JP2018504518A - High silicon steel sheet with excellent magnetic properties and method for producing the same - Google Patents
High silicon steel sheet with excellent magnetic properties and method for producing the same Download PDFInfo
- Publication number
- JP2018504518A JP2018504518A JP2017529702A JP2017529702A JP2018504518A JP 2018504518 A JP2018504518 A JP 2018504518A JP 2017529702 A JP2017529702 A JP 2017529702A JP 2017529702 A JP2017529702 A JP 2017529702A JP 2018504518 A JP2018504518 A JP 2018504518A
- Authority
- JP
- Japan
- Prior art keywords
- silicon steel
- steel sheet
- soft ferrite
- high silicon
- steel plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000976 Electrical steel Inorganic materials 0.000 title claims abstract description 124
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 229910001035 Soft ferrite Inorganic materials 0.000 claims abstract description 90
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 33
- 238000010438 heat treatment Methods 0.000 claims abstract description 30
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 29
- 239000010959 steel Substances 0.000 claims abstract description 29
- 238000005096 rolling process Methods 0.000 claims abstract description 23
- 238000005098 hot rolling Methods 0.000 claims abstract description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 20
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 19
- 238000005266 casting Methods 0.000 claims abstract description 17
- 239000012298 atmosphere Substances 0.000 claims abstract description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000010703 silicon Substances 0.000 claims abstract description 10
- 239000001257 hydrogen Substances 0.000 claims abstract description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 230000001590 oxidative effect Effects 0.000 claims abstract description 7
- 229910052786 argon Inorganic materials 0.000 claims abstract description 6
- 239000012300 argon atmosphere Substances 0.000 claims abstract description 6
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims abstract 2
- 239000000843 powder Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 25
- 230000005389 magnetism Effects 0.000 claims description 22
- 239000011248 coating agent Substances 0.000 claims description 21
- 238000000576 coating method Methods 0.000 claims description 21
- 238000002156 mixing Methods 0.000 claims description 11
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 3
- 239000002694 phosphate binding agent Substances 0.000 claims description 3
- 239000000161 steel melt Substances 0.000 claims description 3
- 239000000696 magnetic material Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 37
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 30
- 239000011162 core material Substances 0.000 description 13
- 230000004907 flux Effects 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 9
- 239000002344 surface layer Substances 0.000 description 9
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 4
- 229910003902 SiCl 4 Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910001047 Hard ferrite Inorganic materials 0.000 description 1
- 229910001289 Manganese-zinc ferrite Inorganic materials 0.000 description 1
- 229910001053 Nickel-zinc ferrite Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910001308 Zinc ferrite Inorganic materials 0.000 description 1
- PGTXKIZLOWULDJ-UHFFFAOYSA-N [Mg].[Zn] Chemical compound [Mg].[Zn] PGTXKIZLOWULDJ-UHFFFAOYSA-N 0.000 description 1
- JIYIUPFAJUGHNL-UHFFFAOYSA-N [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Mn++].[Mn++].[Mn++].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Zn++].[Zn++] Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Mn++].[Mn++].[Mn++].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Zn++].[Zn++] JIYIUPFAJUGHNL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229940062057 nitrogen 80 % Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910000702 sendust Inorganic materials 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/02—Coating starting from inorganic powder by application of pressure only
- C23C24/04—Impact or kinetic deposition of particles
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Soft Magnetic Materials (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Chemical Treatment Of Metals (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
磁気的性質に優れた高ケイ素鋼板およびその製造方法を提供する。本発明によれば、重量比で、Si4〜7%、Al0.1〜3%、Si+Alの合計が5.5〜7.5%であり、残部Feから構成されるケイ素鋼溶湯を、窒素あるいはアルゴン雰囲気下でストリップキャスティングするストリップキャスティング段階と、前記ストリップキャスティングされたストリップを熱間圧延して高ケイ素鋼板を製造する熱間圧延段階と、前記熱間圧延された高ケイ素鋼板を、窒素、アルゴン、あるいは水素と窒素の混合雰囲気の非酸化性雰囲気で熱処理する熱処理段階と、前記熱処理された高ケイ素鋼板を0.5mm以下の最終厚さに温間圧延する温間圧延段階と、前記高ケイ素鋼板を800℃〜1200℃の温度で最終熱処理する最終熱処理段階とを含む高ケイ素鋼板の製造方法において、前記最終熱処理段階を行った後、高周波領域の磁性を改善するために、最終厚さに製造された高ケイ素鋼板の表面にソフトフェライト層を形成する段階を含む。Provided are a high silicon steel plate excellent in magnetic properties and a method for producing the same. According to the present invention, by weight ratio, Si 4-7%, Al 0.1-3%, the sum of Si + Al is 5.5-7.5%, and the molten silicon steel composed of the remainder Fe is nitrogen or A strip casting step of strip casting in an argon atmosphere, a hot rolling step of hot rolling the strip cast strip to produce a high silicon steel plate, and the hot rolled high silicon steel plate with nitrogen, argon Or a heat treatment step in which heat treatment is performed in a non-oxidizing atmosphere of a mixed atmosphere of hydrogen and nitrogen, a warm rolling step in which the heat-treated high silicon steel sheet is warm-rolled to a final thickness of 0.5 mm or less, and the high silicon A final heat treatment step of subjecting the steel plate to a final heat treatment at a temperature of 800 ° C. to 1200 ° C., wherein the final heat treatment step is performed. After, in order to improve the magnetic high-frequency region, comprising forming a soft ferrite layer on the surface of the high silicon steel sheet manufactured in final thickness.
Description
本発明は、磁気的特性に優れた高ケイ素電磁鋼板およびその製造方法に関し、より詳細には、高ケイ素鋼を最終熱処理の前や後に磁性酸化鉄を塗布して複合構造を形成することによって、通常の高ケイ素鋼に比べて磁気的性質を画期的に改善した高ケイ素鋼板およびその製造方法に関する。 The present invention relates to a high silicon electrical steel sheet having excellent magnetic properties and a method for producing the same, and more specifically, by applying magnetic iron oxide to a high silicon steel before or after final heat treatment to form a composite structure, The present invention relates to a high silicon steel sheet and a method for producing the same, in which magnetic properties are dramatically improved as compared with ordinary high silicon steel.
一般に、ケイ素を含有する電磁鋼板は、変圧器、電動機、発電機およびその他電磁機器などの鉄心材料に使用される。電磁鋼板は、磁束密度と鉄損に優れていることが要求されている。磁束密度が大きいほど同じ性能を実現するのにかかる鉄心の量が少ないので、電気機器の小型化が可能であり、鉄損が小さいほどエネルギー損失が小さい。 In general, electromagnetic steel sheets containing silicon are used for iron core materials such as transformers, electric motors, generators and other electromagnetic devices. Electrical steel sheets are required to be excellent in magnetic flux density and iron loss. Since the amount of iron core required to achieve the same performance is smaller as the magnetic flux density is larger, the electrical equipment can be downsized.
エネルギー損失を起こす鉄損は、渦電流損失とヒステリシス損失とからなる。交流で周波数が増加するほど渦電流損失の構成要素が大きくなる。渦電流損は鉄心に磁場が誘導される時に生じる渦電流による発熱であるので、その減少のためにケイ素を添加する。ケイ素含有量が6.5%まで添加されると、騒音の原因となる磁歪(magnetostriction)が0に減少し、透磁率が最大値を示す。また、ケイ素含有量が6.5%になると、高周波特性が非常に良くなる。このような高ケイ素鋼の優れた磁気的特性を利用して、新再生エネルギー発電装置に用いられるインバータとリアクタ、ガスタービン用発電機誘導加熱装置、無停電電源装置のリアクタなど高付加価値電気機器の用途への適用が可能である。 The iron loss causing energy loss is composed of eddy current loss and hysteresis loss. As the frequency increases with alternating current, the component of eddy current loss increases. Since eddy current loss is heat generated by eddy current generated when a magnetic field is induced in the iron core, silicon is added for the reduction. When the silicon content is added to 6.5%, the magnetostriction causing noise is reduced to 0, and the magnetic permeability shows the maximum value. Further, when the silicon content is 6.5%, the high frequency characteristics are very good. High value-added electrical equipment such as inverters and reactors used in new renewable energy power generation equipment, generator induction heating equipment for gas turbines, reactors for uninterruptible power supplies, etc., utilizing such excellent magnetic properties of high silicon steel It can be applied to other uses.
6.5%Siを含有する高ケイ素鋼板は、磁気的性質に優れているが、Siが3.5%以上になると、通常の方法では冷間圧延が不可能である。したがって、通常の熱間圧延−冷間あるいは温間圧延で高ケイ素鋼板を製造することが不可能なため、別の方法で磁気的性質に優れた高ケイ素鋼板を製造することが試みられた。 A high silicon steel sheet containing 6.5% Si is excellent in magnetic properties, but when Si becomes 3.5% or more, cold rolling is impossible by a normal method. Therefore, since it is impossible to produce a high silicon steel plate by ordinary hot rolling-cold or warm rolling, an attempt has been made to produce a high silicon steel plate having excellent magnetic properties by another method.
これまで高ケイ素鋼板を製造できる方法として知られた技術は、日本国特開昭56−3625号などの単ロールまたは双ロールを用いた直接鋳造法があり、日本国特開平5−171281号などのように、内部に高ケイ素鋼を入れて、外部に低ケイ素鋼を入れた状態で圧延する、いわゆるクラッド法が試みられたが、これらの技術は、まだ商用化されていない。 The technology known as a method for producing a high silicon steel sheet so far includes a direct casting method using a single roll or a twin roll such as Japanese Unexamined Patent Publication No. 56-3625, and Japanese Unexamined Patent Publication No. 5-171281 etc. As described above, a so-called cladding method has been tried in which high silicon steel is placed inside and rolling is performed with low silicon steel placed outside, but these techniques have not yet been commercialized.
大韓民国特許公告第10−0374292号などでは、粉末冶金法を利用して、高ケイ素鋼板の代わりに粉末からなる高ケイ素鋼ブロックを作って高ケイ素鋼板の代替材として使用している。純鉄粉末コア、高ケイ素鋼粉末コア、センダスト粉末コアを複合して使用しているが、粉末の有する特性により、軟磁性特性は高ケイ素鋼板より劣る。 In Korean Patent Publication No. 10-0374292, etc., powder metallurgy is used to make a high silicon steel block made of powder instead of a high silicon steel plate and use it as an alternative to the high silicon steel plate. A pure iron powder core, a high silicon steel powder core, and a sendust powder core are used in combination, but the soft magnetic properties are inferior to those of a high silicon steel plate due to the properties of the powder.
6.5%Siを含有する高ケイ素鋼板を量産する技術としては、化学気相蒸着法(CVD、Chemicla Vapor Deposition)方法で、3%Si鋼板にSiCl4を用いて拡散焼鈍させる日本国特公昭38−26263号、日本国特公昭45−21181号、日本特開昭62−227078号がある。これらの方法は、毒性のあるSiCl4を用いなければならず、拡散焼鈍に時間が多くかかるという欠点がある。 As a technique for mass-producing high silicon steel containing 6.5% Si, chemical vapor deposition (CVD, Chemicla Vapor Deposition) in a way, Japanese Patent Publication for diffusion anneal with SiCl 4 to 3% Si steel No. 38-26263, Japanese Patent Publication No. 45-21181, and Japanese Unexamined Patent Publication No. 62-227078. These methods have the disadvantage that toxic SiCl 4 must be used and that diffusion annealing takes a long time.
電磁鋼板においてケイ素含有量が増加するほどケイ素鋼板の脆性が増加し、3.5%Si以上のケイ素を含有するケイ素鋼板を冷間圧延することは不可能とされている。しかし、圧延温度を高める、いわゆる温間圧延方法によって実験室的に薄板に製造する試みがある。 In the electromagnetic steel sheet, the brittleness of the silicon steel sheet increases as the silicon content increases, and it is impossible to cold-roll a silicon steel sheet containing 3.5% Si or more of silicon. However, there is an attempt to produce a thin plate laboratory by a so-called warm rolling method that raises the rolling temperature.
圧延温度を高めると、圧延性が改善される効果はあるが、それでは改善効果が十分でなく、熱間圧延板を作製する工程にも多くの困難がある。 Increasing the rolling temperature has the effect of improving the rollability, but the improvement effect is not sufficient, and there are many difficulties in the process of producing a hot-rolled sheet.
本発明は、高ケイ素鋼板の表面に、高周波特性に優れた、MnZnNi系ソフトフェライト層を形成させて、高周波領域の磁性を画期的に改善した、磁気的性質に優れた高ケイ素鋼板およびその製造方法を提供する。 The present invention provides a high-silicon steel plate with excellent magnetic properties, which is formed by forming a MnZnNi-based soft ferrite layer with excellent high-frequency characteristics on the surface of a high-silicon steel plate, thereby dramatically improving the magnetism in the high-frequency region. A manufacturing method is provided.
本発明の一実施例によれば、重量比で、Si4〜7%、Al0.1〜3%、Si+Alの合計が5.5〜7.5%であり、残部Feから構成されるケイ素鋼溶湯を、窒素あるいはアルゴン雰囲気下でストリップキャスティングするストリップキャスティング段階と、前記ストリップキャスティングされたストリップを熱間圧延して高ケイ素鋼板を製造する熱間圧延段階と、前記熱間圧延された高ケイ素鋼板を、窒素、アルゴン、あるいは水素と窒素の混合雰囲気の非酸化性雰囲気で熱処理する熱処理段階と、前記熱処理された高ケイ素鋼板を0.5mm以下の最終厚さに温間圧延する温間圧延段階と、前記高ケイ素鋼板を800℃〜1200℃の温度で最終熱処理する最終熱処理段階とを含む高ケイ素鋼板の製造方法において、
前記最終熱処理段階を行った後、高周波領域の磁性を改善するために、最終厚さに製造された高ケイ素鋼板の表面にソフトフェライト層を形成する段階を含む、磁気的性質に優れた高ケイ素鋼板の製造方法が提供される。
According to one embodiment of the present invention, by weight ratio, Si 4-7%, Al 0.1-3%, the sum of Si + Al is 5.5-7.5%, and the silicon steel melt composed of the remainder Fe A strip casting step of strip casting in a nitrogen or argon atmosphere, a hot rolling step of hot rolling the strip cast strip to produce a high silicon steel plate, and the hot rolled high silicon steel plate A heat treatment stage in which heat treatment is performed in a non-oxidizing atmosphere of nitrogen, argon, or a mixed atmosphere of hydrogen and nitrogen, and a warm rolling stage in which the heat-treated high silicon steel sheet is warm-rolled to a final thickness of 0.5 mm or less. In the method for producing a high silicon steel plate, comprising a final heat treatment step of subjecting the high silicon steel plate to a final heat treatment at a temperature of 800 ° C. to 1200 ° C.,
After performing the final heat treatment step, high silicon having excellent magnetic properties including a step of forming a soft ferrite layer on the surface of a high silicon steel plate manufactured to a final thickness in order to improve magnetism in a high frequency region A method for manufacturing a steel sheet is provided.
前記ソフトフェライト層は、最終厚さに製造された高ケイ素鋼板の表面の両面に形成される。 The soft ferrite layer is formed on both sides of the surface of a high silicon steel plate manufactured to a final thickness.
前記ソフトフェライト層は、MnZnNi系ソフトフェライトからなってもよい。 The soft ferrite layer may be made of MnZnNi-based soft ferrite.
前記MnZnNi系ソフトフェライトは、Mn酸化物、Zn酸化物、Ni酸化物、Fe酸化物からなってもよい。 The MnZnNi soft ferrite may be made of Mn oxide, Zn oxide, Ni oxide, or Fe oxide.
前記ソフトフェライト層の両面の厚さの合計が1μm以上かつ30μm以下であってもよい。 The total thickness of both surfaces of the soft ferrite layer may be 1 μm or more and 30 μm or less.
前記ソフトフェライト層形成段階は、前記高ケイ素鋼板の表面にソフトフェライト粉末を電磁鋼板コーティング液と混合して塗布する段階と、
前記高ケイ素鋼板の表面にソフトフェライト粉末をリン酸塩系バインダーと混合して塗布した後、ソフトフェライト粉末上に電磁鋼板コーティング液を混合して塗布する段階と、
ソフトフェライト粉末を真空や常温で速い速度で鋼板に衝突させて表面に付着させる段階と、のうちのいずれか1つの段階からなってもよい。
The soft ferrite layer forming step includes applying a soft ferrite powder to the surface of the high silicon steel plate mixed with a magnetic steel sheet coating solution,
After mixing and applying a soft ferrite powder and a phosphate binder to the surface of the high silicon steel sheet, mixing and applying a magnetic steel sheet coating solution on the soft ferrite powder; and
It may consist of any one of the steps of causing the soft ferrite powder to collide with the steel plate at a high speed in vacuum or at room temperature and attaching it to the surface.
前記ソフトフェライト層に、SiO2、CaO、Nb2O5、V2O5、ZrO2、MoO3のうちの少なくとも1つ以上を追加してもよい。 At least one of SiO 2 , CaO, Nb 2 O 5 , V 2 O 5 , ZrO 2 , and MoO 3 may be added to the soft ferrite layer.
本発明の一実施例によれば、高周波領域の磁性を改善するために、最終厚さに製造された高ケイ素鋼板の表面にソフトフェライト層が形成されることを特徴とする、磁気的性質に優れた高ケイ素鋼板が提供される。 According to one embodiment of the present invention, a soft ferrite layer is formed on the surface of a high silicon steel sheet manufactured to a final thickness in order to improve magnetism in a high frequency region. An excellent high silicon steel sheet is provided.
前記ソフトフェライト層は、最終厚さに製造された高ケイ素鋼板の表面の両面に形成される。 The soft ferrite layer is formed on both sides of the surface of a high silicon steel plate manufactured to a final thickness.
前記ソフトフェライト層は、MnZnNi系ソフトフェライトからなってもよい。 The soft ferrite layer may be made of MnZnNi-based soft ferrite.
前記MnZnNi系ソフトフェライトは、Mn酸化物、Zn酸化物、Ni酸化物、Fe酸化物からなってもよい。 The MnZnNi soft ferrite may be made of Mn oxide, Zn oxide, Ni oxide, or Fe oxide.
前記ソフトフェライト層の両面の厚さの合計が1μm以上かつ30μm以下であってもよい。 The total thickness of both surfaces of the soft ferrite layer may be 1 μm or more and 30 μm or less.
前記ソフトフェライト層は、前記高ケイ素鋼板の表面にソフトフェライト粉末を電磁鋼板コーティング液と混合して塗布して形成された層と、前記高ケイ素鋼板の表面にソフトフェライト粉末をリン酸塩系バインダーと混合して塗布した後、ソフトフェライト粉末上に電磁鋼板コーティング液を混合して塗布して形成された層と、ソフトフェライト粉末を真空や常温で速い速度で鋼板に衝突させて表面に付着させて形成された層と、のうちのいずれか1つの層であってもよい。 The soft ferrite layer is formed by mixing soft ferrite powder on the surface of the high silicon steel plate with a magnetic steel sheet coating solution and applying the soft ferrite powder on the surface of the high silicon steel plate. After mixing and coating, the layer formed by mixing and coating the magnetic steel sheet coating liquid on the soft ferrite powder and the soft ferrite powder collide with the steel sheet at a high speed in vacuum or at room temperature to adhere to the surface And any one of the layers formed may be used.
前記ソフトフェライト層に、SiO2、CaO、Nb2O5、V2O5、ZrO2、MoO3のうちの少なくとも1つ以上を追加してもよい。 At least one of SiO 2 , CaO, Nb 2 O 5 , V 2 O 5 , ZrO 2 , and MoO 3 may be added to the soft ferrite layer.
本実施例によれば、高ケイ素鋼板の表面に、高周波特性に優れた、MnZnNi系ソフトフェライト層を形成させて、高周波領域の磁性を画期的に改善した高ケイ素鋼板を製造することができる。 According to the present example, a high silicon steel sheet having excellent high frequency characteristics and having a high improvement in magnetism in the high frequency region can be manufactured by forming a MnZnNi soft ferrite layer having excellent high frequency characteristics on the surface of the high silicon steel sheet. .
以下、添付した図面を参照して、本発明の属する技術分野における通常の知識を有する者が容易に実施できるように本発明の実施例を説明する。本発明の属する技術分野における通常の知識を有する者が容易に理解できるように、後述する実施例は、本発明の概念と範囲を逸脱しない限度内で多様な形態に変形可能である。できるだけ同一であるか類似の部分は、図面において同一の図面符号を用いて表す。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that those skilled in the art to which the present invention pertains can easily carry out. As will be readily understood by those having ordinary skill in the art to which the present invention pertains, the embodiments described below can be modified into various forms without departing from the concept and scope of the present invention. The same or similar parts as much as possible are denoted by the same reference numerals in the drawings.
以下で使用される専門用語は、単に特定の実施例を言及するためのものであり、本発明を限定することを意図しない。ここで使用される単数形態は、文章がこれと明らかに反対の意味を示さない限り、複数形態も含む。明細書で使用される「含む」の意味は、特定の特性、領域、整数、段階、動作、要素および/または成分を具体化し、他の特定の特性、領域、整数、段階、動作、要素、成分および/または群の存在や付加を除外させるものではない。 The terminology used below is merely for the purpose of reference to particular embodiments and is not intended to limit the invention. As used herein, the singular form includes the plural unless the sentence clearly indicates the opposite. As used herein, the meaning of “comprising” embodies certain characteristics, regions, integers, steps, operations, elements and / or components, and other specific properties, regions, integers, steps, operations, elements, It does not exclude the presence or addition of ingredients and / or groups.
以下で使用される技術用語および科学用語を含むすべての用語は、本発明の属する技術分野における通常の知識を有する者が一般的に理解する意味と同一の意味を有する。辞書に定義された用語は、かかる技術文献と現在開示された内容に符合する意味を有すると追加解釈され、定義されない限り、理想的または非常に公式的な意味で解釈されない。 All terms including technical and scientific terms used below have the same meaning as commonly understood by those having ordinary skill in the art to which this invention belongs. Terms defined in the dictionary are further construed as having a meaning consistent with such technical literature and the presently disclosed content, and are not interpreted in an ideal or very formal sense unless defined.
本発明者らは、ストリップキャスティングと温間圧延方法とを組み合わせ、6.5%Siの代わりにAlを代替添加して、加工性に優れていながら磁性にも優れた高ケイ素鋼板の製造方法を発明し、これに研究をさらに重ねて、表面層に高周波特性に優れたソフトフェライト粉末層を形成させて複合構造を作ることで、磁性を画期的に改善した高ケイ素鋼板を開発した。 The inventors of the present invention combined a strip casting and a warm rolling method, added Al instead of 6.5% Si, and produced a method for producing a high-silicon steel sheet having excellent workability and excellent magnetism. Invented and further researched, we developed a high-silicon steel plate with dramatically improved magnetism by forming a composite structure by forming a soft ferrite powder layer with excellent high-frequency characteristics on the surface layer.
ソフトフェライト(Soft ferrite)は、スピネル型の結晶構造を有する化合物であって、材料の磁気的特性が磁場の方向と大きさによって容易に変化する材料である。通常、Fe2O3酸化鉄が重量比で60〜70%を占め、残る金属酸化物の成分によって、マンガン亜鉛フェライト、ニッケル亜鉛フェライト、マグネシウム亜鉛フェライトなどに区分される。ソフトフェライトと比較されるハードフェライト(Hard ferrite)は、材料の磁気的な特性が磁場の方向と大きさによって容易に変化しない材料であって、一般に永久磁石とも呼ばれる。Fe2O3酸化鉄が重量比で約90%を占め、その他の特性の向上のために添加される金属成分によって、その用途が分けられる。 Soft ferrite is a compound having a spinel type crystal structure, and the magnetic properties of the material easily change depending on the direction and magnitude of the magnetic field. Usually, Fe 2 O 3 iron oxide accounts for 60 to 70% by weight, and is classified into manganese zinc ferrite, nickel zinc ferrite, magnesium zinc ferrite and the like depending on the remaining metal oxide components. Hard ferrite compared to soft ferrite is a material in which the magnetic characteristics of the material do not easily change depending on the direction and magnitude of the magnetic field, and is generally called a permanent magnet. Fe 2 O 3 iron oxide accounts for about 90% by weight, and its use is divided according to the metal component added to improve other properties.
通常、ソフトフェライト粉末は、高い透磁率と飽和磁束密度を有しており、高温で磁性劣化が少なく磁気的安定性に優れている。特に、MnZnNi系フェライトは、100KHz〜500KHzの比較的広い領域の周波数帯で高い飽和磁束密度、透磁率と低損失の磁気的性質を有している。フェライトは、粉末を焼結形態でコア形状として使用する。 In general, soft ferrite powder has high magnetic permeability and saturation magnetic flux density, has little magnetic deterioration at high temperature, and is excellent in magnetic stability. In particular, MnZnNi ferrite has high saturation magnetic flux density, magnetic permeability and low loss magnetic properties in a relatively wide frequency band of 100 KHz to 500 KHz. Ferrite uses powder as a core shape in sintered form.
本発明では、高ケイ素電磁鋼板の表面にこれらソフトフェライトを形成させる方法により、既存の高ケイ素鋼板の磁性を画期的に改善させることができた。高ケイ素鋼板の高周波特性は、数百Hz〜数KHzの周波数領域で優れた磁性を有する。このような高ケイ素鋼板の表面に超高周波特性に優れた粉末ソフトフェライト層を形成させると、より一層優れた特性を有することを見出した。 In the present invention, the magnetic property of the existing high silicon steel sheet could be dramatically improved by the method of forming these soft ferrites on the surface of the high silicon electromagnetic steel sheet. The high-frequency characteristic of the high silicon steel sheet has excellent magnetism in the frequency range of several hundred Hz to several KHz. It has been found that when a powder soft ferrite layer having excellent super-high frequency characteristics is formed on the surface of such a high silicon steel sheet, it has even more excellent characteristics.
電磁鋼板をコアとして用いる時、エネルギー損失は主に表面層で起こるが、表面に高周波特性に優れたソフトフェライト層を形成することによって、鉄損を大幅に改善することが可能であった。 When an electromagnetic steel sheet is used as a core, energy loss mainly occurs in the surface layer, but iron loss can be greatly improved by forming a soft ferrite layer having excellent high-frequency characteristics on the surface.
以下、本発明の一実施例による磁気的性質が非常に優れた高ケイ素鋼板について説明する。 Hereinafter, a high silicon steel plate having excellent magnetic properties according to an embodiment of the present invention will be described.
本発明の一実施例による磁気的性質、特に高周波領域の磁気的性質に優れた高ケイ素電磁鋼板は、SiとAlの合計が5.5%以上と多く含有された鋼を、ストリップキャスティング、熱間圧延、焼鈍熱処理、温間圧延などを組み合わせて最終厚さに作った後、表面にMnZnNi系ソフトフェライト層を形成させて製造する。 The high silicon electrical steel sheet having excellent magnetic properties, particularly in the high frequency region, according to an embodiment of the present invention, is a steel containing a large amount of Si and Al as 5.5% or more. After producing a final thickness by combining hot rolling, annealing heat treatment, warm rolling, etc., a MnZnNi soft ferrite layer is formed on the surface.
具体的には、前記高ケイ素鋼板は、重量比で、Si4〜7%、Al0.1〜3%、Si+Alの合計が5.5〜7.5%であり、残部Feから構成されるケイ素鋼溶湯を、窒素あるいはアルゴン雰囲気下でストリップキャスティングし、前記ストリップキャスティングされたストリップを熱間圧延して高ケイ素鋼板を製造した後、前記熱間圧延された高ケイ素鋼板を、窒素、アルゴン、あるいは水素と窒素の混合雰囲気の非酸化性雰囲気で熱処理した後、0.5mm以下の最終厚さに温間圧延した後、前記高ケイ素鋼板を800℃〜1200℃の温度で最終熱処理し、
高周波領域の磁性を改善するために、最終厚さに製造された高ケイ素鋼板の表面にソフトフェライト層が形成される。
Specifically, the high silicon steel sheet is silicon steel composed of Si 4-7%, Al 0.1-3%, Si + Al in a weight ratio of 5.5-7.5%, and the balance Fe. The molten metal is strip-cast in a nitrogen or argon atmosphere, and the strip-cast strip is hot-rolled to produce a high-silicon steel plate, and then the hot-rolled high-silicon steel plate is subjected to nitrogen, argon, or hydrogen. After heat-treating in a non-oxidizing atmosphere of a mixed atmosphere of nitrogen and nitrogen, after hot rolling to a final thickness of 0.5 mm or less, the high silicon steel sheet is finally heat-treated at a temperature of 800 ° C. to 1200 ° C.,
In order to improve the magnetism in the high frequency region, a soft ferrite layer is formed on the surface of the high silicon steel plate manufactured to the final thickness.
本発明の一実施例による磁気的性質に優れた高ケイ素鋼板の製造方法について説明する。 A method for manufacturing a high silicon steel sheet having excellent magnetic properties according to an embodiment of the present invention will be described.
本発明の一実施例による磁気的性質に優れた高ケイ素鋼板の製造方法は、重量比で、Si4〜7%、Al0.1〜3%、Si+Alの合計が5.5〜7.5%であり、残部Feから構成されるケイ素鋼溶湯を、窒素あるいはアルゴン雰囲気下でストリップキャスティングするストリップキャスティング段階S10と、
前記ストリップキャスティングされたストリップを熱間圧延して高ケイ素鋼板を製造する熱間圧延段階S20と、
次に、前記熱間圧延した高ケイ素鋼板を、窒素、アルゴン、あるいは水素と窒素の混合雰囲気の非酸化性雰囲気で熱処理する熱処理段階S30と、
次に、規則相の生成を最大限に回避するために、100℃まで30℃/秒以上の冷却速度で急冷した後、少なくとも1回以上の900〜1200℃の熱処理を含む温間圧延を行い、温間圧延温度は300℃以上として、前記高ケイ素鋼板を0.5mm以下の最終厚さとする温間圧延段階S40と、
次に、前記高ケイ素鋼板を800〜1200℃の温度で最終熱処理を行う最終熱処理段階S50とを含み、
前記最終熱処理段階S50を行った後、高周波領域の磁性を改善するために、最終厚さに製造された高ケイ素鋼板の表面にソフトフェライト層を形成する段階S60を含む。
According to one embodiment of the present invention, a method for manufacturing a high-silicon steel sheet having excellent magnetic properties is Si 4-7%, Al 0.1-3%, and the sum of Si + Al is 5.5-7.5% by weight. A strip casting step S10 for strip casting the molten silicon steel composed of the remaining Fe in a nitrogen or argon atmosphere;
A hot rolling step S20 for producing a high silicon steel sheet by hot rolling the strip cast strip;
Next, a heat treatment step S30 for heat-treating the hot-rolled high silicon steel sheet in a non-oxidizing atmosphere of nitrogen, argon, or a mixed atmosphere of hydrogen and nitrogen;
Next, in order to avoid the generation of ordered phases as much as possible, after rapid cooling to 100 ° C. at a cooling rate of 30 ° C./second or more, warm rolling including at least one heat treatment at 900 to 1200 ° C. is performed. The warm rolling temperature is 300 ° C. or higher, and the high silicon steel sheet is warm rolled in step S40 with a final thickness of 0.5 mm or less,
Next, a final heat treatment step S50 for performing a final heat treatment on the high silicon steel sheet at a temperature of 800 to 1200 ° C.,
After performing the final heat treatment step S50, the method includes a step S60 of forming a soft ferrite layer on the surface of the high silicon steel sheet manufactured to the final thickness in order to improve the magnetism in the high frequency region.
前記高ケイ素鋼板の表面層にソフトフェライト層を形成させる方法を適用する高ケイ素鋼板の製造方法は、ストリップキャスティングと温間圧延とを組み合わせた方法に制限させる必要はない。本発明は、ストリップキャスティングによる急冷凝固法だけでなく、製鋼−連続鋳造−熱間圧延により生産可能なプロセスにも適用が可能である。ただし、ストリップキャスティング以外の方法では、圧延中のクラックの発生で生産性が極めて悪化する余地がある。また、SiCl4ガスを用いてCVD法による浸珪法で高ケイ素鋼を作る、日本国特公昭38−26263号の方法によって製造した高ケイ素鋼板にも適用が可能である。 The manufacturing method of the high silicon steel plate that applies the method of forming the soft ferrite layer on the surface layer of the high silicon steel plate does not need to be limited to a method in which strip casting and warm rolling are combined. The present invention can be applied not only to a rapid solidification method by strip casting but also to a process that can be produced by steelmaking-continuous casting-hot rolling. However, in methods other than strip casting, there is room for the productivity to be extremely deteriorated due to generation of cracks during rolling. Further, the present invention can also be applied to a high silicon steel plate manufactured by the method of Japanese Patent Publication No. 38-26263, which uses SiCl 4 gas to make high silicon steel by a CVD method.
本発明の高ケイ素鋼板の製造方法において、C含有量とN含有量は低いほど圧延性が良く、磁性にも有利である。 In the method for producing a high silicon steel sheet of the present invention, the lower the C content and the N content, the better the rollability and the more advantageous the magnetism.
Si含有量が4%以下であれば、磁性が良くなく、7%以上であれば、加工が不可能である。 If the Si content is 4% or less, the magnetism is not good, and if it is 7% or more, processing is impossible.
Al含有量が0.1%以下であれば、圧延性を改善する効果がなく、3%以上であれば、圧延性に良くない。Si+Alが5.5%以下であれば、高周波特性が良くなく、7.5%以上であれば、加工が不可能である。 If the Al content is 0.1% or less, there is no effect of improving the rollability, and if it is 3% or more, the rollability is not good. If Si + Al is 5.5% or less, the high frequency characteristics are not good, and if it is 7.5% or more, processing is impossible.
ストリップキャスティングで鋳造後、直ちに温間圧延をするよりは、ストリップキャスティングの後、直ちに熱間圧延をした方が、温間圧延の負荷を低減できて好ましい。また、ストリップキャスティング製造装置に熱間圧延機を直接連結すれば、別にストリップを加熱しなくても良いという利点がある。ストリップを鋳造後に直ちに熱間圧延することが最も好ましいが、ストリップを冷却した後、別途のラインで処理することも、熱間圧延せずに温間圧延を直ちに実施するより好ましい。熱間圧延は、単純に温間圧延の負荷を低減すること以外に、熱間圧延して鋳造組織を破壊して結晶粒を微細にすることで、後に実施する温間圧延に役立つ。 It is more preferable to perform hot rolling immediately after strip casting than to perform warm rolling immediately after casting by strip casting because the load of warm rolling can be reduced. Further, if a hot rolling mill is directly connected to the strip casting manufacturing apparatus, there is an advantage that it is not necessary to heat the strip separately. Most preferably, the strip is hot-rolled immediately after casting. However, it is more preferable that the strip is cooled and then treated in a separate line, instead of hot-rolling immediately without hot rolling. In addition to simply reducing the load of warm rolling, hot rolling is useful for warm rolling performed later by hot rolling to break down the cast structure and make the crystal grains fine.
熱間圧延された板を直ちに温間圧延するよりは、熱処理することが好ましい。温間圧延に先立って熱処理をすることで、熱間圧延時に生成されたストレスを無くし、A2不規則相の領域で熱処理した後、急冷して、B2、DO3規則相の形成を抑制すると、延性が良くなる。 It is preferable to heat-treat the hot-rolled plate rather than immediately warm-rolling. When heat treatment is performed prior to warm rolling, stress generated during hot rolling is eliminated, heat treatment is performed in the region of the A2 irregular phase, and then rapid cooling is performed to suppress the formation of B2 and DO3 ordered phases. Will be better.
温間圧延温度に対して調べたところによれば、300℃が臨界温度となった。300℃以下になると、延性がほとんどないことが明らかになり、300℃以上であれば、延伸が可能である。量産のためには最低350℃が好ましい。 According to the examination with respect to the warm rolling temperature, 300 ° C. became the critical temperature. When it becomes 300 degrees C or less, it becomes clear that there is almost no ductility, and if it is 300 degrees C or more, it can extend | stretch. A minimum of 350 ° C. is preferred for mass production.
温間圧延で0.5mm以下の最終厚さに薄くした高ケイ素鋼板を最終熱処理して磁性を向上させる。熱処理温度が800℃以下であれば、結晶粒の成長が十分でなくて鉄損に劣る。熱処理温度が1200℃以上であれば、経済性と生産性の面で好ましくなく、非酸化性雰囲気を用いても表面酸化層が形成されやすく、これは磁区の移動を妨げるので、磁性を阻害する。 A high silicon steel sheet thinned to a final thickness of 0.5 mm or less by warm rolling is subjected to a final heat treatment to improve magnetism. If the heat treatment temperature is 800 ° C. or less, the crystal grains are not sufficiently grown and the iron loss is poor. If the heat treatment temperature is 1200 ° C. or higher, it is not preferable in terms of economy and productivity, and a surface oxide layer is easily formed even when a non-oxidizing atmosphere is used. .
最終厚さとした高ケイ素鋼の表面に、酸化マンガン、酸化亜鉛、酸化ニッケルと、Fe系酸化物からなるMnZnNi系ソフトフェライトを塗布する。ソフトフェライト粉末は、通常の電磁鋼板コーティング液と混合して塗布してもよく、ソフトフェライト粉末をリン酸塩系バインダーと混合して塗布した後、ソフトフェライト粉末上に通常の電磁鋼板コーティング液を塗布してもよい。 Manganese oxide, zinc oxide, nickel oxide, and MnZnNi-based soft ferrite made of Fe-based oxide are applied to the surface of the high silicon steel having the final thickness. The soft ferrite powder may be mixed and applied with a normal electrical steel sheet coating solution. After the soft ferrite powder is mixed with a phosphate binder and applied, the normal magnetic steel sheet coating solution is applied onto the soft ferrite powder. It may be applied.
ソフトフェライト粉末からなるソフトフェライト層の厚さは1μm以上とする。厚さが1μm以下であれば、複合構造形成の効果がない。ソフトフェライト層の厚さが30μm以上であれば、鋼板を打ち抜く時、表面層が割れるという欠点があり、厚さの上限は30μmとする。 The thickness of the soft ferrite layer made of soft ferrite powder is 1 μm or more. If the thickness is 1 μm or less, there is no effect of forming the composite structure. If the thickness of the soft ferrite layer is 30 μm or more, there is a drawback that the surface layer is cracked when the steel sheet is punched, and the upper limit of the thickness is 30 μm.
高周波用機器の鉄心材料に使用される高周波用電磁鋼板の需要は増加の一途にある。コンピュータに用いられるモータ、歯科用電動工具、電気自動車のモータ、リアクタ、新再生エネルギー用変圧器、発電機などにも幅広く使用されている。通常の高周波用電磁鋼板が担当している周波数領域は数十〜数百Hzであり、高ケイ素鋼が担当している領域は数百Hz〜数KHzである。反面、数十KHz以上では、ソフトフェライトを用いた粉末焼結コアが用いられている。 The demand for high-frequency electrical steel sheets used for iron core materials for high-frequency equipment is increasing. It is widely used in motors used in computers, dental power tools, motors in electric vehicles, reactors, transformers for new renewable energy, and generators. The frequency region in which a normal high-frequency electromagnetic steel sheet is in charge is several tens to several hundreds Hz, and the region in which high silicon steel is in charge is several hundred Hz to several KHz. On the other hand, at several tens of KHz or more, a powder sintered core using soft ferrite is used.
本発明者らは、高ケイ素鋼の表面にソフトフェライト層を形成させると、高ケイ素鋼が担当していた高周波領域の磁性を改善できるだけでなく、使用可能な周波数領域を拡大できるというアイディアをもって研究を続けて、高ケイ素鋼の表面に1μm以上のソフトフェライト層を形成させる場合、高ケイ素鋼の磁性を画期的に減少させるのに成功した。ソフトフェライト層は、シート形態の高ケイ素鋼板の表面の両面に塗布される。高ケイ素鋼板の表面の両面に塗布したソフトフェライト層の厚さの合計は1μm以上でなければならない。ただし、ソフトフェライト層の厚さの両面の合計が30μmを超えると、鋼板をコア形態に打ち抜く時、表面層が砕けて、表面層を維持するのに困難があることを見出した。 The inventors have studied with the idea that forming a soft ferrite layer on the surface of high silicon steel not only improves the magnetism in the high frequency region that high silicon steel was responsible for, but also expands the usable frequency region. In the case where a soft ferrite layer of 1 μm or more is formed on the surface of high silicon steel, the magnetic properties of high silicon steel were successfully reduced. The soft ferrite layer is applied to both sides of the surface of the high silicon steel sheet in sheet form. The total thickness of the soft ferrite layers applied on both sides of the surface of the high silicon steel sheet must be 1 μm or more. However, it has been found that when the total thickness of both surfaces of the soft ferrite layer exceeds 30 μm, when the steel sheet is punched into a core form, the surface layer is crushed and it is difficult to maintain the surface layer.
ソフトフェライト層を形成する方法としては、ソフトフェライト粉末を通常の電磁鋼板コーティング液に混合して塗布する方法、またはソフトフェライト粉末をリン酸塩やポリマーと混合して液状で高ケイ素鋼板に塗布した後、通常の電磁鋼板コーティング液で塗布する方法、ソフトフェライト粉末を真空や常温で速い速度で鋼板に衝突させて表面に付着させる方法などを使用することができる。 The soft ferrite layer can be formed by mixing soft ferrite powder with a normal magnetic steel sheet coating solution or by applying soft ferrite powder with a phosphate or polymer and applying it to a high silicon steel plate in liquid form. Thereafter, a method of applying with a normal magnetic steel sheet coating solution, a method of causing soft ferrite powder to collide with a steel sheet at a high speed in vacuum or at room temperature, and adhere to the surface can be used.
ソフトフェライト層の構成は、酸化マンガン、酸化亜鉛、酸化ニッケルと、酸化鉄からなる、いわゆるMnZnNi系ソフトフェライトから構成される。前記ソフトフェライトに、SiO2、CaO、Nb2O5、V2O5、ZrO2、MoO3などから少なくとも1つ以上を追加してもよい。これらの酸化物は、高周波領域における磁気特性に優れ、高ケイ素鋼板の表面層における高ケイ素鋼の磁性を大きく改善することができる。 The soft ferrite layer is composed of so-called MnZnNi soft ferrite composed of manganese oxide, zinc oxide, nickel oxide and iron oxide. The soft ferrite, SiO 2, CaO, Nb 2 O 5, V 2 O 5, ZrO 2, MoO 3 and the like may be added at least one or more. These oxides have excellent magnetic properties in the high frequency region, and can greatly improve the magnetism of the high silicon steel in the surface layer of the high silicon steel plate.
ソフトフェライトを焼結処理してコアに作製するためには、コアごとに焼結体の形状が異なり、コアの作製時、高温高圧熱処理が必要であるという欠点がある。しかし、本発明では、厚さの薄い高ケイ素鋼板の表面に単純にソフトフェライトを塗布し、必要な大きさだけ打ち抜いて組み立てることで、コアを作製できるという利点がある。 In order to sinter soft ferrite to produce a core, the shape of the sintered body is different for each core, and there is a drawback that high-temperature and high-pressure heat treatment is required when producing the core. However, the present invention has an advantage that a core can be produced by simply applying soft ferrite to the surface of a thin high-silicon steel plate and punching and assembling it to the required size.
[実施例1]
重量%で、5.5%Siと1.0%Al、組成の高ケイ素鋼合金を、垂直型双ロールストリップキャスターを用いて、厚さ2.0mmに鋳造した。ストリップキャスターに連結された熱間圧延機を用いて、厚さ2.0mmのストリップを1.0mmに熱間圧延した。熱間圧延開始温度は1050℃である。
[Example 1]
A high silicon steel alloy having a composition of 5.5% by weight and 5.5% Si and 1.0% Al was cast to a thickness of 2.0 mm using a vertical twin roll strip caster. A 2.0 mm thick strip was hot rolled to 1.0 mm using a hot rolling mill connected to a strip caster. The hot rolling start temperature is 1050 ° C.
熱間圧延された高ケイ素鋼板を、1000℃で5分間、水素20%、窒素80%の雰囲気で加熱した後、200℃/秒の冷却速度で常温まで急冷した。 The hot-rolled high silicon steel sheet was heated at 1000 ° C. for 5 minutes in an atmosphere of 20% hydrogen and 80% nitrogen, and then rapidly cooled to room temperature at a cooling rate of 200 ° C./second.
その後、塩酸液で酸洗をして表面酸化層を除去した。熱処理した高ケイ素鋼板を、400℃の温度で0.1mmまで厚さを減少させた後、最終磁性の実現のために、1000℃で10分間、水素20%、窒素80%、露点−10℃以下の乾燥雰囲気で焼鈍した後、表面層にMnZnNiソフトフェライトを塗布し、塗布層上に絶縁コーティングを再び塗布した後、硬化(curing)させて、磁性を測定した。塗布厚さは、鋼板の上下面の合わせた値である。ソフトフェライトの組成と磁性を表1に示した。
Thereafter, the surface oxide layer was removed by pickling with a hydrochloric acid solution. After reducing the thickness of the heat-treated high silicon steel sheet to 0.1 mm at a temperature of 400 ° C., the final magnetism is realized at 1000 ° C. for 10 minutes,
表1に示された磁性を測定したB50(T)は、磁束密度を測定したものであり、磁束密度は、高いほど良い磁性を有していると評価する。また、W10/400およびW10/1000は、商用周波数の鉄損を測定したものであり、鉄損は、低いほど低い磁性を有していると評価する。 B50 (T) which measured the magnetism shown in Table 1 measured magnetic flux density, and it is evaluated that it has the magnetism which is so good that magnetic flux density is high. Moreover, W10 / 400 and W10 / 1000 were measured for iron loss at commercial frequencies, and it is evaluated that the lower the iron loss, the lower the magnetism.
ここで、B50(T)は、磁場の強さが5000amp(アンペア)/mの時の磁束密度の値をTelsa単位で示したものであり、W10/400(W/Kg)は、磁束密度の値が1.0Telsaの時、周波数が400Hzの場合の鉄損の値を示したものであり、W10/1000(W/Kg)は、磁束密度の値が1.0Telsaの時、周波数が1000Hzの場合の鉄損の値を示したものである。 Here, B50 (T) indicates the value of magnetic flux density in units of Telsa when the strength of the magnetic field is 5000 amp (ampere) / m, and W10 / 400 (W / Kg) is the magnetic flux density value. When the value is 1.0 Telsa, the value of iron loss when the frequency is 400 Hz is shown. W10 / 1000 (W / Kg) is when the magnetic flux density value is 1.0 Telsa, the frequency is 1000 Hz. The value of the iron loss in the case is shown.
ソフトフェライト層の塗布厚さが1μm未満であれば、高周波鉄損特性が不良で、ソフトフェライト塗布の効果がない。ソフトフェライト層の塗布厚さが30μm以上であれば、表面層のソフトフェライト層の剥離現象が起こり、表面粗さが均一でなくて、コアとして積層する時、占積率が低下するという欠点がある。 If the coating thickness of the soft ferrite layer is less than 1 μm, the high frequency iron loss characteristic is poor and the effect of the soft ferrite coating is not achieved. If the coating thickness of the soft ferrite layer is 30 μm or more, the peeling phenomenon of the soft ferrite layer on the surface layer occurs, the surface roughness is not uniform, and the space factor decreases when laminated as a core. is there.
Claims (14)
前記最終熱処理段階を行った後、高周波領域の磁性を改善するために、最終厚さに製造された高ケイ素鋼板の表面にソフトフェライト層を形成する段階を含む、磁気的性質に優れた高ケイ素鋼板の製造方法。 In a weight ratio, Si 4-7%, Al 0.1-3%, Si + Al total is 5.5-7.5%, and the silicon steel melt composed of the remaining Fe is strip-casted under nitrogen or argon atmosphere A strip casting step, a hot rolling step of hot rolling the strip cast strip to produce a high silicon steel plate, and the hot rolled high silicon steel plate with nitrogen, argon, or hydrogen and nitrogen. A heat treatment stage in which heat treatment is performed in a non-oxidizing atmosphere of a mixed atmosphere; a warm rolling stage in which the heat-treated high silicon steel sheet is warm-rolled to a final thickness of 0.5 mm or less; and the high silicon steel sheet is heated to 800 ° C. to 1200 ° C. In a method for producing a high silicon steel sheet comprising a final heat treatment step of performing a final heat treatment at a temperature of ° C.,
After performing the final heat treatment step, high silicon having excellent magnetic properties including a step of forming a soft ferrite layer on the surface of a high silicon steel plate manufactured to a final thickness in order to improve magnetism in a high frequency region A method of manufacturing a steel sheet.
前記高ケイ素鋼板の表面にソフトフェライト粉末をリン酸塩系バインダーと混合して塗布した後、ソフトフェライト粉末上に電磁鋼板コーティング液を混合して塗布する段階と、
ソフトフェライト粉末を真空や常温で速い速度で鋼板に衝突させて表面に付着させる段階と、のうちのいずれか1つの段階からなることを特徴とする、請求項1〜5のいずれか1項に記載の磁気的性質に優れた高ケイ素鋼板の製造方法。 The soft ferrite layer forming step includes applying a soft ferrite powder to the surface of the high silicon steel plate mixed with a magnetic steel sheet coating solution,
After mixing and applying a soft ferrite powder and a phosphate binder to the surface of the high silicon steel sheet, mixing and applying a magnetic steel sheet coating solution on the soft ferrite powder; and
The soft ferrite powder is made to collide with a steel plate at a high speed in vacuum or normal temperature and adhere to the surface, and includes any one of the steps. A method for producing a high silicon steel sheet having excellent magnetic properties as described.
高周波領域の磁性を改善するために、最終厚さに製造された高ケイ素鋼板の表面にソフトフェライト層が形成されることを特徴とする、磁気的性質に優れた高ケイ素鋼板。 The silicon steel melt is strip cast in a nitrogen or argon atmosphere, and the strip cast strip is hot rolled to produce a high silicon steel plate, and then the hot rolled high silicon steel plate is nitrogen, argon, Alternatively, after heat-treating in a non-oxidizing atmosphere of a mixed atmosphere of hydrogen and nitrogen, after warm rolling to the final thickness, the high-silicon steel sheet produced by subjecting the high-silicon steel sheet to a final heat treatment,
A high silicon steel sheet with excellent magnetic properties, characterized in that a soft ferrite layer is formed on the surface of a high silicon steel sheet manufactured to a final thickness in order to improve magnetism in a high frequency region.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140174452A KR101633611B1 (en) | 2014-12-05 | 2014-12-05 | High silicon electrical steel sheet with superior magnetic properties, and method for fabricating the high silicon electrical steel |
KR10-2014-0174452 | 2014-12-05 | ||
PCT/KR2015/012963 WO2016089076A1 (en) | 2014-12-05 | 2015-12-01 | High silicon steel plate having excellent magnetic property and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018504518A true JP2018504518A (en) | 2018-02-15 |
JP6523458B2 JP6523458B2 (en) | 2019-05-29 |
Family
ID=56091970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017529702A Active JP6523458B2 (en) | 2014-12-05 | 2015-12-01 | High silicon steel sheet excellent in magnetic property and method for producing the same |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6523458B2 (en) |
KR (1) | KR101633611B1 (en) |
CN (1) | CN107002208B (en) |
WO (1) | WO2016089076A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108575079A (en) * | 2017-03-08 | 2018-09-25 | 上海量子绘景电子股份有限公司 | Electromagnetic shielding composite laminate magnetic material structures and preparation method thereof |
JP6805978B2 (en) * | 2017-06-30 | 2020-12-23 | 日本製鉄株式会社 | Non-oriented electrical steel sheet and its manufacturing method |
CN114293089B (en) * | 2021-12-31 | 2022-06-21 | 河北科技大学 | Soft magnetic high silicon steel ultra-thin strip and preparation method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61204909A (en) * | 1985-03-08 | 1986-09-11 | Pioneer Electronic Corp | Composite magnetic material |
JPH03260017A (en) * | 1990-03-12 | 1991-11-20 | Nkk Corp | Manufacture of nonoriented electromagnetic steel strip |
JP2004247603A (en) * | 2003-02-14 | 2004-09-02 | Minebea Co Ltd | MnZn-BASED FERRITE WAVE ABSORBER |
JP2004339031A (en) * | 2003-05-19 | 2004-12-02 | Matsushita Electric Ind Co Ltd | Non-magnetic ferrite and multilayer electronic component using the same |
JP2005150130A (en) * | 2003-11-11 | 2005-06-09 | Nippon Steel Corp | Magnetic steel sheet with electromagnetic wave absorbing action |
JP2007162095A (en) * | 2005-12-15 | 2007-06-28 | Jfe Steel Kk | Grain oriented electromagnetic steel sheet with ferrite film |
JP2007204817A (en) * | 2006-02-02 | 2007-08-16 | Jfe Steel Kk | Ferrite film-fitted grain oriented electromagnetic steel sheet |
JP2007297232A (en) * | 2006-04-28 | 2007-11-15 | Nec Tokin Corp | Method for producing oxide magnetic material |
WO2013095006A1 (en) * | 2011-12-20 | 2013-06-27 | 주식회사 포스코 | High silicon steel sheet having excellent productivity and magnetic properties and method for manufacturing same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3558350B2 (en) * | 1992-11-26 | 2004-08-25 | 三井化学株式会社 | Fe-based soft magnetic alloy and manufacturing method |
JPH06260321A (en) * | 1993-03-08 | 1994-09-16 | Nippon Steel Corp | Sintered ferrite with fine crystalline grains and manufacture thereof |
JP4258050B2 (en) * | 1998-12-09 | 2009-04-30 | Jfeスチール株式会社 | Method for producing high silicon steel sheet |
JP4010090B2 (en) * | 2000-03-09 | 2007-11-21 | Jfeスチール株式会社 | Method for producing high silicon steel sheet |
JP2004197125A (en) * | 2002-12-16 | 2004-07-15 | Nippon Steel Corp | Magnetic ribbon superior in soft magnetic characteristic and manufacturing method therefor |
KR101149792B1 (en) * | 2009-10-01 | 2012-06-08 | 주식회사 포스코 | Grain-oriented electrical steel sheets with extremely low core loss and high flux density, and Method for manufacturing the same |
KR101380395B1 (en) * | 2011-06-29 | 2014-04-07 | (주)에이스파워텍 | Drive system of solar cell panel |
-
2014
- 2014-12-05 KR KR1020140174452A patent/KR101633611B1/en active IP Right Grant
-
2015
- 2015-12-01 WO PCT/KR2015/012963 patent/WO2016089076A1/en active Application Filing
- 2015-12-01 CN CN201580066230.0A patent/CN107002208B/en active Active
- 2015-12-01 JP JP2017529702A patent/JP6523458B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61204909A (en) * | 1985-03-08 | 1986-09-11 | Pioneer Electronic Corp | Composite magnetic material |
JPH03260017A (en) * | 1990-03-12 | 1991-11-20 | Nkk Corp | Manufacture of nonoriented electromagnetic steel strip |
JP2004247603A (en) * | 2003-02-14 | 2004-09-02 | Minebea Co Ltd | MnZn-BASED FERRITE WAVE ABSORBER |
JP2004339031A (en) * | 2003-05-19 | 2004-12-02 | Matsushita Electric Ind Co Ltd | Non-magnetic ferrite and multilayer electronic component using the same |
JP2005150130A (en) * | 2003-11-11 | 2005-06-09 | Nippon Steel Corp | Magnetic steel sheet with electromagnetic wave absorbing action |
JP2007162095A (en) * | 2005-12-15 | 2007-06-28 | Jfe Steel Kk | Grain oriented electromagnetic steel sheet with ferrite film |
JP2007204817A (en) * | 2006-02-02 | 2007-08-16 | Jfe Steel Kk | Ferrite film-fitted grain oriented electromagnetic steel sheet |
JP2007297232A (en) * | 2006-04-28 | 2007-11-15 | Nec Tokin Corp | Method for producing oxide magnetic material |
WO2013095006A1 (en) * | 2011-12-20 | 2013-06-27 | 주식회사 포스코 | High silicon steel sheet having excellent productivity and magnetic properties and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
CN107002208A (en) | 2017-08-01 |
WO2016089076A1 (en) | 2016-06-09 |
KR101633611B1 (en) | 2016-06-27 |
KR20160068563A (en) | 2016-06-15 |
CN107002208B (en) | 2018-12-11 |
JP6523458B2 (en) | 2019-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6025864B2 (en) | High silicon steel plate excellent in productivity and magnetic properties and method for producing the same | |
CN107849665B (en) | FeCo alloy, FeSi alloy or Fe sheet or strip and method for producing same, transformer core produced from said sheet or strip and transformer comprising same | |
JP2019019355A (en) | Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core | |
JP2008127612A (en) | Non-oriented electromagnetic steel sheet for divided core | |
JP2017537230A (en) | Method for producing tin-containing non-oriented silicon steel sheet, obtained steel sheet and use of the steel sheet | |
JP6404356B2 (en) | Soft high silicon steel sheet and method for producing the same | |
JPWO2012017933A1 (en) | Method for producing non-oriented electrical steel sheet | |
CN113474472B (en) | Non-oriented electromagnetic steel sheet | |
JP2020509184A (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP2021509441A (en) | Bidirectional electromagnetic steel sheet and its manufacturing method | |
JP2012036459A (en) | Non-oriented magnetic steel sheet and production method therefor | |
JP2021025097A (en) | Non-oriented electromagnetic steel sheet and method for producing the same | |
JP2006009048A (en) | Nonoriented silicon steel sheet for rotor and production method therefor | |
JP6523458B2 (en) | High silicon steel sheet excellent in magnetic property and method for producing the same | |
JP2004060026A (en) | Grain oriented silicon steel sheet having excellent high frequency magnetic property, rollability and workability and method for producing the same | |
JP2018507958A (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JPH0888114A (en) | Manufacture of nonoriented flat rolled magnetic steel sheet | |
JP5671872B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP5671871B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP2639227B2 (en) | Manufacturing method of non-oriented electrical steel sheet | |
JP2012036456A (en) | Non-oriented magnetic steel sheet and production method therefor | |
JP2010070814A (en) | Soft magnetic material | |
JP2576621B2 (en) | Silicon steel sheet with excellent magnetic properties | |
JP3252700B2 (en) | Electrical steel sheet with excellent magnetic properties and punchability | |
JP2004057830A (en) | Pole shoe for magnetic resonance imaging system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180529 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181030 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190425 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6523458 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |