[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018531524A6 - リズムおよび/または振幅が時間的に可変なパルスレーザーシステム - Google Patents

リズムおよび/または振幅が時間的に可変なパルスレーザーシステム Download PDF

Info

Publication number
JP2018531524A6
JP2018531524A6 JP2018538955A JP2018538955A JP2018531524A6 JP 2018531524 A6 JP2018531524 A6 JP 2018531524A6 JP 2018538955 A JP2018538955 A JP 2018538955A JP 2018538955 A JP2018538955 A JP 2018538955A JP 2018531524 A6 JP2018531524 A6 JP 2018531524A6
Authority
JP
Japan
Prior art keywords
signal
amplified
pulse
time
main signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018538955A
Other languages
English (en)
Other versions
JP2018531524A (ja
JP7153846B2 (ja
Inventor
オニンガー,クレメン
モラン,フランク
デレーグ,マルタン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amplitude SAS
Original Assignee
Amplitude Systemes SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1559952A external-priority patent/FR3042654B1/fr
Application filed by Amplitude Systemes SA filed Critical Amplitude Systemes SA
Publication of JP2018531524A publication Critical patent/JP2018531524A/ja
Publication of JP2018531524A6 publication Critical patent/JP2018531524A6/ja
Application granted granted Critical
Publication of JP7153846B2 publication Critical patent/JP7153846B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本発明は、源信号(100)を生成する光源(10)、および光増幅器システム(30、31、32、33)を含むレーザーシステムに関する。本発明によれば、レーザーシステムは、1個以上の光パルスを含む主信号(120)を形成すべく源信号(100)を選択または変更すべく構成されたパルス選択または変更装置(20)を含んでいる。主信号(120)はリズムおよび/または振幅に関して時間的に可変である。レーザーシステムは、主信号(110)および二次信号(120)を前記光増幅器システム(30)内に注入すべく構成されている。二次信号は、光増幅器システム(30)に蓄えられた出力を時間依存的に安定させるべく前記主信号(110)のリズムおよび/または振幅の時間変化に基づき変更され、レーザーシステムは、増幅主信号(310)を増幅二次信号(320)から空間的に分離すべく構成されている。

Description

本発明は一般に、パルスレーザーの分野に関する。
本発明は特に、時間経過に伴いパルスが変調される高出力および/または高エネルギーパルスレーザーシステムに関する。本発明はまた、レーザーシステムからの増幅パルス、すなわち高出力および/または高エネルギーのパルスの速度および/または振幅を高速に変調する方法に関する。本発明はまた、数百MHzまたはGHzオーダーの極めて高い繰り返し周波数から極めて低い速度にわたる広範な周波数範囲で時間変調されたレーザーパルスを生成する、更にはオンデマンドでパルスを生成する方法に関する。
パルスレーザーにより発せられるパルスの速度または繰り返し周波数は、使用するアーキテクチャ、およびレーザービームに求められる仕様の関数として決定される場合が多い。
高出力レーザー光源の製造に主発振器出力増幅器(MOPA)方式のアーキテクチャが一般に用いられる。この場合、「主発振器」と呼ばれる発信源10が、源パルスを含む源信号100を生成する。当該源信号100は、1個以上の直列増幅段を含む光増幅器システム30で増幅される。異なる種類の発信源10が存在する。発信源10は周期的であってよく、特に、発振器の空胴長が繰り返し周波数を画定するモードロッキングレーザーに基づく発信源は周期的である。繰り返し発信源10もまたQスイッチ方式の発振器に基づいていてよい。モードロッキングまたはQスイッチ源により、持続期間がピコ秒単位のパルスの生成が可能になるが、オンデマンドでのパルス生成は可能にはならない。更に、発振器がパルスダイオードからなり、発振器速度が固定されていない、いわゆるナノ秒または連続MOPAも存在する。これらのパルスレーザーダイオードMOPAによりオンデマンドでのパルス生成は可能になるが、がナノ秒オーダーのパルス持続期間に制約される。
特定の用途において、ユーザーは繰り返し周波数を変化させる、および/または極めて短いレーザーパルスの振幅を変調する、または高出力および/または高エネルギーレーザーパルスの発信を部分的または完全に中断し、次いで再開する必要がある。
レーザーパルスの放射の制御は、光増幅器の上流または下流で、パルス変調または選択装置を光路内に設置することにより各種の方法で実行することができる。
第1の方法は、発振器繰り返し周波数よりも低いレーザー出力周波数でパルスを生成する周波数減衰器を用いるものである。周波数減衰器は一般に、2、3、またはN個のパルスから1個を選択し、従って発振器繰り返し周波数の半分、三分の一、またはN分の一に各々等しい繰り返し周波数で、パルスを生成する。別の方法は、電子制御信号により、ユーザーの要求時点でパルスの放射を生起させるべくオンデマンドでパルスを選択する装置を用いるものである。更に別の方法は、レーザーの出力端で高速なシャッタを用いてレーザービームを1パルス毎にスイッチオフまたはスイッチオンするものである。
図1に、従来技術の時間変調パルスレーザーシステムを示す。当該レーザーシステムは、発信源10、光増幅器システム30、発信源10と光増幅器システム30の入力端との間に配置されたパルスセレクタ20、および/または光増幅器システム30の出力端に配置された別のパルスセレクタ25を含んでいる。発信源10は、例えば、一般に約10kHz〜約10MHz、更には数GHzの固定速度で発せられる光パルスを含む源信号100を生成するモードロッキング発振器を含んでいる。源信号100の光パルスの持続期間は一般に、1フェムト秒または1ピコ秒のオーダーである。一例として、光増幅器システム30は、MOPA方式のアーキテクチャに基づいている。任意選択により、増幅器システムは、増幅器システムの上流のストレッチャおよび下流のコンプレッサを含むチャープパルス増幅器(CPA)方式のアーキテクチャに一体化されていてよい。
パルスセレクタ20(またはパルスピッカー)は、光増幅器システム30の上流の源信号100から1個以上の光パルスを除去して、1個以上の選択された光パルスを含む変調信号110を通過させる。光増幅器システム30は、変調信号110を増幅して、1個以上の増幅および選択された光パルスを含む増幅信号300を生成する。パルスセレクタ20は従って、増幅前に発振器10からのパルスの繰り返し周波数を減衰させること、または、増幅前に1個以上の光パルスを源信号からオンデマンドで選択することも可能にする。所望の回折効率に届くよう、単一パルス領域においてオンデマンドでパルス、または一般に周波数範囲が約10kHz〜約100MHzまたは数GHzの周期的パルス、および数W〜約10WのRF電力を供給可能にする異なる種類の、特にブラッグまたは電気光学セル、例えばポッケルスセル、に基づく音響光学方式のパルスセレクタ20が存在する。
しかし、光増幅器システム30の上流の変調信号110のパルス間の繰り返し周波数または時間隔を変更することで一般に増幅信号300のパルスのパラメータが変更される。源信号100のパルスが波長、持続期間およびエネルギーの全てにおいて同一あるが、増幅信号300のパルスは同一でないことが分かっている。実際、増幅信号300のパルスのエネルギーおよび/または持続期間、増幅信号300のパルスビームの形状および/または品質は、変調信号110の選択されたパルス間の速度変動の関数として変化し得る。
特に、レーザーパルス列の生成中、第1の増幅パルスは一般に当該列に後続するパルスよりも極めて高いエネルギーおよび/または出力を有している。この超高出力の原因は、増幅媒体が連続的にポンピングされている状態で、パルス間の時間隔が増大すれば増幅器に蓄えられたエネルギーが増大するからである。従って、パルス列の第1のパルスは、後続パルスよりも高いエネルギーを増幅器媒体から抽出する。この第1の超高出力パルスは、光増幅器システム30素子または光増幅器システム30の下流の光路の劣化または破壊をもたらし、一般に定常的且つ安定したエネルギーを必要とするレーザー方式に悪影響を及ぼす恐れがある。
光増幅器システム30の上流における周波数および/または振幅に関するパルスの選択または源信号の変調は従って、今のところ、レーザーシステムの出力端における増幅パルス300の周波数および/または振幅を、発せられるパルスの特性に影響を及ぼすことなく、自在に変調可能にすることができない。
パルス列の放射を制御すべく従来用いられてきた別の技術は、レーザーの後段に光変調器25(音響光学または電気光学式の)を配置するものである。当該変調器25は、起動された場合、当該変調器を通過する1個以上のパルスの偏光、伝搬方向、振幅および/または位相特性を選択的に変更可能にすることにより、特定の増幅パルス250を他の増幅パルス252から空間的に分離可能にする。この技術は主に、以下の理由で制約される。第1に、光増幅器の下流に配置された電気光学(EO)または音響光学(AO)変調器の現行速度により、それらの使用時の最大速度が数MHzまたは約10MHzに制約される。第2に、パルスレーザーの出力端に配置された光変調器25が、(音響光学変調器の場合10〜20%、電気光学変調器の場合5%のオーダーの)出力損失をもたらす。最後に、高出力レーザーの場合、レーザービームが増幅システム30の出力端に配置された光変調器25を損傷させる恐れがある。光変調器25はまた、出力レーザービームのパラメータを、例えば熱レンズの影響下で空間的に、または非線形効果の作用により時間的、スペクトル的、または空間的に変更する場合がある。
従って、増幅パルスの特性(エネルギー、持続期間、空間形状、ビーム品質)を制御すると共に増幅システムの時間経過に伴う安定性を保証しながら、高エネルギーおよび/または高出力パルスレーザーシステムの速度および/または振幅を時間変調可能にし、変調速度がパルスの反復速度に達し得るシステムおよび方法に対するニーズが存在する。
現行技術の上述の短所を克服すべく、本発明は、光源光パルスを含む源信号を生成すべく適合された光源を含む、速度および/または振幅が時間変調されるパルスレーザーシステム、および前記源信号を受信および増幅すべく適合された光増幅器システムを提案する。
より具体的には、本発明によれば、1個以上の光パルスを含む主信号を形成すべく源信号を選択または変調すべく構成されたパルス選択または変調装置を含む、時間変調パルスレーザーシステムを提案するものであり、主信号の速度および/または振幅が時間変調されており、当該レーザーシステムは一方で主信号および他方で二次信号を前記光増幅器システム内に注入すべく構成されており、光増幅器システムは、一方で速度および/または振幅が時間変調された増幅主信号、および他方で増幅二次信号を形成し、二次信号は、光増幅器システムに蓄えられたエネルギーを時間の関数として安定させるべく、主信号の速度および/または振幅の時間変調の関数としてリアルタイムに変調されており、当該レーザーシステムは、速度および/または振幅が時間変調された増幅主信号を第1の出力端に、および増幅二次信号を第2の出力端に、空間的に分離すべく構成されている。
本発明は、レーザーにさほど、または全く損失を生じさせることなく、増幅光パルス列を制御された仕方で変調することを可能にするものである。レーザーシステムは、ゼロ周波数からGHzのオーダーに達し得る主光源の周波数にわたる周波数範囲において、動作が可能であり、多くの場合高エネルギーおよび/または高出力の増幅パルスに関して脆弱な光素子であるパルスセレクタが増幅後に露出することを避ける。
本発明による時間変調パルスレーザーシステムの、個別の、または技術的に可能な任意の組み合わせによる他の非限定的且つ有利な特徴は以下の通りである。
− 光増幅器システムは、第1の波長における主信号および第2の波長における二次信号を増幅すべく適合されたスペクトル利得帯域を有し、レーザーシステムは、第1の波長における増幅主信号と第2の波長における増幅二次信号とをスペクトル的に分離すべく構成されたスペクトルフィルタを含み、
− 光増幅器システムは、第1の偏光状態に偏光された主信号、および/または第2の偏光状態に偏光された二次信号を受信および増幅すべく適合されており、前記第1および第2の偏光状態は互いに直交し、レーザーシステムは、一方で第1の偏光状態に偏光された増幅主信号と、他方で第2の偏光状態に偏光された増幅二次信号とを分離すべく配置および構成された偏光分離フィルタを含み、
− 光増幅器システムは、光増幅器システムの第1の入出力端と第2の入出力端との間で互いに逆向きに伝搬する主信号および二次信号を増幅すべく適合されており、レーザーシステムは、一方で増幅主信号と他方で増幅二次信号とを分離すべく配置および構成された少なくとも1個の光学フィルタを含み、
− 光増幅器システムは、第1の方向に伝搬する主信号、および第1の方向から空間的および/または角度的に分離された第2の方向に伝搬する二次信号を増幅すべく適合された空間および/または角開口を有し、レーザーシステムは、第1の方向に伝搬する増幅主信号、および/または第2の方向に伝搬する第2の増幅信号を空間的および/または角度的に分離すべく構成されており、
− レーザーシステムは、源信号を発する第1の光源および二次信号を発する二次光源を含み、パルス選択または変調装置は、第1の光源と光増幅器システムとの間に配置されたパルスセレクタまたは変調器を含み。パルスセレクタまたは変調器は源信号を受信して主信号を形成し、レーザーシステムは更に、一方で主信号および他方で二次信号を前記光増幅器システム内に注入すべく配置および構成された光ビームコンバイナを含み、
− レーザーシステムは、単一の、好適には周期的な、源信号を発する光源を含んでいて、パルス選択または変調装置は、光源と光増幅器システムとの間に配置されたパルスセレクタまたは変調器を含み、パルスセレクタまたは変調器は周期的源信号を受信して一方で主信号および他方で二次信号を形成し、
− パルス選択または変調装置は偏光変調器を含み、光変調器は、第1の偏光状態に偏光された主信号を生成し、且つ第2の偏光状態に偏光された二次信号を生成すべく、偏光された源信号を受信および変調すべく構成されており、
− パルス選択または変調装置は、ある方向に伝搬する主信号を生成し、且つ別の方向に伝搬する二次信号を生成すべく、源信号を受信および変調すべく構成された光方向変調器を含み、
− パルス選択または変調装置は、振幅変調された主信号を生成すべく、周期的源信号を受信して振幅を変調すべく構成された光変調器を含み、二次信号の振幅が主信号の振幅の時間変調の関数として変調される。
別の実施形態によれば、光増幅器システムは、第1の光増幅器を含む第1の部分と、第2の部分とを含む再生空洞であって、パルス選択または変調装置が第1の部分と第2の部分との間で再生空洞に配置されたポッケルスセルを含み且つ当該ポッケルスセルが再生空洞内の光位相シフトを変調すべく構成された再生空洞と、ポッケルスセルと空洞の第1の部分との間に配置された第1の偏光子およびポッケルスセルと空洞の第2の部分との間に配置された第2の偏光子を含む光フィルタリング装置、とを含み、ポッケルスセルは、光源光パルスを再生空洞内に閉じ込めるべく光位相シフトの初回の変調を行うべく構成されており、再生空洞は、閉じ込められた光パルスを増幅して増幅光パルスを形成し、ポッケルスセルは、増幅光パルスが再生空洞の第1の部分内を循環して増幅主信号を形成すると共に、第2の偏光子が増幅主信号を再生空洞の第1の出力端に向けて誘導すべく構成されている場合、または増幅光パルスが再生空洞の第2の部分内を循環して増幅二次信号を形成すると共に、第1の偏光子が増幅二次信号を再生空洞の第2の出力端に向けて誘導すべく構成されている場合、のいずれかで光位相シフトの二回目の変調を行うべく構成されている。
有利な特徴として、パルス選択または変調装置は、源信号をns未満〜数nsの切り替え時間で選択または変調すべく構成されている。
好適には、第1の光源は周期的であって反復周期が10kHz〜1GHzであり、光源光パルスの持続期間は約1ピコ秒〜数百ナノ秒である。
各種の実施形態において、パルス選択または変調装置は、好適には約1ns〜10nsの切り替え時間で源信号を選択または変調すべく電子的に制御される。
本発明はまた、再生空洞内で第1の偏光子と第2の偏光子との間に配置されたポッケルスセルを含む再生空洞の出力端におけるパルスの速度および/または振幅の変調方法にも関し、ポッケルスセルは、再生空洞の第1の部分と第2の部分を区切り、再生空洞は、再生空洞の第1の部分に配置された少なくとも1個の光増幅器を含み、本方法は以下のステップ、すなわち
− 再生空洞内に光源光パルスを注入しで閉じ込めるべくポッケルスセルに第1のインパルススイッチング電圧を印加するステップと、
− ポッケルスセルにゼロ変調電圧を印加しながら、再生空洞内に閉じ込められた光パルスを増幅して増幅光パルスを形成するステップと、
− 増幅光パルスが再生空洞の第1の部分内を循環して増幅主信号を形成して第2の偏光子が増幅主信号を再生空洞の第1の出力端に向けて誘導すべく構成されている場合、および/または増幅光パルスが再生空洞の第2の部分内を循環して増幅二次信号を形成して第1の偏光子が増幅二次信号を再生空洞の第2の出力端に向けて誘導すべく構成されている場合に、ポッケルスセルに第2のインパルススイッチング電圧を印加して光位相シフトを変調するステップとを含んでいる。
特定の実施形態によれば、第2の電圧の印加は、第1の出力端に向けられた増幅主信号および/または第2の出力端に向けられた増幅二次信号の振幅を変調すべく時間の関数としての勾配を含んでいる。
非限定的な例として示す添付図面を参照しながら、以下の記述により、本発明の構成および実施方法がよりよく理解されよう。
従来技術による、時間変調パルスレーザーシステムを模式的に示す。 本発明の第1実施形態による、時間変調パルスレーザーシステムの一般原理を模式的に示す。 第1実施形態の一変形例による、時間変調パルスレーザーシステムを模式的に示す。 本発明の第2の実施形態による、時間変調パルスレーザーシステムを模式的に示す。 第2の実施形態の一例による、時間変調パルスレーザーシステムを模式的に示す。 本発明の第3の実施形態による、時間変調パルスレーザーシステムを模式的に示す。 本発明の第4の実施形態による、時間変調パルスレーザーシステムを模式的に示す。 本発明の第5の実施形態による、時間変調パルスレーザーシステムを模式的に示す。
図2に、時間変調パルスレーザーシステムの第1実施形態を模式的に示す。本実施形態は、光増幅器の上流に配置されたパルスセレクタ20、異なる波長および/または偏光の主信号および二次信号の両方を、当該2個の信号を増幅すべく適合された光増幅器システム30に注入すべく構成された光ビームコンバイナ、および増幅主信号を増幅二次信号から分離すべく適合されたスペクトルおよび/または偏光フィルタリング装置を利用するものである。
より厳密には、図2の方式では第1の光源11、パルスセレクタ20、二次光源12、光ビームコンバイナ60、光増幅器システム30、および光学フィルタ50を含むパルスレーザーシステムは示している。
第1の光源11は源信号100を発する。第1の光源11は、例えば所定の繰り返し周波数frepで周期的源信号100を発する周期的発振器を含んでいる。周期的発振器は、モードロッキングレーザーまたはQスイッチ発振器を含んでいてよい。源信号100のパルスの持続期間は好適には数10ps〜ナノ秒領域の範囲にある。
光増幅器システム30は、単一の光増幅器、または直列に配置された複数の光増幅器、あるいはまた並列に配置されていてスプリッティングカプラにより多重化された複数の光増幅器を含んでいてよい。同一システムの光増幅器が、固体、結晶、薄型ディスク(薄型ディスクレーザー)、スラブ(スラブレーザー)、光ファイバ、または光子結晶ファイバ光増幅器等、異なる種類であってよい。光増幅器30は一般に連続的にポンピングされる。利得光増幅媒体には希土類元素が添加されていてよく、特にイッテルビウム、ネオジム、エルビウム、ツリウム、ホルミウム、またはこれら希土類元素のうち特定のものの合金が添加されていてよい。
パルスセレクタ20は、第1の光源11を光増幅器30に接続する光路内に配置されている。パルスセレクタ20は例えば、音響光学または電気光学変調器を含んでいる。パルスセレクタ20は、2個の連続的なパルスを分離している持続期間と同じオーダーの、またはわずかに速い、約1ns〜数ns(または特定のケースではより高速)の速い応答時間で切り替えるべく電子的に制御される。パルスセレクタ20は、源信号の1個以上の光パルスを(音響光学変調による吸収および変位、剪断モードにおける電気光学または音響光学変調による偏光転換により)除去して、1個以上の選択された光パルスを含む主信号110を形成する。
二次光源12は、例えば1個以上の二次光パルスを含む二次信号120を発すべく構成されており、二次光パルスは、主信号110の変調の関数としてオンデマンドで選択的に生成される。二次光源12は、一般に約1ns(特定のケースでは約ps)〜約10nsの範囲の速い応答時間で切り替えるべく電子的に制御される。更に、極めて低速で主信号を変調する、例えばオンデマンドで単発の増幅パルスを生成することが望ましい場合、二次光源が動作する持続期間も長くてよく、当該持続期間は例えば数秒間であってよい。
光ビームコンバイナ60は、一方で主信号110および他方で二次信号120を受信すべく配置されている。光ビームコンバイナ60は、主光源11および二次信号12の各々の特性の関数として選択されている。光ビームコンバイナ60は、キューブまたは部分的に透明且つ部分的に反射するプレートとしての空間型の光コンバイナ、または例えば二色性プレートのようなスペクトル型、または例えば偏光キューブのような偏光コンバイナであってよい。光学コンバイナ60により、主信号110および二次信号120を光増幅器システム30に注入することが可能になる。光増幅器システム30は従って、増幅主信号310および増幅二次信号320を形成すべく、主信号110および二次信号120を増幅する。
二次信号120が光増幅器30内で主信号110とほぼ同一の反転分布を示す状況を考える。より厳密には、二次信号120は、主信号110の時間変調に依らず、時間が経過しても光増幅器に蓄えられたエネルギーが一定のレベルに保たれるよう、時間変調される。一般に、主信号110および二次信号120のパルスは、同一の持続期間および/または同一のエネルギーを有していない。にもかかわらず、二次信号120の大きさは、主信号110と二次信号120の結合が、主信号110の変調に依らず、時間が経過しても光増幅器30の反転分布のレベルが一定値に保たれるように設定される。従って、光増幅器システム30の利得は、主信号110の選択された2個の連続的なパルスを隔てる時間区間に依らず、増幅主信号310の各パルスに対して一定に保たれる。選択されたパルスを含む主信号110が光増幅器30に送られた場合、1個以上の源パルスを除外する中断の後で、主信号110の全ての選択されたパルスが同一の利得で増幅される。
実際には、時間の関数としての増幅主信号310のパルスのエネルギーが測定され、注入された二次信号120の出力、エネルギー、波長および/またはパルスの持続期間が、増幅主信号310のパルスのエネルギーを安定させるように変更される。
第1の実施形態において、二次光源12は、パルスセレクタ20の動作の関数として、充分高速にスイッチオンおよびスイッチオフできなければならない。第1の例において、二次光源12は、主光源11の波長に近い波長で高速に変調可能なレーザーダイオードを含み、主光源11および二次光源12の波長は光増幅器システム30の利得帯域に位置している。二次光源12は、1GHzのオーダーの帯域幅で遠隔通信に用いられる種類のレーザーダイオードであってよい。レーザーダイオード12により発せられるパルスの持続期間は典型的にはナノ秒のオーダー(例えば、1〜20ns)である。一変形例によれば、二次光源12は、主光源11の主発振器と速度が同期しているモードロッキング発振器を含んでいる。当該変形例は遠隔通信ダイオードよりも高価であるが、利用可能なダイオードが所望のスペクトル範囲に存在しない場合に注目すべき代替策であろう。
特に有利な特徴として、レーザーシステムは、パルスセレクタが光パルスを源信号100から除去した場合に二次信号120のパルスの放射を生起させるべく、パルスセレクタ20を二次光源12に接続する同期化装置を含んでいる。
光学フィルタ50は光増幅器30の出力端に配置されている。光学フィルタ50は、増幅主信号310を第1の出力端S1に向けて、および/または増幅二次信号320を第2の出力端S2に向けて空間的に分離すべく構成されている。当該増幅二次信号320は、抑制または別の用途に用いられてもよい。
第1の実施形態の一例において、主光源11は主波長で主信号100を発し、二次光源12は主波長と異なる第2の波長で二次信号120を発する。主光源11および二次光源12は、主波長および二次波長が光増幅器30の利得帯域内に位置するように選択されている。好適には、光増幅器30の利得は、第1の波長および第2の波長にほぼ等しい。しかし、主光源11は一般に超短波であってFWHMprinceと表記するスペクトル幅を有している。持続期間がナノ秒のオーダーのパルスおよび狭いスペクトル幅(デルタに近い)を有する二次光源が選択される。増幅主信号310の大幅な損失なしに増幅主信号310を増幅二次信号320から分離させるべく、第2の波長は、主波長に中心が合わされて幅が約1.5*FWHMprinceまたは2*FWHMprinceに等しいスペクトル帯域の中から選択される。本例では、ビームコンバイナ60は例えば、主信号110を主波長に、および二次信号120二次波長に結合すべく適合された二色性のフィルタである。有利な特徴として、光学フィルタ50は、一方で増幅主信号310を主波長で、および他方で増幅二次信号320を二次波長でスペクトル分離できるように選択された二色性のフィルタである。レーザーダイオード12は、ビームコンバイナ60を介して二次信号120を注入すべく極めて高速に変調可能である。レーザーダイオード12の出力、エネルギー、波長および/または持続期間は、二次信号120が主信号110とほぼ同一の利得が得られるように調整されていてよい。従って本実施形態により、増幅された主信号310の安定性を制御することが可能になる。
第1の実施形態の本例は、増幅のスペクトル帯域が、スペクトルフィルタ50により互いに分離可能な2個の異なる波長の信号を増幅するのに充分広い利得媒体を有する任意の光増幅器30に適用できる。
一変形例において、主信号110および二次信号120は互いに直交する偏光状態に偏光されており、光増幅器システムはこれらの直交偏光状態に応じて信号を増幅すべく適合されている。本変形例において、光学フィルタ50は、偏光フィルタ、例えば出力端S1への増幅主信号310と出力端S2への増幅二次信号320を空間的に分離すべく構成された偏光子を含んでいる。ビームコンバイナは例えば、第1の偏光状態に偏光された主信号110と第2の偏光状態に偏光された二次信号120を結合すべく構成された偏光子である。
図3に、偏光の変調に基づく、レーザーシステムの第1の実施形態の変形例を模式的に示す。本変形例において、同一要素を図2と同一の参照符号で表している。信号源10が主光源11および二次光源12を代替する。発信源10は、一般に所定の繰り返し周波数frepで、パルスを含む源信号100を発する。本変形例において偏光変調器21を用いる。ここでは源信号100の光パルスは、第1の偏光状態、例えば直線、円、または楕円状に偏光される。偏光変調器21は、源信号の偏光を、第1の偏光状態と、第1の偏光状態に直交する第2の偏光状態との間の高速切り替えが可能なように構成されている。偏光変調器21の切り替え時間は好適には1ns〜数nsである。偏光変調器21は例えば、ポッケルスセルに基づく電気光学変調器、または音響光学変調器を含んでいる。例えば、偏光変調器21は、第1の偏光状態に偏光されたパルスを含む主信号110を形成すべく0に等しい位相シフト、または第2の偏光状態に偏光されたパルスを含む二次信号120を形成すべくπに等しい位相シフトのいずれかを選択的に導く位相変調器である。光増幅器システム30は、一方で第1の偏光状態に偏光された増幅主信号310を形成すべく主信号110を増幅し、および/または、光増幅器システム30は第2の偏光状態に偏光された増幅二次信号320を形成すべく二次信号120を増幅する。光増幅器システム30の出力端において、偏光子型52の光学フィルタが配置されており、第1の偏光状態に偏光された増幅パルスを含む増幅主信号310を出力端S1に、および/または、第2の偏光状態に偏光された増幅パルスを含む増幅二次信号320を出力端S2に空間的に分離可能にすべく向けられている。
例示的な一実施形態において、発信源10はファイバ源であり、光増幅器30は増幅光ファイバを含んでいる。増幅光ファイバは、第1の偏光状態および第2の偏光状態を維持すべく制御された環境に配置された偏光保持ファイバまたは標準ファイバであってよい。主信号110のパルスの選択は、偏光変調器21の制御システムにより電子的に実行される。構造的に、主信号110および二次信号120の光パルスは同一波長、同一出力を有している。光増幅器30は従って、主信号の偏光変調に依らず、一定のレベルの反転分布を有している。
増幅主信号310と増幅二次信号320は、互いに独立に用いられてよい。ある用途において、偏光変調器21は他の全てのパルスを選択することにより、増幅された周期的パルスを含む2個のレーザービームを増幅器システムの出力端に有し、各出力端での繰り返し周波数を発信源10の繰り返し周波数の半分に等しくすることが可能になる。2個の周期的レーザーパルス出力は従って、2個の完全なレーザーシステムよりも低コストで得られる。
従って、増幅パルス310のパラメータ値(エネルギー、持続期間、空間形状・・・)を変更することなく、レーザーパルスを放出するか否かを可能にすると共に、1パルス毎の開閉を充分高速に行える光ゲートが得られる。当該光ゲートの状態変更速度は、装置が動作可能な最大速度を規定する。
第1の実施形態の上述の例は、周期的源信号からの合計1個以上の主パルスを含む主信号の選択について述べている。
より一般的には、主信号は、振幅が時間の関数として変調された源信号の一部を含んでいてよい。従って、完全なパルスを選択するのではなく、源パルスの一部を含む少なくとも1個の主パルスが選択される。例えば、源パルスのエネルギーの80%が選択されている。選択されたパルスの振幅は、必要に応じて1パルス毎に異なっていてよい。本開示の原理と同様に、二次信号は注入されて、主信号の変調振幅に依らず、光増幅器システムの利得を安定させるべく主信号のパルスの振幅変動を補償すべく適合されている。振幅が変調された主信号と、二次信号の光増幅器への同時注入により、当該2個の信号の増幅間で競合が生じる。主信号および二次信号の各々の増幅利得は互いに異なっていてよい。例えば、注入された二次信号の振幅、エネルギーおよび/または持続期間は、光増幅器システムの励起イオンの反転分布を時間が経過しても本質的に一定に維持すべく変更される。好適には、光増幅器の飽和した利得が一定に保たれるように二次信号の強度が主信号の強度の関数として調整される。従って、光増幅器システムにおいて安定した利得を保証しながら、増幅主信号のアナログ振幅変調が生じる。増幅主信号および増幅二次信号は次いで、上述の例の任意のものに従い互いに空間的に分離される。
上述の振幅変調の一実施形態において、偏光変調器21により、光源の偏光状態を切り替えるだけでなく、主信号110の選択されたパルスの振幅を変調することも可能になる。この振幅変調は、第1の偏光状態の一部が第2の偏光状態に変換可能な場合に得られる。例えば、電気光学方式の偏光変調器21は、0〜半波長の位相シフトをもたらすべく制御することができる。同様に、音響光学種類の偏光変調器は、オーダー0〜オーダー1の異なる回折効率を生じるべく制御することができる。従って、一般に、光増幅器システム内に注入された主信号110は源信号100の一部を含み、光増幅器システム内に注入された二次信号120は主信号110の時間変動の関数として時間変調されるため、光増幅器の反転分布のレベルは主信号の時間変動に依らず一定に保たれる。
図4に、本発明の第2の実施形態による、速度および/または振幅が時間変調されるパルスレーザーシステムを模式的に示す。
第2の実施形態は、双方向性の、すなわち光増幅器システム33内で互いに逆向きにおいて伝搬する2個のビームを増幅すべく適合された光増幅器システム33を利用するものである。第2の実施形態において、光増幅器システム30への二次信号120の注入は主信号110の注入とは逆向きに行われる。
図4のレーザーシステムは、主光源11および二次光源12を含んでいる。音響光学または電気光学方式のパルスセレクタまたは変調器20が双方向性光増幅器システム33の主光源11と第1の入出力端との間に配置されている。パルスセレクタまたは変調器20は、発信源10を光増幅器33に接続する光路内で、好適には周期的な源信号100からパルスの一部または1個以上の光パルスを除去して、源信号の一部、例えば1個以上の選択された光パルスの一部を含む主信号110を光増幅器システム33に向けて通過させる。主信号110は双方向性光増幅器33内で第1の伝搬方向に伝搬する。パルスセレクタまたは変調器20の切り替え時間は好適には約1ns(またはns未満)〜約10nsであってよい。主信号110は、第1の伝搬方向に伝搬する増幅主信号310を形成すべく増幅される。
二次光源12は、主信号110の振幅および/または速度の変調の関数として変調された二次信号120を発する。光学フィルタ51が二次光源12と光増幅器システム33の第2の入出力端との間に配置されている。光学フィルタ51は、主信号のまたは二次信号の特徴に応じて、空間(ビームコンバイナ)、方向(光サーキュレータまたは絶縁器)、スペクトルまたは偏光フィルタのうちから選択されていてよい。光学フィルタ51は、第2の入出力端を介して双方向性光増幅器システム33内に二次信号120を注入することにより、二次信号120は双方向性光増幅器システム33内で主信号とは逆向きに伝搬する。従って、二次信号120は、第1の伝搬方向の逆向きに伝搬する増幅二次信号320を形成すべく増幅される。更に、光学フィルタ51により、増幅主信号310を第1の出力端S1に向けて誘導すべく増幅主信号310を二次信号120から分離することが可能になる。
別の光学フィルタ52が、パルスセレクタまたは変調器20と光増幅器システム33の第1の入出力端との間に配置されている。光学フィルタ52は、増幅二次信号320を主信号110から空間的に分離して、増幅二次信号320を第2の出力端S2に誘導する。好適には、光学フィルタ52は、異なる波長の光源11、12を用いる場合は受動フィルタ、例えばダイクロイックミラーであり、2個の異なる偏光状態に偏光された信号110、120を用いる場合は偏光子であるか、または光サーキュレータあるいは絶縁器である。
上述の第2の実施形態は特に、一般に双方向性であるが一般にビームの空間的および/または角度的分離が生じない光学的ファイバ増幅器向けに適合されている。
図5に、本発明の第2の実施形態の一例による、時間変調パルスレーザーシステムを模式的に示す。レーザーシステムは、光パルスを含む周期的源信号100を所定の繰り返し周波数frepで発する主発信源10を含んでいる。源信号100の光パルスはここでは第1の偏光状態、例えば直線、円、または楕円状に偏光されている。光変調器22は、源信号100から、一方で光増幅器33の第1の入出力端に向けられた主信号110、および他方で光増幅器33の第2の入出力端に向けられた二次信号120を形成する。ここでは、光アイソレータ51により、増幅主信号310を出力端S1に向けて分離することが可能になる。別の光アイソレータ52により、増幅二次信号320を出力端S2に向けて分離することが可能になる。
図6に、本発明の第3の実施形態による、時間変調パルスレーザーシステムを模式的に示す。
第3の実施形態は、互いに空間的および/または角度的に分離された2個のレーザーパルスビームを増幅するのに充分な空間的広がりおよび/または開口角を有する光増幅器システム30を利用するものである。
図6のシステムは、周期的な光パルスを含む周期的源信号100を繰り返し周波数frepで発する発信源10を含んでいる。光変調器24が、源パルス100の光路内で発信源10と光増幅器システム30との間に配置されている。光変調器24は、周期的源信号100を、一方で例えば周期的源信号100の伝搬方向と同一の伝搬方向に伝搬する主信号110、および他方で例えば主信号110の伝搬方向に対して角度変位した二次信号120に向けて、空間的および/または角度的に、分離すべく適合および構成されている。光変調器24は例えば、二次信号120をずらすことを可能にすべく構成された音響光学変調器である。光変調器24の切り替え時間は約1ns〜10nsである。主信号110は、光増幅器30に向けて第1の伝搬方向に誘導され、増幅主信号310を形成すべく増幅される。光増幅器30は、第2の方向に伝搬する二次信号120を受容するのに充分広い空間的広がりおよび/または開口角を有する。必要ならば、光学的信号30の主信号と二次信号との間の空間的および/または角度的分離を増大すべく、鏡を主体とする光学システムが主信号および/または二次信号の光路に配置されている。二次信号120は光増幅器30内で空間的および/または角度的に第1の伝搬方向から分離された第2の伝搬方向に伝搬する。光増幅器30は、第1の方向に伝搬する増幅主信号310、および/または第2の角方向に伝搬する増幅二次信号320を形成すべく、主信号110または二次信号120を増幅する。有利な特徴として、第1および第2の伝搬方向は、出力端S1で増幅主信号310、および場合により出力端S2で増幅二次信号320を選択的に使用可能になる程度に空間的および/または角度的に互いに充分離れている。第3の実施形態において、増幅後のフィルタリングは空間的および/または角度的フィルタリングである。必要に応じて、例えば1個以上の鏡を主体とする空間フィルタ素子が光増幅器システムの出力端に配置されており、2個の増幅信号310、320の間の空間的および/または角度的分離を増大させるべく構成されている。
第3の実施形態は特に、Yb、Nd、Er、Tm、Ho、Tiおよび/またはCrが添加された結晶、例えばYb:YAG、ネオジムYAG(Nd:YAG)またはチタンサファイア結晶、またはEr:YAG、Tm:YAG、Ho:YAG結晶に基づく光増幅器に適用できる。
図7に、本発明の第4の実施形態による、時間変調パルスレーザーシステムの例示的な実施形態を模式的に示す。
図7のレーザーシステムは、図7の平面に平行な、例えばp偏光状態で線形に偏光された光パルスを含む周期的源信号100を発する発信源10を含んでいる。当該レーザーシステムは音響光学変調器24を含んでいる。音響光学変調器24の第1の状態において、適合された変調電圧が音響光学変調器24に印加された場合、源信号はオーダー1の回折分だけ変位して、第1の伝搬方向に伝搬する主信号110を形成する。これに対し、ゼロ変調電圧が音響光学変調器24に印加された場合、源信号は変位することなく第1の伝搬方向から角度的に分離された第2の伝搬方向に伝搬する二次信号120を形成する。音響光学変調器24の出力端において、主信号110および二次信号120は同一の偏光状態、ここではp偏光状態を有している。鏡を主体とする光学システム41、42により、主信号110を光アイソレータ56に向けて誘導することが可能になる。半波長プレート54(λ/2)により主信号110の偏光状態を直交線形偏光状態、ここではs偏光状態に変化させることが可能になる。鏡を主体とする別の光学システム45により二次信号120を偏光子90に向けて誘導することが可能になる。偏光子90により、第1の光路に伝搬するs偏光主信号110を第2の光路に伝搬するp偏光二次信号120と結合することが可能になる。偏光子90の出力端において、s偏光主信号110はp偏光二次信号120とは異なる伝搬方向に伝搬するが、当該2個の信号間の角度変位は音響光学変調器24の出力端での角度変位と比較して減少している。例えばアフォーカル望遠鏡36に続いて合焦レンズ37およびダイクロイックミラー38を含む光学システムにより、s偏光主信号110およびp偏光二次信号120を光増幅器結晶30に向けて誘導することが可能になる。ポンプ源35は、ダイクロイックミラー38による結合により、光増幅器結晶30の連続的な光ポンピングを保証する。光増幅器結晶30に中心を有する曲率半径Rの合焦鏡39により、光増幅器結晶30で増幅される信号を2倍通過させるすることが可能になる。光増幅器結晶30内で、光増幅器30の利得の定常性を保証すべく、s偏光主信号110がp偏光二次信号120に重ね合わされる。光増幅器結晶30内での2倍増幅の後で、増幅主信号310および増幅二次信号320が偏光子90に向けて誘導される。偏光子90により、増幅主信号310および増幅二次信号320を互いに空間的に分離することが可能になる。偏光子90の出力端におけるs偏光増幅主信号310は、増幅主信号310の偏光状態を直交線形偏光状態、ここではp偏光状態に変化させる半波長プレート54を通過する。光アイソレータ56により、p偏光された増幅主信号310を出力端S1に抽出することが可能になる。当該増幅主信号310は次いで、コンプレッサまたは任意の考え得る用途に送信されてよい。他方では、増幅二次信号320は、出力端S2、例えば吸収装置46(またはビームダンプ)に向けて鏡45で反射される。
上述の例示的な実施形態において、光変調器24は発信源10の光路内に配置されていることで低出力周期的源信号100を変調する。この構成は、光変調器24の損傷を避けながら、高効率の変調を保証する。更に、光変調器24の切り替え時間が約1ns(またはns未満)〜約10nsであるため、この変調は高速である。オーダー1で回析された周期的源信号は約85%以上の回折効率で回析される。第1のオーダーで回析された当該ビームは周期的源信号の一部を含む主信号110を形成する。主信号110における損失は従って極めて限定的である。音響光学変調器が起動された場合、オーダー0で変位していない残余ビームもまた光増幅器結晶30で増幅される。しかし、オーダー1で回析された主信号での重なりは、オーダー0で変位していない残余ビームの重なりよりも大きいため、オーダー0回析されないビームでより低い利得が得られる。音響光学変調器24が休止している場合、パルスビームはオーダー1で回析されない。二次信号120は光増幅器結晶30で増幅され、次いで増幅二次信号320が偏光板90により空間的に分離されて吸収装置46内に閉じ込められる。
図8に、本発明の第5の実施形態による、時間変調パルスレーザーシステムを模式的に示す。第5の実施形態は、再生空洞内に配置された単一の光変調器80を含む再生空洞を有するレーザーを利用するものである。光変調器80は、光変調器の切り替え時点の関数として、パルスを第1の出力端S1または第2の出力端S2に向けて誘導すべくパルスセレクタおよび光変調器の両方として機能する。
従来技術の再生空洞増幅器において、第1の光変調器は、好適には時間が経過しても一定の繰り返し周波数で、パルスを一度に一個ずつ再生空洞内に注入すべく光学的空洞に配置された光スイッチとして機能する。第2の光変調器は一般に、増幅パルスを空間的および/または時間変調すべく再生空洞の出力端に配置されている。当該2個の光変調器は、音響光学方式またはポッケルスセル方式であってよい。
図8のシステムは、光パルスを含む周期的源信号100を生成する発信源10を含んでいる。発信源10は例えば、繰り返し周波数foscを有する発振器である。源信号100の光パルスはここではs偏光状態に線形に偏光される。光アイソレータ56は、再生空洞の第1の入出力端を形成する。半波長プレート54(λ/2)は、源信号100の光パルスの偏光状態をp偏光状態に変化させる。偏光子53は、ポッケルスセル80に向けてp偏光源信号100を送信する。
再生空洞は、第1の増幅部分131、第2の増幅部分132、および第1の増幅部分131と第2の増幅部分132との間に配置されたポッケルスセル80を含んでいる。再生空洞の第1の増幅部分131は、第1の鏡M1と偏光子61との間に配置された第1の光増幅器31を含んでいる。同様に、再生空洞の第2の増幅部分132は、第2の鏡M2と別の偏光子62との間に配置された第2の光増幅器32を含んでいる。ポッケルスセルは従って、偏光子61と偏光子62との間に配置されている。
再生空洞にパルスが一切閉じ込められておらず、且つポッケルスセル80がアイドル状態(すなわち、ポッケルスセルに印加される変調電圧がゼロ)の場合、偏光子62により反射されてポッケルスセル80を通過するp偏光源パルス100はp偏光されたままである。偏光子61は、再生空洞の第1の増幅部分131のs偏光だけを透過させ、且つp偏光を出力端S2に向けて透過させるべく向きが設定される。従って、変調器が休止している限り、p偏光源パルスは再生空洞の第1の増幅部分131に一切入らない。
パルス閉じ込めおよびパルス再生増幅は以下のように実行される。ポッケルスセル80が起動された場合、ポッケルスセルに半波長位相シフトを生じさせる変調電圧がポッケルスセルに印加される。起動されたポッケルスセルは、p偏光源パルス100を受信して、源信号100に含まれる当該パルスの偏光をs偏光に変化させる。偏光子52は、s偏光源パルス100を再生空洞の第1の増幅部分131に向けて送信する。s偏光源パルスは、鏡M1に向けて第1の光増幅器31を通過することにより、初回の増幅がなされ、次いで鏡M1に反射され、偏光子52に向けて第1の光増幅器31を通過することにより二回目の増幅がなされる。ポッケルスセル80の変調電圧は、s偏光源パルス100が再生空洞の第1の部分131を循環しながら、二回目にポッケルスセルを通過して戻る前に、半波長位相シフトからゼロ位相シフトまで切り替えられる。従って、ポッケルスセルは、再生空洞の第1の増幅部分131から放出される増幅パルスのs偏光を変更しない。偏光子53は、当該s偏光増幅パルスを再生空洞の第2の増幅部分132に向けて送信する。s偏光パルスは、鏡M2に向けて第2の光増幅器32を通過することにより再度増幅され、次いで鏡M2に反射されて、s偏光されたまま、偏光子53に向けて第2の光増幅器32を通過することにより二回目の増幅がなされる。従って、s偏光パルスは、閉じ込められ、再生空洞の第1の増幅部分131内、次いで第2の増幅部分132内で周期的に増幅される。ポッケルスセルの電圧がゼロのままである限り、第1の光増幅器および第2の光増幅器内での再生的に増幅パルスの偏光はs偏光のままである。ポッケルスセルを通過してゼロ位相シフトを生成させる他の全てのp偏光源パルス100はp偏光されたままである。偏光子61は、再生空洞の第1の増幅部分131から出力端S2を通って放出される他の全てのp偏光源パルス100を遮断する。再生空洞は好適には、パルスを一度に一個ずつ閉じ込めて増幅する寸法を有している。
二通りの抽出モードを示す。第1の抽出モードは、s偏光増幅パルスが再生空洞の第1の部分131内を循環する場合にポッケルスセル80の変調電圧をゼロ位相シフトから半波長位相シフトに切り替えるものである。s偏光増幅パルスが起動されたポッケルスセル80を通って第2の部分132に向けて通過する間、増幅パルスの偏光が変化してp偏光になる。偏光子62は、再生空洞のp偏光された当該増幅パルスを抽出して半波長プレート54に向けて誘導する。半波長プレート54は、偏光子51に向けて伝搬する増幅パルスの偏光を再度s偏光に変化させる。偏光子51は、半波長プレート54から飛来するs偏光増幅パルスをフィルタリングして、出力端S1に向けて誘導する。従って増幅パルスを含む増幅主信号310が出力端S1で得られる。
第2の抽出モードは、s偏光増幅パルスが再生空洞の第2の増幅部分132内を循環する場合にポッケルスセル80の変調電圧をゼロ位相シフトから半波長位相シフトに切り替えるものである。増幅パルスが起動されたポッケルスセルを通って第1の部分131に向けての移動の間、増幅パルスの偏光が変化してp偏光になる。偏光子62は、p偏光された当該増幅パルスを出力端S2を通して抽出して、p偏光された増幅二次信号320を形成する。
上述の動作モードの利点は、ポッケルスセルに印加される電圧がゼロであるにも拘らずパルスの増幅が生じることである。
一方で、ポッケルスセルは、初回の切り替えがパルス的に(注入のためゼロ位相シフトから半波長位相シフトに遷移し、次いでその直後に、閉じ込めのため半波長位相シフトからのゼロ位相シフトに遷移することにより)なされることで、時間が経過しても繰り返し周波数frepが一定のまま、源パルスを再生空洞内に注入して閉じ込める。従って、再生空洞は、一定の繰り返し周波数でパルスを増幅する。
他方で、ポッケルスセルは、同じくパルス的に(増幅パルスを抽出すべくゼロ位相シフトから半波長位相シフトに遷移し、次いで抽出の直後に、ポッケルスセルをアイドル状態に戻すべく半波長位相シフトからゼロ位相シフトに遷移することにより)、但し所望の出力の関数として選択された切り替え時点で切り替えられる。第1のケースでは、増幅パルスが再生空洞の第1の増幅部分131を循環する時点でポッケルスセルが切り替えられた際に、増幅パルスが経路S1に抽出されて増幅主信号が形成される。第2のケースでは、増幅パルスが再生空洞の第2の増幅部分132を循環する時点でポッケルスセルが切り替えられた際に、増幅二次信号のパルスが経路S2に抽出されて増幅二次信号が形成される。再生空洞から抽出されたパルスは、繰り返し周波数frepで完全に抽出されている状態で、2個の出力端S1、S2に空間的に分散しており、従って、再生空洞の光増幅器31、32の動作安定性が保証される。
第5の実施形態の良好な動作を保証する動作条件は、半波長位相シフトを生じさせる電圧で再生空洞が塞がれる必要があること、およびポッケルスセルの切り替え速度が、再生空洞の第1の増幅部分131、および/または第2の増幅部分132の循環の持続期間に比べて充分に速いことである(Tfall<TpartI)、Trise<TpartII)。ポッケルスセルの切り替え時間は一般に約1ns〜数nsである。
好適には、同一の第1の増幅部分131および第2の増幅部分132が選択されることで、第1の部分131内での往復運動の持続期間T1が第2の部分132内での往復運動の持続期間T2に等しい。再生空洞内での周期の持続期間は、持続期間T1と持続期間T2の和にほぼ等しい。ここでは、2個の源パルス100間の期間1/foscが持続期間T1、または持続期間T2よりも長く、従って単一のパルスが再生空洞の第1の増幅部分131または第2の増幅部分132内を循環することを仮定している。
第5の実施形態の変形例において、再生空洞は例えば、第1の部分に単一の光増幅器31を含んでいる。
第5の実施形態の代替方式によれば、偏光子61と偏光子62との間に半波長プレートが配置されている。出力増幅パルスの偏光は従って、90度回転され、次いでポッケルスセル80に電圧が印加された際にパルスの増幅が生じる。
更に、代替的な動作モードによれば、ポッケルスセルにより増幅信号の振幅変調を実行することが可能になる。例えば、抽出中にポッケルスセルに印加される高電圧の勾配が決定される。従って、当該高電圧勾配に時間シフトを適用することにより、振幅変調された0位相シフトと半波長位相シフト値の間に位相シフトが生じるため、1個のパルスの一部を出力端S1に、および同一パルスの別の一部を出力端S2に抽出することが可能になる。出力端S1またはS2に抽出されたパルスの一部は、位相シフトの勾配を時間の関数として調整することにより制御することができる。従って、出力端S1およびS2で増幅パルスの振幅変調が得られる。
第5の実施形態の別の代替方式によれば、再生空洞の第1および第2の増幅部分131は、1個以上の直列光増幅器を含む環状空洞で代替されている。
本発明は、レーザー出力端におけるパルスのエネルギー、出力、持続期間、空間品質に関する性能上の妥協無しに、増幅されるレーザーパルスの速度および/または振幅の時間変調に大幅な柔軟性を提供する様々な種類のパルスレーザーシステムに容易に実装できる。
本発明は、パルスの持続期間、波長、出力、エネルギーに依らず、レーザーパルスを生成する任意のレーザーシステムに適用できる。本発明は特に、先験的に決定された繰り返し周波数を有するパルスレーザーのパルス毎の高速変調に適用できる。本発明はまた、増幅レーザーパルスの振幅の高速変調に適用できる。
本発明は特に、例えば10MHz〜1GHz、特に数百MHz以上の繰り返し周波数frepという極めて高い繰り返し周波数を有するレーザーに適用できる。本発明は特に、主発振器および少なくとも1個の増幅段を含むパルスレーザーに適用できる。本発明はまた、上で詳述した利点(増幅チェーン後も無損失、能動素子無し、高出力送信で必須)が特に重要な、高平均出力(1ワット〜数百ワット、または50Wよりも高い数キロワットの平均出力)のレーザー、または高エネルギー(数百ナノジュール〜ミリジュール)のパルスレーザーにも適用できる。
光増幅器システムの上流に配置されたパルスセレクタまたは変調器、および場合により第2の光源12の切り替え速度により、光増幅器の動作安定性を保証しながら、増幅主ビームの極めて高速な変調が可能になる。換言すれば、パルスセレクタまたは変調器、および場合により第2の光源の切り替え速度は、10MHz〜1GHz、好適には数百MHzの超高周波数範囲での超短光パルスの変調と互換性を有している。本発明は従って、光増幅器システムの劣化リスク無しに、オンデマンドで超短波パルス、または最大1GHzの高繰り返し周波数で超短波パルスをも供給可能にすべく、極めて広い周波数範囲で変調された、高エネルギーおよび/または高出力の超短パルスレーザーを提案する。

Claims (15)

  1. 速度および/または振幅が時間変調されるパルスレーザーシステムであって、
    − 光源光パルスを含む源信号(100)を生成すべく適合された第1の光源(10、11)と、
    − 前記源信号(100)を受信および増幅すべく適合された光増幅器システム(30、31、32、33)とを含み、
    前記時間変調パルスレーザーシステムが、
    − 1個以上の光パルスを含む主信号(110)を、前記主信号(110)の速度および/または振幅が時間変調されるように、形成すべく前記源信号(100)を選択または変調すべく構成されたパルス選択または変調装置(20、21、22、24、80)を含み、
    − 前記レーザーシステムが、一方で前記主信号を(110)および他方で二次信号(120)を前記光増幅器システム(30、31、32、33)内に注入すべく構成されており、前記光増幅器システム(30、31、32、33)が、速度および/または振幅が一方で時間変調された増幅主信号(310)と、他方で増幅二次信号(320)とを形成し、
    − 前記二次信号(120)が、前記光増幅器システム(30、31、32、33)に蓄えられたエネルギーを時間の関数として安定させるべく、前記主信号(110)の速度および/または振幅の時間変調の関数としてリアルタイムに変調されており、
    − 前記レーザーシステムが、速度および/または振幅が時間変調された前記増幅主信号(310)を第1の出力端(S1)に、および前記増幅二次信号(320)を第2の出力端(S2)に、空間的に分離すべく構成されている、システム。
  2. 前記光増幅器システム(30、33)が、前記主信号(110)を第1の波長で、および前記二次信号(120)を第2の波長で増幅すべく適合されたスペクトル利得帯域を有し、前記レーザーシステムが、前記第1の波長で増幅された前記主信号(310)および前記第2の波長で増幅された前記二次信号(320)をスペクトル的に分離すべく構成されたスペクトルフィルタ(50)を含む、請求項1に記載の時間変調パルスレーザーシステム。
  3. 前記光増幅器システム(30)が、第1の偏光状態に偏光された前記主信号(110)、および/または第2の偏光状態に偏光された前記二次信号(120)を受信および増幅すべく適合されており、前記第1と第2の偏光状態が互いに直交し、前記レーザーシステムが、一方で前記第1の偏光状態に偏光された前記増幅主信号(310)と、他方で前記第2の偏光状態に偏光された前記増幅二次信号(320)とを分離すべく配置および構成された偏光分離フィルタ(50、90)を含む、請求項1または2に記載の時間変調パルスレーザーシステム。
  4. 前記光増幅器システム(33)が、前記光増幅器システム(33)の第1の入出力端(331)と第2の入出力端(332)との間で互いに逆向きに伝搬する前記主信号(110)および前記二次信号(120)を増幅すべく適合されており、前記レーザーシステムが、一方で前記増幅主信号(310)と他方で前記増幅二次信号(320)を分離すべく配置および構成された少なくとも1個の光学フィルタ(51、52)を含む、請求項1に記載の時間変調パルスレーザーシステム。
  5. 前記光増幅器システム(30)が、第1の方向に伝搬する前記主信号(110)および第2の方向に伝搬する前記二次信号(120)を増幅すべく適合された空間および/または角開口を有し、前記第2の方向が前記第1の方向から空間的および/または角度的に分離されており、前記レーザーシステムが、前記第1の方向に伝搬する前記増幅主信号(310)と、前記第2の方向に伝搬する前記第2の増幅信号(320)を空間的および/または角度的に分離すべく構成される、請求項1に記載の時間変調パルスレーザーシステム。
  6. 前記源信号(100)を発する第1の光源(11)および前記二次信号(120)を発する第2の光源(12)を含み、前記パルス選択または変調装置が、前記第1の光源(11)と前記光増幅器システム(30)との間に配置されたパルスセレクタまたは変調器(20)を含み、前記パルスセレクタまたは変調器(20)が前記源信号(100)を受信して前記主信号(110)を形成し、前記レーザーシステムが、一方で前記主信号(110)および他方で前記二次信号(120)を前記光増幅器システム(30、31、32、33)に注入すべく配置および構成された光ビームコンバイナ(60、51、52)を更に含む、請求項1〜5のいずれか1項に記載の時間変調パルスレーザーシステム。
  7. 前記源信号(100)を発する単一の光源(10)を含み、前記パルス選択または変調装置が、前記光源(10)と前記光増幅器システム(30、31、32、33)との間に配置されたパルスセレクタまたは変調器(21、22、24、80)を含み、前記パルスセレクタまたは変調器(21、22、24、80)が前記源信号(100)を受信して、一方で前記主信号(110)および一方で前記二次信号(120)を形成する、請求項1〜5のいずれか1項に記載の時間変調パルスレーザーシステム。
  8. 前記パルス選択または変調装置が偏光変調器を含み、前記光変調器が、前記第1の偏光状態に偏光された主信号(110)を生成し、前記第2の偏光状態に偏光された前記二次信号(120)を生成すべく前記源信号(100)を受信して偏光状態に変調すべく構成される、請求項1〜7のいずれか1項に記載の時間変調パルスレーザーシステム。
  9. 前記パルス選択または変調装置が、一方向に伝搬する前記主信号(110)を生成し、且つ別の方向に伝搬する前記二次信号(120)を生成すべく、前記源信号(100)を受信および変調すべく構成された光方向変調器を含む、請求項1〜7のいずれか1項に記載の時間変調パルスレーザーシステム。
  10. 前記パルス選択または変調装置が、前記振幅変調された主信号(110)を生成すべく前記源信号(100)を受信して振幅変調すべく構成された光変調器を含み、前記二次信号(120)の振幅が、前記主信号(110)の時間振幅変調の関数として変調される、請求項1〜9のいずれか1項に記載の時間変調パルスレーザーシステム。
  11. 前記光増幅器システム(30、31、32)が、第1の光増幅器(31)を含む第1の部分(131)と、第2の部分(132)とを含む再生空洞であって、前記パルス選択または変調装置が前記第1の部分(131)と前記第2の部分(132)との間の再生空洞に配置されたポッケルスセル(80)を含み且つ前記ポッケルスセル(80)が前記再生空洞内の光位相シフトを変調すべく構成された再生空洞と、前記ポッケルスセル(80)と前記空洞の前記第1の部分(131)との間に配置された第1の偏光子(61)および前記ポッケルスセル(80)と前記空洞の前記第2の部分(132)との間に配置された第2の偏光子(62)を含む光フィルタリング装置とを含み、前記ポッケルスセル(80)が、光源光パルス(100)を前記再生空洞内に閉じ込めるべく光位相シフトの初回の変調を行うべく構成されており、前記再生空洞が、前記閉じ込められた光パルスを増幅して増幅光パルスを形成し、前記ポッケルスセル(80)が、前記増幅光パルスが再生空洞の第1の部分(131)内を循環して増幅主信号(310)を形成すると共に、前記第2の偏光子(62)が前記増幅主信号(310)を前記再生空洞の第1の出力端(S1)に向けて誘導すべく構成されている場合、または前記光増幅パルスが前記再生空洞の前記第2の部分(132)内を循環して増幅二次信号(320)を形成すると共に、前記第1の偏光子(61)が前記増幅二次信号(320)を前記再生空洞の前記第2の出力端(S2)に向けて誘導すべく構成されている場合、のいずれかで光位相シフトの二回目の変調を行うべく構成される、請求項1に記載の時間変調パルスレーザーシステム。
  12. 前記パルス選択または変調装置(20、21、22、24、80)が、前記源信号(100)をns未満〜数nsの切り替え時間で選択または変調すべく構成される、請求項1〜11のいずれか1項に記載の時間変調パルスレーザーシステム。
  13. 前記第1の光源(10、11)が周期的であって反復周期が10kHz〜1GHzであり、前記光源光パルスの持続期間が約1ピコ秒〜数百ナノ秒である、請求項1〜12のいずれか1項に記載の時間変調パルスレーザーシステム。
  14. 再生空洞内で第1の偏光子と第2の偏光子との間に配置されたポッケルスセル(80)を含む前記再生空洞の出力端におけるパルスの速度および/または振幅の変調方法であって、前記ポッケルスセルが、前記再生空洞の第1の部分(131)と第2の部分(132)を区切り、前記再生空洞が、前記再生空洞の前記第1の部分(131)に配置された少なくとも1個の光増幅器(31)を含み、前記方法が以下のステップ、すなわち
    − 前記再生空洞内に光源光パルス(100)を注入しで閉じ込めるべく前記ポッケルスセル(80)に第1のパルススイッチング電圧を印加するステップと、
    − 前記ポッケルスセルにゼロ変調電圧を印加しながら、前記再生空洞内に閉じ込められた前記光パルスを増幅して増幅光パルスを形成するステップと、
    − 前記増幅光パルスが前記再生空洞の前記第1の部分(131)内を循環して増幅主信号(310)を形成すると共に、前記第2の偏光子(62)が前記増幅主信号(310)を前記再生空洞の前記第1の出力端(S1)に向けて誘導すべく構成されている場合、および/または前記増幅光パルスが前記再生空洞の前記第2の部分(132)内を循環して増幅二次信号(320)を形成すると共に、前記第1の偏光子(61)が前記増幅二次信号(320)を前記再生空洞の第2の出力端(S2)に向けて誘導すべく構成されている場合に、前記ポッケルスセル(80)に第2のパルススイッチング電圧を印加して光位相シフトを変調するステップと
    を含む方法。
  15. 前記第2の電圧の印加が、前記第1の出力端(S1)に向けられた前記増幅主信号(310)および/または前記第2の出力端(S2)に向けられた前記増幅二次信号(320)の振幅を変調すべく時間の関数としての勾配を含む、請求項14に記載の方法。
JP2018538955A 2015-10-19 2016-10-19 時間変調パルスレーザーシステムおよび変調方法 Active JP7153846B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1559952 2015-10-19
FR1559952A FR3042654B1 (fr) 2015-10-19 2015-10-19 Systeme de laser a impulsions modulable temporellement en cadence et/ou en amplitude
PCT/FR2016/052699 WO2017068282A1 (fr) 2015-10-19 2016-10-19 Système de laser à impulsions modulable temporellement en cadence et/ou en amplitude

Publications (3)

Publication Number Publication Date
JP2018531524A JP2018531524A (ja) 2018-10-25
JP2018531524A6 true JP2018531524A6 (ja) 2018-12-13
JP7153846B2 JP7153846B2 (ja) 2022-10-17

Family

ID=55025205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018538955A Active JP7153846B2 (ja) 2015-10-19 2016-10-19 時間変調パルスレーザーシステムおよび変調方法

Country Status (7)

Country Link
US (1) US11108207B2 (ja)
EP (1) EP3365951B8 (ja)
JP (1) JP7153846B2 (ja)
KR (1) KR102528882B1 (ja)
CN (1) CN108141001B (ja)
FR (1) FR3042654B1 (ja)
WO (1) WO2017068282A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9570877B1 (en) 2015-12-31 2017-02-14 Lumentum Operations Llc Gain control for arbitrary triggering of short pulse lasers
DE102017210272B3 (de) * 2017-06-20 2018-11-08 Trumpf Laser Gmbh Verfahren und Lasersystem zum Erzeugen verstärkter Pulse on Demand-Ausgangslaserpulse
JP7039238B2 (ja) * 2017-10-03 2022-03-22 株式会社ディスコ レーザー照射機構
FR3073988B1 (fr) * 2017-11-20 2020-01-03 Amplitude Systemes Systeme et procede de generation d'un faisceau laser de forte intensite localise spatialement
FR3076959B1 (fr) * 2018-01-12 2020-07-17 Amplitude Systemes Systeme laser et procede de generation d'impulsions laser de tres haute cadence
DE102018200811B4 (de) * 2018-01-18 2020-02-20 Trumpf Laser Gmbh Verfahren und Lasersystem zum Erzeugen verstärkter Pulse on Demand-Ausgangslaserpulse
CN109004985B (zh) * 2018-07-24 2021-03-30 电子科技大学 一种反射式mzi结构的全光pam再生器
FR3085854B1 (fr) * 2018-09-13 2021-07-30 Irisiome Systeme de laser impulsionnel destine aux traitements dermatologiques
DE102018221363A1 (de) * 2018-12-10 2020-06-10 Trumpf Laser Gmbh Lasersystem und Verfahren zum Betreiben eines solchen Lasersystems
FR3092442B1 (fr) * 2019-02-04 2022-12-30 Amplitude Systemes Système laser à superposition temporelle d’impulsions
KR20220025113A (ko) * 2019-07-09 2022-03-03 아이피지 포토닉스 코포레이션 펄스 지속시간 스위치를 갖는 레이저 시스템
DE102019131507A1 (de) * 2019-11-21 2021-05-27 Dausinger & Giesen Gmbh Scheibenlaserverstärker zur Erzeugung variabler Pulszüge
SI25975A (sl) * 2020-02-27 2021-08-31 Univerza V Ljubljani Hibridni laser za generiranje laserskih pulzov na zahtevo s konstantno energijo in metoda proizvajanja omenjenih pulzov
CN111490439B (zh) * 2020-03-16 2022-04-22 华南理工大学 大功率高重复频率且脉宽可调的超快激光系统
DE102020203928A1 (de) 2020-03-26 2021-09-30 Trumpf Laser Gmbh Verfahren und Lasersystem zum Erzeugen verstärkter Pulse on Demand-Ausgangslaserpulse und zugehöriges Computerprogrammprodukt
CN115347449B (zh) * 2022-10-18 2022-12-30 中国科学院长春光学精密机械与物理研究所 薄片再生放大器及放大方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794816A (ja) * 1993-09-22 1995-04-07 Nippon Steel Corp 再生増幅器
US5657153A (en) * 1995-03-21 1997-08-12 Sdl, Inc. Optical amplifier with complementary modulation signal inputs
JPH09211506A (ja) * 1996-01-31 1997-08-15 Ando Electric Co Ltd 光増幅装置
US7505196B2 (en) * 2004-03-31 2009-03-17 Imra America, Inc. Method and apparatus for controlling and protecting pulsed high power fiber amplifier systems
US7885298B2 (en) * 2008-01-16 2011-02-08 Deep Photonics Corporation Method and apparatus for producing arbitrary pulsetrains from a harmonic fiber laser
KR20100135850A (ko) * 2008-03-31 2010-12-27 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 높은 반복률 및 높은 평균 파워의 편광 레이저 빔을 형성하기 위해 복수의 레이저 빔을 결합하는 장치 및 시스템
CN101510663B (zh) 2009-03-06 2011-07-20 苏州大学 偏振双波长光纤超短脉冲激光器
US8149886B2 (en) * 2009-04-28 2012-04-03 High Q Technologies Gmbh Laser amplifier system and laser amplifier method
US8411352B2 (en) * 2009-08-17 2013-04-02 Coherent, Inc. Pulsed fiber-MOPA with widely-variable pulse-duration
EP2643904B1 (en) * 2010-11-24 2020-08-12 Fianium Limited Optical systems
US8958705B2 (en) * 2012-01-13 2015-02-17 Esi-Pyrophotonics Lasers Inc. Methods and systems for a pulsed laser source emitting a predetermined output pulse profile
CN102709801B (zh) * 2012-06-04 2013-09-04 中国科学院半导体研究所 一种同时输出纳秒和皮秒脉冲的激光器
LT6028B (lt) * 2012-09-17 2014-05-26 Uždaroji Akcinė Bendrovė Mokslinė-Gamybinė Firma "Šviesos Konversija" Regeneratyvinis optinis stiprintuvas, skirtas trumpų impulsų lazeriams, lazerinis šaltinis ir lazerinė sistema
US8995052B1 (en) * 2013-09-09 2015-03-31 Coherent Kaiserslautern GmbH Multi-stage MOPA with first-pulse suppression
CN104184031A (zh) * 2014-08-22 2014-12-03 中国科学院半导体研究所 降低线偏振激光脉冲重复频率提高脉冲能量的结构

Similar Documents

Publication Publication Date Title
JP7153846B2 (ja) 時間変調パルスレーザーシステムおよび変調方法
JP2018531524A6 (ja) リズムおよび/または振幅が時間的に可変なパルスレーザーシステム
KR102674871B1 (ko) 매우 높은 반복 레이트의 레이저 펄스를 발생시키기 위한 레이저 시스템 및 방법
US9166355B2 (en) Directly driven source of multi-gigahertz, sub-picosecond optical pulses
KR102218499B1 (ko) 수동적으로 모드 잠금된 섬유 링 발생기
US8149886B2 (en) Laser amplifier system and laser amplifier method
KR20100135850A (ko) 높은 반복률 및 높은 평균 파워의 편광 레이저 빔을 형성하기 위해 복수의 레이저 빔을 결합하는 장치 및 시스템
US9276375B2 (en) Tunable system for generating an optical pulse based on a double-pass semiconductor optical amplifier
US20220337017A1 (en) Method for generating gigahertz bursts of pulses and laser apparatus thereof
JP2018535561A (ja) リズムおよび/または振幅が時間的に可変なパルスレーザーシステム
WO2016199903A1 (ja) パルスレーザ装置
Wilcox et al. Fusion laser oscillator and pulse-forming system using integrated optics
JP2002076478A (ja) 標本化された光ファイバ格子を用いた超高速多波長レーザ装置
WO2016125917A2 (ja) レーザ光源装置及びレーザパルス光生成方法
WO2016125919A2 (ja) レーザ光源装置及びレーザパルス光生成方法
Zhou et al. Coherent Pulse Stacking Amplification of Nanosecond and Femtosecond Pulses
Romano et al. kW class nanosecond polarization-maintaining holmium MOPA at 2050 nm and 2090 nm
KR102373232B1 (ko) 다단 스테이지 광스위치를 이용하는 펄스 레이저 발생장치
US20190334309A1 (en) Method and apparatus for repetition rate synchronisation of mode-locked lasers
CA2763828C (en) Adjustable pulsewidth picosecond fiber laser
WO2020168733A1 (zh) 脉宽和功率可调谐的纳秒脉冲激光光源结构