JP2018128619A - Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same - Google Patents
Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same Download PDFInfo
- Publication number
- JP2018128619A JP2018128619A JP2017022694A JP2017022694A JP2018128619A JP 2018128619 A JP2018128619 A JP 2018128619A JP 2017022694 A JP2017022694 A JP 2017022694A JP 2017022694 A JP2017022694 A JP 2017022694A JP 2018128619 A JP2018128619 A JP 2018128619A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- core material
- carrier core
- carrier
- toner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011162 core material Substances 0.000 title claims abstract description 92
- 238000011161 development Methods 0.000 title claims description 39
- 239000002245 particle Substances 0.000 claims abstract description 229
- 239000012798 spherical particle Substances 0.000 claims abstract description 12
- 230000005347 demagnetization Effects 0.000 claims abstract description 9
- 229920005989 resin Polymers 0.000 claims description 20
- 239000011347 resin Substances 0.000 claims description 20
- 108091008695 photoreceptors Proteins 0.000 abstract description 7
- 238000000034 method Methods 0.000 description 33
- 229910000859 α-Fe Inorganic materials 0.000 description 27
- 238000010304 firing Methods 0.000 description 26
- 239000002994 raw material Substances 0.000 description 16
- 230000005415 magnetization Effects 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 12
- 238000000576 coating method Methods 0.000 description 12
- 238000002156 mixing Methods 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 239000012298 atmosphere Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 238000010298 pulverizing process Methods 0.000 description 9
- 239000002002 slurry Substances 0.000 description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 239000002270 dispersing agent Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000002612 dispersion medium Substances 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 239000000395 magnesium oxide Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 239000002390 adhesive tape Substances 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 238000001694 spray drying Methods 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011268 mixed slurry Substances 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920005646 polycarboxylate Polymers 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZDZYGYFHTPFREM-UHFFFAOYSA-N 3-[3-aminopropyl(dimethoxy)silyl]oxypropan-1-amine Chemical compound NCCC[Si](OC)(OC)OCCCN ZDZYGYFHTPFREM-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229910001035 Soft ferrite Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 238000003705 background correction Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- USHIMSBZXQNBLI-UHFFFAOYSA-N dioxane;ethanol Chemical compound CCO.C1CCOOC1 USHIMSBZXQNBLI-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000007909 melt granulation Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000010334 sieve classification Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 229920006345 thermoplastic polyamide Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000012856 weighed raw material Substances 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Developing Agents For Electrophotography (AREA)
Abstract
Description
本発明は、キャリア芯材並びにこれを用いた電子写真現像用キャリア及び電子写真用現像剤に関するものである。 The present invention relates to a carrier core material, an electrophotographic developer carrier and an electrophotographic developer using the same.
例えば、電子写真方式を用いたファクシミリやプリンター、複写機などの画像形成装置では、感光体の表面に形成された静電潜像にトナーを付着させて可視像化し、この可視像を用紙等に転写した後、加熱・加圧して定着させている。高画質化やカラー化の観点から、現像剤としては、キャリアとトナーとを含むいわゆる二成分現像剤が広く使用されている。 For example, in an image forming apparatus such as a facsimile, printer, or copier using an electrophotographic method, a toner is attached to an electrostatic latent image formed on the surface of a photosensitive member to make a visible image, and the visible image is formed on paper. After being transferred to, etc., it is fixed by heating and pressing. A so-called two-component developer including a carrier and a toner is widely used as a developer from the viewpoint of high image quality and colorization.
二成分現像剤を用いた現像方式では、キャリアとトナーとを現像装置内で撹拌混合し、摩擦によってトナーを所定量まで帯電させる。そして、回転する現像ローラに現像剤を供給し、現像ローラ上で磁気ブラシを形成させて、磁気ブラシを介して感光体へトナーを電気的に移動させて感光体上の静電潜像を可視像化する。トナー移動後のキャリアは現像ローラ上から剥離し、現像装置内で再びトナーと混合される。このため、キャリアの特性として、磁気ブラシを形成する磁気特性及び所望の電荷をトナーに付与する帯電特性が要求される。このようなキャリアとしては、マグネタイトや各種フェライト等からなるキャリア芯材の表面を樹脂で被覆した、いわゆるコーティングキャリアがこれまで多く用いられていた。また、コーティングキャリアに用いられていたこれまでのキャリア芯材は真球状であった。 In the developing method using a two-component developer, the carrier and the toner are stirred and mixed in the developing device, and the toner is charged to a predetermined amount by friction. Then, a developer is supplied to the rotating developing roller, a magnetic brush is formed on the developing roller, and the toner is electrically moved to the photosensitive member via the magnetic brush, so that an electrostatic latent image on the photosensitive member can be formed. Visualize. The carrier after the toner movement is peeled off from the developing roller and mixed with the toner again in the developing device. For this reason, as a characteristic of the carrier, a magnetic characteristic for forming a magnetic brush and a charging characteristic for imparting a desired charge to the toner are required. As such a carrier, a so-called coating carrier in which the surface of a carrier core material made of magnetite, various ferrites or the like is coated with a resin has been widely used. Further, the carrier core material used so far for the coating carrier has a spherical shape.
近年、画像形成装置における画像形成速度の高速化という市場要求に対応するため、現像ローラの回転速度を速めて、現像領域への現像剤の単位時間当たりの供給量を増加させる傾向にある。 In recent years, in order to meet the market demand for higher image forming speed in image forming apparatuses, the rotation speed of the developing roller tends to be increased to increase the amount of developer supplied per unit time to the developing area.
ところが、真球状のキャリア芯材を用いたコーティングキャリアでは、現像領域へのトナー供給が不十分となり画像濃度が低下する不具合があった。例えば、現像ローラの1周前の画像の影響を受けて画像濃度が低下する現像メモリーと呼ばれる不具合があった。 However, the coating carrier using the spherical carrier core material has a problem that the toner density to the developing area is insufficient and the image density is lowered. For example, there is a problem called a development memory in which the image density decreases due to the influence of the image one round before the development roller.
そこで、キャリア芯材の表面を凹凸形状としたり、キャリア芯材の形状を異形化することで、感光体表面との摩擦抵抗及びキャリア同士の摩擦抵抗を大きくし、現像領域へのトナー供給量を増加させる技術が提案されている(例えば、特許文献1,2など)。 Therefore, by making the surface of the carrier core material uneven, or by making the shape of the carrier core material irregular, the frictional resistance with the surface of the photoreceptor and the frictional resistance between the carriers are increased, and the amount of toner supplied to the development area is increased. Techniques for increasing the number have been proposed (for example, Patent Documents 1 and 2).
しかしながら、キャリア芯材表面を凹凸形状にしただけでは、キャリア芯材表面を樹脂被覆した際に凹部にコート樹脂が厚く成膜されるため、コーティングキャリアの表面凹凸が不十分となりトナー保持性が未だ不十分である。また異形キャリアとして、不等多角形状や塊状のキャリアが提案されているが、球形状を逸脱した極端な異形化により、粒子同士の引っかかりなどが強くなって磁気ブラシが硬くなり、磁気ブラシで感光体表面が摺擦されることによって感光体表面が傷つけられるおそれがある。 However, if the surface of the carrier core material is made uneven only, the coating resin is thickly formed in the recesses when the surface of the carrier core material is coated with resin. It is insufficient. In addition, unequal polygonal and massive carriers have been proposed as irregularly shaped carriers. However, due to extreme irregularities that deviate from the spherical shape, the magnetic brushes become harder and harder, and the magnetic brush becomes photosensitive. The surface of the photoconductor may be damaged by rubbing the surface of the photoconductor.
そこで本出願人は、現像領域へのトナー供給量を増加させることができ、しかも磁気ブラシによって感光体表面が傷つけられることのないキャリア芯材を提案した(特許文献3)。 Therefore, the present applicant has proposed a carrier core material that can increase the amount of toner supplied to the development area and that does not damage the surface of the photoreceptor by the magnetic brush (Patent Document 3).
現在、画像形成速度のさらなる高速化が開発検討されているところ、キャリア芯材においてもこのような高速化に対応したものが望まれている。 Currently, further development of image forming speed is under development, and a carrier core material corresponding to such high speed is desired.
そこで、本発明の目的は、より多くのトナーを現像領域に供給することができ、画像形成速度がより高速化した場合であっても現像メモリーなどの不具合が生じることがなく、しかも磁気ブラシによって感光体表面を傷つけることのないキャリア芯材を提供することにある。 Accordingly, an object of the present invention is to supply more toner to the developing area, and even when the image forming speed is increased, there is no occurrence of a problem such as a developing memory. An object of the present invention is to provide a carrier core material that does not damage the surface of the photoreceptor.
また本発明の他の目的は、長期間の使用においても安定して良好な画質画像を形成することができる電子写真現像用キャリア及び電子写真用現像剤を提供することにある。 Another object of the present invention is to provide an electrophotographic developer carrier and an electrophotographic developer capable of stably forming a good image quality even after long-term use.
本発明によれば、球形粒子が2個〜5個の結合した結合粒子が5個数%以上20個数%以下含まれ、減衰交番磁界を加えて脱磁したときの見掛け密度(AD1)と、脱磁後に1000/(4π)kA/m(1000エルステッド)の磁界下で着磁したときの見掛け密度(AD2)との比(AD2/AD1)が0.90以上0.98以下であることを特徴とするキャリア芯材が提供される。なお、結合粒子の含有率及び見掛け密度の測定方法は後述する。 According to the present invention, the apparent density (AD 1 ) when demagnetized by adding a damped alternating magnetic field, including 5% to 20% by number of bonded particles in which 2 to 5 spherical particles are combined, The ratio (AD 2 / AD 1 ) to the apparent density (AD 2 ) when magnetized under a magnetic field of 1000 / (4π) kA / m (1000 oersted) after demagnetization is 0.90 or more and 0.98 or less A carrier core material is provided. In addition, the measuring method of the content rate of a binding particle and an apparent density is mentioned later.
前記構成のキャリア芯材において、最大山谷深さRzが1.8μm以上である粒子が5個数%以上含まれるのが好ましい。なお、粒子表面の最大山谷深さRzが1.8μm以上である粒子割合の測定方法は後述する。 In the carrier core material having the above-described configuration, it is preferable that 5% by number or more of particles having a maximum mountain valley depth Rz of 1.8 μm or more are included. In addition, the measuring method of the particle | grain ratio whose maximum valley depth Rz of the particle | grain surface is 1.8 micrometers or more is mentioned later.
本発明に係るキャリア芯材の体積平均粒径(以下、単に「平均粒径」と記すことがある。)は25μm以上50μm未満であるのが好ましい。 The carrier core material according to the present invention preferably has a volume average particle diameter (hereinafter sometimes simply referred to as “average particle diameter”) of 25 μm or more and less than 50 μm.
また、本発明によれば、前記記載のキャリア芯材の表面が樹脂で被覆されていることを特徴とする電子写真現像用キャリア(以下、単に「キャリア」と記すことがある。)が提供される。 In addition, according to the present invention, there is provided an electrophotographic developing carrier (hereinafter sometimes simply referred to as “carrier”), wherein the surface of the carrier core material described above is coated with a resin. The
さらに、本発明によれば、前記記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤が提供される。 Furthermore, according to the present invention, there is provided an electrophotographic developer comprising the electrophotographic developer carrier described above and a toner.
