度の範囲を規定する上限下限のリミット値である。そしてこのモータ部3の回転速度の制限速度値の上下端を設定するのが制限速度値設定ステップである。
On the other hand, the
そしてこの制限速度値設定ステップから出力された第1制限速度値vL1及び第2制限速度値vL2が制限速度補正部25に入力される。一方、位置検出部4から出力されたモータ部3の位置値rcが速度演算器30によって回転速度に変換され、速度演算器30から出力された速度値vcが制限速度補正部25に入力される。この速度演算器30による速度の演算が速度演算ステップである。
Then, the first speed limit value v L1 and the second speed limit value v L2 output from the speed limit value setting step are input to the speed
この速度演算器30から出力された速度値vcと、制限速度設定部24によって設定された制限速度値とを比較して定められた演算が行われて、制限速度補正部25から速度補正値vaが出力される。この制限速度補正部25にて速度補正値vaを出力するのが制限速度補正ステップである。
A velocity value v c outputted from the
トルク制御部20からの出力される第1の制御値p1と、制限速度補正部25から出力される速度補正値vaとがモータ制御指令部29の減算器23に入力される。減算器23は、第1の制御値p1から速度補正値vaを減算し、第1の制御値p1と速度補正値vaとの偏差を出力する。
A first control value p 1 outputted from the
第1の制御値p1と速度補正値vaとの偏差出力は、比例ゲインK2を有する乗算器26によって比例ゲインK2が乗算される。乗算器26は乗算結果を第2の制御値p2として出力する。
Differential output of the first control value p 1 and the speed correction value v a is the proportional gain K 2 is multiplied by a
第2の制御値p2と、外乱補償器27からの出力は加算器28に入力される。モータ制御指令部29は、加算器28によって第2の制御値p2に外乱補償器27からの出力を加算し、モータ部3への電流指令値iqを出力する。よってモータ制御指令部29は、減算器23と、乗算器26と、外乱補償器27と加算器28を含んで構成される。なお第1の制御値p1と速度補正値vaとを基に電流指令値iqを出力するのが第2のステップである。
The second control value p 2 and the output from the
外乱補償器27は、モータ部3への電流指令値iqと位置検出部4によって検出されたモータ部3の位置の応答値とに基づいて、モータ部3の外乱トルクの推定値を算出している。なお、外乱補償器27は、電流指令値iqとモータ部3の速度応答値とに基づいて外乱トルクを推定してもよい。
The
次に図3を用いて制限速度設定部24による制限速度の設定方法の詳細について説明する。図3は出力軸7の回転位置を横軸、制限速度を縦軸として、モータ部3の回転範囲を規定するソフトウエアリミットと制限速度の関係を示している。
Next, the details of the speed limit setting method by the speed
出力軸7の回転は、第1のハードウエアリミット位置rHL1と第2のハードウエアリミット位置rHL2の内側に位置する第1のソフトウエアリミット位置rSL1から第2のソフトウエアリミット位置rSL2までが原則として移動可能な範囲である。なお第1のソフトウエアリミット位置rSL1側から第2のソフトウエアリミット位置rSL2方向へ向かう時の速度を正方向の速度として、逆に第2のソフトウエアリミット位置rSL2側から第1のソフトウエアリミット位置rSL1方向へ向かう時の速度を負方向の速度として表すことにする。
Rotation of the
そして第1のソフトウエアリミット位置rSL1から第1の所定距離d1だけ第2のソフトウエアリミット位置rSL2側の位置を第1の位置r1とし、また第1のソフトウエアリミット位置rSL1から第4の所定距離d4だけ第1のハードウエアリミット位置rHL1側の、すなわち第1のソフトウエアリミット位置rSL1よりも外側の位置を第4の位置r4と表す。一方第2のソフトウエアリミット位置rSL2から第2の所定距離d2だけ第1のソフトウエアリミット位置rSL1側の位置を第2の位置r2とし、また第2のソフトウエアリミット位置rSL2から第3の所定距離d3だけ第2のハードウエアリミット位置rHL2側の、すなわち第2のソフトウエアリミット位置rSL2よりも外側の位置を第3の位置r3と表す。 And the position of the first software limit position from the r SL1 first predetermined distance d1 second software limit position r SL2 side as first position r 1, and from the first software limit position r SL1 A position on the first hardware limit position rHL1 side by the fourth predetermined distance d4, that is, a position outside the first software limit position rSL1 is represented as a fourth position r4. Whereas the position of the two software limit position r SL2 by a second predetermined distance d2 first software limit position r SL1 side and a second position r 2, also from the second software limit position r SL2 A position on the second hardware limit position rHL2 side by the third predetermined distance d3, that is, a position outside the second software limit position rSL2 is represented as a third position r3.
制限速度設定部24による制限速度の設定は以下のように行われる。第1の位置r1から第2の位置r2までの区間では、第1制限速度値vL1は例えば第1の速度値v1であって、第2制限速度値vL2は例えば第2の速度値v2である。第1の速度値v1と第2の速度値v2はその絶対値が同じで設定されても良いし、異なる値で設定されても良い。なおこの区間で、第1制限速度値vL1は正方向の制限速度であって、第2制限速度値vL2は負方向の制限速度である。
Setting of the speed limit by the speed
第2の位置r2からまた第2のソフトウエアリミット位置rSL2までの区間では、第1制限速度値vL1は、第1の速度値v1からこの第1の速度値v1の絶対値を徐々に減少させて第2のソフトウエアリミット位置rSL2にてゼロになる仮想線上の速度であって、第2制限速度値vL2は第2の速度値v2である。この仮想線は本実施形態では一次の直線であるが、これに限らず2次以上の曲線等としても良い。なおこの区間で、第1制限速度値vL1は正方向の制限速度であって、第2制限速度値vL2は負方向の制限速度である。 The section from the second position r 2 also to the second software limit position r SL2, first speed limit value v L1, the first velocity value v 1 from the first velocity value v absolute value of 1 a speed of a virtual line becomes zero at a gradually reduced so by the second software limit position r SL2, the second speed limit value v L2 is the second velocity value v 2. This virtual line is a linear straight line in the present embodiment, but is not limited to this, and may be a quadratic or higher curve or the like. In this section, the first speed limit value v L1 is a positive speed limit, and the second speed limit value v L2 is a negative speed limit.
第3の位置r3から第2のソフトウエアリミット位置rSL2までの区間では、第1制限速度値vL1は、第2の速度値v2からこの第2の速度値v2の絶対値を徐々に減少させて第2のソフトウエアリミット位置rSL2にてゼロになる仮想線上の速度であって、第2制限速度値vL2は第2の速度値v2である。この仮想線は本実施形態では一次の直線であるが、これに限らず2次以上の曲線等としても良い。なおこの区間で、第1制限速度値vL1は負方向の制限速度であって、第2制限速度値vL2も負方向の制限速度である。 The section from the third position r 3 to the second software limit position r SL2, first speed limit value v L1 is the absolute value of the second velocity value v 2 from the second speed value v 2 in the second software limit position r SL2 is gradually reduced to a speed of a virtual line becomes zero, the second speed limit value v L2 is the second velocity value v 2. This virtual line is a linear straight line in the present embodiment, but is not limited to this, and may be a quadratic or higher curve or the like. In this section, the first speed limit value v L1 is a negative speed limit, and the second speed limit value v L2 is also a negative speed limit.
第1の位置r1から第1のソフトウエアリミット位置rSL1までの区間では、第1制限速度値vL1は第1の速度値v1であって、第2制限速度値vL2は、第2の速度値v2からこの第2の速度値v2の絶対値を徐々に減少させて第1のソフトウエアリミット位置rSL1にてゼロになる仮想線上の速度である。この仮想線は本実施形態では一次の直線であるが、これに限らず2次以上の曲線等としても良い。なおこの区間で、第1制限速度値vL1は正方向の制限速度であって、第2制限速度値vL2は負方向の制限速度である。 The section from the first position r 1 to the first software limit position r SL1, the first speed limit value v L1 a first velocity value v 1, second speed limit value v L2 is a 2 velocity value v 2 gradually decreases the absolute value of the second velocity value v 2 in the first software limit position r SL1 is the speed of a virtual line becomes zero. This virtual line is a linear straight line in the present embodiment, but is not limited to this, and may be a quadratic or higher curve or the like. In this section, the first speed limit value v L1 is a positive speed limit, and the second speed limit value v L2 is a negative speed limit.
第4の位置r4から第1のソフトウエアリミット位置rSL1までの区間では、第1制限速度値vL1は第1の速度値v1であって、第2制限速度値vL2は、第1の速度値v1からこの第1の速度値v1の絶対値を徐々に減少させて第1のソフトウエアリミット位置rSL1にてゼロになる仮想線上の速度である。この仮想線は本実施形態では一次の直線であるが、これに限らず2次以上の曲線等としても良い。なおこの区間で、第1制限速度値vL1は正方向の制限速度であって、第2制限速度値vL2も正方向の制限速度である。 The section from the fourth position r 4 to the first software limit position r SL1, the first speed limit value v L1 a first velocity value v 1, second speed limit value v L2 is a at first software limit position r SL1 gradually decreases the absolute value of the first velocity value v 1 from 1 velocity value v 1 is the speed of a virtual line becomes zero. This virtual line is a linear straight line in the present embodiment, but is not limited to this, and may be a quadratic or higher curve or the like. In this section, the first speed limit value v L1 is the forward speed limit, and the second speed limit value v L2 is also the forward speed limit.
したがって制限速度設定部24は、位置検出部4から出力されたモータの位置値rcを入力として、その時点の第1制限速度値vL1及び第2制限速度値vL2を出力する。例えばモータ部3の位置がraの時は、第1制限速度値vL1=v1、第2制限速度値vL2=v21であって、モータ部3の位置がrbの時は、第1制限速度値vL1=v22、第2制限速度値vL2=v2である。
Therefore the speed
次に図4と図5を用いて移動目標位置が設定されている場合の、制限速度設定部24による制限速度の設定方法の詳細について説明する。
Next, details of the speed limit setting method by the speed
移動目標位置は第1のソフトウエアリミット位置rSL1と第2のソフトウエアリミット位置rSL2との間の任意の位置で設定され、例えば図7に示す操作指令部17からの指令によりモータ部3は現在位置からこの移動目標位置への移動を行う。操作指令部17は、釦、キーボードやダイヤルなどの入力手段を有し、モータ部3を移動させる移動目標位置を入力手段と共に、設定した移動目標位置へ移動させる指令手段として構成されている。図4は出力軸7の回転位置を横軸、制限速度を縦軸として、モータ部3の回転範囲を規定するソフトウエアリミット及び移動目標位置と制限速度の関係を示しており、モータ部3の現在の位置値rcが、移動目標位置rTP1と第1のソフトウエアリミット位置rSL1の中間位置にある時を示している。
The movement target position is set at an arbitrary position between the first software limit position rSL1 and the second software limit position rSL2, and for example, the
移動目標位置rTP1から第5の所定距離d5だけ第1のソフトウエアリミット位置rSL1側の位置を第5の位置r5とし、また移動目標位置rTP1から第6の所定距離d6だけ第2のソフトウエアリミット位置rSL2側の位置を第6の位置r6と表す。第1の位置r1及び第4の位置r4の第1のソフトウエアリミット位置rSL1との位置関係は図3に示したものと同じである。 The position of the movement target position r TP1 first only five predetermined distance d5 first software limit position r SL1 side is located r 5 of the fifth and the movement target position r TP1 only sixth predetermined distance d6 second The software limit position r on the SL2 side is represented as a sixth position r6. Positional relationship between the first software limit position r SL1 of the first position r 1 and the fourth position r 4 are the same as those shown in FIG.
第1の位置r1から第5の位置r5までの区間では、第1制限速度値vL1は例えば第1の速度値v1であって、第2制限速度値vL2は例えば第2の速度値v2である。第1の速度値v1と第2の速度値v2はその絶対値が同じで設定されても良いし、異なる値で設定されても良い。なおこの区間で、第1制限速度値vL1は正方向の制限速度であって、第2制限速度値vL2は負方向の制限速度である。 The section from the first position r 1 to the position r 5 of the fifth, the first speed limit value v L1 a first velocity value v 1 for example, the second speed limit value v L2, for example a second it is a speed value v 2. The first speed value v 1 and the second speed value v 2 may be set with the same absolute value or may be set with different values. In this section, the first speed limit value v L1 is a positive speed limit, and the second speed limit value v L2 is a negative speed limit.
第5の位置r5から移動目標位置rTP1までの区間では、第1制限速度値vL1は、第1の速度値v1からこの第1の速度値v1の絶対値を徐々に減少させて移動目標位置rTP1にてゼロになる仮想線上の速度であって、第2制限速度値vL2は第2の速度値v2である。この仮想線は本実施形態では一次の直線であるが、これに限らず2次以上の曲線等としても良い。なおこの区間で、第1制限速度値vL1は正方向の制限速度であって、第2制限速度値vL2は負方向の制限速度である。 The section from the position r 5 of the fifth to the movement target position r TP1, a first speed limit value v L1 gradually decreases the absolute value of the first velocity value v 1 from the first speed value v 1 The second speed limit value v L2 is the second speed value v 2, which is the speed on the virtual line that becomes zero at the movement target position r TP1 . This virtual line is a linear straight line in the present embodiment, but is not limited to this, and may be a quadratic or higher curve or the like. In this section, the first speed limit value v L1 is a positive speed limit, and the second speed limit value v L2 is a negative speed limit.
第6の位置r6から、移動目標位置rTP1までの区間では、第1制限速度値vL1は、第2の速度値v2からこの第2の速度値v2の絶対値を徐々に減少させて移動目標位置rTP1にてゼロになる仮想線上の速度であって、第2制限速度値vL2は第2の速度値v2である。この仮想線は本実施形態では一次の直線であるが、これに限らず2次以上の曲線等としても良い。なおこの区間で、第1制限速度値vL1は負方向の制限速度であって、第2制限速度値vL2も負方向の制限速度である。 The position r 6 of the sixth, the interval up to the movement target position r TP1, the first speed limit value v L1 gradually decreases the absolute value of the second velocity value v 2 from the second speed value v 2 The second speed limit value v L2 is the second speed value v 2, which is the speed on the virtual line that becomes zero at the movement target position r TP1 . This virtual line is a linear straight line in the present embodiment, but is not limited to this, and may be a quadratic or higher curve or the like. In this section, the first speed limit value v L1 is a negative speed limit, and the second speed limit value v L2 is also a negative speed limit.
第1の位置r1から第1のソフトウエアリミット位置rSL1までの区間と、第4の位置r4から第1のソフトウエアリミット位置rSL1までの区間とは前述のソフトウエアリミット位置付近の設定と同様である。 And the section from the first position r 1 to the first software limit position r SL1, the section from the fourth position r 4 to the first software limit position r SL1 near software limit position described above It is the same as setting.
図5は出力軸7の回転位置を横軸、制限速度を縦軸として、モータ部3の回転範囲を規定するソフトウエアリミット及び移動目標位置と制限速度の関係を示しており、モータ部3の現在の位置値rcが、移動目標位置rTP2と第2のソフトウエアリミット位置rSL2の中間位置にある時を示している。
FIG. 5 shows the relationship between the software limit that defines the rotation range of the
移動目標位置rTP2から第7の所定距離d7だけ第2のソフトウエアリミット位置rSL2側の位置を第7の位置r7とし、また移動目標位置rTP2から第8の所定距離d8だけ第1のソフトウエアリミット位置rSL1側の位置を第8の位置r8と表す。第2の位置r2及び第3の位置r3の第2のソフトウエアリミット位置rSL2との位置関係は図3に示したものと同じである。 The position of the movement target position r TP2 seventh predetermined distance d7 only second software limit position r SL2 side by the position r 7 of the seventh, also by a predetermined distance d8 eighth from the movement target position r TP2 first The software limit position r on the SL1 side is represented as an eighth position r8. The positional relationship between the second position r 2 and the third position r 3 with the second software limit position r SL2 is the same as that shown in FIG.
第7の位置r7から第2の位置r2までの区間では、第1制限速度値vL1は例えば第1の速度値v1であって、第2制限速度値vL2は例えば第2の速度値v2である。第1の速度値v1と第2の速度値v2はその絶対値が同じで設定されても良いし、異なる値で設定されても良い。なおこの区間で、第1制限速度値vL1は正方向の制限速度であって、第2制限速度値vL2は負方向の制限速度である。 In the section from the position r 7 of the seventh to the second position r 2, the first speed limit value v L1 a first velocity value v 1 for example, the second speed limit value v L2, for example a second it is a speed value v 2. The first speed value v 1 and the second speed value v 2 may be set with the same absolute value or may be set with different values. In this section, the first speed limit value v L1 is a positive speed limit, and the second speed limit value v L2 is a negative speed limit.
第2の位置r2から第2のソフトウエアリミット位置rSL2までの区間と、第3の位置r3から第2のソフトウエアリミット位置rSL2までの区間とは、前述のソフトウエアリミット位置付近の設定と同様である。 And the section from the second position r 2 to the second software limit position r SL2, and the section from the third position r 3 to the second software limit position r SL2, near Software limit position described above It is the same as the setting of.
第7の位置r7から移動目標位置rTP2までの区間では、第1制限速度値vL1は第1の速度値v1であって、第2制限速度値vL2は第2の速度値v2からこの第2の速度値v2の絶対値を徐々に減少させて移動目標位置rTP2にてゼロになる仮想線上の速度である。この仮想線は本実施形態では一次の直線であるが、これに限らず2次以上の曲線等としても良い。なおこの区間で、第1制限速度値vL1は正方向の制限速度であって、第2制限速度値vL2は負方向の制限速度である。 The section up to the movement target position r TP2 from the position r 7 of the seventh, the first speed limit value v L1 a first velocity value v 1, the second speed limit value v L2 second velocity value v the absolute value of the second velocity value v 2 from 2 gradually decreases the speed of the virtual line becomes zero at the movement target position r TP2. This virtual line is a linear straight line in the present embodiment, but is not limited to this, and may be a quadratic or higher curve or the like. In this section, the first speed limit value v L1 is a positive speed limit, and the second speed limit value v L2 is a negative speed limit.
第8の位置r8から移動目標位置rTP2までの区間では、第1制限速度値vL1は第1の速度値v1であって、第2制限速度値vL2は、第1の速度値v1からこの第1の速度値v1の絶対値を徐々に減少させて移動目標位置rTP2にてゼロになる仮想線上の速度である。この仮想線は本実施形態では一次の直線であるが、これに限らず2次以上の曲線等としても良い。なおこの区間で、第1制限速度値vL1は正方向の制限速度であって、第2制限速度値vL2も正方向の制限速度である。 The section from the position r 8 of the eighth to the movement target position r TP2, the first speed limit value v L1 a first velocity value v 1, second speed limit value v L2, the first speed value v at 1 from the first speed value v 1 for the absolute value of the gradually decreasing the movement target position r TP2 is the speed of a virtual line becomes zero. This virtual line is a linear straight line in the present embodiment, but is not limited to this, and may be a quadratic or higher curve or the like. In this section, the first speed limit value v L1 is the forward speed limit, and the second speed limit value v L2 is also the forward speed limit.
なお第1の所定距離d1〜第8の所定距離d8はモータ装置が駆動する負荷の重量等を考慮して決められる。例えば負荷が水平移動する場合は、第1の所定距離d1=第2の所定距離d2=第5の所定距離d5=第6の所定距離d6=第7の所定距離d7=第8の所定距離d8でも良いし、異なる値を設定しても良い。また第2のソフトウエアリミット位置rSL2が第1のソフトウエアリミット位置rSL1の鉛直上方向にある時は、第5の所定距離d5は第1の所定距離d1よりも小さく設定することがある。第4の所定距離d4は第1のソフトウエアリミット位置rSL1と第1のハードウエアリミット位置rHL1の間にあるソフト上のオーバーラン領域であることから、第1の所定距離d1と比較して小さく設定することがある。第3の所定距離d3も第2のソフトウエアリミット位置rSL2と第2のハードウエアリミット位置rHL2の間にあるソフト上のオーバーラン領域であることから、第2の所定距離d2と比較して小さく設定することがある。 The first predetermined distance d1 to the eighth predetermined distance d8 are determined in consideration of the weight of the load driven by the motor device. For example, when the load moves horizontally, the first predetermined distance d1 = the second predetermined distance d2 = the fifth predetermined distance d5 = the sixth predetermined distance d6 = the seventh predetermined distance d7 = the eighth predetermined distance d8. However, different values may be set. In addition, when the second software limit position rSL2 is in the vertically upward direction of the first software limit position rSL1 , the fifth predetermined distance d5 may be set smaller than the first predetermined distance d1. . Since the fourth predetermined distance d4 is an overrun region on the software located between the first software limit position rSL1 and the first hardware limit position rHL1 , it is compared with the first predetermined distance d1. May be set smaller. Since the third predetermined distance d3 is also an overrun region on the software between the second software limit position rSL2 and the second hardware limit position rHL2 , it is compared with the second predetermined distance d2. May be set smaller.
上記の構成によって制限速度設定部24では、モータ部3が目標位置若しくはソフトウエアリミット位置近傍に所定の距離近づくと、減速を行って目標位置若しくはソフトウエアリミット位置で速度がゼロとなるような第1制限速度値vL1と第2制限速度値vL2とを制限速度補正部25に出力する。これによって出力軸7及び出力軸7に接続された負荷が停止する際の動きが滑らかとなって、慣性力が大きい負荷においてのオーバーランも低減することができる。
In the speed
図6は本発明の実施形態に係るモータ装置制御装置の制限速度補正部25による速度補正の詳細を示した線図であって、図6を用いて制限速度補正部25による補正方法の詳細について説明する。
FIG. 6 is a diagram showing details of speed correction by the speed
図6は横軸に取得した現在の速度、縦軸に制限速度補正部25にて出力する速度補正値vaを示している。制限速度補正部25は、一方で制限速度設定部24から第1制限速度値vL1と第2制限速度値vL2とを得て、他方で同時に速度演算器30から現在の速度値vcを得て、速度値vcが制限速度を越えた場合にこれを補正する速度補正値vaを出力する機能を有している。制限速度は方向によって第1制限速度値vL1と第2制限速度値vL2で定められている。この第1制限速度値vL1と第2制限速度値vL2の範囲内では速度補正値vaはゼロとなる。そしてこの範囲を越えた場合にそれぞれ速度超過分を打ち消すために、制限速度補正部25は補正用の速度補正値vaを出力する。モータ制御指令部29はこれを用いて制御を行い、トルク制御と共に速度を制御するモータ制御装置が実現できる。
Figure 6 shows the speed correction value v a of outputting current speed acquired on the horizontal axis and the vertical axis at a speed
図7は本発明の実施形態に係るモータ装置1を用いた昇降装置10の斜視図である。昇降装置10は、カバーにて覆われた本体部11と、この本体部11からリンクチェーン15に沿って下方に伸びた位置にあって荷役物40を吊下げて係止する係止部材14と、係止部材14と一緒に昇降する操作指令部17とで構成されている。昇降装置10は、本体部11に吊下げ用フック16が設けられて、建物の梁などの構造物や水平方向に移動可能なレールに設けられた可動装置などに吊るして使用することができる。
FIG. 7 is a perspective view of the
この本体部の内部には昇降装置10の全体を制御する制御部12が本体部11内にモータ制御装置2を含んで収納されている。制御部12はCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、その他の記憶装置及び入出力装置を備えている。また制御部12はスパイラルコード13によって操作指令部17等と電気的に繋がっている。昇降装置10を扱う管理者や作業者が操作指令部17を操作することで、各種の作業指令と、トルク目標値τref及び移動目標値の入力が行われ、これを基に制御部12はモータ部3の制御を行う。
A
以上の構成にて、作業者が係止部材14に荷役物40を吊るすと、荷役物40の重量によってリンクチェーン15が引っ張られるため、係止部材14、リンクチェーン15、リンクチェーン15を巻きつける不図示のロードシーブ及び出力軸7を介してトルク検出部6にトルクが生じる。そしてモータ制御装置2は、トルク検出部6にて検出したトルク信号と、位置検出部4にて検出した位置信号を基に演算して、モータ部3の制御を行う。
With the above configuration, when the operator hangs the
図8は本発明の実施形態に係るモータ装置を用いた昇降装置10の動作説明図である。図8(a)は荷役物40が係止部材14に吊るされてバランス状態となった際の下限位置、すなわち第2のソフトウエアリミット位置rSL2を示し、図8(c)は上限位置、すなわち第1のソフトウエアリミット位置rSL1を示していて、この時には範囲W内で移動可能である。そしてこの第1のソフトウエアリミット位置rSL1と第2のソフトウエアリミット位置rSL2との中間位置に移動目標位置rTPが存在する(図8(b))。したがってこのような昇降装置10に上記のモータ装置1を用いることで、トルク検出部6に加わるトルクを所定の値に制御しつつ操作指令部17からの移動目標位置指令により移動目標位置rTPへの移動動作を行う時、昇降速度の制御や移動目標位置rTP直前での滑らかな減速を行うことが可能となる。
FIG. 8 is an operation explanatory view of the
以上、本発明を好ましい実施形態に基づき説明したが、本発明は上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の変更が可能である。 As mentioned above, although this invention was demonstrated based on preferable embodiment, this invention is not limited to embodiment mentioned above, A various change is possible in the range which does not deviate from the summary.
本発明の活用例として、工業用ロボット、台車及び移動できる車両等に搭載される電動昇降装置等への適用が可能である。 As an application example of the present invention, the present invention can be applied to an industrial robot, a carriage, an electric lifting device mounted on a movable vehicle, and the like.
1 :モータ装置
2 :モータ制御装置
3 :モータ部
4 :位置検出部
5 :減速機
6 :トルク検出部
7 :出力軸
8a、8b、8c :配線
10 :昇降装置
11 :本体部
12 :制御部
13 :スパイラルコード
14 :係止部材
15 :リンクチェーン
16 :吊下げ用フック
17 :操作指令部
20 :トルク制御部
21 :減算器
22 :乗算器
23 :減算器
24 :制限速度設定部
25 :制限速度補正部
26 :乗算器
27 :外乱補償器
28 :加算器
29 :モータ制御指令部
30 :速度演算器
40 :荷役物
1: Motor device 2: Motor control device 3: Motor unit 4: Position detection unit 5: Reducer 6: Torque detection unit 7:
Claims (12)
前記モータ部の出力軸に発生させるねじりトルクを検出してねじりトルク値を出力するトルク検出部と、
前記モータ部の回転位置を検出して位置値を出力する位置検出部と、
電気的にそれぞれに繋がって前記モータ部の制御を行うモータ制御装置であって、
トルク目標値に応じて、前記トルク検出部からの前記ねじりトルク値を基に第1の制御値を算出するトルク制御部と、
前記モータ部の回転速度の範囲を規定する制限速度値を設定する制限速度設定部と、
前記位置検出部から取得した前記位置値を速度に変換して得た速度値を基にして、前記速度値が前記制限速度値を超過した時には前記速度値から前記制限速度値を減算した速度補正値を、前記速度値が前記制限速度値内の時にはゼロの前記速度補正値を算出する制限速度補正部と、
前記第1の制御値から前記制限速度値を減算した第2の制御値に基づいて前記モータ部に出力する電流指令値を算出するモータ制御指令部と、を備えたことを特徴とするモータ制御装置。 A motor section;
A torque detection unit that detects a torsion torque generated on the output shaft of the motor unit and outputs a torsion torque value;
A position detection unit that detects a rotational position of the motor unit and outputs a position value;
A motor control device for controlling the motor unit electrically connected to each other,
A torque control unit that calculates a first control value based on the torsional torque value from the torque detection unit according to a torque target value;
A speed limit setting unit that sets a speed limit value that defines a range of the rotation speed of the motor unit;
Based on a speed value obtained by converting the position value acquired from the position detection unit into a speed, a speed correction obtained by subtracting the speed limit value from the speed value when the speed value exceeds the speed limit value A speed limit correction unit that calculates a speed correction value of zero when the speed value is within the speed limit value;
A motor control command unit that calculates a current command value to be output to the motor unit based on a second control value obtained by subtracting the speed limit value from the first control value; apparatus.
前記制限速度設定部は、
前記モータ部の前記回転位置が、前記第1のソフトウエアリミット位置よりも前記第2のソフトウエアリミット位置のある側で前記第1のソフトウエアリミット位置と第1の所定距離にある第1の位置から、前記第2のソフトウエアリミット位置よりも前記第1のソフトウエアリミット位置のある側で前記第2のソフトウエアリミット位置と第2の所定距離にある第2の位置までの区間では、前記第1制限速度値を第1の速度値とし、前記第2制限速度値を第2の速度値とし、
前記モータ部の前記回転位置が、前記第2の位置から、前記第2のソフトウエアリミット位置までの区間では、前記第1制限速度値を、前記第1の速度値からその絶対値を徐々に減少させて前記第2のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とし、前記第2制限速度値を前記第2の速度値とし、
前記モータ部の前記回転位置が、前記第2のソフトウエアリミット位置を越えて前記第2のソフトウエアリミット位置と第3の所定距離にある第3の位置から、前記第2のソフトウエアリミット位置までの区間では、前記第1制限速度値を、前記第2の速度値からその絶対値を徐々に減少させて前記第2のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とし、前記第2制限速度値を前記第2の速度値とし、
前記モータ部の前記回転位置が、前記第1の位置から、前記第1のソフトウエアリミット位置までの区間では、前記第1制限速度値を前記第1の速度値とし、前記第2制限速度値を、前記第2の速度値からその絶対値を徐々に減少させて前記第1のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とし、
前記モータ部の前記回転位置が、前記第1のソフトウエアリミット位置を越えて前記第1のソフトウエアリミット位置と第4の所定距離にある第4の位置から、前記第1のソフトウエアリミット位置までの区間では、前記第1制限速度値を前記第1の速度値とし、前記第2制限速度値を、前記第1の速度値からその絶対値を徐々に減少させて前記第1のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とすることを特徴とする請求項2に記載のモータ制御装置。 The motor control device defines a rotation range of the motor unit by a first software limit position and a second software limit position;
The speed limit setting unit is
The rotation position of the motor unit is a first predetermined distance from the first software limit position on the side where the second software limit position is located with respect to the first software limit position. In a section from a position to a second position at a second predetermined distance from the second software limit position on the side where the first software limit position is located with respect to the second software limit position, The first speed limit value is a first speed value, the second speed limit value is a second speed value,
In the interval from the second position to the second software limit position, the rotational speed of the motor unit gradually increases the first speed limit value and the absolute value from the first speed value. Decrease to be the speed on the imaginary line that becomes zero at the second software limit position, the second speed limit value as the second speed value,
The rotation position of the motor unit exceeds the second software limit position and the second software limit position from the third position at a third predetermined distance from the second software limit position. In the interval up to, the first speed limit value is a speed on an imaginary line that becomes zero at the second software limit position by gradually decreasing the absolute value from the second speed value, The second speed limit value is the second speed value,
In the section from the first position to the first software limit position, the rotation speed of the motor unit is set to the first speed value as the first speed value, and the second speed limit value. The absolute value from the second speed value is gradually reduced to a speed on the imaginary line that becomes zero at the first software limit position,
The rotation position of the motor unit exceeds the first software limit position, and the first software limit position from a fourth position that is a fourth predetermined distance from the first software limit position. In the interval up to, the first speed limit value is set as the first speed value, and the second speed limit value is gradually decreased from the first speed value to the first software value. The motor control device according to claim 2, wherein the speed is on a virtual line that is zero at the limit position.
前記モータ部の前記回転位置が、前記第1の位置から、前記移動目標位置よりも前記第1のソフトウエアリミット位置のある側で前記移動目標位置と第5の所定距離にある第5の位置までの区間では、前記第1制限速度値を前記第1の速度値とし、前記第2制限速度値を前記第2の速度値とし、
前記モータ部の前記回転位置が、前記第5の位置から、前記移動目標位置までの区間では、前記第1制限速度値を前記第1の速度値からその絶対値を徐々に減少させて前記移動目標位置にてゼロとなる仮想線上にある速度とし、前記第2制限速度値を前記第2の速度値とし、
前記モータ部の前記回転位置が、前記移動目標位置よりも前記第2のソフトウエアリミット位置のある側で前記移動目標位置と第6の所定距離にある第6の位置から、前記移動目標位置までの区間では、前記第1制限速度値を前記第2の速度値からその絶対値を徐々に減少させて前記第2のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とし、前記第2制限速度値を前記第2の速度値とする設定を行うことを特徴とする請求項3に記載のモータ制御装置。 The speed limit setting unit is configured such that when the rotational position of the motor unit is between the movement target position of the motor unit and the first software limit position,
The fifth position at which the rotational position of the motor unit is located at a fifth predetermined distance from the movement target position on the side where the first software limit position is located from the first position to the movement target position. In the interval up to, the first speed limit value is the first speed value, the second speed limit value is the second speed value,
In the section from the fifth position to the movement target position, the rotation position of the motor unit gradually decreases the absolute value of the first speed limit value from the first speed value and moves the motor unit. The speed is on a virtual line that is zero at the target position, the second speed limit value is the second speed value,
The rotation position of the motor unit is from a sixth position that is a sixth predetermined distance from the movement target position on the side where the second software limit position is located with respect to the movement target position, to the movement target position. In this section, the first speed limit value is gradually reduced from the second speed value to the speed on the imaginary line that becomes zero at the second software limit position, The motor control device according to claim 3, wherein a setting is made so that a speed limit value is the second speed value.
前記モータ部の前記回転位置が、前記移動目標位置よりも前記第2のソフトウエアリミット位置のある側で前記移動目標位置と第7の所定距離にある第7の位置から、前記第2の位置までの区間では、前記第1制限速度値を前記第1の速度値とし、前記第2制限速度値を前記第2の速度値とし、
前記モータ部の前記回転位置が、前記第7の位置から、前記移動目標位置までの区間では、前記第1制限速度値を前記第1の速度値とし、前記第2制限速度値を前記第2の速度値からその絶対値を徐々に減少させて前記移動目標位置にてゼロとなる仮想線上にある速度とし、
前記モータ部の前記回転位置が、前記移動目標位置よりも前記第1のソフトウエアリミット位置のある側で前記移動目標位置と第8の所定距離にある第8の位置から、前記移動目標位置までの区間では、前記第1制限速度値を前記第1の速度値とし、前記第2制限速度値を前記第1の速度値からその絶対値を徐々に減少させて前記移動目標位置にてゼロとなる仮想線上にある速度とする設定を行うことを特徴とする請求項3に記載のモータ制御装置。 The speed limit setting unit is configured such that when the rotational position of the motor unit is between the movement target position of the motor unit and the second software limit position,
The rotation position of the motor unit is a second position from a seventh position that is a seventh predetermined distance from the movement target position on the side where the second software limit position is located with respect to the movement target position. In the interval up to, the first speed limit value is the first speed value, the second speed limit value is the second speed value,
In a section where the rotational position of the motor unit is from the seventh position to the movement target position, the first speed limit value is set as the first speed value, and the second speed limit value is set as the second speed value. The absolute value is gradually decreased from the speed value of the speed to a speed on the imaginary line that becomes zero at the movement target position,
The rotation position of the motor unit is from an eighth position at an eighth predetermined distance to the movement target position on the side where the first software limit position is located from the movement target position to the movement target position. In this section, the first speed limit value is the first speed value, and the second speed limit value is gradually reduced from the first speed value to zero at the movement target position. The motor control device according to claim 3, wherein setting is performed so that the speed is on a virtual line.
前記モータ制御装置に電気的にそれぞれ接続される、前記モータ部と、前記トルク検出部と、前記位置検出部とを備えることを特徴とするモータ装置。 A motor control device according to any one of claims 1 to 5;
A motor device comprising: the motor unit, the torque detection unit, and the position detection unit that are electrically connected to the motor control device, respectively.
前記モータ部の回転速度の制限速度値を設定する制限速度値設定ステップと、
前記モータ部の回転位置を検出する位置検出部から取得した位置値から速度値を演算する速度演算ステップと、
前記速度値が前記制限速度値を超過した時には前記速度値から前記制限速度値を減算したものを、前記速度値が前記制限速度値内の時にはゼロを、速度補正値として出力する制限速度補正ステップと、
前記第1の制御値から前記速度補正値を減算して第2の制御値を算出して、前記第2の制御値に基づいて前記モータ部に入力する電流指令値を算出する第2のステップと、
を含むことを特徴とするモータ制御方法。 A torsion torque generated on an output shaft connected to the motor unit in response to an input of a torque target value is detected by a torque detection unit, and an output value of the torque detection unit is subtracted from the torque target value to obtain a first control value A first step of calculating
A speed limit setting step for setting a speed limit value of the rotation speed of the motor unit;
A speed calculation step of calculating a speed value from a position value acquired from a position detection unit that detects a rotational position of the motor unit;
Speed limit correction step of outputting the value obtained by subtracting the speed limit value from the speed value when the speed value exceeds the speed limit value, and zero as the speed correction value when the speed value is within the speed limit value. When,
A second step of calculating a current command value to be input to the motor unit based on the second control value by subtracting the speed correction value from the first control value to calculate a second control value. When,
A motor control method comprising:
前記制限速度値設定ステップは、
前記モータ部の前記回転位置が、前記第1のソフトウエアリミット位置よりも前記第2のソフトウエアリミット位置のある側で前記第1のソフトウエアリミット位置と第1の所定距離にある第1の位置から、前記第2のソフトウエアリミット位置よりも前記第1のソフトウエアリミット位置のある側で前記第2のソフトウエアリミット位置と第2の所定距離にある第2の位置までの区間では、前記第1制限速度値を第1の速度値とし、かつ前記第2制限速度値を第2の速度値とし、
前記モータ部の前記回転位置が、前記第2の位置から、前記第2のソフトウエアリミット位置までの区間では、前記第1制限速度値を前記第1の速度値からその絶対値を徐々に減少させて前記第2のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とし、かつ前記第2制限速度値を前記第2の速度値とし、
前記モータ部の前記回転位置が、前記第2のソフトウエアリミット位置を越えて前記第2のソフトウエアリミット位置と第3の所定距離にある第3の位置から、前記第2のソフトウエアリミット位置までの区間では、前記第1制限速度値を、前記第2の速度値からその絶対値を徐々に減少させて前記第2のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とし、かつ前記第2制限速度値を前記第2の速度値とし、
前記モータ部の前記回転位置が、前記第1の位置から、前記第1のソフトウエアリミット位置までの区間では、前記第1制限速度値を前記第1の速度値とし、かつ前記第2制限速度値を前記第2の速度値からその絶対値を徐々に減少させて前記第1のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とし、
前記モータ部の前記回転位置が、前記第1のソフトウエアリミット位置を越えて前記第1のソフトウエアリミット位置と第4の所定距離にある第4の位置から、前記第1のソフトウエアリミット位置までの区間では、前記第1制限速度値を前記第1の速度値とし、かつ前記第2制限速度値を、前記第1の速度値からその絶対値を徐々に減少させて前記第1のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とする設定をそれぞれ行うことを特徴とする請求項9に記載のモータ制御方法。 The motor unit has a rotation range defined by a first software limit position and a second software limit position,
The speed limit value setting step includes:
The rotation position of the motor unit is a first predetermined distance from the first software limit position on the side where the second software limit position is located with respect to the first software limit position. In a section from a position to a second position at a second predetermined distance from the second software limit position on the side where the first software limit position is located with respect to the second software limit position, The first speed limit value is a first speed value and the second speed limit value is a second speed value;
In the interval from the second position to the second software limit position, the first speed limit value is gradually decreased from the first speed value to the absolute value of the rotation position of the motor unit. Let the speed be on the imaginary line that becomes zero at the second software limit position, and the second speed limit value is the second speed value,
The rotation position of the motor unit exceeds the second software limit position and the second software limit position from the third position at a third predetermined distance from the second software limit position. In the section up to, the first speed limit value is set to a speed on an imaginary line that becomes zero at the second software limit position by gradually decreasing the absolute value from the second speed value, and The second speed limit value is the second speed value,
In a section from the first position to the first software limit position, the rotation speed of the motor unit is set to the first speed value as the first speed value, and the second speed limit. The absolute value is gradually decreased from the second speed value to a speed on a virtual line that becomes zero at the first software limit position,
The rotation position of the motor unit exceeds the first software limit position, and the first software limit position from a fourth position that is a fourth predetermined distance from the first software limit position. In the interval up to, the first speed limit value is set as the first speed value, and the second speed limit value is gradually decreased from the first speed value to the first soft speed value. The motor control method according to claim 9, wherein setting is performed so that the speed is on a virtual line that becomes zero at the wear limit position.
前記モータ部の前記回転位置が前記モータ部の移動目標位置と前記第1のソフトウエアリミット位置の中間にある時は、
前記モータ部の前記回転位置が、前記第1の位置から、前記移動目標位置よりも前記第1のソフトウエアリミット位置のある側で前記移動目標位置と第5の所定距離にある第5の位置までの区間では、前記第1制限速度値を前記第1の速度値とし、かつ前記第2制限速度値を前記第2の速度値とし、
前記モータ部の前記回転位置が、前記第5の位置から、前記移動目標位置までの区間では、前記第1制限速度値を前記第1の速度値からその絶対値を徐々に減少させて前記移動目標位置にてゼロとなる仮想線上にある速度とし、かつ前記第2制限速度値を前記第2の速度値とし、
前記モータ部の前記回転位置が、前記移動目標位置よりも前記第2のソフトウエアリミット位置のある側で前記移動目標位置と第6の所定距離にある第6の位置から、前記移動目標位置までの区間では、前記第1制限速度値を前記第2の速度値からその絶対値を徐々に減少させて前記第2のソフトウエアリミット位置にてゼロとなる仮想線上にある速度とし、かつ前記第2制限速度値を前記第2の速度値とする設定をそれぞれ行うことを特徴とする請求項10に記載のモータ制御方法。 The speed limit value setting step includes:
When the rotational position of the motor unit is between the movement target position of the motor unit and the first software limit position,
The fifth position at which the rotational position of the motor unit is located at a fifth predetermined distance from the movement target position on the side where the first software limit position is located from the first position to the movement target position. In the interval up to, the first speed limit value is the first speed value, and the second speed limit value is the second speed value.
In the section from the fifth position to the movement target position, the rotation position of the motor unit gradually decreases the absolute value of the first speed limit value from the first speed value and moves the motor unit. The speed is on a virtual line that is zero at the target position, and the second speed limit value is the second speed value.
The rotation position of the motor unit is from a sixth position that is a sixth predetermined distance from the movement target position on the side where the second software limit position is located with respect to the movement target position, to the movement target position. In the section, the first speed limit value is gradually reduced from the second speed value to an absolute value that is zero on the second software limit position, and the first speed limit value is the first speed limit value. The motor control method according to claim 10, wherein setting is performed such that two speed limit values are set as the second speed value.
前記モータ部の前記回転位置が前記モータ部の移動目標位置と前記第2のソフトウエアリミット位置の中間にある時は、
前記モータ部の前記回転位置が、前記移動目標位置よりも前記移動目標位置の前記第2のソフトウエアリミット位置のある側で前記移動目標位置と第7の所定距離にある第7の位置から、前記第2の位置までの区間では、前記第1制限速度値を前記第1の速度値とし、かつ前記第2制限速度値を前記第2の速度値とし、
前記モータ部の前記回転位置が、前記第7の位置から、前記移動目標位置までの区間では、前記第1制限速度値を前記第1の速度値とし、かつ前記第2制限速度値を前記第2の速度値からその絶対値を徐々に減少させて前記移動目標位置にてゼロとなる仮想線上にある速度とし、
前記モータ部の前記回転位置が、前記移動目標位置よりも前記第1のソフトウエアリミット位置のある側で前記移動目標位置と第8の所定距離にある第8の位置から、前記移動目標位置までの区間では、前記第1制限速度値を前記第1の速度値とし、かつ前記第2制限速度値を前記第1の速度値からその絶対値を徐々に減少させて前記移動目標位置にてゼロとなる仮想線上にある速度とする設定を行うことを特徴とする請求項10に記載のモータ制御方法。
The speed limit value setting step includes:
When the rotational position of the motor unit is between the movement target position of the motor unit and the second software limit position,
From the seventh position where the rotational position of the motor unit is at a seventh predetermined distance from the movement target position on the side where the second software limit position of the movement target position is located with respect to the movement target position. In the section to the second position, the first speed limit value is the first speed value, and the second speed limit value is the second speed value.
In a section where the rotational position of the motor unit is from the seventh position to the movement target position, the first speed limit value is set as the first speed value, and the second speed limit value is set as the first speed value. The absolute value is gradually decreased from the speed value of 2 to a speed on the imaginary line that becomes zero at the movement target position,
The rotation position of the motor unit is from an eighth position at an eighth predetermined distance to the movement target position on the side where the first software limit position is located from the movement target position to the movement target position. In this section, the first speed limit value is set to the first speed value, and the second speed limit value is gradually reduced from the first speed value to zero at the movement target position. The motor control method according to claim 10, wherein setting is performed so that the speed is on an imaginary line.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017176536A JP6918290B2 (en) | 2017-09-14 | 2017-09-14 | Motor control device, motor device, motor control method, lifting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017176536A JP6918290B2 (en) | 2017-09-14 | 2017-09-14 | Motor control device, motor device, motor control method, lifting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019054613A true JP2019054613A (en) | 2019-04-04 |
JP6918290B2 JP6918290B2 (en) | 2021-08-11 |
Family
ID=66014792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017176536A Active JP6918290B2 (en) | 2017-09-14 | 2017-09-14 | Motor control device, motor device, motor control method, lifting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6918290B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114700952A (en) * | 2022-04-24 | 2022-07-05 | 伍福人工智能(河南)有限公司 | Joint limiting control method and device, terminal equipment and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06225566A (en) * | 1993-01-21 | 1994-08-12 | Hitachi Ltd | Speed controller for motor |
JPH07184400A (en) * | 1993-12-24 | 1995-07-21 | Hitachi Ltd | Pumped storage power generator with variable speed |
JP2016222462A (en) * | 2015-05-29 | 2016-12-28 | 株式会社ロボテック | Cargo-handling assist device and control method of cargo-handling assist device |
JP2017034936A (en) * | 2015-08-05 | 2017-02-09 | 国立大学法人長岡技術科学大学 | Motor control apparatus, motor device, and motor control method |
JP2017100814A (en) * | 2015-11-30 | 2017-06-08 | 株式会社ロボテック | Assistance system |
-
2017
- 2017-09-14 JP JP2017176536A patent/JP6918290B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06225566A (en) * | 1993-01-21 | 1994-08-12 | Hitachi Ltd | Speed controller for motor |
JPH07184400A (en) * | 1993-12-24 | 1995-07-21 | Hitachi Ltd | Pumped storage power generator with variable speed |
JP2016222462A (en) * | 2015-05-29 | 2016-12-28 | 株式会社ロボテック | Cargo-handling assist device and control method of cargo-handling assist device |
JP2017034936A (en) * | 2015-08-05 | 2017-02-09 | 国立大学法人長岡技術科学大学 | Motor control apparatus, motor device, and motor control method |
JP2017100814A (en) * | 2015-11-30 | 2017-06-08 | 株式会社ロボテック | Assistance system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114700952A (en) * | 2022-04-24 | 2022-07-05 | 伍福人工智能(河南)有限公司 | Joint limiting control method and device, terminal equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP6918290B2 (en) | 2021-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5821210B2 (en) | Horizontal articulated robot and control method of horizontal articulated robot | |
KR100374147B1 (en) | Rope deflection prevention control method and device for crane | |
US8798874B2 (en) | System for limiting contact between a dipper and a shovel boom | |
US12012316B2 (en) | Winding machine and method of controlling driving of winding machine | |
JP5659727B2 (en) | Crane swing angle detection method and apparatus, and crane steadying control method and apparatus | |
US9242833B2 (en) | Control device of elevator | |
JP6918290B2 (en) | Motor control device, motor device, motor control method, lifting device | |
JP2007314290A (en) | Control system of elevator | |
US7433758B2 (en) | Control apparatus of robot | |
JP6095011B2 (en) | Elevator door control apparatus and method | |
JP5298506B2 (en) | Elevator control device | |
WO2010055555A1 (en) | Elevator control apparatus | |
JP4419517B2 (en) | Control method of motor for driving lifting machine | |
JPWO2021186680A5 (en) | ||
JP7253167B2 (en) | Loading aid | |
JP2011195286A (en) | Control device of elevator | |
JP2006321642A (en) | Car inside load detecting device of elevator | |
JP6288680B2 (en) | Electric lift and cargo handling vehicle | |
WO2021240593A1 (en) | Elevator landing control system | |
US20210269278A1 (en) | Elevator control device | |
CN116056995A (en) | Drive system and method for controlling a drive system | |
JP6727437B2 (en) | Elevator equipment | |
JP7114030B2 (en) | Loading aid | |
JP4689374B2 (en) | Elevator control device and elevator repair method | |
JP2024055932A (en) | Article movement device system and control part of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210614 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210708 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6918290 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |