[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018127645A - Hot-dip galvanized steel sheet and method for producing the same - Google Patents

Hot-dip galvanized steel sheet and method for producing the same Download PDF

Info

Publication number
JP2018127645A
JP2018127645A JP2017019277A JP2017019277A JP2018127645A JP 2018127645 A JP2018127645 A JP 2018127645A JP 2017019277 A JP2017019277 A JP 2017019277A JP 2017019277 A JP2017019277 A JP 2017019277A JP 2018127645 A JP2018127645 A JP 2018127645A
Authority
JP
Japan
Prior art keywords
less
mass
hot
steel sheet
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017019277A
Other languages
Japanese (ja)
Other versions
JP6589903B2 (en
Inventor
太郎 木津
Taro Kizu
太郎 木津
永明 森安
Nagaaki Moriyasu
永明 森安
鍋島 茂之
Shigeyuki Nabeshima
茂之 鍋島
和憲 田原
Kazunori Tawara
和憲 田原
香菜 佐々木
Kana SASAKI
香菜 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017019277A priority Critical patent/JP6589903B2/en
Publication of JP2018127645A publication Critical patent/JP2018127645A/en
Application granted granted Critical
Publication of JP6589903B2 publication Critical patent/JP6589903B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot-dip galvanized steel sheet having improved warm formability.SOLUTION: A hot-dip galvanized steel sheet has a composition comprising, in mass%, C: 0.08-0.20%, Si: 0.5% or less, Mn: 0.8-1.8%, P: 0.10% or less, S: 0.030% or less, Al: 0.10% or less, and N: 0.010% or less and also comprising one or more of Ti: 0.01-0.3%, Nb: 0.01-0.1%, and V: 0.01-1.0% so as to satisfy the condition of (Ti/48+Nb/93+V/51)×12 of 0.07 or more, with the balance being Fe and inevitable impurities, and has a structure in which the total area ratio of a ferrite phase and a tempered bainite phase is 95% or more, an average particle size of the surface structure is 5.0 μm or less, an amount of Ti, Nb, V precipitated as precipitates with a particle size of less than 20 nm is 0.025 mass% or more in terms of a precipitated C corresponding amount, and an amount of solidified C on the surface layer is 0.005 mass% or more.SELECTED DRAWING: None

Description

本発明は、溶融亜鉛めっき鋼板およびその製造方法に関する。本発明は、特に、自動車のロアアームやフレームなどの足回り部材、ピラーやメンバーなどの骨格部材とそれらの補強部材、ドアインパクトビーム、シート部材、自販機、デスク、家電・OA機器、建材などに使用される構造用部材等に最適な温間成形性に優れた高強度溶融亜鉛めっき熱延鋼板とその製造方法に関する。   The present invention relates to a hot dip galvanized steel sheet and a method for producing the same. The present invention is particularly used for undercarriage members such as automobile lower arms and frames, skeleton members such as pillars and members and their reinforcing members, door impact beams, seat members, vending machines, desks, home appliances / OA equipment, building materials, etc. The present invention relates to a high-strength hot-dip galvanized hot-rolled steel sheet excellent in warm formability, which is optimal for structural members and the like, and a method for producing the same.

近年、地球環境に対する関心の高まりを受けて、製造の際にCO排出量の大きい鋼板の使用量を削減したいという要望が増加している。さらに、自動車分野などでは車体を軽くすることで燃費を向上させるとともに、排ガスを減らしたいとのニーズも益々大きくなっている。そのため、高強度鋼板の適用による鋼板の薄肉化が進んでいる。一方、鋼板の高強度化により、鋼板のプレス時の成形性や形状凍結性が劣化するため、鋼板を加熱してプレスをおこなう温間成形に関する適用検討も進んでいる。ここで、裸材は、加熱によりスケールが生成し、温間成形時にスケールが割れて飛散することから、作業環境が著しく悪くなるとともに、温間プレスでは潤滑油が使用できないことから摺動性が劣化し、絞り成形性などは潤滑油を使用した冷間加工よりむしろ低下するなどの課題がある。一方、溶融亜鉛めっき材は、加熱時のスケール生成が抑制されるとともに、めっき層が潤滑作用をもつことから、温間成形性に優れた溶融亜鉛めっき鋼板に対する要望が非常に大きい。 In recent years, in response to increasing interest in the global environment, there is an increasing demand for reducing the amount of steel sheets that have a large CO 2 emission during production. In addition, in the automobile field and the like, there is an increasing need for reducing the exhaust gas while improving the fuel efficiency by reducing the body. Therefore, the thinning of the steel plate is progressing by application of a high strength steel plate. On the other hand, since the formability and shape freezing property of a steel sheet are deteriorated due to an increase in strength of the steel sheet, application studies on warm forming in which the steel sheet is heated and pressed are also progressing. Here, the bare material generates scale due to heating, and the scale breaks and scatters during warm forming, so the working environment is remarkably deteriorated. There are problems such as deterioration, drawability and the like rather than cold working using lubricating oil. On the other hand, the hot-dip galvanized material is highly demanded for hot-dip galvanized steel sheets with excellent warm formability because scale formation during heating is suppressed and the plated layer has a lubricating action.

従来、温間成形性に優れた溶融亜鉛めっき鋼板として、例えば特許文献1には、質量%で、C:0.1〜0.3%、Si:0.5〜2.5%、Mn:1.5〜3.5%、P:0.001〜0.05%、S:0.0001〜0.01%、Al:0.001〜0.1%、N:0.0005〜0.01%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼組織が、面積率で、ポリゴナルフェライト相を40%以上、ベイナイト相を5%以上および残留オーステナイト相を3%以上含有することを特徴とする、成形性および強度上昇能に優れた温間成形用薄鋼板とその製造方法が開示されている。また、特許文献2には、質量%で、C:0.05〜0.3%、Si:1〜3%、Mn:0.5〜3%、P:0.1%以下、S:0.01%以下、Al:0.001〜0.1%、N:0.002〜0.03%を含み、残部が鉄および不純物からなる成分組成を有し、全組織に対する面積率で、ベイニティック・フェライト:50〜90%、残留オーステナイト:3%以上、マルテンサイト+上記残留オーステナイト:10〜50%、フェライト:40%以下を含む組織を有し、残留オーステナイトは、そのC濃度が0.5〜1.2%であり、この残留オーステナイトのうち、マルテンサイトに囲まれたものが0.3%以上存在する成形性に優れた高強度鋼板とその製造技術が開示されている。さらに、特許文献3には、mass%で、C:0.02〜0.20%、Si:1.5%以下、Mn:0.50〜3.0%、P:0.10%以下、S:0.01%以下、Al:0.01〜0.5%、N:0.005%以下を含み、かつ、Ti、Nbの一種又は二種を合計で0.10〜0.50%含有し、残部がFeおよび不可避的不純物からなり、さらにTi、Nbの合計含有量の60%以上が固溶状態である温間成形に適した熱延鋼板とその製造方法が開示されている。また、特許文献4には、質量%で、C:0.01〜0.2%、Si:0.5%以下、Mn:2%以下、P:0.03%以下、S:0.01%以下、Al:0.07%以下、N:0.01%以下を含み、さらに、Ti:0.005〜0.3%、Nb:0.005〜0.6%、V:0.005〜1.0%、Mo:0.005〜0.5%、W:0.01〜1.0%、B:0.0005〜0.0040%のうちから選ばれた1種または2種以上を含有し、残部Feおよび不可避的不純物からなる組成と、試験温度:400℃以上で行った引張試験で得られた、最高荷重を示したのち破断までの変形量が、引張開始から該最高荷重を示す前までの変形量よりも大きく、かつ試験温度:400℃未満で行った引張試験で得られた、引張開始から最高荷重を示す前までの変形量が、引張開始から破断までの全変形量に対する比率で40%以上である引張特性と、フェライト相の面積率が95%以上である実質的にフェライト相単相のマトリックスと該マトリックス中に大きさが10nm未満の合金炭化物がバリアント選択のない状態で分散析出した組織とを有する温間加工性に優れた高強度鋼板とその製造方法が開示されている。さらに、特許文献5には、質量%で、C:0.03%以上0.14%以下、Si:0.3%以下、Mn:0.60%超1.8%以下、P:0.03%以下、S:0.005%以下、Al:0.1%以下、N:0.005%以下、Ti:0.25%以下、W:0.01%以上1.0%以下を含み、残部がFeおよび不可避的不純物からなり、([Ti]/48+[V]/51+[Mo]/96+[W]/184)>0.0031、および、0.8≦([C]/12)/([Ti]/48+[V]/51+[Mo]/96+[W]/184)≦1.20を満足する組成を有し、フェライト粒径が1μm以上でありフェライト相の面積率が95%以上であるマトリックスを有し、該マトリックス中に平均粒径が10nm以下である炭化物が析出した組織を有する鋼板であり、かつ室温における引張強さが780MPa以上であり、400℃以上700℃以下の加熱温度域における降伏応力が室温における降伏応力の80%以下であり、前記加熱温度域における全伸びが室温における全伸びの1.1倍以上であり、前記加熱温度域に加熱して20%以下のひずみを与えたのち前記加熱温度から室温まで冷却した後の降伏応力が前記加熱前の室温における降伏応力の70%以上であり、前記加熱温度域に加熱して20%以下のひずみを与えたのち前記加熱温度から室温まで冷却した後の全伸びが前記加熱前の室温における全伸びの70%以上である温間成形用高強度鋼板とその製造方法が開示されている。   Conventionally, as a hot dip galvanized steel sheet excellent in warm formability, for example, in Patent Document 1, in mass%, C: 0.1 to 0.3%, Si: 0.5 to 2.5%, Mn: 1.5-3.5%, P: 0.001-0.05%, S: 0.0001-0.01%, Al: 0.001-0.1%, N: 0.0005-0. The steel structure has an area ratio, the polygonal ferrite phase is 40% or more, the bainite phase is 5% or more, and the residual austenite phase is 3%. A thin steel sheet for warm forming, which is excellent in formability and strength increasing capability, and a method for producing the same is disclosed. Further, in Patent Document 2, in mass%, C: 0.05 to 0.3%, Si: 1 to 3%, Mn: 0.5 to 3%, P: 0.1% or less, S: 0 0.01% or less, Al: 0.001 to 0.1%, N: 0.002 to 0.03%, with the balance being a component composition composed of iron and impurities, Nitic ferrite: 50 to 90%, retained austenite: 3% or more, martensite + the above retained austenite: 10 to 50%, ferrite: 40% or less, the retained austenite has a C concentration of 0 A high-strength steel sheet having excellent formability, in which 0.3% or more of the retained austenite is surrounded by martensite, and its manufacturing technology are disclosed. Furthermore, Patent Document 3 includes mass%, C: 0.02 to 0.20%, Si: 1.5% or less, Mn: 0.50 to 3.0%, P: 0.10% or less, S: 0.01% or less, Al: 0.01 to 0.5%, N: 0.005% or less, and one or two of Ti and Nb in total 0.10 to 0.50% A hot-rolled steel sheet suitable for warm forming and containing the remainder, which consists of Fe and inevitable impurities, and in which 60% or more of the total content of Ti and Nb is in a solid solution state, and a method for producing the same are disclosed. Further, in Patent Document 4, in mass%, C: 0.01 to 0.2%, Si: 0.5% or less, Mn: 2% or less, P: 0.03% or less, S: 0.01 %: Al: 0.07% or less, N: 0.01% or less, Ti: 0.005-0.3%, Nb: 0.005-0.6%, V: 0.005 -1.0%, Mo: 0.005-0.5%, W: 0.01-1.0%, B: One or more selected from 0.0005-0.0040% And the composition comprising the balance Fe and inevitable impurities, and the test temperature: obtained by a tensile test conducted at 400 ° C. or higher. The maximum load from the start of tension obtained in a tensile test that was larger than the deformation amount before the test and obtained at a test temperature of less than 400 ° C. A tensile property in which the amount of deformation before slag is 40% or more in a ratio to the total amount of deformation from the start of tension to fracture, and a substantially single phase matrix of ferrite phase in which the area ratio of the ferrite phase is 95% or more A high-strength steel sheet excellent in warm workability having a structure in which an alloy carbide having a size of less than 10 nm is dispersed and precipitated in a state in which no variant is selected in the matrix and a method for producing the same are disclosed. Further, in Patent Document 5, C: 0.03% or more and 0.14% or less, Si: 0.3% or less, Mn: more than 0.60%, 1.8% or less, and P: 0.03% by mass. 03% or less, S: 0.005% or less, Al: 0.1% or less, N: 0.005% or less, Ti: 0.25% or less, W: 0.01% or more and 1.0% or less The balance consists of Fe and inevitable impurities, ([Ti] / 48 + [V] / 51 + [Mo] / 96 + [W] / 184)> 0.0031 and 0.8 ≦ ([C] / 12 ) / ([Ti] / 48 + [V] / 51 + [Mo] / 96 + [W] / 184) ≦ 1.20, the ferrite grain size is 1 μm or more, and the ferrite phase area ratio is Having a matrix of 95% or more, and carbides having an average particle size of 10 nm or less precipitated in the matrix A steel sheet having a weave, a tensile strength at room temperature of 780 MPa or more, a yield stress in a heating temperature range of 400 ° C. or more and 700 ° C. or less of 80% or less of a yield stress at room temperature, The elongation is 1.1 times or more of the total elongation at room temperature, and the yield stress after cooling from the heating temperature to room temperature after heating the heating temperature range to give a strain of 20% or less is the room temperature before the heating. 70% or more of the yield stress at 70 ° C., and after applying a strain of 20% or less by heating to the heating temperature range, the total elongation after cooling from the heating temperature to room temperature is 70% of the total elongation at room temperature before the heating. % Or more of a high-strength steel sheet for warm forming and a method for producing the same.

特開2012−92358号公報JP 2012-92358 A 特開2012−122130号公報JP2012-122130A 特開2006−161139号公報JP 2006-161139 A 特許第5609223号公報Japanese Patent No. 5609223 特許第5754279号公報Japanese Patent No. 5754279

しかし、特許文献1、特許文献2に記載の技術では、温間プレス時の加熱温度が400〜450℃程度までしか上げられず、形状凍結性が不十分という問題があった。また、特許文献3に記載の技術では、温間成形によるプレス時の荷重低下はあるものの、ベイナイトを主体とした組織であり成形性が不十分という問題があった。さらに、特許文献4や特許文献5に記載の技術では、プレス時に鋼板表面に微小なクラックが発生してしまうという問題があった。   However, the techniques described in Patent Document 1 and Patent Document 2 have a problem that the heating temperature at the time of warm pressing can be increased only to about 400 to 450 ° C., and the shape freezing property is insufficient. In addition, the technique described in Patent Document 3 has a problem that the structure is mainly bainite and the moldability is insufficient, although there is a load reduction during pressing due to warm forming. Furthermore, the techniques described in Patent Document 4 and Patent Document 5 have a problem that minute cracks are generated on the surface of the steel sheet during pressing.

本発明は、上記事情に鑑みてなされたものであり、温間成形性により優れた溶融亜鉛めっき鋼板およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a hot-dip galvanized steel sheet that is superior in warm formability and a manufacturing method thereof.

本発明は、上記課題を解決すべく鋭意研究を重ねた結果なされたものであり、以下の構成を有する。
[1]質量%で、C:0.08〜0.20%、Si:0.5%以下、Mn:0.8〜1.8%、P:0.10%以下、S:0.030%以下、Al:0.10%以下、N:0.010%以下を含み、さらにTi:0.01〜0.3%、Nb:0.01〜0.1%、V:0.01〜1.0%の1種あるいは2種以上を下記(1)式で求められるCが0.07以上となるように含有し、残部Feおよび不可避的不純物からなる組成と、
フェライト相と焼き戻しベイナイト相の合計が面積率で95%以上であり、かつ、表層の組織の平均粒径が5.0μm以下であり、さらに、粒径20nm未満の析出物として析出したTi、Nb、Vの析出量が下記(2)式で求められる析出C相当量として0.025質量%以上、かつ、表層の固溶C量が0.005質量%以上である組織と、を有することを特徴とする溶融亜鉛めっき鋼板。
=(Ti/48+Nb/93+V/51)×12 ・・・(1)
ただし、(1)式における各元素記号は、それぞれの元素の含有量(質量%)を表す。
([Ti]/48+[Nb]/93+[V]/51)×12 ・・・(2)
ただし、(2)式における[Ti]、[Nb]、[V]は、粒径20nm未満の析出物として析出したTi、Nb、Vそれぞれの析出量(質量%)を表す。
[2]前記組成に加えてさらに、質量%で、Mo:0.005〜0.50%、Ta:0.005〜0.50%、W:0.005〜0.50%の1種あるいは2種以上を含有することを特徴とする[1]に記載の溶融亜鉛めっき鋼板。
[3]前記組成に加えてさらに、質量%で、Cr:0.01〜1.0%、Ni:0.01〜1.0%、Cu:0.01〜1.0%の1種あるいは2種以上を含有することを特徴とする[1]または[2]に記載の溶融亜鉛めっき鋼板。
[4]前記組成に加えてさらに、質量%で、Ca:0.0005〜0.01%、REM:0.0005〜0.01%の1種あるいは2種を含有することを特徴とする[1]〜[3]のいずれかに記載の溶融亜鉛めっき鋼板。
[5]前記組成に加えてさらに、質量%で、Sb:0.005〜0.050%を含有することを特徴とする[1]〜[4]のいずれかに記載の溶融亜鉛めっき鋼板。
[6]前記組成に加えてさらに、質量%で、B:0.0005〜0.0030%を含有することを特徴とする[1]〜[5]のいずれかに記載の溶融亜鉛めっき鋼板。
[7][1]〜[6]のいずれかに記載の組成を有する鋼を鋳造してスラブとし、該スラブを、鋳造後そのまま、あるいは、一旦冷却した後に1200℃以上に再加熱したのちに、粗圧延を行い、粗圧延終了後、仕上げ圧延前に高圧水の衝突圧を(1+Si)MPa以上とするデスケーリングを行い、その後、仕上げ圧延出側温度を950℃以下850℃以上とする仕上げ圧延を行い、仕上げ圧延終了後、仕上げ圧延出側温度から650℃までの温度域を平均冷却速度30℃/s以上で冷却し、巻き取り温度を350℃以上600℃以下として巻き取り、酸洗したのち、550℃以上での雰囲気の露点を−25℃以下とし、均熱温度を650〜770℃、均熱時間を10〜300sとする焼鈍を行い、焼鈍後、420〜500℃の亜鉛めっき浴に浸漬して溶融亜鉛めっきを行った後、400〜200℃の温度域を平均冷却速度1℃/s以上で冷却することを特徴とする溶融亜鉛めっき鋼板の製造方法。ただし、前記衝突圧におけるSiは、Siの含有量(質量%)である。
[8]前記420〜500℃の亜鉛めっき浴に浸漬して溶融亜鉛めっきを行った後、460〜600℃まで再加熱し1s以上保持した後に、400〜200℃の温度域を平均冷却速度1℃/s以上で冷却することを特徴とする[7]に記載の溶融亜鉛めっき鋼板の製造方法。
[9]前記400〜200℃の温度域を平均冷却速度1℃/s以上で冷却した後、さらに0.1〜3.0%の板厚減少率とする加工を施すことを特徴とする[7]または[8]に記載の溶融亜鉛めっき鋼板の製造方法。
The present invention has been made as a result of intensive studies to solve the above problems, and has the following configuration.
[1] By mass%, C: 0.08 to 0.20%, Si: 0.5% or less, Mn: 0.8 to 1.8%, P: 0.10% or less, S: 0.030 %: Al: 0.10% or less, N: 0.010% or less, Ti: 0.01-0.3%, Nb: 0.01-0.1%, V: 0.01- Containing 1.0% of one or two or more of C * determined by the following formula (1) to be 0.07 or more, the balance Fe and inevitable impurities;
The total of the ferrite phase and the tempered bainite phase is 95% or more by area ratio, and the average grain size of the structure of the surface layer is 5.0 μm or less, and further Ti deposited as a precipitate having a grain size of less than 20 nm, A structure in which the precipitation amount of Nb and V is 0.025 mass% or more as the precipitation C equivalent amount obtained by the following formula (2), and the solid solution C amount of the surface layer is 0.005 mass% or more. Hot-dip galvanized steel sheet characterized by
C * = (Ti / 48 + Nb / 93 + V / 51) × 12 (1)
However, each element symbol in the formula (1) represents the content (% by mass) of each element.
([Ti] / 48 + [Nb] / 93 + [V] / 51) × 12 (2)
However, [Ti], [Nb], and [V] in the formula (2) represent the respective precipitation amounts (mass%) of Ti, Nb, and V deposited as precipitates having a particle size of less than 20 nm.
[2] In addition to the above composition, in addition, by mass%, Mo: 0.005 to 0.50%, Ta: 0.005 to 0.50%, W: 0.005 to 0.50% or The hot-dip galvanized steel sheet according to [1], containing two or more kinds.
[3] In addition to the above-mentioned composition, further, by mass%, Cr: 0.01-1.0%, Ni: 0.01-1.0%, Cu: 0.01-1.0% The hot-dip galvanized steel sheet according to [1] or [2], containing two or more kinds.
[4] In addition to the above composition, the composition further contains one or two of Ca: 0.0005 to 0.01% and REM: 0.0005 to 0.01% by mass%. The hot-dip galvanized steel sheet according to any one of [1] to [3].
[5] The hot-dip galvanized steel sheet according to any one of [1] to [4], further containing, in addition to the composition, Sb: 0.005 to 0.050% by mass.
[6] The hot dip galvanized steel sheet according to any one of [1] to [5], further containing B: 0.0005 to 0.0030% by mass% in addition to the composition.
[7] A steel having the composition described in any one of [1] to [6] is cast into a slab, and the slab is reheated to 1200 ° C. or higher after being cast or after being cooled once. , Rough rolling is performed, and after finishing the rough rolling, descaling is performed so that the collision pressure of the high-pressure water is (1 + Si) MPa or higher before finishing rolling, and then the finish rolling exit temperature is set to 950 ° C. or lower and 850 ° C. or higher. After rolling and finish rolling, the temperature range from the finish rolling exit temperature to 650 ° C. is cooled at an average cooling rate of 30 ° C./s or more, the winding temperature is set to 350 ° C. or more and 600 ° C. or less, and pickling is performed. After that, annealing is performed with the dew point of the atmosphere at 550 ° C. or higher being −25 ° C. or lower, a soaking temperature of 650 to 770 ° C., and a soaking time of 10 to 300 s, and after annealing, zinc plating at 420 to 500 ° C. After immersed in were melt galvanizing method for producing a molten zinc plated steel sheet characterized by cooling at a temperature range of 400-200 ° C. The average cooling rate of 1 ° C. / s or higher. However, Si in the said collision pressure is content (mass%) of Si.
[8] After dip galvanizing by immersing in the galvanizing bath at 420 to 500 ° C., after reheating to 460 to 600 ° C. and holding for 1 s or more, the temperature range from 400 to 200 ° C. is average cooling rate 1 The method for producing a hot-dip galvanized steel sheet according to [7], wherein cooling is performed at a temperature of ° C / s or more.
[9] The temperature range of 400 to 200 ° C. is cooled at an average cooling rate of 1 ° C./s or more, and then the thickness is reduced to 0.1 to 3.0%. 7] or the method for producing a hot-dip galvanized steel sheet according to [8].

本発明により温間成形性が高められ、とくに温間成形時の微小クラックの発生を防止できるメカニズムは必ずしも明らかではないが、つぎのように考えられる。すなわち、微小クラックは、温間成形前の鋼板加熱時に亜鉛めっきが溶融し粒界に浸入、その後のめっきの合金化が進行しΓ固相となり、温間成形時に粒界めっき相を起点に発生するが、表層の組織の細粒化と固溶Cによる粒界強化で鋼板加熱時の亜鉛めっきの粒界浸入を抑制することで温間成形時の微小クラックの発生を抑制することができる。   Although the warm formability is improved by the present invention, and the mechanism that can prevent the occurrence of microcracks particularly during warm forming is not necessarily clear, it can be considered as follows. In other words, microcracks are generated when the steel sheet is heated before warm forming and the zinc plating melts and enters the grain boundary, and then the alloying of the plating proceeds to become the Γ solid phase, and the grain boundary plating phase occurs during warm forming. However, the generation of microcracks during warm forming can be suppressed by suppressing grain boundary penetration of the galvanizing during heating of the steel sheet by refining the structure of the surface layer and strengthening the grain boundaries by solid solution C.

なお、本発明が対象とする鋼板は、溶融亜鉛めっき熱延鋼板、および、合金化溶融亜鉛めっき熱延鋼板である。さらに、その上に化成処理などにより皮膜を形成した鋼板も含む。また、対象とする温間成形時の加熱温度は500〜800℃程度である。   The steel sheets targeted by the present invention are hot-dip galvanized hot-rolled steel sheets and galvannealed hot-rolled steel sheets. Furthermore, the steel plate which formed the film | membrane by chemical conversion etc. on it is also included. Moreover, the heating temperature at the time of target warm forming is about 500-800 degreeC.

本発明の溶融亜鉛めっき鋼板は、温間成形性により優れる。
本発明の溶融亜鉛めっき鋼板は、温間成形時の微小クラック発生の抑制性に優れる。
本発明によれば、C、Si、Mn、P、S、Al、N、および、Ti、Nb、V量を制御した鋼スラブを、熱間圧延するに際し、デスケーリング衝突圧、圧延温度、および、圧延後の冷却速度と巻取温度を制御し、さらに焼鈍してめっきを行い、冷却するに際し、雰囲気の露点と均熱温度、均熱時間、および、冷却速度を制御することで、粒径20nm未満の析出物を析出させ、表層の組織と固溶Cを制御することができ、高強度で、かつ、温間成形時のクラック発生の抑制性に優れた、温間成形に好適な溶融亜鉛めっき熱延鋼板を得ることができ、工業上有効な効果がもたらされる。
The hot dip galvanized steel sheet of the present invention is superior in warm formability.
The hot-dip galvanized steel sheet according to the present invention is excellent in suppressing the occurrence of microcracks during warm forming.
According to the present invention, when hot rolling a steel slab with controlled amounts of C, Si, Mn, P, S, Al, N, and Ti, Nb, V, the descaling impact pressure, rolling temperature, and Control the cooling rate and coiling temperature after rolling, further anneal and plate, and control the dew point and soaking temperature, soaking time, and cooling rate of the atmosphere when cooling, the particle size Precipitates less than 20 nm can be deposited, the structure of the surface layer and solid solution C can be controlled, high strength, and excellent resistance to cracking during warm forming, suitable for warm forming A galvanized hot-rolled steel sheet can be obtained, and an industrially effective effect is brought about.

図1は、実施例で温間プレス成型したハット部品を示す図。FIG. 1 is a diagram showing a hat part warm-pressed in an example. 図2は、温間プレス成型によりハット部品の表層に生じた亀裂を示す写真。FIG. 2 is a photograph showing a crack generated in the surface layer of a hat part by warm press molding. 図3は、デスケーリング衝突圧と表層の固溶C量の関係を示す図。FIG. 3 is a diagram showing the relationship between the descaling collision pressure and the amount of solid solution C in the surface layer. 図4は、露点と表層の固溶C量の関係を示す図。FIG. 4 is a view showing the relationship between the dew point and the amount of dissolved C in the surface layer. 図5は、表層の固溶C量と亀裂深さの関係を示す図。FIG. 5 is a diagram showing the relationship between the amount of dissolved C in the surface layer and the crack depth. 図6は、表層の組織の平均粒径と亀裂深さの関係を示す図。FIG. 6 is a diagram showing the relationship between the average grain size of the surface layer structure and the crack depth.

以下、本発明を具体的に説明する。
はじめに、本発明に係る溶融亜鉛めっき鋼板の成分組成について説明する。以下において含有量の単位「%」は、特にことわらない限り「質量%」を意味する。
Hereinafter, the present invention will be specifically described.
First, the component composition of the hot dip galvanized steel sheet according to the present invention will be described. In the following, the unit “%” of content means “% by mass” unless otherwise specified.

[成分組成]
C:0.08〜0.20%
Cは、Ti、Nb、Vと微細な炭化物を形成し、強度の向上に寄与するとともに、温間成形時の加熱により強度を低下させないことから、温間成形用鋼板としての効果を付与できる。また、鋼板表層粒界の固溶Cは、温間成形時の微小クラックの発生を防止できる。そのためCの含有量は0.08%以上とする必要がある。一方、多量のCはマルテンサイト変態を促進してしまうとともに、Ti、Nb、Vとの微細な炭化物形成を抑制してしまう。また、過剰なCは、溶接性を低下させるともに、靭性や成型性を大きく低下させてしまう。したがって、Cの含有量は0.20%以下とする必要がある。Cの含有量は、好ましくは0.15%以下、さらに好ましくは0.12%以下である。
[Ingredient composition]
C: 0.08 to 0.20%
C forms fine carbides with Ti, Nb, and V, contributes to the improvement of strength, and does not decrease the strength by heating during warm forming, and therefore can provide an effect as a steel sheet for warm forming. In addition, the solid solution C at the steel grain surface layer boundary can prevent the occurrence of microcracks during warm forming. Therefore, the C content needs to be 0.08% or more. On the other hand, a large amount of C promotes martensitic transformation and suppresses the formation of fine carbides with Ti, Nb, and V. Further, excessive C reduces weldability and greatly reduces toughness and moldability. Therefore, the C content needs to be 0.20% or less. The content of C is preferably 0.15% or less, more preferably 0.12% or less.

Si:0.5%以下
Siは、鋼板表面に酸化物を形成して、不めっきを生じさせる。さらに、フェライト変態を促進することで、組織の結晶粒径も大きくしてしまう。そのためSiの含有量は、0.5%以下とする必要がある。Siの含有量は、好ましくは0.2%以下であり、より好ましくは0.1%以下であり、さらに好ましくは0.05%以下である。Siの含有量の下限はとくに規定しないが、不可避的不純物として0.005%含まれていても問題ない。
Si: 0.5% or less Si forms an oxide on the steel sheet surface and causes non-plating. Furthermore, by promoting ferrite transformation, the crystal grain size of the structure is also increased. Therefore, the Si content needs to be 0.5% or less. The Si content is preferably 0.2% or less, more preferably 0.1% or less, and even more preferably 0.05% or less. Although the lower limit of the Si content is not particularly specified, there is no problem even if 0.005% is contained as an inevitable impurity.

Mn:0.8〜1.8%
Mnは、フェライト変態を遅延し、結晶粒径を小さくするとともに、固溶強化により高強度化にも寄与する。このような効果を得るため、Mnの含有量は0.8%以上とする必要がある。Mnの含有量は、好ましくは1.0%以上である。一方、多量のMnはスラブ割れを引き起こすとともに、マルテンサイト変態を促進させてしまう。そのため、Mnの含有量は1.8%以下とする必要がある。Mnの含有量は、好ましくは1.5%以下である。
Mn: 0.8 to 1.8%
Mn delays ferrite transformation, reduces the crystal grain size, and contributes to higher strength through solid solution strengthening. In order to obtain such an effect, the Mn content needs to be 0.8% or more. The Mn content is preferably 1.0% or more. On the other hand, a large amount of Mn causes slab cracking and promotes martensitic transformation. Therefore, the Mn content needs to be 1.8% or less. The Mn content is preferably 1.5% or less.

P:0.10%以下
Pは、溶接性を低下させるとともに、粒界に偏析して延性、曲げ性や靭性を劣化させる。さらに多量に添加すると、フェライト変態を促進することで結晶粒径も大きくしてしまう。そのため、Pの含有量は0.10%以下とする必要がある。Pの含有量は、好ましくは0.05%以下であり、より好ましくは0.03%以下であり、さらに好ましくは0.01%以下である。Pの含有量の下限はとくに規定しないが、不可避的不純物として0.005%含まれていても問題ない。
P: 0.10% or less P decreases weldability and segregates at grain boundaries to deteriorate ductility, bendability and toughness. When added in a large amount, the ferrite grain transformation is promoted to increase the crystal grain size. Therefore, the P content needs to be 0.10% or less. The content of P is preferably 0.05% or less, more preferably 0.03% or less, and still more preferably 0.01% or less. The lower limit of the content of P is not particularly specified, but there is no problem even if 0.005% is contained as an inevitable impurity.

S:0.030%以下
Sは、溶接性を低下させるとともに、熱間での延性を著しく低下させることで、熱間割れを誘発し、表面性状を著しく劣化させる。さらに、Sは、強度にほとんど寄与しないばかりか、不純物元素として粗大な硫化物を形成することにより、延性、曲げ性、伸びフランジ性を低下させる。これらの問題はSの含有量が0.030%を超えると顕著となり、Sの含有量は極力低減することが望ましい。したがって、Sの含有量は0.030%以下とする必要がある。Sの含有量は、好ましくは0.010%以下であり、より好ましくは0.003%以下であり、さらに好ましくは0.001%以下である。Sの含有量の下限はとくに規定しないが、不可避的不純物として0.0001%含まれていても問題ない。
S: 0.030% or less S lowers the weldability and remarkably lowers the hot ductility, thereby inducing hot cracking and significantly deteriorating the surface properties. Further, S hardly contributes to the strength, but also reduces the ductility, bendability and stretch flangeability by forming coarse sulfides as impurity elements. These problems become significant when the S content exceeds 0.030%, and it is desirable to reduce the S content as much as possible. Therefore, the S content needs to be 0.030% or less. The S content is preferably 0.010% or less, more preferably 0.003% or less, and still more preferably 0.001% or less. Although the lower limit of the S content is not particularly specified, there is no problem even if 0.0001% is contained as an inevitable impurity.

Al:0.10%以下
Alを多く添加すると、フェライト変態を促進することで結晶粒径も大きくしてしまう。さらに、表面にAlの酸化物を生成して不めっきを生じさせる。したがってAlの含有量は0.10%以下とする必要がある。Alの含有量は、好ましくは0.06%以下である。Alの含有量の下限は特に規定しないが、Alキルド鋼として0.01%含まれても問題ない。
Al: 0.10% or less When a large amount of Al is added, the crystal grain size is also increased by promoting ferrite transformation. Furthermore, an Al oxide is generated on the surface to cause non-plating. Therefore, the Al content needs to be 0.10% or less. The Al content is preferably 0.06% or less. Although the lower limit of the Al content is not particularly specified, there is no problem even if 0.01% is contained as Al killed steel.

N:0.010%以下
Nは、Ti、Nb、Vと高温で粗大な窒化物を形成し強度にあまり寄与しないことから、Ti、Nb、V添加による高強度化の効果を小さくしてしまうだけでなく、靭性の低下も招いてしまう。さらに多量に含有すると、熱間圧延中にスラブ割れを伴い、表面疵が発生する恐れがある。したがって、Nの含有量は0.010%以下とする必要がある。Nの含有量は、好ましくは0.005%以下であり、より好ましくは0.003%以下であり、さらに好ましくは0.002%以下である。Nの含有量の下限はとくに規定しないが、不可避的不純物として0.0005%含まれていても問題ない。
N: 0.010% or less N forms coarse nitrides at high temperatures with Ti, Nb, V and does not contribute much to the strength, so the effect of increasing the strength by adding Ti, Nb, V is reduced. In addition, the toughness is also reduced. If it is further contained in a large amount, surface cracks may occur due to slab cracking during hot rolling. Therefore, the N content needs to be 0.010% or less. The N content is preferably 0.005% or less, more preferably 0.003% or less, and still more preferably 0.002% or less. Although the lower limit of the N content is not particularly specified, there is no problem even if 0.0005% is included as an inevitable impurity.

Ti:0.01〜0.3%、Nb:0.01〜0.1%、V:0.01〜1.0%の1種あるいは2種以上をC=(Ti/48+Nb/93+V/51)×12≧0.07
Ti、Nb、Vは、Cと微細な炭化物を形成し、組織の細粒化と高強度化に寄与する。このような作用を得るためには、Ti、Nb、Vの少なくとも1種の含有量を0.01%以上とし、さらにTi、Nb、Vの含有量を下記(1)式で求められるCが0.07以上とする必要がある。一方、Ti、Nb、Vをそれぞれ0.3%、0.1%、1.0%を超えて多量に添加しても、高強度化の効果はあまり大きくならない反面、粒径20nm未満の析出物(微細析出物)が多量に析出し靭性が低下することから、Ti、Nb、Vの含有量の上限は、それぞれ0.3%、0.1%、1.0%とする必要がある。
=(Ti/48+Nb/93+V/51)×12 ・・・(1)
ただし、(1)式における各元素記号は、それぞれの元素の含有量(質量%)を表す。なお含有しない元素は0とする。
One or two or more of Ti: 0.01 to 0.3%, Nb: 0.01 to 0.1%, V: 0.01 to 1.0%, C * = (Ti / 48 + Nb / 93 + V / 51) × 12 ≧ 0.07
Ti, Nb, and V form fine carbides with C, contributing to finer structure and higher strength. In order to obtain such an effect, the content of at least one of Ti, Nb, and V is set to 0.01% or more, and the content of Ti, Nb, and V is calculated by the following formula (1) C * Needs to be 0.07 or more. On the other hand, even if Ti, Nb, and V are added in a large amount exceeding 0.3%, 0.1%, and 1.0%, respectively, the effect of increasing the strength is not so great, but precipitation with a particle size of less than 20 nm. Since the product (fine precipitates) precipitates in a large amount and the toughness decreases, the upper limit of the content of Ti, Nb, and V must be 0.3%, 0.1%, and 1.0%, respectively. .
C * = (Ti / 48 + Nb / 93 + V / 51) × 12 (1)
However, each element symbol in the formula (1) represents the content (% by mass) of each element. The element not contained is 0.

残部はFeおよび不可避的不純物である。本発明では、さらに、強度、温間成形性を向上させることを目的に、つぎの元素を添加することができる。   The balance is Fe and inevitable impurities. In the present invention, the following elements can be added for the purpose of further improving the strength and warm formability.

Mo:0.005〜0.50%、Ta:0.005〜0.50%、W:0.005〜0.50%の1種あるいは2種以上
Mo、Ta、Wは、Cと微細析出物を形成することで組織の細粒化と高強度化に寄与する。このような効果を得るため、Mo、Ta、Wを添加する場合には、Mo、Ta、Wの少なくとも1種を0.005%以上添加することが好ましい。一方、多量にMo、Ta、Wを添加しても高強度化の効果はあまり大きくならない反面、微細析出物が多量に析出し靭性が低下することから、Mo、Ta、Wを添加する場合には、Mo、Ta、Wの含有量をそれぞれ0.50%以下とすることが好ましい。
One or more of Mo: 0.005-0.50%, Ta: 0.005-0.50%, W: 0.005-0.50% Mo, Ta, W are finely precipitated with C It contributes to finer structure and higher strength by forming the structure. In order to acquire such an effect, when adding Mo, Ta, and W, it is preferable to add 0.005% or more of at least one of Mo, Ta, and W. On the other hand, even if a large amount of Mo, Ta, W is added, the effect of increasing the strength is not so great, but a large amount of fine precipitates are precipitated and the toughness is lowered. The content of Mo, Ta, W is preferably 0.50% or less.

Cr:0.01〜1.0%、Ni:0.01〜1.0%、Cu:0.01〜1.0%の1種あるいは2種以上
Cr、Ni、Cuは、組織を細粒化するとともに固溶強化元素として作用することで高強度化に寄与する。このような効果を得るため、Cr、Ni、Cuを添加する場合には、Cr、Ni、Cuの少なくとも1種を0.01%以上添加することが好ましい。一方、Cr、Ni、Cuを多量に添加しても効果が飽和するだけでなくめっき性を阻害することから、Cr、Ni、Cuを添加する場合には、Cr、Ni、Cuの含有量をそれぞれ1.0%以下とすることが好ましい。
One or more of Cr: 0.01-1.0%, Ni: 0.01-1.0%, Cu: 0.01-1.0% Cr, Ni, Cu is fine-grained It contributes to high strength by acting as a solid solution strengthening element. In order to acquire such an effect, when adding Cr, Ni, and Cu, it is preferable to add 0.01% or more of at least one of Cr, Ni, and Cu. On the other hand, the addition of a large amount of Cr, Ni, Cu not only saturates the effect, but also inhibits the plating properties. Therefore, when adding Cr, Ni, Cu, the content of Cr, Ni, Cu is reduced. It is preferable to make each 1.0% or less.

Ca:0.0005〜0.01%、REM:0.0005〜0.01%の1種あるいは2種
Ca、REMは、硫化物の形態を制御することで延性、靭性を向上させることができる。このような効果を得るためCa、REMを添加する場合には、Ca、REMの少なくとも1種を0.0005%以上添加することが好ましい。一方、Ca、REMの多量の添加により逆に延性が損なわれるおそれがあることから、Ca、REMを添加する場合には、Ca、REMの含有量をそれぞれ0.01%以下とすることが好ましい。
1 type or 2 types of Ca: 0.0005-0.01%, REM: 0.0005-0.01% Ca, REM can improve ductility and toughness by controlling the form of sulfide. . In order to obtain such an effect, when adding Ca and REM, it is preferable to add at least one of Ca and REM in an amount of 0.0005% or more. On the other hand, since ductility may be adversely affected by the addition of a large amount of Ca and REM, when Ca and REM are added, the content of Ca and REM is preferably 0.01% or less, respectively. .

Sb:0.005〜0.050%
Sbは、熱間圧延時において表面に偏析することから、スラブが窒化するのを防止することで粗大な窒化物の形成を抑制することができる。このような効果を得るためSbを添加する場合には、Sbを0.005%以上添加することが好ましい。一方、多量にSbを添加しても効果が飽和するだけでなく加工性が劣化することから、Sbを添加する場合は、Sbの含有量を0.050%以下とすることが好ましい。
Sb: 0.005 to 0.050%
Since Sb segregates on the surface during hot rolling, the formation of coarse nitrides can be suppressed by preventing the slab from nitriding. In order to obtain such an effect, when adding Sb, it is preferable to add 0.005% or more of Sb. On the other hand, the addition of a large amount of Sb not only saturates the effect but also degrades the workability. Therefore, when Sb is added, the Sb content is preferably 0.050% or less.

B:0.0005〜0.0030%
Bは、組織の細粒化に寄与するため、Bを含有させる場合は、Bの含有量を0.0005%以上とすることが好ましく、0.0010%以上とすることがより好ましい。一方、多量のBは熱間圧延時の圧延荷重を上昇させてしまう恐れがあることから、Bを含有する場合は、Bの含有量を0.0030%以下とすることが好ましく、0.0020%以下とすることがより好ましい。
その他、Sn、Mg、Co、As、Pb、Zn、Oなどの不純物を合計で0.5%以下含んでいても、特性には問題ない。
B: 0.0005 to 0.0030%
Since B contributes to the refinement of the structure, when B is contained, the content of B is preferably 0.0005% or more, and more preferably 0.0010% or more. On the other hand, since a large amount of B may increase the rolling load during hot rolling, when B is contained, the content of B is preferably 0.0030% or less. % Or less is more preferable.
In addition, there is no problem in characteristics even if impurities such as Sn, Mg, Co, As, Pb, Zn, and O are included in total of 0.5% or less.

次に、本発明の溶融亜鉛めっき鋼板の組織について説明する。   Next, the structure of the hot dip galvanized steel sheet of the present invention will be described.

フェライト相と焼き戻しベイナイト相の合計が面積率で95%以上
フェライト相や焼き戻しベイナイト相は冷延および温間での延性に優れることから、フェライト相と焼き戻しベイナイト相の合計を面積率で95%以上とする必要がある。フェライト相と焼き戻しベイナイト相の合計は、面積率で好ましくは98%以上、より好ましくは100%である。
The total of ferrite phase and tempered bainite phase is 95% or more in area ratio. Since the ferrite phase and tempered bainite phase are excellent in cold and warm ductility, the total of ferrite phase and tempered bainite phase is expressed in area ratio. It is necessary to be 95% or more. The total of the ferrite phase and the tempered bainite phase is preferably 98% or more, more preferably 100% in terms of area ratio.

表層の組織の平均粒径:5.0μm以下
表層の平均粒径が大きいと温間成形前の鋼板加熱時に亜鉛めっきが溶融し粒界に浸入する浸入深さが大きくなり、温間成形時に発生するクラックが大きくなってしまうことから、表層の組織の平均粒径(表層の全組織の平均結晶粒径)を5.0μm以下とする必要がある。表層の組織の平均粒径は、好ましくは3.0μm以下である。
Average particle size of surface layer structure: 5.0 μm or less If the average particle size of the surface layer is large, the galvanization melts when the steel plate is heated before warm forming and the penetration depth penetrates into the grain boundary, which occurs during warm forming. Therefore, the average grain size of the surface layer structure (the average crystal grain size of the entire surface layer structure) needs to be 5.0 μm or less. The average particle size of the surface layer structure is preferably 3.0 μm or less.

粒径20nm未満の析出物として析出したTi、Nb、Vの析出C相当量:0.025質量%以上
粒径20nm未満の析出物は強度に寄与する。さらに、温間成形の加熱後にも強度に寄与する。これにより当該加熱後の強度低下を抑制する効果にも寄与する。このような作用を得るため、粒径20nm未満の析出物として析出したTi、Nb、Vの析出量を下記(2)式で求められる析出C相当量で0.025質量%以上とする必要がある。前記析出C相当量は、好ましくは0.035質量%以上である。一方、前記析出C相当量の上限はとくに規定しないが、粒径20nm未満の析出物が多くなると靭性が低下することから、前記析出C相当量は、0.10質量%以下が好ましく、0.08質量%以下がより好ましく、0.05質量%以下がさらに好ましい。
([Ti]/48+[Nb]/93+[V]/51)×12 ・・・(2)
ただし、(2)式における[Ti]、[Nb]、[V]は、粒径20nm未満の析出物として析出したTi、Nb、Vそれぞれの析出量(質量%)を表す。
Precipitation C equivalent amount of Ti, Nb, and V deposited as a precipitate having a particle size of less than 20 nm: A precipitate having a particle size of 0.025 mass% or more and less than 20 nm contributes to strength. Furthermore, it contributes to strength even after heating in warm forming. Thereby, it contributes also to the effect which suppresses the strength reduction after the said heating. In order to obtain such an effect, it is necessary that the precipitation amount of Ti, Nb, and V deposited as a precipitate having a particle size of less than 20 nm be 0.025% by mass or more in terms of the precipitation C equivalent obtained by the following equation (2). is there. The amount of precipitation C is preferably 0.035% by mass or more. On the other hand, the upper limit of the amount of precipitation C is not particularly specified, but the toughness is lowered when the number of precipitates having a particle size of less than 20 nm increases, so the amount of precipitation C is preferably 0.10% by mass or less. 08 mass% or less is more preferable, and 0.05 mass% or less is further more preferable.
([Ti] / 48 + [Nb] / 93 + [V] / 51) × 12 (2)
However, [Ti], [Nb], and [V] in the formula (2) represent the respective precipitation amounts (mass%) of Ti, Nb, and V deposited as precipitates having a particle size of less than 20 nm.

表層の固溶C量:0.005質量%以上
表層の固溶C量が少ないと、温間成形前の鋼板加熱時に亜鉛めっきが溶融し粒界に浸入し、温間成形時に微小クラックが発生してしまう。そのため、表層の固溶C量は0.005質量%以上とする必要がある。表層の固溶C量は、好ましくは0.010質量%以上である。表層の固溶C量の上限は特に規定しないが、表層の固溶C量が過剰に多くても効果が飽和することから、0.030質量%程度で十分である。
Surface solid solution C amount: 0.005 mass% or more If the surface layer solid solution C amount is small, the galvanization melts when the steel plate is heated before warm forming and enters the grain boundary, and microcracks occur during warm forming. Resulting in. Therefore, the amount of C in the surface layer needs to be 0.005% by mass or more. The amount of C in the surface layer is preferably 0.010% by mass or more. The upper limit of the amount of solid solution C in the surface layer is not particularly defined, but the effect is saturated even if the amount of solid solution C in the surface layer is excessively large, so about 0.030% by mass is sufficient.

本発明の溶融亜鉛めっき鋼板のTSは特に規定しないが、980MPa以上が好ましい。板厚も特に規定しないが、4.0mm以下が好ましく、より好ましくは3.0mm以下、さらに好ましくは2.0mm以下、さらにより好ましくは1.5mm以下である。板厚の下限は熱間圧延で製造可能な1.0mm程度でよい。   The TS of the hot dip galvanized steel sheet of the present invention is not particularly defined, but is preferably 980 MPa or more. Although the plate thickness is not particularly defined, it is preferably 4.0 mm or less, more preferably 3.0 mm or less, still more preferably 2.0 mm or less, and even more preferably 1.5 mm or less. The lower limit of the plate thickness may be about 1.0 mm that can be manufactured by hot rolling.

つぎに本発明の溶融亜鉛めっき鋼板の製造条件について説明する。なお、以下の説明において、温度は鋼板等の表面温度とする。   Next, production conditions for the hot dip galvanized steel sheet of the present invention will be described. In the following description, the temperature is the surface temperature of a steel plate or the like.

本発明では、上記した組成を有する鋼を鋳造した鋼素材(スラブ)を出発素材とする。
出発素材の製造方法は、とくに限定されず、例えば、上記した組成の溶鋼を転炉等の常用の溶製方法で溶製し、連続鋳造法等の通常の鋳造方法で鋼素材(スラブ)とする方法等が挙げられる。
In the present invention, the starting material is a steel material (slab) obtained by casting steel having the above-described composition.
The method for producing the starting material is not particularly limited. For example, the molten steel having the above composition is melted by a conventional melting method such as a converter, and the steel material (slab) is obtained by a normal casting method such as a continuous casting method. And the like.

スラブ:鋳造後そのまま、あるいは、一旦冷却した後に1200℃以上に再加熱
Ti、Nb、Vを微細に析出させるためには、圧延開始前にスラブ中に析出している析出物を固溶させる必要がある。そのため、鋳造後のスラブをそのまま(高温のまま)熱間圧延機の入側に搬送し粗圧延を開始するか、あるいは、一旦冷却して温片や冷片となり、Ti、Nb、Vが析出物として析出してしまったスラブを1200℃以上に再加熱したのち粗圧延を開始する必要がある。1200℃以上での保持時間は特に規定しないが、好ましくは10分以上、より好ましくは30分以上である。また、再加熱温度は、好ましくは1220℃以上、より好ましくは1250℃以上である。
Slab: In order to precipitate Ti, Nb, V finely as it is after casting or after cooling once to 1200 ° C. or higher, it is necessary to make solid precipitates precipitated in the slab before starting rolling. There is. Therefore, the slab after casting is transferred as it is (high temperature) to the entry side of the hot rolling mill and rough rolling is started, or once cooled, it becomes a hot piece or a cold piece, and Ti, Nb and V are precipitated. It is necessary to start rough rolling after reheating the slab deposited as a product to 1200 ° C. or higher. The holding time at 1200 ° C. or higher is not particularly defined, but is preferably 10 minutes or longer, more preferably 30 minutes or longer. The reheating temperature is preferably 1220 ° C. or higher, more preferably 1250 ° C. or higher.

仕上げ圧延前に衝突圧(1+Si)MPa以上の高圧水によるデスケーリング
粗圧延終了後、仕上げ圧延前(仕上げ圧延機入側)で高圧水によるデスケーリングを行う。この際、高圧水によるデスケーリング衝突圧が小さいと、表面粗さが大きくなり、熱延時のスケール生成が促進することで表層の脱炭が進行してしまう。このような表面粗さの増大による脱炭進行はSi量が多くなるほど顕著になることから、前記衝突圧は(1+Si)MPa以上とする必要がある。前記衝突圧は、好ましくは(2+Si)MPa以上、より好ましくは(3+Si)MPa以上である。前記衝突圧の上限は特に規定しないが、衝突圧が大きくなると鋼板が過度に冷却されることから5MPa程度で十分である。なお、前記衝突圧におけるSiは、Siの含有量(質量%)である。
Descaling with high-pressure water is performed before finishing rolling (on the finishing mill entry side) after rough rolling with high-pressure water having a collision pressure (1 + Si) MPa or higher before finishing rolling. At this time, if the descaling collision pressure due to the high-pressure water is small, the surface roughness increases, and the decarburization of the surface layer proceeds by promoting the scale generation during hot rolling. Since the progress of decarburization due to such an increase in surface roughness becomes more significant as the amount of Si increases, the collision pressure needs to be (1 + Si) MPa or more. The collision pressure is preferably (2 + Si) MPa or more, more preferably (3 + Si) MPa or more. The upper limit of the collision pressure is not particularly defined, but about 5 MPa is sufficient because the steel sheet is excessively cooled when the collision pressure increases. In addition, Si in the said collision pressure is content (mass%) of Si.

仕上げ圧延出側温度:950℃以下850℃以上
次いで、仕上げ圧延を行う。この際、仕上げ圧延の出側温度が低くなると、歪誘起析出によりTi、Nb、Vの炭化物が粗大に析出してしまう。そのため、仕上げ圧延出側温度(仕上最終圧延出側の温度)は、850℃以上とする必要がある。仕上げ圧延出側温度は、好ましくは880℃以上である。一方、仕上げ圧延出側温度が高くなると、結晶粒が粗大化してしまう。そのため、仕上げ圧延出側温度は950℃以下とする必要がある。仕上げ圧延出側温度は、好ましくは930℃以下である。
Finishing rolling delivery temperature: 950 ° C. or lower 850 ° C. or higher Next, finish rolling is performed. At this time, if the exit temperature of finish rolling is lowered, carbides of Ti, Nb, and V are coarsely precipitated due to strain-induced precipitation. Therefore, the finish rolling exit temperature (temperature at the finish final rolling exit) needs to be 850 ° C. or higher. The finish rolling exit temperature is preferably 880 ° C. or higher. On the other hand, when the finish rolling exit temperature increases, the crystal grains become coarse. For this reason, the finish rolling delivery temperature needs to be 950 ° C. or lower. The finish rolling exit temperature is preferably 930 ° C. or lower.

仕上げ圧延出側温度から650℃までの温度域の平均冷却速度:30℃/s以上
仕上げ圧延終了後、仕上げ圧延出側温度から650℃までの温度域の冷却速度が小さいと、フェライト変態が高温で起こり、結晶粒径が大きくなるとともに、Ti、Nb、Vの炭化物が粗大に析出してしまう。したがって、仕上げ圧延出側温度から650℃までの温度域の平均冷却速度は30℃/s以上とする必要がある。前記平均冷却速度は、好ましくは50℃/s以上、さらに好ましくは80℃/s以上である。前記平均冷却速度の上限はとくに規定しないが、温度制御の観点から200℃/s程度で十分である。
Average cooling rate in the temperature range from the finish rolling exit temperature to 650 ° C .: 30 ° C./s or more After the finish rolling, if the cooling rate in the temperature range from the finish rolling exit temperature to 650 ° C. is small, the ferrite transformation is high As the crystal grain size increases, Ti, Nb, and V carbides precipitate coarsely. Therefore, the average cooling rate in the temperature range from the finish rolling exit temperature to 650 ° C. needs to be 30 ° C./s or more. The average cooling rate is preferably 50 ° C./s or more, more preferably 80 ° C./s or more. The upper limit of the average cooling rate is not particularly defined, but about 200 ° C./s is sufficient from the viewpoint of temperature control.

巻き取り温度:350℃以上600℃以下
巻き取り温度が高いと結晶粒径が粗大化してしまう。そのため、巻き取り温度は600℃以下とする必要がある。巻き取り温度は、好ましくは550℃以下である。一方、巻き取り温度が低いとベイナイト変態が抑制され、マルテンサイト変態が促進されてしまう。そのため、巻き取り温度は350℃以上とする必要がある。巻き取り温度は、好ましくは400℃以上である。
Winding temperature: 350 ° C. or higher and 600 ° C. or lower When the winding temperature is high, the crystal grain size becomes coarse. Therefore, the winding temperature needs to be 600 ° C. or less. The winding temperature is preferably 550 ° C. or lower. On the other hand, when the coiling temperature is low, bainite transformation is suppressed and martensitic transformation is promoted. Therefore, the winding temperature needs to be 350 ° C. or higher. The winding temperature is preferably 400 ° C. or higher.

次いで、巻き取り後の熱延コイルを酸洗したのち、焼鈍を行う。   Next, the hot-rolled coil after winding is pickled and then annealed.

550℃以上での雰囲気の露点:−25℃以下
鋼板焼鈍時の雰囲気露点が高いと鋼板表層での脱炭が進行してしまう。このような影響は鋼板温度が550℃以上で顕著となることから、鋼板温度が550℃以上での雰囲気の露点は−25℃以下とする必要がある。前記露点は、好ましくは−30℃以下、より好ましくは−35℃以下である。前記露点の下限は規定しないが、露点を下げ過ぎても効果が飽和することから、−50℃程度で十分である。なお、前記露点での雰囲気は、酸洗後の鋼板が、550℃以上に加熱され、下記均熱温度で均熱された後、550℃未満の温度に冷却されるまで保たれる。また、鋼板温度550℃から均熱温度までの平均加熱速度は、0.5〜20℃/sが好ましい。
Dew point of atmosphere at 550 ° C. or higher: −25 ° C. or lower When the atmospheric dew point is high during steel plate annealing, decarburization at the steel sheet surface layer proceeds. Since such an effect becomes significant when the steel plate temperature is 550 ° C. or higher, the dew point of the atmosphere when the steel plate temperature is 550 ° C. or higher needs to be −25 ° C. or lower. The dew point is preferably −30 ° C. or lower, more preferably −35 ° C. or lower. Although the lower limit of the dew point is not defined, the effect is saturated even if the dew point is lowered too much, so about −50 ° C. is sufficient. The atmosphere at the dew point is maintained until the pickled steel sheet is heated to 550 ° C. or higher, soaked at the following soaking temperature, and then cooled to a temperature of less than 550 ° C. The average heating rate from the steel plate temperature 550 ° C. to the soaking temperature is preferably 0.5 to 20 ° C./s.

均熱温度:650〜770℃の温度域
焼鈍時の均熱温度が低いと、Ti、Nb、Vの微細な炭化物が析出しないことから、均熱温度は650℃以上とする必要がある。均熱温度は、好ましくは700℃以上、より好ましくは730℃以上である。一方、均熱温度が高くなりすぎるとTi、Nb、Vの炭化物が粗大化するとともに、均熱時にオーステナイト変態がおこり、その後の冷却でベイナイトやマルテンサイト変態が進行してしまう。さらに、鋼板表層での脱炭も進行することから、均熱温度は770℃以下とする必要がある。
Soaking temperature: If the soaking temperature during annealing in the temperature range of 650 to 770 ° C. is low, fine carbides of Ti, Nb, and V do not precipitate, so the soaking temperature needs to be 650 ° C. or higher. The soaking temperature is preferably 700 ° C. or higher, more preferably 730 ° C. or higher. On the other hand, if the soaking temperature becomes too high, the carbides of Ti, Nb, and V are coarsened, and austenite transformation occurs during soaking, and bainite and martensite transformation proceeds by subsequent cooling. Furthermore, since the decarburization at the surface layer of the steel sheet also proceeds, the soaking temperature needs to be 770 ° C. or lower.

均熱時間(均熱温度温度域での滞留時間):10〜300s
均熱時の均熱時間が短いと、Ti、Nb、Vの炭化物が十分に析出しない。そのため均熱時の均熱時間は10s以上とする必要がある。均熱時間は、好ましくは30s以上である。一方、均熱時間が長くなると、Ti、Nb、Vの炭化物が粗大化するとともに、結晶粒径も大きくなってしまう。したがって、均熱時間は300s以下とする必要がある。均熱時間は、好ましくは150s以下である。
Soaking time (residence time in soaking temperature range): 10 to 300 s
When the soaking time at the time of soaking is short, Ti, Nb, and V carbides are not sufficiently precipitated. Therefore, the soaking time at the time of soaking needs to be 10 s or more. The soaking time is preferably 30 s or more. On the other hand, when the soaking time becomes longer, the carbides of Ti, Nb, and V become coarser and the crystal grain size also becomes larger. Therefore, the soaking time needs to be 300 s or less. The soaking time is preferably 150 s or less.

焼鈍後、420〜500℃の亜鉛めっき浴に浸漬して溶融亜鉛めっきを行った後、冷却する。   After annealing, it is immersed in a galvanizing bath at 420 to 500 ° C. to perform hot dip galvanization, and then cooled.

400〜200℃の温度域を平均冷却速度1℃/s以上で冷却
亜鉛めっき浴浸漬後の冷却速度が小さいと、セメンタイトの析出が促進し、表層の固溶C量が少なくなってしまう。このようなセメンタイトの析出は400〜200℃で顕著になることから、400〜200℃の領域は1℃/s以上の平均冷却速度で冷却する必要がある。前記平均冷却速度は、好ましくは5℃/s以上である。前記平均冷却速度の上限はとくに規定しないが、冷却速度を上げても効果が飽和することから30℃/s程度で十分である。
When the cooling rate after immersion in the cooling galvanizing bath is small at an average cooling rate of 1 ° C./s or more in a temperature range of 400 to 200 ° C., precipitation of cementite is promoted and the amount of solid solution C in the surface layer is reduced. Since precipitation of such cementite becomes significant at 400 to 200 ° C., the region of 400 to 200 ° C. needs to be cooled at an average cooling rate of 1 ° C./s or more. The average cooling rate is preferably 5 ° C./s or more. The upper limit of the average cooling rate is not particularly defined, but about 30 ° C./s is sufficient because the effect is saturated even if the cooling rate is increased.

なお、亜鉛めっき浴浸漬後、460〜600℃まで再加熱をおこない1s以上保持することで合金化溶融亜鉛めっき鋼板としてもよい。前記保持時間は1〜10sが好ましい。   In addition, it is good also as an galvannealed steel plate by reheating to 460-600 degreeC after a galvanization bath immersion, and hold | maintaining for 1 second or more. The holding time is preferably 1 to 10 s.

さらに、上記めっき後の鋼板に、軽加工を加えることで可動転位を増やし、成形性を高めてもよい。このような軽加工としては、板厚減少率を0.1%以上とする加工が挙げられる。板厚減少率は、好ましくは0.3%以上である。一方、板厚減少率が大きくなると、転位の相互作用で転位が移動しにくくなり、成形性が低下することから、かかる加工を付与する場合には、板厚減少率を3.0%以下とすることが好ましく、2.0%以下とすることがより好ましく、1.0%以下とすることがさらに好ましい。ここで、上記加工を施すに際しては、圧延ロールによる圧下を加えてもよいし、鋼板にテンションを加えた引張りによる加工を施してもよい。さらに、圧延と引張りの両方の加工を施してもよい。   Further, the dislocation may be increased by adding light processing to the plated steel sheet to improve the formability. Examples of such light processing include processing for reducing the plate thickness reduction rate to 0.1% or more. The plate thickness reduction rate is preferably 0.3% or more. On the other hand, when the plate thickness reduction rate is large, dislocations are less likely to move due to the interaction of dislocations, and formability is reduced. Therefore, when applying such processing, the plate thickness reduction rate is 3.0% or less. Preferably, it is 2.0% or less, more preferably 1.0% or less. Here, when performing the said process, the reduction by a rolling roll may be added and the process by the tension | tensile_strength which added the tension | tensile_strength to the steel plate may be performed. Furthermore, both rolling and tensioning may be performed.

本発明の実施例について説明する。
表1に示す成分組成の鋼を連続鋳造してスラブとし、1220℃に再加熱したのちに、粗圧延を行い、その後、表2に示す条件で、高圧水によるデスケーリングを行った後、仕上げ圧延、冷却、巻き取りを行い、熱延コイルとし、酸洗したのちに、焼鈍し、470℃の亜鉛めっき浴に浸漬してめっきを行い、供試体No.1〜18の溶融亜鉛めっき鋼板を得た。さらに、前記供試体のいくつかについては、めっき後に、表2に示す再加熱処理、板厚減少率とする加工を施した。なお、表2において再加熱温度、保持時間、板厚減少率の欄の「−」は、その処理を行っていないことを示す。
Examples of the present invention will be described.
The steel having the composition shown in Table 1 is continuously cast into a slab, reheated to 1220 ° C., then subjected to rough rolling, and then descaling with high-pressure water under the conditions shown in Table 2, followed by finishing. Rolling, cooling, and winding are performed to form a hot rolled coil, pickled, annealed, dipped in a 470 ° C. zinc plating bath, plated, and then subjected to specimen no. 1-18 hot-dip galvanized steel sheets were obtained. Further, some of the specimens were subjected to reheating treatment and plate thickness reduction rate shown in Table 2 after plating. In Table 2, “-” in the columns of reheating temperature, holding time, and plate thickness reduction rate indicates that the treatment is not performed.

上記供試体から、試験片を採取し、析出物測定、組織観察、引張り試験、温間成形性評価試験を行った。試験方法はつぎの通りとした。   A specimen was collected from the specimen and subjected to precipitate measurement, structure observation, tensile test, and warm formability evaluation test. The test method was as follows.

(粒径20nm未満の析出物として析出したTi、Nb、Vの析出C相当量)
粒径20nm未満のTi、Nb、V量は、特許第4737278号公報に示されるように、試験片を板厚1/4まで研削した電解用試験片を陽極として10%AA系電解液(10体積%アセチルアセトン−1質量%テトラメチルアンモニウムクロライド−メタノール電解液)中で定電流電解を行い、この電解用試験片を一定量溶解した後、該電解用試験片表面に付着した析出物を分散液中で超音波剥離した分散液を、孔径20nmのフィルターを用いて濾過し、ついで、得られた濾液中のTi、Nb、V量を、ICP発光分光分析法により分析して求めた。なお、Ti、Nb、Vの析出物はすべて該電解用試験片表面に付着するため、前記分散液中にはTi、Nb、Vの全析出物が分散している。そして、Ti、Nb、Vの析出物の全てが炭化物であったとして、粒径20nm未満の析出物として析出したTi、Nb、Vのそれぞれの析出量(質量%)を[Ti]、[Nb]、[V]としたとき、([Ti]/48+[Nb]/93+[V]/51)×12より計算した値を、粒径20nm未満の析出物として析出したTi、Nb、Vの析出C相当量とした。
(Equivalent amount of deposited C of Ti, Nb, and V deposited as a precipitate having a particle size of less than 20 nm)
As shown in Japanese Patent No. 4737278, the amounts of Ti, Nb, and V having a particle diameter of less than 20 nm are 10% AA electrolyte (10 Constant current electrolysis in a volume% acetylacetone-1 mass% tetramethylammonium chloride-methanol electrolyte solution) After dissolving a certain amount of this test piece for electrolysis, deposits adhered to the surface of the test piece for electrolysis are dispersed. The dispersion liquid ultrasonically peeled therein was filtered using a filter having a pore diameter of 20 nm, and then the amounts of Ti, Nb, and V in the obtained filtrate were determined by ICP emission spectroscopic analysis. Since all the deposits of Ti, Nb, and V adhere to the surface of the electrolysis test piece, all the precipitates of Ti, Nb, and V are dispersed in the dispersion. Then, assuming that all the precipitates of Ti, Nb, and V are carbides, the amounts of precipitation (mass%) of Ti, Nb, and V precipitated as precipitates having a particle diameter of less than 20 nm are expressed as [Ti], [Nb ], [V], the value calculated from ([Ti] / 48 + [Nb] / 93 + [V] / 51) × 12 is the value of Ti, Nb, and V deposited as precipitates having a particle size of less than 20 nm. The amount corresponding to precipitation C was used.

(表層の固溶C量)
表層の固溶C量は、試験片のめっきを塩酸で剥離したサンプル表面から発光分光分析(カウントバック)により求めた表層の全C量から、サンプル表層の析出C量を引いた値として求めた。ここで、表層の析出C量はつぎのようにして求めた。まず、試験片のめっきを塩酸で剥離した板厚×20×20mmのサンプルを陽極として、10%AA系電解液中で定電流電解により0.2g溶解し、その後、電解によって得られた抽出残渣を孔径0.2μmのフィルターを用いて濾過してFe析出物を回収し、ついで回収されたFe析出物を混酸で溶解した後、ICP発光分光分析法によってFeを定量し、その測定値からFe析出物中のFe量を算出した。なお、Fe析出物は凝集しているため、孔径0.2μmのフィルターを用いて濾過を行うことで、粒径0.2μm未満のFe析出物も回収することが可能である。さらに、試験片のめっきを塩酸で剥離した板厚×20×20mmのサンプルを陽極として、10%AA系電解液中で定電流電解を行い、このサンプルを0.2g溶解した後、該サンプル表面に付着した析出物を分散液中で超音波剥離した分散液中のTi、Nb、V量を、ICP発光分光分析法により分析して求めた。そして、このようにして求めたFe、Ti、Nb、Vの析出量から、Feはセメンタイト、Ti、Nb、Vは炭化物として析出したものとして、([Fe]/167+[Ti]/48+[Nb]/93+[V]/51)×12より計算した値(前記[Fe]、[Ti]、[Nb]、[V]は、それぞれFe、Ti、Nb、Vの析出量(質量%))を表層の析出C量とした。そして、上記表層の全C量から、前記析出C量を引いた値を、表層の固溶C量とした。
(Solution amount of C on the surface layer)
The solid solution C amount of the surface layer was determined as a value obtained by subtracting the precipitated C amount of the sample surface layer from the total C amount of the surface layer determined by emission spectroscopic analysis (countback) from the sample surface from which the plating of the test piece was peeled with hydrochloric acid. . Here, the amount of precipitated C on the surface layer was determined as follows. First, 0.2 g of a sample having a thickness of 20 × 20 mm obtained by peeling the plating of the test piece with hydrochloric acid as an anode was dissolved by constant current electrolysis in a 10% AA-based electrolytic solution, and then the extraction residue obtained by electrolysis Is filtered using a filter having a pore diameter of 0.2 μm to collect Fe precipitates, and then the collected Fe precipitates are dissolved with a mixed acid, and then Fe is quantified by ICP emission spectroscopic analysis. The amount of Fe in the precipitate was calculated. Since Fe precipitates are aggregated, it is possible to collect Fe precipitates having a particle size of less than 0.2 μm by performing filtration using a filter having a pore size of 0.2 μm. Furthermore, constant current electrolysis was performed in a 10% AA-based electrolyte using a sample of plate thickness × 20 × 20 mm obtained by peeling the test piece plating with hydrochloric acid as an anode, and 0.2 g of this sample was dissolved, The amount of Ti, Nb, and V in the dispersion liquid obtained by ultrasonically peeling the deposit adhering to the dispersion liquid was determined by ICP emission spectroscopic analysis. Then, from the precipitation amounts of Fe, Ti, Nb, and V thus obtained, it is assumed that Fe is precipitated as cementite, Ti, Nb, and V as carbides ((Fe) / 167 + [Ti] / 48 + [Nb ] / 93 + [V] / 51) × 12 (wherein [Fe], [Ti], [Nb] and [V] are the precipitation amounts (mass%) of Fe, Ti, Nb and V, respectively) Was the amount of precipitated C on the surface layer. And the value which subtracted the said precipitation C amount from the total C amount of the said surface layer was made into the solid solution C amount of a surface layer.

(組織観察)
フェライト相および焼き戻しベイナイト相の面積率は、試験片から採取した組織観察用試験片の圧延方向−板厚方向断面を埋め込み研磨し、ナイタール腐食後、走査型電子顕微鏡(SEM)にて板厚1/4部を中心とし倍率1000倍として100×100μm領域の写真を3枚撮影し、そのSEM写真を画像処理することにより求めた。さらに表層(めっきを除く表層10μm位置)の組織の平均粒径は、試験片から採取した組織観察用試験片の圧延方向−板厚方向断面を埋め込み研磨し、ナイタール腐食後、測定ステップ0.1μmでEBSD(Electron Back Scatter Diffraction)測定をおこない、方位差15°以上を粒界として求めた。めっきを除く表層10μm位置での測定長さは500μmとし、表層10μm位置にある結晶粒全てについて、その各々の面積を円換算して直径を求め、それらの直径の平均値を表層の組織の平均粒径とした。
(Tissue observation)
The area ratio of the ferrite phase and the tempered bainite phase is determined by embedding and polishing the cross-section in the rolling direction-thickness direction of the specimen for structure observation taken from the test piece, and after the nital corrosion, the thickness is measured with a scanning electron microscope (SEM). Three photographs of a 100 × 100 μm region with a magnification of 1000 × centered on the ¼ part were taken, and the SEM photographs were obtained by image processing. Furthermore, the average particle size of the structure of the surface layer (surface layer 10 μm position excluding plating) is measured by embedding and polishing the rolling direction-thickness direction cross section of the structure observation specimen taken from the specimen, and measuring step 0.1 μm after nital corrosion. Then, EBSD (Electron Back Scatter Diffraction) measurement was performed, and an orientation difference of 15 ° or more was determined as a grain boundary. The measurement length at the 10 μm position of the surface layer excluding plating is 500 μm, and for all the crystal grains at the 10 μm position of the surface layer, the respective areas are converted into circles to obtain the diameter, and the average value of the diameters is the average of the structure of the surface layer The particle size was taken.

(引張り試験)
引張り試験は、供試体から圧延直角方向を長手としてJIS5号引張り試験片を切り出し、JIS Z2241に準拠して引張り試験をおこない、降伏強度(YP)、引張強度(TS)、全伸び(El)を評価した。
(Tensile test)
In the tensile test, a JIS No. 5 tensile test piece is cut out from the specimen with the direction perpendicular to the rolling direction as the longitudinal direction, a tensile test is performed according to JIS Z2241, and the yield strength (YP), tensile strength (TS), and total elongation (El) are measured. evaluated.

(温間成形性)
温間成形性の評価は、供試体から100×240mmの板を採取し、図1に示すハット部品を温間プレス成型し、図1中の縦壁A部より矢印方向に切り出したサンプルを埋め込み、研磨後、SEMにて縦壁部の亀裂深さを測定しておこなった。亀裂深さは、表層5mm領域を観察し、図2に示すようなめっき/地鉄界面からの亀裂深さの最大値とした。亀裂深さが10μm未満を合格とした。なお、プレスに際し、鋼板は700℃の大気炉で5分保持後に取り出し、鋼板温度が600℃になったことを確認しておこなった。プレス時のしわ押さえ圧20トンとし、ダイ肩Rは5mmとした。
(Warm formability)
Evaluation of warm formability is performed by collecting a 100 × 240 mm plate from the specimen, warm-pressing the hat part shown in FIG. 1, and embedding a sample cut out in the direction of the arrow from the vertical wall A in FIG. After polishing, the crack depth of the vertical wall was measured by SEM. The crack depth was the maximum value of the crack depth from the plating / base metal interface as shown in FIG. A crack depth of less than 10 μm was considered acceptable. In the pressing, the steel plate was taken out after being held in an atmospheric furnace at 700 ° C. for 5 minutes, and it was confirmed that the steel plate temperature was 600 ° C. The pressing pressure at the time of pressing was 20 tons, and the die shoulder R was 5 mm.

表3に供試体No.1〜18の特性値を示す。   In Table 3, the specimen No. Characteristic values of 1-18 are shown.

また、図3に、本発明鋼と、デスケーリングにおける高圧水の衝突圧(デスケーリング衝突圧)のみが本発明の範囲を外れる条件で製造した比較鋼に関し、デスケーリング衝突圧と表層の固溶C量の関係を示す。デスケーリング衝突圧を本発明の範囲内とすることで、表層の固溶C量を0.005%以上とできることがわかる。図4に、本発明鋼と、焼鈍雰囲気の露点のみが本発明の範囲を外れる条件で製造した比較鋼に関し、露点と表層の固溶C量の関係を示す。焼鈍雰囲気の露点を本発明の範囲内とすることで、表層の固溶C量を0.005%以上とできることがわかる。図5に、本発明鋼と、表層の固溶C量のみが本発明の範囲を外れる比較鋼に関し、表層の固溶C量と亀裂深さの関係を示す。表層の固溶C量を本発明の範囲内とすることで、亀裂深さを10μm未満とできることがわかる。図6に、本発明鋼と、表層の組織の平均粒径のみが本発明の範囲を外れる比較鋼に関し、表層の組織の平均粒径と亀裂深さの関係を示す。表層の組織の平均粒径を本発明の範囲内とすることで、亀裂深さを10μm未満とできることがわかる。   FIG. 3 shows a comparison between the steel of the present invention and a comparative steel manufactured under the condition that only the collision pressure of high-pressure water in descaling (descaling collision pressure) is outside the scope of the present invention. The relationship of C amount is shown. It can be seen that by setting the descaling collision pressure within the range of the present invention, the solid solution C amount of the surface layer can be made 0.005% or more. FIG. 4 shows the relationship between the dew point and the amount of solid solution C in the surface layer of the steel according to the present invention and a comparative steel manufactured under the condition that only the dew point of the annealing atmosphere is outside the scope of the present invention. It turns out that the amount of solid solution C of a surface layer can be 0.005% or more by making the dew point of an annealing atmosphere into the range of this invention. FIG. 5 shows the relationship between the amount of solute C in the surface layer and the crack depth in relation to the steel of the present invention and the comparative steel in which only the amount of solute C in the surface layer is outside the scope of the present invention. It turns out that the crack depth can be made less than 10 micrometers by making the amount of solid solution C of a surface layer into the range of this invention. FIG. 6 shows the relationship between the average grain size of the surface layer structure and the crack depth with respect to the steel of the present invention and the comparative steel in which only the average grain size of the surface layer structure falls outside the scope of the present invention. It turns out that the crack depth can be made less than 10 micrometers by making the average particle diameter of the structure | tissue of a surface layer in the range of this invention.

Claims (9)

質量%で、C:0.08〜0.20%、Si:0.5%以下、Mn:0.8〜1.8%、P:0.10%以下、S:0.030%以下、Al:0.10%以下、N:0.010%以下を含み、さらにTi:0.01〜0.3%、Nb:0.01〜0.1%、V:0.01〜1.0%の1種あるいは2種以上を下記(1)式で求められるCが0.07以上となるように含有し、残部Feおよび不可避的不純物からなる組成と、
フェライト相と焼き戻しベイナイト相の合計が面積率で95%以上であり、かつ、表層の組織の平均粒径が5.0μm以下であり、さらに、粒径20nm未満の析出物として析出したTi、Nb、Vの析出量が下記(2)式で求められる析出C相当量として0.025質量%以上、かつ、表層の固溶C量が0.005質量%以上である組織と、を有することを特徴とする溶融亜鉛めっき鋼板。
=(Ti/48+Nb/93+V/51)×12 ・・・(1)
ただし、(1)式における各元素記号は、それぞれの元素の含有量(質量%)を表す。
([Ti]/48+[Nb]/93+[V]/51)×12 ・・・(2)
ただし、(2)式における[Ti]、[Nb]、[V]は、粒径20nm未満の析出物として析出したTi、Nb、Vそれぞれの析出量(質量%)を表す。
In mass%, C: 0.08 to 0.20%, Si: 0.5% or less, Mn: 0.8 to 1.8%, P: 0.10% or less, S: 0.030% or less, Al: 0.10% or less, N: 0.010% or less, Ti: 0.01-0.3%, Nb: 0.01-0.1%, V: 0.01-1.0 1 or 2% or more of the composition, so that C * obtained by the following formula (1) is 0.07 or more, the composition comprising the balance Fe and inevitable impurities,
The total of the ferrite phase and the tempered bainite phase is 95% or more by area ratio, and the average grain size of the structure of the surface layer is 5.0 μm or less, and further Ti deposited as a precipitate having a grain size of less than 20 nm, A structure in which the precipitation amount of Nb and V is 0.025 mass% or more as the precipitation C equivalent amount obtained by the following formula (2), and the solid solution C amount of the surface layer is 0.005 mass% or more. Hot-dip galvanized steel sheet characterized by
C * = (Ti / 48 + Nb / 93 + V / 51) × 12 (1)
However, each element symbol in the formula (1) represents the content (% by mass) of each element.
([Ti] / 48 + [Nb] / 93 + [V] / 51) × 12 (2)
However, [Ti], [Nb], and [V] in the formula (2) represent the respective precipitation amounts (mass%) of Ti, Nb, and V deposited as precipitates having a particle size of less than 20 nm.
前記組成に加えてさらに、質量%で、Mo:0.005〜0.50%、Ta:0.005〜0.50%、W:0.005〜0.50%の1種あるいは2種以上を含有することを特徴とする請求項1に記載の溶融亜鉛めっき鋼板。   In addition to the above-described composition, one or more of Mo: 0.005-0.50%, Ta: 0.005-0.50%, W: 0.005-0.50% in mass% The hot-dip galvanized steel sheet according to claim 1, comprising: 前記組成に加えてさらに、質量%で、Cr:0.01〜1.0%、Ni:0.01〜1.0%、Cu:0.01〜1.0%の1種あるいは2種以上を含有することを特徴とする請求項1または2に記載の溶融亜鉛めっき鋼板。   In addition to the above composition, further, by mass, Cr: 0.01 to 1.0%, Ni: 0.01 to 1.0%, Cu: 0.01 to 1.0%, one or more The hot-dip galvanized steel sheet according to claim 1 or 2, characterized by comprising: 前記組成に加えてさらに、質量%で、Ca:0.0005〜0.01%、REM:0.0005〜0.01%の1種あるいは2種を含有することを特徴とする請求項1〜3のいずれかに記載の溶融亜鉛めっき鋼板。   In addition to the above composition, the composition further contains one or two of Ca: 0.0005 to 0.01% and REM: 0.0005 to 0.01% by mass%. 3. The hot dip galvanized steel sheet according to any one of 3 above. 前記組成に加えてさらに、質量%で、Sb:0.005〜0.050%を含有することを特徴とする請求項1〜4のいずれかに記載の溶融亜鉛めっき鋼板。   The hot-dip galvanized steel sheet according to any one of claims 1 to 4, further comprising, in addition to the composition, Sb: 0.005 to 0.050% by mass. 前記組成に加えてさらに、質量%で、B:0.0005〜0.0030%を含有することを特徴とする請求項1〜5のいずれかに記載の溶融亜鉛めっき鋼板。   The hot-dip galvanized steel sheet according to any one of claims 1 to 5, further comprising B: 0.0005 to 0.0030% by mass% in addition to the composition. 請求項1〜6のいずれかに記載の組成を有する鋼を鋳造してスラブとし、該スラブを、鋳造後そのまま、あるいは、一旦冷却した後に1200℃以上に再加熱したのちに、粗圧延を行い、
粗圧延終了後、仕上げ圧延前に高圧水の衝突圧を(1+Si)MPa以上とするデスケーリングを行い、その後、仕上げ圧延出側温度を950℃以下850℃以上とする仕上げ圧延を行い、
仕上げ圧延終了後、仕上げ圧延出側温度から650℃までの温度域を平均冷却速度30℃/s以上で冷却し、巻き取り温度を350℃以上600℃以下として巻き取り、酸洗したのち、
550℃以上での雰囲気の露点を−25℃以下とし、均熱温度を650〜770℃、均熱時間を10〜300sとする焼鈍を行い、
焼鈍後、420〜500℃の亜鉛めっき浴に浸漬して溶融亜鉛めっきを行った後、400〜200℃の温度域を平均冷却速度1℃/s以上で冷却することを特徴とする溶融亜鉛めっき鋼板の製造方法。
ただし、前記衝突圧におけるSiは、Siの含有量(質量%)である。
A steel having the composition according to any one of claims 1 to 6 is cast into a slab, and the slab is subjected to rough rolling as it is after casting or after being reheated to 1200 ° C or higher after being cooled. ,
After the rough rolling, before the final rolling, the high pressure water is subjected to descaling with a collision pressure of (1 + Si) MPa or higher, and then the final rolling outlet temperature is set to 950 ° C. or lower and 850 ° C. or higher.
After finishing rolling, the temperature range from the finish rolling exit temperature to 650 ° C. is cooled at an average cooling rate of 30 ° C./s or more, the winding temperature is 350 ° C. to 600 ° C., and after pickling,
An annealing at 550 ° C. or higher with an atmospheric dew point of −25 ° C. or lower, a soaking temperature of 650 to 770 ° C., and a soaking time of 10 to 300 s is performed,
After annealing, after dip galvanizing by immersing in a galvanizing bath at 420 to 500 ° C., the temperature range of 400 to 200 ° C. is cooled at an average cooling rate of 1 ° C./s or more. A method of manufacturing a steel sheet.
However, Si in the said collision pressure is content (mass%) of Si.
前記420〜500℃の亜鉛めっき浴に浸漬して溶融亜鉛めっきを行った後、460〜600℃まで再加熱し1s以上保持した後に、400〜200℃の温度域を平均冷却速度1℃/s以上で冷却することを特徴とする請求項7に記載の溶融亜鉛めっき鋼板の製造方法。   After dip galvanizing by immersing in the galvanizing bath at 420 to 500 ° C., reheating to 460 to 600 ° C. and holding for 1 s or more, the temperature range of 400 to 200 ° C. is average cooling rate 1 ° C./s. The method for producing a hot-dip galvanized steel sheet according to claim 7, wherein cooling is performed as described above. 前記400〜200℃の温度域を平均冷却速度1℃/s以上で冷却した後、さらに0.1〜3.0%の板厚減少率とする加工を施すことを特徴とする請求項7または8に記載の溶融亜鉛めっき鋼板の製造方法。   8. The process according to claim 7, wherein after the temperature range of 400 to 200 [deg.] C. is cooled at an average cooling rate of 1 [deg.] C./s or more, the thickness is further reduced to 0.1 to 3.0%. The manufacturing method of the hot dip galvanized steel plate of 8.
JP2017019277A 2017-02-06 2017-02-06 Hot-dip galvanized steel sheet and manufacturing method thereof Active JP6589903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017019277A JP6589903B2 (en) 2017-02-06 2017-02-06 Hot-dip galvanized steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017019277A JP6589903B2 (en) 2017-02-06 2017-02-06 Hot-dip galvanized steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2018127645A true JP2018127645A (en) 2018-08-16
JP6589903B2 JP6589903B2 (en) 2019-10-16

Family

ID=63172184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017019277A Active JP6589903B2 (en) 2017-02-06 2017-02-06 Hot-dip galvanized steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6589903B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109881079A (en) * 2019-03-15 2019-06-14 唐山钢铁集团有限责任公司 The multistage zinc-plated low-alloy high-strength steel band of one steel and its production method
JP6645637B1 (en) * 2018-08-22 2020-02-14 Jfeスチール株式会社 High strength steel sheet and method for producing the same
WO2020039697A1 (en) * 2018-08-22 2020-02-27 Jfeスチール株式会社 High-strength steel sheet and production method therefor
CN114807755A (en) * 2022-04-15 2022-07-29 马鞍山钢铁股份有限公司 High-strength and high-toughness pre-coated steel plate with good coating quality, preparation method of high-strength and high-toughness pre-coated steel plate, steel member and application of steel member
CN115261738A (en) * 2022-07-28 2022-11-01 马鞍山钢铁股份有限公司 560 MPa-grade galvanized high-strength steel plate with excellent coating adhesion and production method thereof
CN115418558A (en) * 2022-06-21 2022-12-02 首钢集团有限公司 Method for reducing hot-rolled surface warping of acid-resistant steel containing antimony
WO2024095809A1 (en) * 2022-10-31 2024-05-10 日本製鉄株式会社 Hot-rolled steel sheet

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199979A (en) * 2005-01-18 2006-08-03 Nippon Steel Corp Bake hardenable hot rolled steel sheet with excellent workability, and its manufacturing method
JP2007224408A (en) * 2005-03-31 2007-09-06 Jfe Steel Kk Hot-rolled steel sheet having excellent strain aging property and method for producing the same
JP2008189985A (en) * 2007-02-02 2008-08-21 Sumitomo Metal Ind Ltd Hot rolled steel sheet having local ductile performance, and method for producing the same
JP2011225978A (en) * 2010-03-31 2011-11-10 Jfe Steel Corp Hot-dip galvanized steel sheet with high tensile strength and superior processability and method for producing same
JP2012188746A (en) * 2011-02-24 2012-10-04 Jfe Steel Corp Galvannealed steel sheet
JP2014208876A (en) * 2013-03-29 2014-11-06 Jfeスチール株式会社 High strength hot rolled steel sheet and manufacturing method therefor
JP2015017322A (en) * 2013-06-14 2015-01-29 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in workability and toughness and production method thereof
JP2015147960A (en) * 2014-02-05 2015-08-20 Jfeスチール株式会社 High-strength thin steel sheet excellent in toughness, and production method thereof
KR101630977B1 (en) * 2014-12-09 2016-06-16 주식회사 포스코 High strength hot rolled steel sheet having excellent formability and method for manufacturing the same
US20160199892A1 (en) * 2013-08-30 2016-07-14 Hyundai Steel Company High-strength hot-rolled plated steel sheet and method for manufacturing the same
JP2018127644A (en) * 2017-02-06 2018-08-16 Jfeスチール株式会社 Hot-dip galvanized steel sheet and method for producing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199979A (en) * 2005-01-18 2006-08-03 Nippon Steel Corp Bake hardenable hot rolled steel sheet with excellent workability, and its manufacturing method
JP2007224408A (en) * 2005-03-31 2007-09-06 Jfe Steel Kk Hot-rolled steel sheet having excellent strain aging property and method for producing the same
JP2008189985A (en) * 2007-02-02 2008-08-21 Sumitomo Metal Ind Ltd Hot rolled steel sheet having local ductile performance, and method for producing the same
JP2011225978A (en) * 2010-03-31 2011-11-10 Jfe Steel Corp Hot-dip galvanized steel sheet with high tensile strength and superior processability and method for producing same
JP2012188746A (en) * 2011-02-24 2012-10-04 Jfe Steel Corp Galvannealed steel sheet
JP2014208876A (en) * 2013-03-29 2014-11-06 Jfeスチール株式会社 High strength hot rolled steel sheet and manufacturing method therefor
JP2015017322A (en) * 2013-06-14 2015-01-29 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in workability and toughness and production method thereof
US20160199892A1 (en) * 2013-08-30 2016-07-14 Hyundai Steel Company High-strength hot-rolled plated steel sheet and method for manufacturing the same
JP2015147960A (en) * 2014-02-05 2015-08-20 Jfeスチール株式会社 High-strength thin steel sheet excellent in toughness, and production method thereof
KR101630977B1 (en) * 2014-12-09 2016-06-16 주식회사 포스코 High strength hot rolled steel sheet having excellent formability and method for manufacturing the same
JP2018127644A (en) * 2017-02-06 2018-08-16 Jfeスチール株式会社 Hot-dip galvanized steel sheet and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6645637B1 (en) * 2018-08-22 2020-02-14 Jfeスチール株式会社 High strength steel sheet and method for producing the same
WO2020039697A1 (en) * 2018-08-22 2020-02-27 Jfeスチール株式会社 High-strength steel sheet and production method therefor
US11846002B2 (en) 2018-08-22 2023-12-19 Jfe Steel Corporation High-strength steel sheet and method for manufacturing same
CN109881079A (en) * 2019-03-15 2019-06-14 唐山钢铁集团有限责任公司 The multistage zinc-plated low-alloy high-strength steel band of one steel and its production method
CN114807755A (en) * 2022-04-15 2022-07-29 马鞍山钢铁股份有限公司 High-strength and high-toughness pre-coated steel plate with good coating quality, preparation method of high-strength and high-toughness pre-coated steel plate, steel member and application of steel member
CN114807755B (en) * 2022-04-15 2024-03-26 马鞍山钢铁股份有限公司 High-strength and high-toughness pre-coated steel plate with good coating quality, preparation method thereof, steel member and application thereof
CN115418558A (en) * 2022-06-21 2022-12-02 首钢集团有限公司 Method for reducing hot-rolled surface warping of acid-resistant steel containing antimony
CN115261738A (en) * 2022-07-28 2022-11-01 马鞍山钢铁股份有限公司 560 MPa-grade galvanized high-strength steel plate with excellent coating adhesion and production method thereof
CN115261738B (en) * 2022-07-28 2023-08-15 马鞍山钢铁股份有限公司 560 MPa-level galvanized high-strength steel plate with excellent coating adhesion and production method thereof
WO2024095809A1 (en) * 2022-10-31 2024-05-10 日本製鉄株式会社 Hot-rolled steel sheet

Also Published As

Publication number Publication date
JP6589903B2 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP6179584B2 (en) High strength steel plate with excellent bendability and method for producing the same
JP6589903B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
TWI422688B (en) High strength steel sheet having superior ductility and method for manufacturing the same
JP5068688B2 (en) Hot-rolled steel sheet with excellent hole expansion
JP5651964B2 (en) Alloyed hot-dip galvanized steel sheet excellent in ductility, hole expansibility and corrosion resistance, and method for producing the same
KR101923327B1 (en) High strength galvanized steel sheet and production method therefor
JP6086081B2 (en) High strength cold-rolled steel sheet with excellent surface properties and method for producing the same
JP5839152B1 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP6455461B2 (en) High strength steel plate with excellent bendability and method for producing the same
JP6424908B2 (en) Hot-dip galvanized steel sheet and method of manufacturing the same
CN107429355B (en) High-strength steel sheet and method for producing same
KR101996119B1 (en) Hot-rolled steel sheet and method for producing same
JP6384623B2 (en) High strength steel plate and manufacturing method thereof
KR102119017B1 (en) High strength cold rolled thin steel sheet and method for manufacturing the same
KR20180120715A (en) Thin steel plate and coated steel sheet, method of manufacturing hot-rolled steel sheet, manufacturing method of cold-rolled full-hard steel sheet, manufacturing method of thin steel sheet and manufacturing method of coated steel sheet
JP2015147960A (en) High-strength thin steel sheet excellent in toughness, and production method thereof
JP6288321B2 (en) High strength hot rolled steel sheet and method for producing the same
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JP6131872B2 (en) High strength thin steel sheet and method for producing the same
JP5397263B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP5668361B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP6455462B2 (en) High-strength steel sheet with excellent toughness and ductility and method for producing the same
JP2013127098A (en) High-strength hot-dip galvanized steel sheet excellent in workability and method for manufacturing the same
JP2006083471A (en) Method for producing hot dip galvanized steel sheet having excellent strain age hardening property
JP2005187947A (en) Hot dip galvanized steel sheet having excellent strain age hardening property, and its production method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R150 Certificate of patent or registration of utility model

Ref document number: 6589903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250