本発明に係るキャリア芯材によれば、より多くのトナーを現像領域に供給することができ、画像形成速度がより高速化した場合であっても現像メモリーなどの不具合が防止され、また磁気ブラシによって感光体表面が傷つけられることもない。これにより、本発明に係るキャリア芯材を含む現像剤を用いれば、長期間の使用においても安定して良好な画質画像を形成することができる。 According to the carrier core material of the present invention, more toner can be supplied to the development area, and even when the image forming speed is increased, problems such as the development memory are prevented, and the magnetic brush As a result, the surface of the photoreceptor is not damaged. Thereby, if the developer containing the carrier core material according to the present invention is used, a good image quality can be stably formed even for a long period of use.
本出願人は、数個のフェライト球形粒子が結合した結合粒子をキャリア芯材中に所定の個数割合含有させることによって現像領域に多くのトナーを供給可能となることを見出し既に出願を行った(特開2016−161741号公報等)。そして、さらに多くのトナーを現像領域に供給可能とするため鋭意検討を重ねた結果、結合粒子を所定の個数割合で含有させる構成に加えて、磁力によって凝集する粒子群を生成させればよいことを見出し、本発明を成すに至った。 The present applicant has already filed an application by finding that a large number of toners can be supplied to the developing region by containing a predetermined number of binder particles in which several ferrite spherical particles are bonded in a carrier core material ( JP, 2006-161741, etc.). As a result of intensive studies to make it possible to supply more toner to the development area, it is only necessary to generate a group of particles that are aggregated by magnetic force in addition to the constitution in which the bound particles are contained in a predetermined number ratio. The present invention has been found.
まず、磁力によって凝集する粒子群(以下、「磁気凝集粒子群」と記すことがある)について説明する。磁気凝集粒子群は磁力によって凝集し、粒子同士の接点が移動可能に凝集した粒子群である。換言すれば、磁気凝集粒子群は外力や磁力の作用によって粒子群の形状が変形可能である。例えば、図1に示すように、磁気凝集粒子群に外力や磁力が加わると、粒子同士の凝集状態は維持したまま粒子間の接点が移動し凝集粒子群の形状が変化する。なお、図1における黒点はトナーを表している。 First, a particle group aggregated by magnetic force (hereinafter sometimes referred to as “magnetic aggregated particle group”) will be described. The magnetic aggregated particle group is a group of particles aggregated by magnetic force and aggregated so that the contact between the particles can move. In other words, the shape of the particle group can be deformed by the action of external force or magnetic force. For example, as shown in FIG. 1, when an external force or a magnetic force is applied to the magnetic aggregated particle group, the contact point between the particles moves while the aggregated state of the particles is maintained, and the shape of the aggregated particle group changes. Note that black dots in FIG. 1 represent toner.
このような磁気凝集粒子群を形成する各粒子は所定の残留磁化を有する。図4に示すような現像装置では、現像ローラ3に内蔵された固定磁石の磁力によってキャリアは磁化されて現像ローラ3の表面に磁気ブラシを形成する。そして、現像ローラ3が回転することによって現像剤が回転搬送されるとともに磁界の変化によって磁気ブラシの形状が変化する。磁気凝集粒子群は磁気ブラシの一部として形成され、磁気ブラシの形状変化に伴って磁気凝集粒子群の形状も様々に変化する。 Each particle forming such a magnetic aggregated particle group has a predetermined residual magnetization. In the developing device as shown in FIG. 4, the carrier is magnetized by the magnetic force of the fixed magnet built in the developing roller 3 to form a magnetic brush on the surface of the developing roller 3. When the developing roller 3 rotates, the developer is rotated and conveyed, and the shape of the magnetic brush changes due to a change in the magnetic field. The magnetic agglomerated particle group is formed as a part of the magnetic brush, and the shape of the magnetic agglomerated particle group changes variously as the shape of the magnetic brush changes.
後述する結合粒子と同様に、磁気凝集粒子群は凝集粒子間にトナーが取り込まれる空間を有する。凝集粒子間の空間に取り込まれたトナーは、現像ローラの回転によって磁気凝集粒子群と共に現像領域に搬送される。そして、前記空間に取り込まれていたトナーが磁気ブラシの表面に現れ現像に寄与する。ここで重要なことは、結合粒子と異なって磁気凝集粒子群では外力や磁力の作用によって形状が変わるので、トナーを取り込んでいた凝集粒子間の空間が凝集粒子群の形状変化によって変形あるいは消滅して、空間内の奥に位置して現像に寄与しにくかったトナーが外表面に露出し得、現像に寄与し得るということである。つまり、より多くのトナーを現像に寄与させることができる。 Similar to the binding particles described later, the magnetic aggregated particle group has a space in which toner is taken in between the aggregated particles. The toner taken into the space between the aggregated particles is conveyed to the development area together with the magnetic aggregated particles by the rotation of the developing roller. The toner taken into the space appears on the surface of the magnetic brush and contributes to development. What is important here is that, unlike the coupled particles, the shape of the magnetic agglomerated particles changes due to the action of external force or magnetic force, so that the space between the agglomerated particles that has taken in the toner is deformed or disappears due to the shape change of the agglomerated particles. In other words, the toner that is located in the back of the space and is difficult to contribute to the development can be exposed to the outer surface and can contribute to the development. That is, more toner can contribute to development.
また、現像によってトナーが消費された現像剤は現像ローラから剥離され、補給トナーやトナー未消費の現像剤と混合される。このとき、磁気凝集粒子群は混合撹拌操作によっても形状が変わるので混合撹拌トルクの必要以上の上昇を招くことが無く、トナー等と円滑に混合される。あるいはまた、現像ローラに内蔵の固定磁石の磁界から外れることによって磁気凝集が解消されて個々の粒子になり、トナー等とより円滑に混合されるようになる。さらに、キャリアに結合粒子が存在していると、結合粒子によって磁気凝集粒子群に大きな回転力が加えられ、磁気凝集粒子群の変形や磁気凝集の解消が生じやすくなってトナーとの混合が一層促進されることになる。 In addition, the developer whose toner has been consumed by the development is peeled off from the developing roller, and is mixed with the replenishment toner and the developer that has not yet consumed the toner. At this time, since the shape of the magnetic agglomerated particles changes depending on the mixing and stirring operation, the mixing and stirring torque does not increase more than necessary and is smoothly mixed with the toner and the like. Alternatively, by deviating from the magnetic field of the fixed magnet built in the developing roller, the magnetic aggregation is eliminated to form individual particles, which are more smoothly mixed with the toner or the like. In addition, if the carrier has binding particles, a large rotational force is applied to the magnetic agglomerated particles by the binding particles, and the magnetic agglomerated particles are likely to be deformed and magnetic agglomeration is eliminated, further mixing with the toner. Will be promoted.
本発明では、このような磁気凝集粒子群の存在指標として、脱磁したときの見掛け密度と着磁したときの見掛け密度の比を用いることとした。図2に、脱磁後及び着磁後のキャリア芯材の様子を示す模式図を示す。キャリア芯材を脱磁すると、キャリア芯材を構成する各粒子は密に充填されるため見掛け密度(AD1)は大きくなる。一方、キャリア芯材を着磁すると、残留磁化によって複数個の粒子が磁気凝集粒子群を形成し大粒径粒子として挙動するため、磁気凝集粒子群と磁気凝集粒子群との間に空間が生じて、見掛け密度(AD2)は脱磁後の見掛け密度(AD1)よりも小さくなる。そこで本発明では、見掛け密度の比(AD2/AD1)を磁気凝集粒子群の形成度合いの指標として用いた。 In the present invention, the ratio between the apparent density when demagnetized and the apparent density when magnetized is used as the presence index of such a magnetic aggregated particle group. FIG. 2 is a schematic diagram showing the state of the carrier core material after demagnetization and after magnetization. When the carrier core material is demagnetized, each particle constituting the carrier core material is closely packed, so that the apparent density (AD 1 ) increases. On the other hand, when the carrier core material is magnetized, a plurality of particles form a magnetic aggregated particle group due to residual magnetization and behave as a large particle size particle, resulting in a space between the magnetic aggregated particle group and the magnetic aggregated particle group. Thus, the apparent density (AD 2 ) is smaller than the apparent density (AD 1 ) after demagnetization. Therefore, in the present invention, the apparent density ratio (AD 2 / AD 1 ) is used as an index of the degree of formation of the magnetic aggregate particles.
本発明ではこの見掛け密度の比(AD2/AD1)を0.90以上0.98以下とした。見掛け密度の比(AD2/AD1)が0.90未満であると、磁気凝集粒子群の磁気凝集が強すぎて外力や磁力の作用による磁気凝集粒子群の変形が生じにくくなる。一方、見掛け密度の比(AD2/AD1)が0.98を超えると、磁気凝集が弱すぎて磁気凝集粒子群が十分には形成されない。 In the present invention, the apparent density ratio (AD 2 / AD 1 ) is set to 0.90 or more and 0.98 or less. When the apparent density ratio (AD 2 / AD 1 ) is less than 0.90, the magnetic aggregates of the magnetic aggregate particles are too strong, and the magnetic aggregate particles are hardly deformed by the action of external force or magnetic force. On the other hand, when the apparent density ratio (AD 2 / AD 1 ) exceeds 0.98, the magnetic aggregation is too weak to sufficiently form the magnetic aggregate particles.
キャリア芯材の見掛け密度の比(AD2/AD1)の制御は従来公知の方法を用いることができる。例えば、キャリア芯材を構成する粒子がフェライト粒子である場合には、その組成や焼成温度によって見掛け密度の比(AD2/AD1)を制御できる。例えば、焼成温度を低くし、磁壁移動をトラップする欠陥構造を結晶中に残すことで、着磁後の残留磁化が高められ、見掛け密度の比を小さくできる。 A conventionally known method can be used to control the apparent density ratio (AD 2 / AD 1 ) of the carrier core material. For example, when the particles constituting the carrier core material are ferrite particles, the apparent density ratio (AD 2 / AD 1 ) can be controlled by the composition and firing temperature. For example, by lowering the firing temperature and leaving a defect structure in the crystal that traps domain wall motion, the residual magnetization after magnetization can be increased, and the apparent density ratio can be reduced.
次に、本発明における結合粒子について説明する。本発明に係るキャリア芯材は、球形粒子が2個〜5個の結合した結合粒子が5個数%〜20個数%含まれることを大きな特徴の一つとする。なお、本発明に係るキャリア芯材において、結合粒子以外の通常粒子は球形であるのが好ましい。 Next, the binding particles in the present invention will be described. One of the major characteristics of the carrier core material according to the present invention is that 5 to 20% by number of bonded particles in which 2 to 5 spherical particles are combined are included. In the carrier core material according to the present invention, the normal particles other than the binding particles are preferably spherical.
球形粒子が2個〜5個結合した、球形から大きく外れた異形な結合粒子がキャリア芯材中に所定の個数割合で含まれていると、通常粒子と結合粒子との間にトナーが取り込まれる空間が生じ得る。そして、通常粒子と結合粒子との間の空間に取り込まれたトナーは、現像ローラの回転によって現像領域に搬送されると共に、前記空間に取り込まれていたトナーが磁気ブラシの表面に現れ現像に寄与する。加えて、従来の不等多角形状や塊状のキャリアと異なって、本発明で使用する結合粒子は、球形粒子同士が結合した粒子であるため角部がない。このため、感光体表面を磁気ブラシで摺擦しても粒子の角部で感光体表面が傷つくことはない。 If the carrier core material contains a predetermined number of irregularly bonded particles that are largely deviated from the spherical shape, in which 2 to 5 spherical particles are bonded, toner is taken in between the normal particles and the bonded particles. Space can arise. The toner taken into the space between the normal particles and the binding particles is transported to the developing area by the rotation of the developing roller, and the toner taken into the space appears on the surface of the magnetic brush and contributes to the development. To do. In addition, unlike conventional unequal polygonal shapes or massive carriers, the bonded particles used in the present invention are particles in which spherical particles are bonded to each other, and thus have no corners. For this reason, even if the surface of the photoreceptor is rubbed with a magnetic brush, the surface of the photoreceptor is not damaged at the corners of the particles.
結合粒子を形成する球形粒子の各粒径に特に限定はないが、結合粒子としては粒径が最も大きい母粒子と、この母粒子よりも粒径の小さい1個〜4個の子粒子とが結合したものが好ましい。さらには、少なくとも1つの子粒子の粒径が母粒子の粒径に対して1/4より大きい結合粒子が好ましい。このような結合粒子がキャリア芯材に所定割合で含まれていることで、トナーが取り込まれ得る通常粒子と結合粒子との間の空間及び結合粒子同士の空間が大きくなり、より多くのトナーが現像領域に搬送され、現像メモリーの発生が効果的に抑制されるようになる。 Each particle size of the spherical particles forming the binding particles is not particularly limited, but the binding particles include a mother particle having the largest particle size and 1 to 4 child particles having a smaller particle size than the mother particle. Bonded ones are preferred. Furthermore, a bonded particle in which the particle size of at least one child particle is larger than 1/4 of the particle size of the mother particle is preferable. By including such binding particles in a predetermined ratio in the carrier core material, the space between the normal particles and the binding particles where the toner can be taken in and the space between the binding particles are increased, so that a larger amount of toner can be obtained. It is conveyed to the development area, and the occurrence of development memory is effectively suppressed.
なお、結合粒子は母粒子と子粒子とが結合部分を共有した形態で存在しているので、母粒子及び子粒子の粒径は、キャリア芯材の形状を走査電子顕微鏡(日本電子社製:JSM−6510LA)を用いて倍率250倍で撮影した画像において、結合粒子の結合部分を除いた領域から粒子を球形近似することによりそれぞれ算出した。 In addition, since the binding particles exist in a form in which the base particles and the child particles share a binding portion, the particle size of the base particles and the child particles is determined by scanning electron microscope (manufactured by JEOL Ltd .: JSM-6510LA) was used to calculate each of the particles by spherical approximation from the region excluding the binding portion of the binding particles in an image taken at a magnification of 250 times.
本発明で使用する結合粒子において、母粒子と子粒子の組成は、同じであってもよいし異なっていてもよい。 In the bonded particles used in the present invention, the composition of the mother particles and the child particles may be the same or different.
このような結合粒子は、例えば、後述するキャリア芯材の製造工程において、焼成温度を高くしたり、焼成温度での保持時間を長くしたり、焼成後の解粒操作を調整することにより得ることができる。この方法によれば、キャリア芯材中の結合粒子の含有割合を容易に調整することできる。 Such binding particles can be obtained, for example, by increasing the firing temperature, increasing the holding time at the firing temperature, or adjusting the pulverization operation after firing in the carrier core manufacturing process described later. Can do. According to this method, the content ratio of the binding particles in the carrier core material can be easily adjusted.
あるいはまた、キャリア芯材の製造工程において、平均粒径の異なる造粒物を混合し焼成することにより得ることができる。この方法によれば、キャリア芯材中の結合粒子の含有割合を容易に調整することができ、同時に母粒子を子粒子との粒径を所望の粒径に容易に調整することができる。 Or it can obtain by mixing and baking the granulated material from which average particle diameter differs in the manufacturing process of a carrier core material. According to this method, the content ratio of the binding particles in the carrier core material can be easily adjusted, and at the same time, the particle size of the mother particles and the child particles can be easily adjusted to a desired particle size.
キャリア芯材における結合粒子の含有割合は5個数%〜20個数%である。結合粒子の含有割合が5個数%未満であると、現像領域へのトナー供給量が不十分となることがある一方、結合粒子の含有割合が20個数%を超えると、キャリア芯材の流動性が悪くなりすぎて磁気ブラシ内でのキャリアの循環移動が十分に行われず、画像形成速度が速くなった場合に十分な画像濃度が得られない。より好ましい結合粒子の含有割合は7個数%〜20個数%の範囲である。 The content ratio of the binding particles in the carrier core material is 5% to 20% by number. When the content ratio of the binding particles is less than 5% by number, the amount of toner supplied to the developing region may be insufficient. On the other hand, when the content ratio of the binding particles exceeds 20% by number, the fluidity of the carrier core material However, when the image formation speed is increased, sufficient image density cannot be obtained when the carrier is not sufficiently circulated and moved within the magnetic brush. A more preferable content ratio of the binder particles is in the range of 7% by number to 20% by number.
本発明のキャリア芯材において、最大山谷深さRzが1.8μm以上である粒子が5個数%以上含まれるのが好ましい。最大山谷深さRzが1.8μm以上である粒子が5個数%以上含まれると、これらの粒子によって大きな隙間が形成され、より多くのトナーがこの隙間に取り込まれて現像領域へのトナー搬送量が増え、現像メモリーなどの画像不具合が一層抑制される。最大山谷深さRzが1.8μm以上である粒子の上限値に特に限定はないが、通常、70個数%以下であるのが望ましい。最大山谷深さRzが1.8μm以上である粒子の含有割合は、原料におけるSr及びClの含有量及び製造工程における焼結条件などによって調整することができる。詳細は後述する。 In the carrier core material of the present invention, it is preferable that 5% by number or more of particles having a maximum mountain valley depth Rz of 1.8 μm or more are included. When 5% by number or more of particles having a maximum peak / valley depth Rz of 1.8 μm or more are contained, a large gap is formed by these particles, and a larger amount of toner is taken into the gap and the amount of toner transported to the development area. And image defects such as development memory are further suppressed. There is no particular limitation on the upper limit value of the particles having the maximum peak / valley depth Rz of 1.8 μm or more, but it is usually preferably 70% by number or less. The content ratio of the particles having the maximum mountain valley depth Rz of 1.8 μm or more can be adjusted by the Sr and Cl contents in the raw materials and the sintering conditions in the manufacturing process. Details will be described later.
本発明のキャリア芯材の体積平均粒径としては、25μm以上50μm未満の範囲が好ましく、より好ましくは30μm以上40μm以下の範囲である。 The volume average particle size of the carrier core material of the present invention is preferably in the range of 25 μm or more and less than 50 μm, more preferably in the range of 30 μm or more and 40 μm or less.
本発明のキャリア芯材はフェライト粒子で構成されるのが好ましい。フェライト粒子の組成に特に限定はなく、組成式MXFe3−XO4(但し、Mは、Mg,Mn,Ca,Ti,Sr,Cu,Zn,Niからなる群より選択される少なくとも1種の金属元素、0≦X≦1)で表されるものが例示される。このようなソフトフェライトで可能である。これらの中でも、一般式(MnO)x(MgO)y(Fe2O3)zで表され、x,y,zがそれぞれ45mol%〜55mol%,0〜20mol%,30mol%〜50mol%であり、MnO及び/又はMgOの一部をSrOで0.15mol%〜3.0mol%置換したものが好ましい。 The carrier core material of the present invention is preferably composed of ferrite particles. The composition of the ferrite particles is not particularly limited, and the composition formula M X Fe 3 -X O 4 (where M is at least one selected from the group consisting of Mg, Mn, Ca, Ti, Sr, Cu, Zn, Ni) An example is a metal element of a species represented by 0 ≦ X ≦ 1). Such soft ferrite is possible. Among these, the general formula (MnO) x (MgO) y (Fe 2 O 3) is represented by z, x, y, z is 45mol% ~55mol% respectively, 0 to 20 mol%, a 30 mol% 50 mol% , MnO and / or MgO is preferably partially substituted by 0.15 mol% to 3.0 mol% with SrO.
本発明のキャリア芯材の製造方法に特に限定はないが、以下に説明する製造方法が好適である。 Although there is no limitation in particular in the manufacturing method of the carrier core material of this invention, the manufacturing method demonstrated below is suitable.
まず、Fe成分原料、M成分原料を秤量する。なお、MはMg、Mn、Ca、Ti、Cu、Sr、Zn、Ni等の2価の価数をとり得る金属元素から選ばれる少なくとも1種の金属元素である。Fe成分原料としては、Fe2O3等が好適に使用される。M成分原料としては、MnであればMnCO3、Mn3O4等が使用でき、MgであればMgO、Mg(OH)2、MgCO3が好適に使用できる。また、Ca成分原料としては、CaO、Ca(OH)2、CaCO3等から選択される少なくとも1種の化合物が好適に使用される。Sr成分原料としては、SrCO3、Sr(NO3)2などが好適に使用される。 First, the Fe component raw material and the M component raw material are weighed. M is at least one metal element selected from divalent metal elements such as Mg, Mn, Ca, Ti, Cu, Sr, Zn, and Ni. As the Fe component material, Fe 2 O 3 or the like is preferably used. As the M component raw material, MnCO 3 , Mn 3 O 4 and the like can be used for Mn, and MgO, Mg (OH) 2 and MgCO 3 can be suitably used for Mg. As the Ca component raw material, at least one compound selected from CaO, Ca (OH) 2 , CaCO 3 and the like is preferably used. As the Sr component raw material, SrCO 3 , Sr (NO 3 ) 2 or the like is preferably used.
ここで、フェライト粒子の見掛け密度や所定の最大山谷深さRzを有する粒子の含有割合を制御するためにSr及びCl(塩素)を微量添加するのが望ましい。Srを微量添加することによって焼成工程においてSrフェライトが一部生成することにより、マグネトプランバイト型の結晶構造が形成されてフェライト粒子表面の凹凸形状が促進されやすくなる。Srの好適な添加量は、フェライト粒子の主成分100mol%に対してSrO換算で0.15mol%〜3.0mol%の範囲である。また、Cl成分を微量添加することによって焼成工程においてガス化した塩化鉄が粒子表面において酸素と反応しマグネタイト(Fe3O4)が析出し粒子表面の凹凸が促進される。なお、Cl成分は、Fe成分原料等の原料中に不可避不純物として含有されていることがある。また必要により原料としてHClを添加する。 Here, it is desirable to add a small amount of Sr and Cl (chlorine) in order to control the apparent density of the ferrite particles and the content ratio of the particles having the predetermined maximum valley depth Rz. By adding a small amount of Sr, a part of Sr ferrite is generated in the firing step, so that a magnetoplumbite type crystal structure is formed and the uneven shape on the surface of the ferrite particles is easily promoted. A suitable addition amount of Sr is in the range of 0.15 mol% to 3.0 mol% in terms of SrO with respect to 100 mol% of the main component of the ferrite particles. Further, by adding a small amount of Cl component, iron chloride gasified in the firing step reacts with oxygen on the particle surface, and magnetite (Fe 3 O 4 ) precipitates to promote unevenness on the particle surface. The Cl component may be contained as an inevitable impurity in raw materials such as Fe component raw materials. If necessary, HCl is added as a raw material.
次いで、原料を分散媒中に投入しスラリーを作製する。本発明で使用する分散媒としては水が好適である。分散媒には、前記原料の他、必要によりバインダー、分散剤等を配合してもよい。バインダーとしては、例えば、ポリビニルアルコールが好適に使用できる。バインダーの配合量としてはスラリー中の濃度が0.5質量%〜2質量%程度とするのが好ましい。また、分散剤としては、例えば、ポリカルボン酸アンモニウム等が好適に使用できる。分散剤の配合量としてはスラリー中の濃度が0.5質量%〜2質量%程度とするのが好ましい。その他、潤滑剤や焼結促進剤等を配合してもよい。スラリーの固形分濃度は50質量%〜90質量%の範囲が望ましい。より好ましくは60質量%〜80質量%である。60質量%以上であれば、造粒物中に粒子内細孔が少なく、焼成時の焼結不足を防ぐことができる Next, the raw material is charged into a dispersion medium to prepare a slurry. Water is preferred as the dispersion medium used in the present invention. In addition to the above raw materials, a binder, a dispersant and the like may be blended in the dispersion medium as necessary. For example, polyvinyl alcohol can be suitably used as the binder. As a compounding quantity of a binder, it is preferable that the density | concentration in a slurry shall be about 0.5 mass%-2 mass%. Moreover, as a dispersing agent, polycarboxylate ammonium etc. can be used conveniently, for example. The blending amount of the dispersing agent is preferably about 0.5% by mass to 2% by mass in the slurry. In addition, you may mix | blend a lubricant, a sintering accelerator, etc. The solid content concentration of the slurry is desirably in the range of 50 mass% to 90 mass%. More preferably, it is 60 mass%-80 mass%. If it is 60% by mass or more, there are few intra-particle pores in the granulated product, and insufficient sintering during firing can be prevented.
なお、秤量した原料を混合し仮焼成し解粒した後、分散媒に投入しスラリーを作製してもよい。仮焼成の温度としては750℃〜900℃の範囲が好ましい。750℃以上であれば、仮焼による一部フェライト化が進み、焼成時のガス発生量が少なく、固体間反応が十分に進むため、好ましい。一方、900℃以下であれば、仮焼による焼結が弱く、後のスラリー粉砕工程で原料を十分に粉砕できるので好ましい。また、仮焼成時の雰囲気としては大気雰囲気が好ましい。 In addition, after mixing the weighed raw materials, pre-baking and pulverizing, it may be put into a dispersion medium to produce a slurry. The pre-baking temperature is preferably in the range of 750 ° C to 900 ° C. If it is 750 degreeC or more, since part ferrite-ization by calcination advances, the amount of gas generation at the time of baking is small, and reaction between solids fully advances, it is preferable. On the other hand, if it is 900 degrees C or less, since sintering by calcination is weak and a raw material can fully be grind | pulverized at a later slurry grinding | pulverization process, it is preferable. Moreover, an air atmosphere is preferable as the atmosphere at the time of temporary firing.
次に、以上のようにして作製されたスラリーを湿式粉砕する。例えば、ボールミルや振動ミルを用いて所定時間湿式粉砕する。粉砕後の原材料の平均粒径は5μm以下が好ましく、より好ましくは1μm以下である。振動ミルやボールミルには、所定粒径のメディアを内在させるのがよい。メディアの材質としては、鉄系のクロム鋼や酸化物系のジルコニア、チタニア、アルミナなどが挙げられる。粉砕工程の形態としては連続式及び回分式のいずれであってもよい。粉砕物の粒径は、粉砕時間や回転速度、使用するメディアの材質・粒径などによって調整される。 Next, the slurry produced as described above is wet pulverized. For example, wet grinding is performed for a predetermined time using a ball mill or a vibration mill. The average particle diameter of the raw material after pulverization is preferably 5 μm or less, more preferably 1 μm or less. The vibration mill or ball mill preferably contains a medium having a predetermined particle diameter. Examples of the material of the media include iron-based chromium steel and oxide-based zirconia, titania, and alumina. As a form of a grinding | pulverization process, any of a continuous type and a batch type may be sufficient. The particle size of the pulverized product is adjusted depending on the pulverization time and rotation speed, the material and particle size of the media used, and the like.
そして、粉砕されたスラリーを噴霧乾燥させて造粒する。具体的には、スプレードライヤーなどの噴霧乾燥機にスラリーを導入し、雰囲気中へ噴霧することによって球形に造粒する。噴霧乾燥時の雰囲気温度は100℃〜300℃の範囲が好ましい。これにより、粒径10μm〜200μmの球形の造粒物が得られる。次いで、得られた造粒物を振動ふるいを用いて分級し所定の粒径範囲の造粒物を作製する。 Then, the pulverized slurry is spray-dried and granulated. Specifically, the slurry is introduced into a spray dryer such as a spray dryer, and granulated into a spherical shape by spraying into the atmosphere. The atmospheric temperature during spray drying is preferably in the range of 100 ° C to 300 ° C. Thereby, a spherical granulated product having a particle size of 10 μm to 200 μm is obtained. Next, the obtained granulated product is classified using a vibration sieve to produce a granulated product having a predetermined particle size range.
次に、前記の造粒物を所定温度に加熱した炉に投入して、フェライト粒子を合成するための一般的な手法で焼成することにより、フェライト粒子を生成させる。焼成温度としては800℃〜1300℃の範囲が好ましい。焼成温度が800℃以下であると、相変態が起こりにくくなるとともに焼結も進みにくくなる。また、焼成温度が1300℃を超えると、過剰焼結による過大グレインの発生がするおそれがある。 Next, the granulated material is put into a furnace heated to a predetermined temperature and fired by a general method for synthesizing ferrite particles, thereby generating ferrite particles. The firing temperature is preferably in the range of 800 ° C to 1300 ° C. When the firing temperature is 800 ° C. or lower, the phase transformation is less likely to occur and the sintering is less likely to proceed. On the other hand, if the firing temperature exceeds 1300 ° C., excessive grains may be generated due to excessive sintering.
このようにして得られた焼成物を解粒する。具体的には、例えば、ハンマーミル等によって焼成物を解粒する。解粒工程の形態としては連続式及び回分式のいずれであってもよい。この解粒処理によっても、結合粒子の含有割合を調整することができる。すなわち、焼成物に与える衝撃力を強く、長くするほど、結合粒子の結合が解消され結合粒子の含有割合は減少する。 The fired product thus obtained is pulverized. Specifically, for example, the fired product is pulverized by a hammer mill or the like. The form of the granulation step may be either a continuous type or a batch type. Also by this pulverization treatment, the content ratio of the binding particles can be adjusted. That is, the stronger the impact force applied to the fired product is, the longer the binding of the binding particles is eliminated and the content ratio of the binding particles decreases.
解粒処理後、必要により、粒径を所定範囲に揃えるため分級を行ってもよい。分級方法としては、風力分級や篩分級など従来公知の方法を用いることができる。また、風力分級機で1次分級した後、振動篩や超音波篩で粒径を所定範囲に揃えるようにしてもよい。さらに、分級工程後に、磁場選鉱機によって非磁性粒子を除去するようにしてもよい。フェライト粒子の粒径としては25μm以上50μm未満が好ましい。 After the pulverization treatment, classification may be performed, if necessary, in order to align the particle size within a predetermined range. As a classification method, a conventionally known method such as air classification or sieve classification can be used. In addition, after primary classification with an air classifier, the particle size may be aligned within a predetermined range with a vibration sieve or an ultrasonic sieve. Furthermore, you may make it remove a nonmagnetic particle with a magnetic field separator after a classification process. The particle diameter of the ferrite particles is preferably 25 μm or more and less than 50 μm.
ここで、着磁後のキャリア芯材の見掛け密度(AD2)は、キャリア芯材を構成するフェライト粒子の残留磁化によって調整することもでき、残留磁化を高めることによって見掛け密度を小さくできる。フェライト粒子の残留磁化を高くするには、焼成温度を低くして磁壁移動をトラップする欠陥構造を残すのが好ましい。 Here, the apparent density (AD 2 ) of the carrier core material after magnetization can be adjusted by the residual magnetization of the ferrite particles constituting the carrier core material, and the apparent density can be reduced by increasing the residual magnetization. In order to increase the residual magnetization of the ferrite particles, it is preferable to leave the defect structure that traps the domain wall motion by lowering the firing temperature.
一方、結合粒子の含有割合は焼成温度及び焼成温度での保持時間によって調整することもでき、通常、焼成温度を高く、保持時間を長くすると結合粒子の含有割合は増える。また、フェライト粒子中のSrフェライト生成により生じる、粒子表面の最大山谷深さRzも同様に、焼成温度及び焼成温度での保持時間によって調整することができ、通常、焼成温度を高く、保持時間を長くすると最大山谷深さRzは増大する。保持時間としては3時間以上が好ましく、6時間以上がより好ましい。前記焼成温度に至るまでの昇温速度としては250℃/h〜500℃/hの範囲が好ましい。焼成工程における酸素濃度は0.05%〜5%の範囲に制御するのが好ましい。 On the other hand, the content ratio of the binding particles can be adjusted by the firing temperature and the holding time at the firing temperature. Usually, the content ratio of the binding particles increases when the firing temperature is increased and the holding time is increased. Similarly, the maximum crest depth Rz of the particle surface caused by the formation of Sr ferrite in the ferrite particles can also be adjusted by the firing temperature and the retention time at the firing temperature. Usually, the firing temperature is increased and the retention time is increased. When the length is increased, the maximum valley depth Rz increases. The holding time is preferably 3 hours or more, and more preferably 6 hours or more. The rate of temperature increase up to the firing temperature is preferably in the range of 250 ° C / h to 500 ° C / h. The oxygen concentration in the firing step is preferably controlled in the range of 0.05% to 5%.
このように、所望の見掛け密度比(AD2/AD1)を得るための焼成条件と結合粒子の所望の含有率を得るための焼成条件とは相反する部分があり、取り得る焼成条件は広くない。 Thus, there are portions where the firing conditions for obtaining the desired apparent density ratio (AD 2 / AD 1 ) and the firing conditions for obtaining the desired content of the binding particles are in conflict, and the possible firing conditions are wide. Absent.
そこで、後述の実施例でも示すように、異なる焼成条件で2種類のフェライト粒子を作製した後、これを所望の比率で混合して所望の見掛け密度比(AD2/AD1)と結合粒子の所望の含有率とを有するフェライト粒子とするのが好ましい。 Therefore, as shown in the examples described later, after preparing two types of ferrite particles under different firing conditions, they are mixed at a desired ratio to obtain a desired apparent density ratio (AD 2 / AD 1 ) and the binding particles. Ferrite particles having a desired content are preferable.
その後、必要に応じて、フェライト粒子を酸化性雰囲気中で加熱して、粒子表面に酸化被膜を形成してフェライト粒子の高抵抗化を図ってもよい(高抵抗化処理)。酸化性雰囲気としては大気雰囲気又は酸素と窒素の混合雰囲気のいずれでもよい。また、加熱温度は、200℃〜800℃の範囲が好ましく、250℃〜600℃の範囲がさらに好ましい。加熱時間は0.5時間〜5時間の範囲が好ましい。 Thereafter, if necessary, the ferrite particles may be heated in an oxidizing atmosphere to form an oxide film on the particle surface to increase the resistance of the ferrite particles (high resistance treatment). The oxidizing atmosphere may be either an air atmosphere or a mixed atmosphere of oxygen and nitrogen. The heating temperature is preferably in the range of 200 ° C to 800 ° C, and more preferably in the range of 250 ° C to 600 ° C. The heating time is preferably in the range of 0.5 hours to 5 hours.
以上のようにして作製したフェライト粒子を本発明のキャリア芯材として用いる。そして、所望の帯電性等を得るために、キャリア芯材の外周を樹脂で被覆して電子写真現像用キャリアとする。 The ferrite particles produced as described above are used as the carrier core material of the present invention. Then, in order to obtain desired chargeability and the like, the outer periphery of the carrier core material is coated with a resin to obtain an electrophotographic developing carrier.
キャリア芯材の表面を被覆する樹脂としては、従来公知のものが使用でき、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ−4−メチルペンテン−1、ポリ塩化ビニリデン、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、ポリスチレン、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、並びにポリ塩化ビニル系やポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系等の熱可塑性エストラマー、フッ素シリコーン系樹脂などが挙げられる。 As the resin for coating the surface of the carrier core material, conventionally known resins can be used, for example, polyethylene, polypropylene, polyvinyl chloride, poly-4-methylpentene-1, polyvinylidene chloride, ABS (acrylonitrile-butadiene-styrene). ) Resin, polystyrene, (meth) acrylic resin, polyvinyl alcohol resin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene, and other thermoplastic elastomers, and fluorosilicone resins.
キャリア芯材の表面を樹脂で被覆するには、樹脂の溶液又は分散液をキャリア芯材に施せばよい。塗布溶液用の溶媒としては、トルエン、キシレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン、ジオキサン等の環状エーテル類溶媒;エタノール、プロパノール、ブタノール等のアルコール系溶媒;エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒などの1種又は2種以上を用いることができる。塗布溶液中の樹脂成分濃度は、一般に0.001質量%〜30質量%、特に0.001質量%〜2質量%の範囲内にあるのがよい。 In order to coat the surface of the carrier core material with the resin, a resin solution or dispersion may be applied to the carrier core material. Solvents for the coating solution include aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cyclic ether solvents such as tetrahydrofuran and dioxane; ethanol, propanol, and butanol Alcohol solvents such as ethyl cellosolve, cellosolve solvents such as butyl cellosolve; ester solvents such as ethyl acetate and butyl acetate; amide solvents such as dimethylformamide and dimethylacetamide, etc. . The resin component concentration in the coating solution should generally be in the range of 0.001% to 30% by weight, particularly 0.001% to 2% by weight.
キャリア芯材への樹脂の被覆方法としては、例えばスプレードライ法や流動床法あるいは流動床を用いたスプレードライ法、浸漬法等を用いることができる。これらの中でも、少ない樹脂量で効率的に塗布できる点で流動床法が特に好ましい。樹脂被覆量は、例えば流動床法の場合には吹き付ける樹脂溶液量や吹き付け時間によって調整することができる。 As a method of coating the resin on the carrier core material, for example, a spray drying method, a fluidized bed method, a spray drying method using a fluidized bed, an immersion method, or the like can be used. Among these, the fluidized bed method is particularly preferable in that it can be efficiently applied with a small amount of resin. For example, in the case of the fluidized bed method, the resin coating amount can be adjusted by the amount of resin solution sprayed and the spraying time.
キャリアの粒子径は、一般に、体積平均粒子径で25μm以上50μm未満の範囲、特に30μm以上40μm以下の範囲が好ましい。 The particle diameter of the carrier is generally preferably in the range of 25 μm or more and less than 50 μm, particularly in the range of 30 μm or more and 40 μm or less in terms of volume average particle diameter.
本発明に係る電子写真用現像剤は、以上のようにして作製したキャリアとトナーとを混合してなる。キャリアとトナーとの混合比に特に限定はなく、使用する現像装置の現像条件などから適宜決定すればよい。一般に現像剤中のトナー濃度は1質量%〜15質量%の範囲が好ましい。トナー濃度が1質量%未満の場合、画像濃度が薄くなりすぎ、他方トナー濃度が15質量%を超える場合、現像装置内でトナー飛散が発生し機内汚れや転写紙などの背景部分にトナーが付着する不具合が生じるおそれがあるからである。より好ましいトナー濃度は3質量%〜10質量%の範囲である。 The electrophotographic developer according to the present invention is obtained by mixing the carrier prepared as described above and a toner. The mixing ratio of the carrier and the toner is not particularly limited, and may be determined as appropriate based on the developing conditions of the developing device to be used. Generally, the toner concentration in the developer is preferably in the range of 1% by mass to 15% by mass. When the toner density is less than 1% by mass, the image density becomes too low, while when the toner density exceeds 15% by mass, toner scattering occurs in the developing device, and the toner adheres to the background portion such as internal dirt or transfer paper. This is because there is a risk of malfunction. A more preferable toner concentration is in the range of 3% by mass to 10% by mass.
トナーとしては、重合法、粉砕分級法、溶融造粒法、スプレー造粒法など従来公知の方法で製造したものが使用できる。具体的には、熱可塑性樹脂を主成分とする結着樹脂中に、着色剤、離型剤、帯電制御剤等を含有させたものが好適に使用できる。 As the toner, toner produced by a conventionally known method such as a polymerization method, a pulverization classification method, a melt granulation method, or a spray granulation method can be used. Specifically, a binder resin containing a thermoplastic resin as a main component and containing a colorant, a release agent, a charge control agent and the like can be suitably used.
トナーの粒径は、一般に、コールターカウンターによる体積平均粒径で5μm〜15μmの範囲が好ましく、7μm〜12μmの範囲がより好ましい。 In general, the particle diameter of the toner is preferably in the range of 5 μm to 15 μm, more preferably in the range of 7 μm to 12 μm, as a volume average particle diameter measured by a Coulter counter.
トナー表面には、必要により、改質剤を添加してもよい。改質剤としては、例えば、シリカ、アルミナ、酸化亜鉛、酸化チタン、酸化マグネシウム、ポリメチルメタクリレート等が挙げられる。これらの1種又は2種以上を組み合わせて使用できる。 If necessary, a modifier may be added to the toner surface. Examples of the modifier include silica, alumina, zinc oxide, titanium oxide, magnesium oxide, polymethyl methacrylate and the like. These 1 type (s) or 2 or more types can be used in combination.
キャリアとトナーとの混合は、従来公知の混合装置を用いることができる。例えばヘンシェルミキサー、V型混合機、タンブラーミキサー、ハイブリタイザー等を用いることができる。 A known mixing device can be used for mixing the carrier and the toner. For example, a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer, or the like can be used.
本発明の現像剤を用いた現像方法に特に限定はないが、磁気ブラシ現像法が好適である。図4に、磁気ブラシ現像を行う現像装置の一例を示す概説図を示す。図4に示す現像装置は、複数の磁極を内蔵した回転自在の現像ローラ3と、現像部へ搬送される現像ローラ3上の現像剤量を規制する規制ブレード6と、水平方向に平行に配置され、互いに逆向きに現像剤を撹拌搬送する2本のスクリュー1,2と、2本のスクリュー1,2の間に形成され、両スクリューの両端部において、一方のスクリューから他方のスクリューに現像剤の移動を可能とし、両端部以外での現像剤の移動を防ぐ仕切板4とを備える。 The developing method using the developer of the present invention is not particularly limited, but a magnetic brush developing method is preferable. FIG. 4 is a schematic diagram showing an example of a developing device that performs magnetic brush development. The developing device shown in FIG. 4 is arranged in parallel to a horizontal direction, and a rotatable developing roller 3 incorporating a plurality of magnetic poles, a regulating blade 6 for regulating the amount of developer on the developing roller 3 conveyed to the developing unit. Formed between the two screws 1 and 2 that stir and convey the developer in opposite directions and the two screws 1 and 2, and develops from one screw to the other at both ends of both screws. And a partition plate 4 that allows the developer to move and prevents the developer from moving except at both ends.
2本のスクリュー1,2は、螺旋状の羽根13,23が同じ傾斜角で軸部11,21に形成されたものであって、不図示の駆動機構によって同方向に回転し、現像剤を互いに逆方向に搬送する。そして、スクリュー1,2の両端部において一方のスクリューから他方のスクリューに現像剤が移動する。これによりトナーとキャリアからなる現像剤は装置内を常に循環し撹拌されることになる。 The two screws 1 and 2 have spiral blades 13 and 23 formed on the shaft portions 11 and 21 at the same inclination angle, and are rotated in the same direction by a drive mechanism (not shown) to remove the developer. Transport in opposite directions. The developer moves from one screw to the other screw at both ends of the screws 1 and 2. As a result, the developer composed of toner and carrier is constantly circulated and stirred in the apparatus.
一方、現像ローラ3は、表面に数μmの凹凸を付けた金属製の筒状体の内部に、磁極発生手段として、現像磁極N1、搬送磁極S1、剥離磁極N2、汲み上げ磁極N3、ブレード磁極S2の5つの磁極を順に配置した固定磁石を有してなる。現像ローラ3が矢印方向に回転すると、汲み上げ磁極N3の磁力によって、スクリュー1から現像ローラ3へ現像剤が汲み上げられる。現像ローラ3の表面に担持された現像剤は、規制ブレード6により層規制された後、現像領域へ搬送される。 On the other hand, the developing roller 3 has, as a magnetic pole generating means, a developing magnetic pole N 1 , a transporting magnetic pole S 1 , a peeling magnetic pole N 2 , and a pumping magnetic pole N 3 inside a metal cylindrical body having a surface with a few μm unevenness. , comprising a fixed magnet disposed five pole blade pole S 2 in order. When the development roller 3 is rotated in the arrow direction, by the magnetic force of the magnetic pole N 3, the developer is pumped from the screw 1 to the developing roller 3. The developer carried on the surface of the developing roller 3 is regulated by the regulating blade 6 and then conveyed to the developing area.
現像領域では、直流電圧に交流電圧を重畳したバイアス電圧が転写電圧電源8から現像ローラ3に印加される。バイアス電圧の直流電圧成分は、感光体ドラム5表面の背景部電位と画像部電位との間の電位とされる。また、背景部電位と画像部電位とは、バイアス電圧の最大値と最小値との間の電位とされる。バイアス電圧のピーク間電圧は0.5〜5kVの範囲が好ましく、周波数は1〜10kHzの範囲が好ましい。またバイアス電圧の波形は矩形波、サイン波、三角波などいずれであってもよい。これによって、現像領域においてトナー及びキャリアが振動し、トナーが感光体ドラム5上の静電潜像に付着して現像がなされる。 In the developing region, a bias voltage obtained by superimposing an AC voltage on a DC voltage is applied from the transfer voltage power supply 8 to the developing roller 3. The DC voltage component of the bias voltage is a potential between the background portion potential on the surface of the photosensitive drum 5 and the image portion potential. Further, the background portion potential and the image portion potential are set to a potential between the maximum value and the minimum value of the bias voltage. The peak-to-peak voltage of the bias voltage is preferably in the range of 0.5 to 5 kV, and the frequency is preferably in the range of 1 to 10 kHz. The waveform of the bias voltage may be any of a rectangular wave, a sine wave, a triangular wave, and the like. As a result, the toner and the carrier vibrate in the development area, and the toner adheres to the electrostatic latent image on the photosensitive drum 5 and development is performed.
その後現像ローラ3上の現像剤は、搬送磁極S1によって装置内部に搬送され、剥離電極N2によって現像ローラ3から剥離して、スクリュー1,2によって装置内を再び循環搬送され、現像に供していない現像剤と混合撹拌される。そして汲み上げ極N3によって、新たに現像剤がスクリュー1から現像ローラ3へ供給される。 Thereafter, the developer on the developing roller 3 is conveyed to the inside of the apparatus by the conveying magnetic pole S 1 , peeled off from the developing roller 3 by the peeling electrode N 2 , and circulated and conveyed again inside the apparatus by the screws 1 and 2 for development. Mix and stir with undeveloped developer. Then, the developer is newly supplied from the screw 1 to the developing roller 3 by the pumping pole N 3 .
なお、図4に示した実施形態では現像ローラ3に内蔵された磁極は5つであったが、現像剤の現像領域での移動量を一層大きくしたり、汲み上げ性等を一層向上させるために、磁極を8極や10極、12極と増やしてももちろん構わない。 In the embodiment shown in FIG. 4, the number of magnetic poles built in the developing roller 3 is five. However, in order to further increase the amount of movement of the developer in the developing region, and to further improve the pumping performance and the like. Of course, the number of magnetic poles may be increased to 8 poles, 10 poles or 12 poles.
(脱磁したときのキャリア芯材の見掛け密度(AD1)の測定方法)
脱磁器(KMD−20C、カネテック株式会社製)を用いてキャリア芯材に減衰交番磁界を加え脱磁した後、30分以内に見掛け密度(AD1)を測定する。キャリア芯材の見掛け密度はJIS Z 2504に準拠して測定する。
(Measurement method of apparent density (AD 1 ) of carrier core when demagnetized)
The apparent density (AD 1 ) is measured within 30 minutes after demagnetizing the carrier core material by applying a damped alternating magnetic field to the carrier core using a demagnetizer (KMD-20C, manufactured by Kanetec Corporation). The apparent density of the carrier core material is measured according to JIS Z 2504.
(着磁したときのキャリア芯材の見掛け密度(AD2)の測定方法)
脱磁後に1000/(4π)kA/m(1000エルステッド)の磁界下でキャリア芯材を着磁した後、30分以内に見掛け密度(AD2)を測定する。キャリア芯材の見掛け密度はJIS Z 2504に準拠して測定する。
(Measurement method of apparent density (AD 2 ) of carrier core when magnetized)
After demagnetization, the carrier core material is magnetized under a magnetic field of 1000 / (4π) kA / m (1000 oersted), and then the apparent density (AD 2 ) is measured within 30 minutes. The apparent density of the carrier core material is measured according to JIS Z 2504.
(結合粒子の含有率及び粒径の測定方法)
結合粒子の含有率は、観測画像により測定可能である。観測画像による全観測粒子数から、結合粒子数との割合により個数%を求めれば良い。
キャリア芯材の形状を走査電子顕微鏡(日本電子社製:JSM−6510LA)を用いて倍率200倍で撮影した。撮影した画像より視野中で粒子の外縁が確認できる粒子をカウントし全粒子数とし、全粒子中に含まれる結合粒子数をカウントし、結合粒子含有率を算出した。結合粒子含有率の算出にあたってカウントする全粒子数は少なくとも100個以上とし、視野中の全粒子数が100個に満たない場合は、同一試料の別視野画像を用い同様にカウントし全粒子数とした。
ただし、当該画像において、粒径(最大長さ)が3μm以下の微小粒子は、粒子としてカウントはしない。これは、微小粒子は、原料粉の状態であるものか、何らかの理由で破損した粉であり、キャリア芯材としての機能が期待できない不純物である。なお、通常は極めて少数であり、無視できる量でなければならない。さらに、粒子の外縁が確認できる粒子をカウントの対象とする。画像は、粒子が単分散しているものを用い、粒子が重なり、結合粒子であるか判別できない場合は、同一粒子を拡大、または視角を変更し、確認することが望ましい。結合粒子であれば、結合粒子の重心点は、母粒子の重心点と異なるため、横転(回転)しやすく、画像では側面からの視野となり、観測しやすい。
なお、結合粒子は、球形粒子が2個以上5個以下結合した粒子とした。そして、結合粒子では球形粒子と球形粒子とが結合部分を共有した形態で存在しているので、それぞれの球形粒の粒径は、キャリア芯材の形状を走査電子顕微鏡(日本電子社製:JSM−6510LA)を用いて倍率250倍で撮影した画像において、結合粒子の結合部分を除いた領域から粒子を球形近似することによりそれぞれ算出した。
(Measurement method of the content rate and particle size of the binding particles)
The content rate of the binding particles can be measured by an observation image. From the total number of observed particles in the observed image, the number% may be obtained by the ratio with the number of coupled particles.
The shape of the carrier core material was photographed at a magnification of 200 times using a scanning electron microscope (manufactured by JEOL Ltd .: JSM-6510LA). From the photographed image, the number of particles in which the outer edge of the particle could be confirmed in the field of view was counted to determine the total number of particles, and the number of bound particles contained in all the particles was counted to calculate the bound particle content. The total number of particles counted in the calculation of the bound particle content is at least 100 or more, and when the total number of particles in the field of view is less than 100, the same number of particles is counted by using another field image of the same sample. did.
However, in the image, fine particles having a particle size (maximum length) of 3 μm or less are not counted as particles. This is because the fine particles are in the form of raw material powder or are broken powder for some reason, and are an impurity that cannot be expected to function as a carrier core material. It is usually very small and must be negligible. Furthermore, the particles whose outer edges are confirmed can be counted. It is desirable to confirm the image by enlarging the same particle or changing the viewing angle when the image uses monodispersed particles and it is not possible to determine whether the particles overlap and are bound particles. In the case of a bound particle, the center of gravity of the bound particle is different from the center of gravity of the mother particle, so that it is easy to roll over (rotate), and in the image, the field of view from the side is easy to observe.
The bonded particles were particles in which 2 to 5 spherical particles were bonded. In the binding particles, since the spherical particles and the spherical particles exist in a form in which the binding portion is shared, the particle diameter of each spherical particle is determined by scanning electron microscope (manufactured by JEOL Ltd .: JSM). -6510LA), the image was calculated by approximating the particles in a spherical shape from the area excluding the binding portion of the binding particles.
(平均粒径の測定方法)
キャリア芯材の平均粒径は、レーザー回折式粒度分布測定装置(日機装社製「マイクロトラックModel9320−X100」)を用いて測定した。
(Measuring method of average particle size)
The average particle size of the carrier core material was measured using a laser diffraction type particle size distribution measuring device (“Microtrack Model 9320-X100” manufactured by Nikkiso Co., Ltd.).
(所定の最大山谷深さRzを有する粒子の個数割合の測定方法)
超深度カラー3D形状測定顕微鏡(「VK−X100」株式会社キーエンス製)を用い、100倍対物レンズで表面を観察して求めた。具体的には、まず、表面の平坦な粘着テープにフェライト粒子を固定し、100倍対物レンズで測定視野を決定した後、オートフォーカス機能を用いて焦点を粘着テープ面に調整した。フェライト粒子を固定した平坦な粘着テープ面に対し、垂直方向(Z方向)からレーザー光線を照射し、面のX方向Y方向に走査した。また、表面からの反射光の強度が最大となった時のレンズの高さ位置をつなぎ合わせることでZ方向のデータを取得した。これらX、YおよびZ方向の位置データをつなぎ合わせフェライト粒子表面の3次元形状を得た。なお、フェライト粒子表面の3次元形状の取り込みにはオート撮影機能を用いた。
各パラメーターの測定には、粒子粗さ検査ソフトウェア(三谷商事製)を用いて行った。まず、前処理として、得られたフェライト粒子表面の3次元形状の粒子認識と形状選別を行った。粒子認識は以下の方法で行った。撮影によって得られた3次元形状のうち、Z方向の最大値を100%、最小値を0%として最大値から最小値までの間を100等分する。この100〜35%にあたる領域を抽出し、独立した領域の輪郭を粒子輪郭として認識した。次に形状選別で粗大、微小、会合などの粒子を除外した。この形状選別を行うことで以降に行う極率補正時の誤差を小さくすることができる。具体的には面積相当径28μm以下、38μm以上、針状比1.15以上に該当する粒子を除外した。ここで針状比とは粒子の最大長/対角幅の比から算出したパラメーターであり、対角幅とは最大長に平行な2本の直線で粒子を挟んだときの2直線の最短距離を表す。
つぎに表面の3次元形状から解析に用いる部分の取り出しを行った。まず上記の方法で認識した粒子輪郭から求められる重心を中心として15.0μmの正方形を描く。描いた正方形の中に21本の平行線を引き、その線分上にあたる粗さ曲線を21本分取り出した。
(Measuring method of the number ratio of particles having a predetermined maximum valley depth Rz)
Using an ultra-deep color 3D shape measurement microscope (“VK-X100” manufactured by Keyence Corporation), the surface was observed with a 100 × objective lens. Specifically, first, ferrite particles were fixed to an adhesive tape having a flat surface, a measurement field of view was determined with a 100 × objective lens, and then the focus was adjusted to the adhesive tape surface using an autofocus function. The flat adhesive tape surface on which the ferrite particles were fixed was irradiated with a laser beam from the vertical direction (Z direction) and scanned in the X direction and Y direction of the surface. Also, data in the Z direction was acquired by connecting the height positions of the lenses when the intensity of the reflected light from the surface was maximized. These X, Y, and Z direction position data were connected to obtain a three-dimensional shape of the ferrite particle surface. Note that an auto photographing function was used to capture the three-dimensional shape of the ferrite particle surface.
Measurement of each parameter was performed using particle roughness inspection software (manufactured by Mitani Corporation). First, as pretreatment, three-dimensional shape particle recognition and shape selection on the surface of the obtained ferrite particles were performed. Particle recognition was performed by the following method. Of the three-dimensional shape obtained by photographing, the maximum value in the Z direction is set to 100% and the minimum value is set to 0%. The region corresponding to 100 to 35% was extracted, and the contour of the independent region was recognized as the particle contour. Next, coarse, fine, and association particles were excluded by shape selection. By performing this shape selection, it is possible to reduce an error at the time of correcting the polarities thereafter. Specifically, particles corresponding to an area equivalent diameter of 28 μm or less, 38 μm or more, and an acicular ratio of 1.15 or more were excluded. Here, the acicular ratio is a parameter calculated from the ratio of the maximum length / diagonal width of the particle, and the diagonal width is the shortest distance between two straight lines when the particle is sandwiched between two straight lines parallel to the maximum length. Represents.
Next, the part used for analysis was extracted from the three-dimensional shape of the surface. First, a 15.0 μm square is drawn around the center of gravity obtained from the particle contour recognized by the above method. 21 parallel lines were drawn in the drawn square, and 21 roughness curves corresponding to the line segment were taken out.
フェライト粒子は略球形状であるため、取り出した粗さ曲線は、バックグラウンドとして一定の曲率を持っている。このため、バックグラウンドの補正として、最適な二次曲線をフィッティングし、粗さ曲線から差し引く補正を行った。この場合、ローパスフィルターを1.5μmの強度で適用し、カットオフ値λを80μmとした。 Since the ferrite particles are substantially spherical, the extracted roughness curve has a certain curvature as the background. For this reason, as a background correction, an optimal quadratic curve was fitted and correction subtracted from the roughness curve was performed. In this case, a low-pass filter was applied with an intensity of 1.5 μm, and the cut-off value λ was 80 μm.
最大山谷深さRzは、粗さ曲線の中で最も高い山の高さと最も深い谷の深さの和として求めた。以上説明した最大高さRzの測定は、JIS B0601(2001年度版)に準拠して行われるものである。50粒子について最大山谷深さRzを測定し、50粒子のうち、Rzが1.8μm以上の粒子をカウントし個数割合(%)を算出した。 The maximum mountain valley depth Rz was obtained as the sum of the highest mountain height and the deepest valley depth in the roughness curve. The measurement of the maximum height Rz described above is performed according to JIS B0601 (2001 edition). The maximum mountain valley depth Rz was measured for 50 particles, and among 50 particles, particles having an Rz of 1.8 μm or more were counted to calculate the number ratio (%).
以下、本発明を実施例によりさらに詳しく説明するが本発明はこれらの例に何ら限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these examples at all.
実施例1
原料として、Fe2O3を10000gを純水3340g中に分散し、還元剤としてカーボンブラック25gと、分散剤としてポリカルボン酸アンモニウム系分散剤を35g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し(ディスク回転数17000rpm)、粒径10μm〜200μmの乾燥造粒物を得た。
(キャリア芯材Aの作製)
前記で得られた乾燥造粒物を電気炉に投入し3000ppmの酸素雰囲気下で温度1050℃で3時間焼成した。得られた焼成物をハンマーミルで解砕した後に振動篩を用いて分級し、体積平均粒径35μmのキャリア芯材Aを得た。
(キャリア芯材Bの作製)
前記で得られた乾燥造粒物を電気炉に投入し、5000ppmの酸素雰囲気下で温度1250℃で3時間焼成した。得られた焼成物をハンマーミルで解砕した後に振動篩を用いて分級し、体積平均粒径35μmのキャリア芯材Bを得た。
(キャリア芯材の作製)
キャリア芯材Aとキャリア芯材Bとを重量比で90:10の割合で混合し実施例1のキャリア芯材とした。
キャリア芯材の脱磁後及び着磁後の見掛け密度及びその比率、流動度、平均粒径、最大山谷深さRzが1.8μm以上の粒子個数%、磁気特性、結合粒子の割合、現像メモリーを前述及び後述の方法で測定した。測定結果を表2に示す。また、図1に実施例1のキャリア芯材のSEM写真を示す。
Example 1
As a raw material, 10,000 g of Fe 2 O 3 was dispersed in 3340 g of pure water, and 25 g of carbon black as a reducing agent and 35 g of an ammonium polycarboxylate dispersant as a dispersing agent were added to obtain a mixture. This mixture was pulverized by a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air of about 140 ° C. with a spray dryer (disk rotation speed: 17000 rpm) to obtain a dry granulated product having a particle size of 10 μm to 200 μm.
(Preparation of carrier core material A)
The dried granulated product obtained above was put into an electric furnace and calcined at a temperature of 1050 ° C. for 3 hours in an oxygen atmosphere of 3000 ppm. The obtained fired product was crushed with a hammer mill and then classified using a vibrating sieve to obtain a carrier core material A having a volume average particle size of 35 μm.
(Preparation of carrier core B)
The dried granulated material obtained above was put into an electric furnace and fired at a temperature of 1250 ° C. for 3 hours in an oxygen atmosphere of 5000 ppm. The obtained fired product was crushed with a hammer mill and then classified using a vibration sieve to obtain a carrier core material B having a volume average particle size of 35 μm.
(Preparation of carrier core material)
The carrier core material A and the carrier core material B were mixed at a weight ratio of 90:10 to obtain the carrier core material of Example 1.
Apparent density and ratio after demagnetization and magnetization of the carrier core material, fluidity, average particle diameter, number% of particles having maximum peak / valley depth Rz of 1.8 μm or more, magnetic properties, ratio of bonded particles, development memory Was measured by the method described above and below. The measurement results are shown in Table 2. Moreover, the SEM photograph of the carrier core material of Example 1 is shown in FIG.
実施例2〜4,比較例1〜3
下記表1に示す原料配合量及び焼成温度でキャリア芯材Aを作製し、表1に示す混合比でキャリア芯材Aとキャリア芯材Bと混合して実施例2〜4,比較例1〜3のキャリア芯材を作製した。作製したキャリア芯材の脱磁後及び着磁後の見掛け密度及びその比率、流動度、平均粒径、最大山谷深さRzが1.8μm以上の粒子個数%、磁気特性、結合粒子の割合、現像メモリーを前述及び後述の方法で測定した。測定結果を表2に示す。また、図3に実施例2のキャリア芯材のSEM写真を示す。
Examples 2-4, Comparative Examples 1-3
The carrier core material A is prepared with the raw material blending amount and the firing temperature shown in Table 1 below, and mixed with the carrier core material A and the carrier core material B at the mixing ratio shown in Table 1, and Examples 2 to 4 and Comparative Examples 1 to 4 are mixed. 3 carrier core material was produced. Apparent density and ratio after demagnetization and magnetization of the produced carrier core material, fluidity, average particle diameter, number of particles having maximum peak / valley depth Rz of 1.8 μm or more, magnetic properties, ratio of coupled particles, The development memory was measured by the method described above and below. The measurement results are shown in Table 2. Moreover, the SEM photograph of the carrier core material of Example 2 is shown in FIG.
(流動度)
キャリア芯材の流動度はJIS Z 2502に準拠して測定した。
(Fluidity)
The fluidity of the carrier core material was measured according to JIS Z 2502.
(磁気特性)
室温専用振動試料型磁力計(VSM)(東英工業社製「VSM−P7」)を用いて、外部磁場を0〜79.58×104A/m(10000エルステッド)の範囲で1サイクル連続的に印加して、磁場79.58×103A/m(1000エルステッド)を印加した際の磁化σ1k、飽和磁化σs、残留磁化σr、保磁力Hcを測定した。
(Magnetic properties)
Using a vibration sample type magnetometer (VSM) dedicated to room temperature (“VSM-P7” manufactured by Toei Kogyo Co., Ltd.), the external magnetic field ranges from 0 to 79.58 × 10 4 A / m (10000 Oersted) for one cycle. The magnetization σ 1k , saturation magnetization σ s , residual magnetization σ r , and coercive force Hc when a magnetic field of 79.58 × 10 3 A / m (1000 oersted) was applied were measured.
(画像メモリー)
得られたキャリア芯材の表面を樹脂で被覆してキャリアを作製した。具体的には、シリコーン樹脂450重量部と、(2−アミノエチル)アミノプロピルトリメトキシシラン9重量部とを、溶媒としてのトルエン450重量部に溶解してコート溶液を作製した。このコート溶液を、流動床型コーティング装置を用いてキャリア芯材50000重量部に塗布し、温度300℃の電気炉で加熱してキャリアを得た。以下、全ての実施例、比較例についても同様にしてキャリアを得た。
(Image memory)
The surface of the obtained carrier core material was coated with a resin to prepare a carrier. Specifically, 450 parts by weight of a silicone resin and 9 parts by weight of (2-aminoethyl) aminopropyltrimethoxysilane were dissolved in 450 parts by weight of toluene as a solvent to prepare a coating solution. This coating solution was applied to 50000 parts by weight of a carrier core material using a fluid bed type coating apparatus and heated in an electric furnace at a temperature of 300 ° C. to obtain a carrier. Hereinafter, carriers were obtained in the same manner for all of the examples and comparative examples.
得られたキャリアと平均粒径5.0μm程度のトナーとを、ポットミルを用いて所定時間混合し、二成分系の電子写真現像剤を得た。この場合、キャリアとトナーとをトナーの重量/(トナーおよびキャリアの重量)=5/100となるように調整した。以下、全ての実施例、比較例についても同様にして現像剤を得た。
得られた現像剤を、図4に示す構造の現像装置(現像スリーブの周速度Vs:406mm/sec,感光体ドラムの周速度Vp:205mm/sec,感光体ドラム−現像スリーブ間距離:0.3mm)に投入し、感光体ドラムの長手方向にベタ画像部と非画像部とが隣り合い、その後は広い面積の中間調が続く画像を初期と20万枚画像形成後に取得し、現像ローラ2周目の現像ローラ1周目のベタ画像が現像された領域とそうでない領域との画像濃度を反射濃度計(東京電色社製の型番TC−6D)を用いて測定し、その差を求め下記基準で評価した。結果を表2に合わせて示す。
「◎」:0.003未満
「○」:0.003以上0.006未満
「△」:0.006以上0.020未満
「×」:0.020以上
The obtained carrier and a toner having an average particle diameter of about 5.0 μm were mixed for a predetermined time using a pot mill to obtain a two-component electrophotographic developer. In this case, the carrier and the toner were adjusted so that the weight of toner / (weight of toner and carrier) = 5/100. Hereinafter, developers were obtained in the same manner for all of the Examples and Comparative Examples.
The developer thus obtained was developed into a developing device having the structure shown in FIG. 4 (developing sleeve peripheral speed Vs: 406 mm / sec, photosensitive drum peripheral speed Vp: 205 mm / sec, photosensitive drum-developing sleeve distance: 0. 3 mm), an image in which a solid image portion and a non-image portion are adjacent to each other in the longitudinal direction of the photosensitive drum, and a halftone of a wide area thereafter is obtained after the initial and 200,000 sheets are formed, and the developing roller 2 Measure the image density between the area where the solid image on the first development roller of the circumference is developed and the area where it is not, using a reflection densitometer (Model No. TC-6D manufactured by Tokyo Denshoku Co., Ltd.), and determine the difference. Evaluation was made according to the following criteria. The results are shown in Table 2.
“◎”: Less than 0.003 “O”: 0.003 or more and less than 0.006 “Δ”: 0.006 or more and less than 0.020 “X”: 0.020 or more
見掛け密度比(AD2/AD1)が0.91〜0.97の範囲で結合粒子の含有率が8.6〜17.0個数%の範囲である実施例1〜4のキャリア芯材では、磁気凝集粒子群および結合粒子の有する空間に多くのトナーが取り込まれて現像領域に搬送された結果、実施例1〜3のキャリア芯材ではトナー供給量不足が生じず現像メモリーは発生しなかった。また実施例4のキャリア芯材では若干の現像メモリーは発生したものの実使用上問題のないものであった。 In the carrier core materials of Examples 1 to 4 in which the apparent density ratio (AD 2 / AD 1 ) is in the range of 0.91 to 0.97 and the content of the binder particles is in the range of 8.6 to 17.0 number%. As a result of a large amount of toner being taken into the space of the magnetic agglomerated particles and the binding particles and transported to the development area, the carrier core materials of Examples 1 to 3 do not cause a shortage of toner supply amount and no development memory is generated. It was. Further, the carrier core material of Example 4 had some development memory, but had no problem in practical use.
これに対して、結合粒子の含有率が21.0個数%と高かった比較例1のキャリア芯材では流動性が悪くなり磁気ブラシ内でのキャリアの循環移動が十分に行われず実使用上問題のあるレベルの現像メモリーが発生した。また、見掛け密度比(AD2/AD1)が0.99と高かった比較例2のキャリア芯材では、磁気凝集粒子群が十分には生成されず、現像領域に搬送されるトナー量が不足して現像メモリーが発生した。結合粒子の含有率が4.5個数%と低かった比較例3ののキャリア芯材でも、結合粒子によって現像領域に搬送されるトナー量が不足して現像メモリーが発生した。 On the other hand, in the carrier core material of Comparative Example 1 in which the content rate of the binding particles is as high as 21.0% by number, the fluidity is deteriorated, and the carrier is not sufficiently circulated and moved in the magnetic brush, which is a problem in practical use. A certain level of development memory has occurred. Further, in the carrier core material of Comparative Example 2 in which the apparent density ratio (AD 2 / AD 1 ) is as high as 0.99, the magnetic aggregate particles are not sufficiently generated, and the amount of toner conveyed to the development area is insufficient. Development memory was generated. Even in the carrier core material of Comparative Example 3 in which the binding particle content was as low as 4.5% by number, the amount of toner transported to the development area by the binding particles was insufficient, resulting in development memory.
3 現像ローラ
5 感光体ドラム
3 Developing roller 5 Photosensitive drum
Claims (5)
減衰交番磁界を加えて脱磁したときの見掛け密度(AD1)と、脱磁後に1000/(4π)kA/m(1000エルステッド)の磁界下で着磁したときの見掛け密度(AD2)との比(AD2/AD1)が0.90以上0.98以下である
ことを特徴とするキャリア芯材。 5 to 20% by number of bonded particles in which 2 to 5 spherical particles are combined are included,
The apparent density (AD 1 ) when demagnetized by applying a damped alternating magnetic field, and the apparent density (AD 2 ) when magnetized under a magnetic field of 1000 / (4π) kA / m (1000 oersted) after demagnetization The carrier core material characterized in that the ratio (AD 2 / AD 1 ) is 0.90 or more and 0.98 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017022694A JP7257732B2 (en) | 2017-02-10 | 2017-02-10 | Carrier core material, electrophotographic development carrier and electrophotographic developer using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017022694A JP7257732B2 (en) | 2017-02-10 | 2017-02-10 | Carrier core material, electrophotographic development carrier and electrophotographic developer using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018128619A true JP2018128619A (en) | 2018-08-16 |
JP7257732B2 JP7257732B2 (en) | 2023-04-14 |
Family
ID=63173856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017022694A Active JP7257732B2 (en) | 2017-02-10 | 2017-02-10 | Carrier core material, electrophotographic development carrier and electrophotographic developer using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7257732B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020071447A (en) * | 2018-11-02 | 2020-05-07 | 株式会社リコー | Carrier, developer, process cartridge, image forming method, and image forming apparatus |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002357930A (en) * | 2001-03-30 | 2002-12-13 | Powdertech Co Ltd | Carrier for electrophotographic developer and developer using the same |
JP2005309184A (en) * | 2004-04-23 | 2005-11-04 | Matsushita Electric Ind Co Ltd | Method for manufacturing toner, two-component developer, and image forming apparatus |
JP2012203140A (en) * | 2011-03-24 | 2012-10-22 | Dowa Electronics Materials Co Ltd | Ferrite particle, electrophotographic carrier using the same, and electrophotographic developer |
JP2012208446A (en) * | 2011-03-30 | 2012-10-25 | Powdertech Co Ltd | Ferrite carrier core material for electrophotographic developer, ferrite carrier, and electrophotographic developer |
JP2014197133A (en) * | 2013-03-29 | 2014-10-16 | Dowaエレクトロニクス株式会社 | Carrier core material for electrophotographic developer, production method of the same, carrier for electrophotographic developer, and electrophotographic developer |
JP2015227268A (en) * | 2014-05-31 | 2015-12-17 | Dowaエレクトロニクス株式会社 | Ferrite particle, carrier for electrophotography and developer for electrophotography using the same |
JP2016071000A (en) * | 2014-09-27 | 2016-05-09 | Dowaエレクトロニクス株式会社 | Carrier core material, electrophotographic development carrier containing the same, and electrophotographic developer |
JP2016080991A (en) * | 2014-10-21 | 2016-05-16 | Dowaエレクトロニクス株式会社 | Carrier core material, carrier for electrophotographic development using the same, and electrophotographic developer |
JP2016161741A (en) * | 2015-03-02 | 2016-09-05 | Dowaエレクトロニクス株式会社 | Carrier core material and carrier for electrophotographic development using the same, and electrophotographic developer |
-
2017
- 2017-02-10 JP JP2017022694A patent/JP7257732B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002357930A (en) * | 2001-03-30 | 2002-12-13 | Powdertech Co Ltd | Carrier for electrophotographic developer and developer using the same |
JP2005309184A (en) * | 2004-04-23 | 2005-11-04 | Matsushita Electric Ind Co Ltd | Method for manufacturing toner, two-component developer, and image forming apparatus |
JP2012203140A (en) * | 2011-03-24 | 2012-10-22 | Dowa Electronics Materials Co Ltd | Ferrite particle, electrophotographic carrier using the same, and electrophotographic developer |
JP2012208446A (en) * | 2011-03-30 | 2012-10-25 | Powdertech Co Ltd | Ferrite carrier core material for electrophotographic developer, ferrite carrier, and electrophotographic developer |
JP2014197133A (en) * | 2013-03-29 | 2014-10-16 | Dowaエレクトロニクス株式会社 | Carrier core material for electrophotographic developer, production method of the same, carrier for electrophotographic developer, and electrophotographic developer |
JP2015227268A (en) * | 2014-05-31 | 2015-12-17 | Dowaエレクトロニクス株式会社 | Ferrite particle, carrier for electrophotography and developer for electrophotography using the same |
JP2016071000A (en) * | 2014-09-27 | 2016-05-09 | Dowaエレクトロニクス株式会社 | Carrier core material, electrophotographic development carrier containing the same, and electrophotographic developer |
JP2016080991A (en) * | 2014-10-21 | 2016-05-16 | Dowaエレクトロニクス株式会社 | Carrier core material, carrier for electrophotographic development using the same, and electrophotographic developer |
JP2016161741A (en) * | 2015-03-02 | 2016-09-05 | Dowaエレクトロニクス株式会社 | Carrier core material and carrier for electrophotographic development using the same, and electrophotographic developer |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020071447A (en) * | 2018-11-02 | 2020-05-07 | 株式会社リコー | Carrier, developer, process cartridge, image forming method, and image forming apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP7257732B2 (en) | 2023-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5751688B1 (en) | Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same | |
JP6450621B2 (en) | Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same | |
JP5822415B1 (en) | Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same | |
WO2012128236A1 (en) | Ferrite particles, electrophotography carrier using same, and electrophotography developer | |
JP5726360B1 (en) | Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same | |
JP5957623B1 (en) | Carrier core | |
JP2018025702A (en) | Carrier core material | |
JP6633898B2 (en) | Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same | |
JP6248142B2 (en) | Carrier core | |
JP5828569B1 (en) | Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same | |
JP5839639B1 (en) | Carrier core | |
JP6511320B2 (en) | Carrier core material and method for manufacturing the same | |
JP2018106015A (en) | Carrier core material and carrier for electrophotographic development, and electrophotographic developer | |
JP2017031031A (en) | Ferrite particle, carrier for developing electrophotography and developing agent for electrophotography using the same | |
JP7257732B2 (en) | Carrier core material, electrophotographic development carrier and electrophotographic developer using the same | |
JP7116530B2 (en) | Carrier core material, electrophotographic development carrier and electrophotographic developer using the same | |
JP2022116287A (en) | Carrier core material, and carrier for electrophotographic development and electrophotographic developer using the same | |
JP7116529B2 (en) | Carrier core material, electrophotographic development carrier and electrophotographic developer using the same | |
JP7554144B2 (en) | Carrier core material, and electrophotographic development carrier and electrophotographic developer using the same | |
JP2014149464A (en) | Carrier particle | |
JP7481159B2 (en) | Ferrite carrier core material, and electrophotographic development carrier and electrophotographic developer using the same | |
JP7075913B2 (en) | Carrier core material | |
JP6924885B1 (en) | Carrier core material | |
JP7486889B2 (en) | Ferrite carrier core material, and electrophotographic development carrier and electrophotographic developer using the same | |
JP2023062747A (en) | Carrier core material, electrophotographic development carrier using the same, and electrophotographic developer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201013 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201020 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210525 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20211116 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20211210 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20220222 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20220419 |
|
C27B | Notice of submission of publications, etc. [third party observations] |
Free format text: JAPANESE INTERMEDIATE CODE: C2714 Effective date: 20220426 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20220531 |
|
C27B | Notice of submission of publications, etc. [third party observations] |
Free format text: JAPANESE INTERMEDIATE CODE: C2714 Effective date: 20220913 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20221004 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20221101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221222 |
|
C27B | Notice of submission of publications, etc. [third party observations] |
Free format text: JAPANESE INTERMEDIATE CODE: C2714 Effective date: 20230214 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20230221 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20230328 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20230328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230404 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7257732 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |