[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018123301A - Thermosetting adhesive sheet and use thereof - Google Patents

Thermosetting adhesive sheet and use thereof Download PDF

Info

Publication number
JP2018123301A
JP2018123301A JP2017204515A JP2017204515A JP2018123301A JP 2018123301 A JP2018123301 A JP 2018123301A JP 2017204515 A JP2017204515 A JP 2017204515A JP 2017204515 A JP2017204515 A JP 2017204515A JP 2018123301 A JP2018123301 A JP 2018123301A
Authority
JP
Japan
Prior art keywords
group
resin
adhesive sheet
sheet
thermosetting adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017204515A
Other languages
Japanese (ja)
Inventor
豪 阪口
Go Sakaguchi
豪 阪口
原田 知明
Tomoaki Harada
知明 原田
広一 戸崎
Koichi Tozaki
広一 戸崎
努 早坂
Tsutomu Hayasaka
努 早坂
和規 松戸
Kazunori Matsudo
和規 松戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2017204515A priority Critical patent/JP2018123301A/en
Publication of JP2018123301A publication Critical patent/JP2018123301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermosetting adhesive sheet excellent in the adhesion, heat resistance (particularly after humidification), flexibility, electric insulation, low dielectric constant and low dielectric loss tangent after curing.SOLUTION: The thermosetting adhesive sheet is formed from a thermosetting composition which contains a specific resin (A), a specific curative (B), and an alkali metal compound (D) of 1-110 ppm in terms of the mass of alkali metal elements.SELECTED DRAWING: None

Description

本発明は、低極性樹脂、有機金属化合物及びエポキシ基含有化合物を含有する熱硬化性接着シートに関する。本発明の熱硬化性接着シートは、プリント配線板の回路面の保護に好適に用いられる。   The present invention relates to a thermosetting adhesive sheet containing a low polarity resin, an organometallic compound, and an epoxy group-containing compound. The thermosetting adhesive sheet of the present invention is suitably used for protecting the circuit surface of a printed wiring board.

近年、エレクトロニクス分野の発展が目覚しく、特に電子機器の小型化、軽量化、高密度化が進み、プリント配線板をはじめとする電子材料には、薄型化、多層化、高精細化がますます要求されるようになっている。従来のガラスエポキシ等に代表される肉厚のリジッド基板の場合、高度な屈曲性、接着性、狭スペース化に伴う高い電気絶縁性、低誘電率、低誘電正接は求められなかった。
しかし、最近のプリント配線板をはじめとする電子材料には、耐熱性、加工性の他、高度な屈曲性、接着性、狭スペース化に伴う高い電気絶縁性、低誘電率、低誘電正接が求められている。
このような電子材料周辺に用いられる接着剤やコーティング剤としては、例えば、具体的には次の(1)〜(6)が挙げられる。
In recent years, there has been a remarkable development in the electronics field, and in particular, electronic devices have become smaller, lighter, and higher in density, and electronic materials such as printed wiring boards are increasingly required to be thinner, multilayered, and highly detailed. It has come to be. In the case of a thick rigid substrate typified by conventional glass epoxy or the like, high flexibility, adhesiveness, high electrical insulation, low dielectric constant, and low dielectric loss tangent associated with a narrow space have not been required.
However, recent printed wiring boards and other electronic materials have not only heat resistance and workability, but also high flexibility, adhesion, high electrical insulation due to narrow space, low dielectric constant, and low dielectric loss tangent. It has been demanded.
Specific examples of adhesives and coating agents used around such electronic materials include the following (1) to (6).

(1)層間接着剤:回路基板同士を張り合わせるために用いられるもので、直接銅あるいは銀回路に接する。多層基板の層間に使用され、液状やシート状のものがある。 (1) Interlayer adhesive: Used to bond circuit boards together, and is in direct contact with copper or silver circuit. It is used between the layers of a multilayer substrate, and there are liquid and sheet-like ones.

(2)カバーレイフィルム用接着剤:カバーレイフィルム(回路の最表面を保護する目的で用いられるポリイミドフィルムなど)と、下地の回路基板と、を張り合わせるために用いられ、あらかじめポリイミドフィルムと、接着層とが一体化されているものが多い。 (2) Coverlay film adhesive: used to bond a coverlay film (such as a polyimide film used for the purpose of protecting the outermost surface of a circuit) and an underlying circuit board; In many cases, the adhesive layer is integrated.

(3)銅張フィルム(CCL)用接着剤:ポリイミドフィルムと銅箔とを張り合わせるために用いられる。銅回路形成時にエッチング等の加工が施される。 (3) Adhesive for copper-clad film (CCL): used to bond polyimide film and copper foil together. Processing such as etching is performed when the copper circuit is formed.

(4)カバーレイ:回路の最表面を保護する目的で用いられ、回路上に印刷インクを印刷したり、接着シートを張り合わせたりした後、硬化させることで形成される。感光性や熱硬化性のものがある。 (4) Coverlay: used for the purpose of protecting the outermost surface of the circuit, and is formed by printing a printing ink on the circuit or pasting an adhesive sheet and then curing. Some are photosensitive and thermosetting.

(5)補強板用接着剤:配線板の機械的強度を補完する目的で、配線板の一部を、金属、ガラスエポキシ、ポリイミド等の補強板に固定するために用いられる。 (5) Adhesive for reinforcing plate: For the purpose of complementing the mechanical strength of the wiring board, it is used to fix a part of the wiring board to a reinforcing plate made of metal, glass epoxy, polyimide or the like.

(6)電磁波シールド用接着剤:電子回路から発生する電磁ノイズを遮蔽する目的で、フレキシブルプリント配線板に貼着される。 (6) Adhesive for electromagnetic wave shield: Affixed to a flexible printed wiring board for the purpose of shielding electromagnetic noise generated from an electronic circuit.

これらの形態としては、液状(印刷用にインク化されたもの)やシート状(あらかじめフィルム化されたもの)等があり、用途に応じて適宜形態が選択される。   As these forms, there are liquid forms (ink-printed for printing), sheet-like forms (film-formed in advance), and the like is appropriately selected according to the application.

こういった電子材料周辺部材への高い要求に応えるため、様々な検討が行われているが、全ての特性を充分に満足させるものは得られていない。
例えば、特許文献1には、ウレタン変性エポキシ樹脂とエポキシ樹脂硬化剤を主成分とするエポキシ樹脂組成物が開示されている。
Various studies have been made in order to meet such high demands on electronic material peripheral members, but no material that sufficiently satisfies all the characteristics has been obtained.
For example, Patent Document 1 discloses an epoxy resin composition mainly composed of a urethane-modified epoxy resin and an epoxy resin curing agent.

特許文献2、3には、シアネートエステル樹脂と1価のフェノール化合物を含む硬化性組成物が開示されている。   Patent Documents 2 and 3 disclose curable compositions containing a cyanate ester resin and a monovalent phenol compound.

特許文献4には、フェノール類、トリアジン環を有する化合物、ヒドロキシル基置換芳香族アルデヒドを反応させて得られるフェノール樹脂とエポキシ樹脂を含有することを特徴とする硬化性組成物が開示されている。   Patent Document 4 discloses a curable composition comprising a phenol resin obtained by reacting a phenol, a compound having a triazine ring, and a hydroxyl group-substituted aromatic aldehyde and an epoxy resin.

特許文献5には、ポリエーテルエステルアミドをラジカル重合させる硬化性組成物が開示されている。   Patent Document 5 discloses a curable composition for radical polymerization of polyetheresteramide.

特許文献6には、架橋構造を有しない熱可塑性樹脂を用いて積層体回路を形成する方法として、液晶ポリマーを用いる例が開示されている。   Patent Document 6 discloses an example in which a liquid crystal polymer is used as a method of forming a laminate circuit using a thermoplastic resin having no cross-linked structure.

特許文献7には、オキセタン構造と熱カチオン硬化触媒を主成分とする硬化性組成物が開示されている。   Patent Document 7 discloses a curable composition mainly composed of an oxetane structure and a thermal cation curing catalyst.

特許文献8には、可撓性を有する有機絶縁性フィルム、接着剤層および保護フィルムを有するTAB用接着剤付きテープであって、前記接着剤層がポリアミド樹脂と有機金属化合物とエポキシ樹脂とを含有する、TAB用接着剤付きテープが開示されている。具体的には、ポリアミド樹脂と有機金属化合物と2官能のエポキシ樹脂とを含有する接着剤シートにて銅箔とポリイミドフィルムとを貼り合わせた場合に、めっき処理後における剥離強度(接着強度)が優れ、150℃環境下における絶縁性に優れる旨、記載されている。   Patent Document 8 discloses a tape with an adhesive for TAB having a flexible organic insulating film, an adhesive layer and a protective film, and the adhesive layer comprises a polyamide resin, an organometallic compound, and an epoxy resin. A tape with an adhesive for TAB is disclosed. Specifically, when a copper foil and a polyimide film are bonded together with an adhesive sheet containing a polyamide resin, an organometallic compound, and a bifunctional epoxy resin, the peel strength (adhesive strength) after the plating treatment is It is described that it is excellent and has excellent insulation properties at 150 ° C.

特許文献9には、ポリイミド樹脂(A)、エポキシ樹脂(B)およびエポキシ樹脂硬化剤(C)を含む、熱重合性及び放射線重合性接着シートが開示されている。   Patent Document 9 discloses a heat-polymerizable and radiation-polymerizable adhesive sheet containing a polyimide resin (A), an epoxy resin (B), and an epoxy resin curing agent (C).

特許文献10には、アクリル系ポリマーと、イソシアネート系硬化剤と、エポキシ系や金属キレート系の硬化剤をさらに含有する光学用粘着剤が開示されている。   Patent Document 10 discloses an optical pressure-sensitive adhesive that further contains an acrylic polymer, an isocyanate curing agent, and an epoxy or metal chelate curing agent.

特許文献11、12には、エポキシ樹脂、硬化剤、エポキシ樹脂と非相溶性である高分子化合物を含有する接着フィルムが開示されている。   Patent Documents 11 and 12 disclose an adhesive film containing an epoxy resin, a curing agent, and a polymer compound that is incompatible with the epoxy resin.

特開2011−105916号公報JP 2011-105916 A 特開2001−214053号公報JP 2001-214053 A 特開2002−138199号公報JP 2002-138199 A 特開2006−249178号公報JP 2006-249178 A 特開2013−45755号公報JP 2013-45755 A 特開2005−105165号公報JP 2005-105165 A 特開2007−077330号公報JP 2007-073330 A 特開平9−64111号公報JP-A-9-64111 特開2003−41202号公報JP 2003-41202 A 特開2011−37927号公報JP 2011-37927 A 特開2008−195943号公報JP 2008-195943 A 特開2008−121005号公報JP 2008-112005 A

特許文献1に開示されるエポキシ樹脂組成物は、ウレタン由来の接着性や、良好な回路埋め込み性を示すものの、高極性なウレタン結合が多数含まれることから、電気絶縁性に劣るという問題があった。
特許文献2、3に開示される硬化性組成物は、良好な接着性や、高Tgに由来する耐熱性を示すものの、成型物がもろいといった問題があった。
特許文献4に開示される硬化性組成物は、高い芳香族含有量に由来する高い耐熱性と難燃性を示すものの、高い分子間相互作用により、屈曲性に劣るという問題があった。
特許文献5に開示される硬化性組成物は、アミドやエーテルに由来する高い接着性や絶縁性を示すものの、吸湿しやすい構造であることから加湿後の耐熱性に劣るという問題があった。
特許文献6に開示される積層体回路形成方法は、高温で樹脂を溶融させることにより高い接着性を発現できるが、溶融温度が280℃以上と高温なため、他の耐熱性に劣る部材に対する悪影響や、高温溶融に対応した設備導入の必要性といった問題があった。
特許文献7に開示される硬化性組成物は、水酸基の生成を抑えることによる低誘電化と、カチオン重合の長所である低硬化収縮に由来する加工安定性を示すものの、酸発生による金属腐食の懸念や、水分による硬化阻害といった安定性の面での問題があった。
Although the epoxy resin composition disclosed in Patent Document 1 exhibits adhesiveness derived from urethane and good circuit embedding properties, it has a problem of poor electrical insulation because it contains a large number of highly polar urethane bonds. It was.
Although the curable compositions disclosed in Patent Documents 2 and 3 exhibit good adhesiveness and heat resistance derived from high Tg, there is a problem that a molded product is fragile.
Although the curable composition disclosed in Patent Document 4 exhibits high heat resistance and flame retardancy derived from a high aromatic content, there is a problem that flexibility is inferior due to high intermolecular interaction.
Although the curable composition disclosed in Patent Document 5 exhibits high adhesiveness and insulating properties derived from amides and ethers, it has a problem of poor heat resistance after humidification because it has a structure that easily absorbs moisture.
The laminate circuit forming method disclosed in Patent Document 6 can exhibit high adhesiveness by melting a resin at a high temperature, but since the melting temperature is as high as 280 ° C. or higher, it has an adverse effect on other members having poor heat resistance In addition, there was a problem that it was necessary to introduce equipment corresponding to high temperature melting.
Although the curable composition disclosed in Patent Document 7 exhibits low dielectric constant by suppressing the formation of hydroxyl groups and processing stability derived from low curing shrinkage, which is an advantage of cationic polymerization, it does not cause metal corrosion due to acid generation. There were concerns and problems in stability such as inhibition of curing by moisture.

特許文献8に開示される接着剤付きテープは、用いられるエポキシ樹脂が2官能であるため硬化後の耐熱性が不十分である。
特許文献9には、ポリイミド樹脂とエポキシ樹脂由来の高い耐熱分解性による耐リフロー性を付与できているものの、架橋密度が高くなりすぎることから屈曲性が不十分という課題があった。
特許文献10に開示される粘着シートは、エージング後、即ち硬化後のシートをガラス板に貼って使用するものである。特許文献10には、硬化前の接着シートを被着体間に挟んで、熱硬化する旨は開示されていない。
特許文献11、12には、非相溶な2つの成分で微小な相分離構造を形成することで、熱ストレス吸収性が優れたものになり、耐クラック性が高い接着フィルムとなるものの、微小な界面が増大することからめっき液耐性が不足するという課題があった。
The tape with an adhesive disclosed in Patent Document 8 has insufficient heat resistance after curing because the epoxy resin used is bifunctional.
Although patent document 9 has provided reflow resistance by the high thermal decomposition resistance derived from a polyimide resin and an epoxy resin, there existed a subject that bending property was inadequate because a crosslinking density became high too much.
The pressure-sensitive adhesive sheet disclosed in Patent Document 10 is used by pasting a sheet after aging, that is, after curing, on a glass plate. Patent Document 10 does not disclose that an adhesive sheet before curing is sandwiched between adherends and thermally cured.
In Patent Documents 11 and 12, by forming a minute phase separation structure with two incompatible components, the thermal stress absorbability is excellent, and an adhesive film with high crack resistance is obtained. There is a problem that the plating solution resistance is insufficient due to an increase in the number of interfaces.

本発明は、硬化後のめっき液耐性、接着性、耐熱性(特に加湿後)、屈曲性、および電気絶縁性に優れる熱硬化性接着シートを提供することを目的とする。   An object of this invention is to provide the thermosetting adhesive sheet which is excellent in plating solution tolerance after hardening, adhesiveness, heat resistance (especially after humidification), flexibility, and electrical insulation.

本発明者らは前記の課題を解決するため、鋭意検討の結果、樹脂(A)、硬化剤(B)、および特定量のアルカリ金属化合物(C)を含む熱硬化性組成物を用いることにより本発明を完成させるに至った。
すなわち、本発明は、下記条件(1)〜(5)の全てを満たす熱硬化性組成物から形成されてなる熱硬化性接着シートに関する。
(1)樹脂(A)、硬化剤(B)、およびアルカリ金属化合物(C)を含む。
(2)硬化剤(B)は、エポキシ基含有化合物、イソシアネート基含有化合物、アジリジニル基含有化合物、およびオキセタニル基含有化合物からなる群より選ばれる少なくとも一種である。
(3)樹脂(A)は、エポキシ基、イソシアネート基、アジリジニル基、およびオキセタニル基を有さず、前記硬化剤(B)と反応し得る、反応性官能基を有する。
(4)前記樹脂(A)が、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリウレタンポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、スチレン系エラストマー、フッ素樹脂およびスチレン無水マレイン酸系樹脂からなる群より選ばれる少なくとも一種である。
(5)アルカリ金属元素の質量換算にてアルカリ金属化合物(C)を、熱硬化性組成物の固形分中、1〜110ppm含有する。
In order to solve the above-described problems, the present inventors have intensively studied to use a thermosetting composition containing a resin (A), a curing agent (B), and a specific amount of an alkali metal compound (C). The present invention has been completed.
That is, this invention relates to the thermosetting adhesive sheet formed from the thermosetting composition which satisfy | fills all the following conditions (1)-(5).
(1) A resin (A), a curing agent (B), and an alkali metal compound (C) are included.
(2) The curing agent (B) is at least one selected from the group consisting of an epoxy group-containing compound, an isocyanate group-containing compound, an aziridinyl group-containing compound, and an oxetanyl group-containing compound.
(3) The resin (A) does not have an epoxy group, an isocyanate group, an aziridinyl group, and an oxetanyl group, and has a reactive functional group that can react with the curing agent (B).
(4) The resin (A) is an acrylic resin, a polyester resin, a polyurethane resin, a polyurethane polyurea resin, a polyamide resin, a polyimide resin, a polycarbonate resin, a polyphenylene ether resin, a styrene elastomer, a fluorine resin, and a styrene maleic anhydride resin. Is at least one selected from the group consisting of
(5) The alkali metal compound (C) is contained in an amount of 1 to 110 ppm in terms of the mass of the alkali metal element in the solid content of the thermosetting composition.

前記反応性官能基は、カルボキシル基、アルコール性水酸基、フェノール性水酸基および酸無水物基からなる群より選ばれる少なくとも一種であることが好ましい。
前記樹脂(A)1gの反応性官能基価の合計は、水酸化カリウム換算で1〜80mgであることが好ましい。
The reactive functional group is preferably at least one selected from the group consisting of a carboxyl group, an alcoholic hydroxyl group, a phenolic hydroxyl group, and an acid anhydride group.
The total reactive functional group value of 1 g of the resin (A) is preferably 1 to 80 mg in terms of potassium hydroxide.

前記樹脂(A)の反応性官能基1molに対し、硬化剤(B)中のエポキシ基、イソシアネート基、アジリジニル基、およびオキセタニル基の合計が0.1〜12molであることが好ましい。   The total of the epoxy group, isocyanate group, aziridinyl group, and oxetanyl group in the curing agent (B) is preferably 0.1 to 12 mol with respect to 1 mol of the reactive functional group of the resin (A).

また、本発明には前記の熱硬化性接着シートと、前記熱硬化性接着シートの両面を覆う2つのシート状基材とを有する、シート状基材付き熱硬化性接着シートに関する。   In addition, the present invention relates to a thermosetting adhesive sheet with a sheet-like base material, which has the thermosetting adhesive sheet and two sheet-like base materials that cover both surfaces of the thermosetting adhesive sheet.

さらに本発明は、シート状基材の少なくとも片面に、下記条件(1)〜(5)の全てを満たす熱硬化性組成物を塗工・乾燥し、熱硬化性接着シートを形成し、前記熱硬化性接着シートの他方の面に、他のシート状基材を重ねる、シート状基材付き熱硬化性接着シートの製造方法に関する。
(1)樹脂(A)、硬化剤(B)、およびアルカリ金属化合物(C)を含む。
(2)硬化剤(B)は、エポキシ基含有化合物、イソシアネート基含有化合物、アジリジニル基含有化合物、およびオキセタニル基含有化合物からなる群より選ばれる少なくとも一種である。
(3)樹脂(A)は、エポキシ基、イソシアネート基、アジリジニル基、およびオキセタニル基を有さず、前記硬化剤(B)と反応し得る、反応性官能基を有する。
(4)前記樹脂(A)が、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリウレタンポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、スチレン系エラストマー、フッ素樹脂およびスチレン無水マレイン酸系樹脂からなる群より選ばれる少なくとも一種である。
(5)アルカリ金属元素の質量換算にてアルカリ金属化合物(D)を、熱硬化性組成物の固形分中、1〜110ppm含有する。
Furthermore, this invention coats and dries a thermosetting composition satisfying all of the following conditions (1) to (5) on at least one surface of the sheet-like substrate to form a thermosetting adhesive sheet, It is related with the manufacturing method of the thermosetting adhesive sheet with a sheet-like base material which piles up another sheet-like base material on the other side of a curable adhesive sheet.
(1) A resin (A), a curing agent (B), and an alkali metal compound (C) are included.
(2) The curing agent (B) is at least one selected from the group consisting of an epoxy group-containing compound, an isocyanate group-containing compound, an aziridinyl group-containing compound, and an oxetanyl group-containing compound.
(3) The resin (A) does not have an epoxy group, an isocyanate group, an aziridinyl group, and an oxetanyl group, and has a reactive functional group that can react with the curing agent (B).
(4) The resin (A) is an acrylic resin, a polyester resin, a polyurethane resin, a polyurethane polyurea resin, a polyamide resin, a polyimide resin, a polycarbonate resin, a polyphenylene ether resin, a styrene elastomer, a fluorine resin, and a styrene maleic anhydride resin. Is at least one selected from the group consisting of
(5) The alkali metal compound (D) is contained in an amount of 1 to 110 ppm in terms of the mass of the alkali metal element in the solid content of the thermosetting composition.

さらに本発明は、前記シート状硬化物を介して、導電性回路を有するプリント配線板の前記回路面が、シート状基材で保護されてなる、保護シート付きプリント配線板に関する。   Furthermore, this invention relates to the printed wiring board with a protective sheet in which the said circuit surface of the printed wiring board which has an electroconductive circuit is protected by the sheet-like base material through the said sheet-like hardened | cured material.

また、本発明は、前記熱硬化性接着シートを、導電性回路を有するプリント配線板の前記回路面と、シート状基材との間に挟み、前記熱硬化性接着シートを熱硬化する、保護シート付きプリント配線板の製造方法に関する。   Further, the present invention provides a protection in which the thermosetting adhesive sheet is sandwiched between the circuit surface of a printed wiring board having a conductive circuit and a sheet-like substrate, and the thermosetting adhesive sheet is thermoset. The present invention relates to a method for manufacturing a printed wiring board with a sheet.

本発明の熱硬化性接着シートは、硬化後のめっき液耐性、接着性、加湿後の耐熱性、屈曲性、および電気絶縁性に優れる。   The thermosetting adhesive sheet of the present invention is excellent in plating solution resistance after curing, adhesiveness, heat resistance after humidification, flexibility, and electrical insulation.

本発明の熱硬化性接着シートは、前述の通り、樹脂(A)、硬化剤(B)、および特定量のアルカリ金属化合物(C)を含む。
以下、樹脂(A)について詳細に説明する。
As described above, the thermosetting adhesive sheet of the present invention includes the resin (A), the curing agent (B), and a specific amount of the alkali metal compound (C).
Hereinafter, the resin (A) will be described in detail.

本発明における樹脂(A)は、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリウレタンポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、スチレン系エラストマー、フッ素樹脂およびスチレン無水マレイン酸系樹脂からなる群より選ばれる。これらは適宜選択し複数を用いることができる。なかでも、疎水性の高さに由来する高い絶縁性、また熱分解点の少なさに由来する高い耐熱性の観点からスチレン系エラストマー、ポリフェニレンエーテル樹脂が好ましい
The resin (A) in the present invention comprises an acrylic resin, a polyester resin, a polyurethane resin, a polyurethane polyurea resin, a polyamide resin, a polyimide resin, a polycarbonate resin, a polyphenylene ether resin, a styrene elastomer, a fluororesin, and a styrene maleic anhydride resin. Selected from the group. A plurality of these may be selected as appropriate. Of these, styrene-based elastomers and polyphenylene ether resins are preferred from the viewpoints of high insulation derived from high hydrophobicity and high heat resistance derived from low thermal decomposition point.

本発明における樹脂(A)は、エポキシ基、イソシアネート基、アジリジニル基、およびオキセタニル基を有さず、前記硬化剤(B)と反応し得る、反応性官能基を有する。
前記反応性官能基としては、カルボキシル基、アルコール性水酸基、フェノール性水酸基、酸無水物基およびアミノ基、シアネート基、イソシアノ基、シアナト基、イソシアナト基、イミダゾール基、ピロール基、アセタール基、アクリロイル基、メタクリロイル基、アルデヒド基、ヒドラジド基、ヒドラゾン基、リン酸基等が挙げられ、カルボキシル基、アルコール性水酸基、フェノール性水酸基および酸無水物基からなる群より選ばれる少なくとも一種であることが好ましい。
前記反応性官能基は、硬化剤(B)と20〜200℃で反応し得ることが好ましく、140℃〜200℃で反応し得ることがより好ましい。
The resin (A) in the present invention does not have an epoxy group, an isocyanate group, an aziridinyl group, and an oxetanyl group, and has a reactive functional group that can react with the curing agent (B).
Examples of the reactive functional group include a carboxyl group, an alcoholic hydroxyl group, a phenolic hydroxyl group, an acid anhydride group and an amino group, a cyanate group, an isocyano group, a cyanato group, an isocyanato group, an imidazole group, a pyrrole group, an acetal group, and an acryloyl group. A methacryloyl group, an aldehyde group, a hydrazide group, a hydrazone group, a phosphoric acid group, etc., and preferably at least one selected from the group consisting of a carboxyl group, an alcoholic hydroxyl group, a phenolic hydroxyl group and an acid anhydride group.
It is preferable that the said reactive functional group can react with a hardening | curing agent (B) at 20-200 degreeC, and it is more preferable that it can react at 140-200 degreeC.

前記樹脂(A)1gの反応性官能基価の合計は、水酸化カリウム換算で1〜80mgであることが好ましく、1〜50mgがさらに望ましく、4〜30mgがさらに望ましい。
前記反応性官能基は、架橋形成に寄与するので、硬化物の耐熱性、絶縁性の点から、反応性官能基価は水酸化カリウム換算で1mg以上であることが好ましい。また、硬化物の接着性、屈曲性の点から、反応性官能基価は水酸化カリウム換算で80mg以下であることが好ましい。
The total reactive functional group value of 1 g of the resin (A) is preferably 1 to 80 mg, more preferably 1 to 50 mg, and further preferably 4 to 30 mg in terms of potassium hydroxide.
Since the reactive functional group contributes to cross-linking formation, the reactive functional group value is preferably 1 mg or more in terms of potassium hydroxide from the viewpoint of heat resistance and insulation of the cured product. Moreover, it is preferable that a reactive functional group value is 80 mg or less in conversion of potassium hydroxide from the point of the adhesiveness of a hardened | cured material, and a flexibility.

硬化剤(B)について説明する。
硬化剤(B)は、エポキシ基含有化合物、イソシアネート基含有化合物、アジリジニル基含有化合物、およびオキセタニル基含有化合物からなる群より選ばれる少なくとも一種である。2種以上を併用することができる。
The curing agent (B) will be described.
The curing agent (B) is at least one selected from the group consisting of an epoxy group-containing compound, an isocyanate group-containing compound, an aziridinyl group-containing compound, and an oxetanyl group-containing compound. Two or more kinds can be used in combination.

<エポキシ基含有化合物>
硬化剤(B)の1つ、エポキシ基含有化合物としては、エポキシ基を分子内に有する化合物であればよく、特に限定されるものではないが、1分子中に平均2個以上のエポキシ基を有するものを好ましく用いることができる。エポキシ基有化合物としては、例えば、グリジシルエーテル型エポキシ樹脂、グリジシルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、又は環状脂肪族(脂環型)エポキシ樹脂などのエポキシ樹脂を用いることができる。
<Epoxy group-containing compound>
One of the curing agents (B), the epoxy group-containing compound is not particularly limited as long as it is a compound having an epoxy group in the molecule, but an average of two or more epoxy groups in one molecule. What has is preferably used. As the epoxy group-containing compound, for example, an epoxy resin such as a glycidyl ether type epoxy resin, a glycidyl amine type epoxy resin, a glycidyl ester type epoxy resin, or a cyclic aliphatic (alicyclic type) epoxy resin can be used.

グリシジルエーテル型エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、α−ナフトールノボラック型エポキシ樹脂、ビスフェノールA型ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、テトラブロムビスフェノールA型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、トリス(グリシジルオキシフェニル)メタン、又はテトラキス(グリシジルオキシフェニル)エタン等が挙げられる。   Examples of the glycidyl ether type epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, α-naphthol novolak. Type epoxy resin, bisphenol A type novolac type epoxy resin, dicyclopentadiene type epoxy resin, tetrabromobisphenol A type epoxy resin, brominated phenol novolac type epoxy resin, tris (glycidyloxyphenyl) methane, or tetrakis (glycidyloxyphenyl) Ethane and the like can be mentioned.

グリシジルアミン型エポキシ樹脂としては、例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジルパラアミノフェノール、トリグリシジルメタアミノフェノール、又はテトラグリシジルメタキシリレンジアミン等が挙げられる。   Examples of the glycidylamine type epoxy resin include tetraglycidyldiaminodiphenylmethane, triglycidylparaaminophenol, triglycidylmetaaminophenol, and tetraglycidylmetaxylylenediamine.

グリシジルエステル型エポキシ樹脂としては、例えば、ジグリシジルフタレート、ジグリシジルヘキサヒドロフタレート、又はジグリシジルテトラヒドロフタレート等が挙げられる。
環状脂肪族(脂環型)エポキシ樹脂としては、例えば、エポキシシクロヘキシルメチル
−エポキシシクロヘキサンカルボキシレート、又はビス(エポキシシクロヘキシル)アジペートなどが挙げられる。
エポキシ基含有化合物としては、前記化合物の一種を単独で、若しくは二種以上を組み合わせて用いることができる。
エポキシ基含有化合物としては、高接着性及び耐熱性の点から、ビスフェノールA型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、トリス(グリシジルオキシフェニル)メタン、又はテトラキス(グリシジルオキシフェニル)エタンを用いることが好ましい
Examples of the glycidyl ester type epoxy resin include diglycidyl phthalate, diglycidyl hexahydrophthalate, diglycidyl tetrahydrophthalate, and the like.
Examples of the cycloaliphatic (alicyclic) epoxy resin include epoxycyclohexylmethyl-epoxycyclohexanecarboxylate, bis (epoxycyclohexyl) adipate, and the like.
As an epoxy group containing compound, the said compound can be used individually by 1 type or in combination of 2 or more types.
Epoxy group-containing compounds include bisphenol A type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, tris (glycidyloxyphenyl) methane, or tetrakis (glycidyloxyphenyl) in terms of high adhesion and heat resistance. It is preferable to use ethane

<イソシアネート基含有化合物>
硬化剤(B)の1つ、イソシアネート基含有化合物としては、イソシアネート基を分子内に有する化合物であればよく、特に限定されるものではない。
1分子中にイソシアネート基を1個有するイソシアネート基含有化合物としては、具体的には、n−ブチルイソシアネート、イソプロピルイソシアネート、フェニルイソシアネート、ベンジルイソシアネート、(メタ)アクリロイルオキシエチルイソシアネート、1,1−ビス[(メタ)アクリロイルオキシメチル]エチルイソシアネート、ビニルイソシアネート、アリルイソシアネート、(メタ)アクリロイルイソシアネート、イソプロペニル−α,α−ジメチルベンジルイソシアネート等が挙げられる。
また、1,6−ジイソシアナトヘキサン、ジイソシアン酸イソホロン、ジイソシアン酸4,4’−ジフェニルメタン、ポリメリックジフェニルメタンジイソシアネート、キシリレンジイソシアネート、2,4−ジイソシアン酸トリレン、ジイソシアン酸トルエン、2,4−ジイソシアン酸トルエン、ジイソシアン酸ヘキサメチレン、ジイソシアン酸4−メチル−m−フェニレン、ナフチレンジイソシアネート、パラフェニレンジイソシアネート、テトラメチルキシリレンジイソシアネート、シクロヘキシルメタンジイソシアネート、水添キシリレンジイソシアネート、シクロヘキシルジイソシアネート、トリジンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート、m−テトラメチルキシリレンジイソシアネート、P−テトラメチルキシリレンジイソシアネート、ダイマー酸ジイソシアネート等のジイソシアン酸エステル化合物と水酸基、カルボキシル基、アミド基含有ビニルモノマーとを等モルで反応せしめた化合物もイソシアン酸エステル化合物として使用することができる。
<Isocyanate group-containing compound>
One of the curing agents (B), the isocyanate group-containing compound, is not particularly limited as long as it is a compound having an isocyanate group in the molecule.
Specific examples of the isocyanate group-containing compound having one isocyanate group in one molecule include n-butyl isocyanate, isopropyl isocyanate, phenyl isocyanate, benzyl isocyanate, (meth) acryloyloxyethyl isocyanate, 1,1-bis [ (Meth) acryloyloxymethyl] ethyl isocyanate, vinyl isocyanate, allyl isocyanate, (meth) acryloyl isocyanate, isopropenyl-α, α-dimethylbenzyl isocyanate and the like.
In addition, 1,6-diisocyanatohexane, isophorone diisocyanate, 4,4′-diphenylmethane diisocyanate, polymeric diphenylmethane diisocyanate, xylylene diisocyanate, tolylene 2,4-diisocyanate, toluene diisocyanate, 2,4-diisocyanic acid Toluene, hexamethylene diisocyanate, 4-methyl-m-phenylene diisocyanate, naphthylene diisocyanate, paraphenylene diisocyanate, tetramethylxylylene diisocyanate, cyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, cyclohexyl diisocyanate, tolidine diisocyanate, 2,2 , 4-Trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate Nitrate, m-tetramethylxylylene diisocyanate, P-tetramethylxylylene diisocyanate, diisocyanate ester compounds such as dimer acid diisocyanate and hydroxyl group, carboxyl group, and amide group-containing vinyl monomers are reacted in equimolar amounts. It can be used as an ester compound.

1分子中にイソシアネート基を2個有するイソシアネート基含有化合物としては、具体的には、1,3−フェニレンジイソシアネート、4,4’−ジフェニルジイソシアネート、1,4−フェニレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4’−トルイジンジイソシアネート、2,4,6−トリイソシアネートトルエン、1,3,5−トリイソシアネートベンゼン、ジアニシジンジイソシアネート、4,4’−ジフェニルエーテルジイソシアネート、4,4’,4”−トリフェニルメタントリイソシアネート等の芳香族ジイソシアネート、
トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、1,2−プロピレンジイソシアネート、2,3−ブチレンジイソシアネート、1,3−ブチレンジイソシアネート、ドデカメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、
ω,ω’−ジイソシアネート−1,3−ジメチルベンゼン、ω,ω’−ジイソシアネート−1,4−ジメチルベンゼン、ω,ω’−ジイソシアネート−1,4−ジエチルベンゼン、1,4−テトラメチルキシリレンジイソシアネート、1,3−テトラメチルキシリレンジイソシアネート等の芳香脂肪族ジイソシアネート、
3−イソシアネートメチル−3,5,5−トリメチルシクロヘキシルイソシアネート[
別名:イソホロンジイソシアネート]、1,3−シクロペンタンジイソシアネート、1,3−シクロヘキサンジイソシアネート、1,4−シクロヘキサンジイソシアネート、メチル−2,4−シクロヘキサンジイソシアネート、メチル−2,6−シクロヘキサンジイソシアネート、4,4’−メチレンビス(シクロヘキシルイソシアネート)、1,3−ビス(イソシアネートメチル)シクロヘキサン、1,4−ビス(イソシアネートメチル)シクロヘキサン等の脂環族ジイソシアネートが挙げられる。
Specific examples of the isocyanate group-containing compound having two isocyanate groups in one molecule include 1,3-phenylene diisocyanate, 4,4′-diphenyl diisocyanate, 1,4-phenylene diisocyanate, and 4,4′-diphenylmethane. Diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4′-toluidine diisocyanate, 2,4,6-triisocyanate toluene, 1,3,5-triisocyanate benzene, dianisidine diisocyanate, Aromatic diisocyanates such as 4,4′-diphenyl ether diisocyanate, 4,4 ′, 4 ″ -triphenylmethane triisocyanate,
Trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate, dodecamethylene diisocyanate, 2,4,4-trimethylhexamethylene Aliphatic diisocyanates such as diisocyanates,
ω, ω′-diisocyanate-1,3-dimethylbenzene, ω, ω′-diisocyanate-1,4-dimethylbenzene, ω, ω′-diisocyanate-1,4-diethylbenzene, 1,4-tetramethylxylylene diisocyanate Araliphatic diisocyanates such as 1,3-tetramethylxylylene diisocyanate,
3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate [
Also known as: isophorone diisocyanate], 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, 4,4 ′ -Alicyclic diisocyanates such as methylene bis (cyclohexyl isocyanate), 1,3-bis (isocyanate methyl) cyclohexane, 1,4-bis (isocyanate methyl) cyclohexane.

また、1分子中にイソシアネート基を3個有するイソシアネート基含有化合物としては、具体的には、芳香族ポリイソシアネート、リジントリイソシアネートなどの脂肪族ポリイソシアネート、芳香脂肪族ポリイソシアネート、脂環族ポリイソシアネート等が挙げられ、前記で説明したジイソシアネートのトリメチロールプロパンアダクト体、水と反応したビュウレット体、イソシアヌレート環を有する3量体が挙げられる。   Specific examples of the isocyanate group-containing compound having three isocyanate groups in one molecule include aliphatic polyisocyanates such as aromatic polyisocyanates and lysine triisocyanates, araliphatic polyisocyanates, and alicyclic polyisocyanates. And the like, and the trimethylolpropane adduct of diisocyanate described above, a burette reacted with water, and a trimer having an isocyanurate ring.

イソシアネート基含有化合物としては、さらに例示した種々のイソシアネート基含有化合物中のイソシアネート基がε−カプロラクタムやMEKオキシム等で保護されたブロック化イソシアネート基含有化合物も用いることができる。
具体的には、前記イソシアネート基含有化合物のイソシアネート基を、ε−カプロラクタム、メチルエチルケトン(以下、MEKという)オキシム、シクロヘキサノンオキシム、ピラゾール、フェノール等でブロックしたものなどが挙げられる。特に、イソシアヌレート環を有し、MEKオキシムやピラゾールでブロックされたヘキサメチレンジイソシアネート三量体は、本発明に使用した場合、ポリイミドや銅に対する接着強度や耐熱性に優れるため、非常に好ましい。
As the isocyanate group-containing compound, a blocked isocyanate group-containing compound in which the isocyanate group in various exemplified isocyanate group-containing compounds is protected with ε-caprolactam, MEK oxime, or the like can also be used.
Specific examples include those obtained by blocking the isocyanate group of the isocyanate group-containing compound with ε-caprolactam, methyl ethyl ketone (hereinafter referred to as MEK) oxime, cyclohexanone oxime, pyrazole, phenol, and the like. In particular, a hexamethylene diisocyanate trimer having an isocyanurate ring and blocked with MEK oxime or pyrazole is very preferable because it has excellent adhesion strength and heat resistance to polyimide and copper.

<アジリジニル基含有化合物>
硬化剤(B)の1つ、アジリジン基含有化合物としては、分子内にアジリジン基を含有する化合物であればよく、特に限定されるものではない。
アジリジン基含有化合物としては、例えば、N,N’−ジフェニルメタン−4,4’−ビス(1−アジリジンカルボキサイト)、N,N’−トルエン−2,4−ビス(1−アジリジンカルボキサイト)、ビスイソフタロイル−1−(2−メチルアジリジン)、トリ−1−アジリジニルホスフィンオキサイド、N,N’−ヘキサメチレン−1,6−ビス(1−アジリジンカルボキサイト)、トリメチロールプロパン−トリ−β−アジリジニルプロピオネート、テトラメチロールメタン−トリ−β−アジリジニルプロピオネート、トリス−2,4,6−(1−アジリジニル)−1、3、5−トリアジン、トリメチロールプロパントリス[3−(1−アジリジニル)プロピオネート]、トリメチロールプロパントリス[3−(1−アジリジニル)ブチレート]、トリメチロールプロパントリス[3−(1−(2−メチル)アジリジニル)プロピオネート]、トリメチロールプロパントリス[3−(1−アジリジニル)−2−メチルプロピオネート]、2,2’−ビスヒドロキシメチルブタノールトリス[3−(1−アジリジニル)プロピオネート]、ペンタエリスリトールテトラ[3−(1−アジリジニル)プロピオネート]、ジフェニルメタン−4,4−ビス−N,N’−エチレンウレア、1,6−ヘキサメチレンビス−N,N’−エチレンウレア、2,4,6−(トリエチレンイミノ)−Syn−トリアジン、ビス[1−(2−エチル)アジリジニル]ベンゼン−1,3−カルボン酸アミド等が挙げられる。
<Aziridinyl group-containing compound>
One of the curing agents (B), the aziridine group-containing compound, is not particularly limited as long as it is a compound containing an aziridine group in the molecule.
Examples of the aziridine group-containing compound include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxite), N, N′-toluene-2,4-bis (1-aziridinecarboxite), Bisisophthaloyl-1- (2-methylaziridine), tri-1-aziridinylphosphine oxide, N, N′-hexamethylene-1,6-bis (1-aziridinecarboxite), trimethylolpropane-tri -Β-aziridinylpropionate, tetramethylolmethane-tri-β-aziridinylpropionate, tris-2,4,6- (1-aziridinyl) -1,3,5-triazine, trimethylolpropane Tris [3- (1-aziridinyl) propionate], trimethylolpropane tris [3- (1-aziridinyl) butyrate ], Trimethylolpropane tris [3- (1- (2-methyl) aziridinyl) propionate], trimethylolpropane tris [3- (1-aziridinyl) -2-methylpropionate], 2,2′-bishydroxy Methylbutanol tris [3- (1-aziridinyl) propionate], pentaerythritol tetra [3- (1-aziridinyl) propionate], diphenylmethane-4,4-bis-N, N′-ethyleneurea, 1,6-hexamethylene Bis-N, N′-ethylene urea, 2,4,6- (triethyleneimino) -Syn-triazine, bis [1- (2-ethyl) aziridinyl] benzene-1,3-carboxylic acid amide and the like can be mentioned. .

特に、2,2’−ビスヒドロキシメチルブタノールトリス[3−(1−アジリジニル)プロピオネート]は、本発明に使用した場合、熱プレス時のはみ出しを抑制でき、かつ硬化塗膜の柔軟性を保持したまま耐熱性を向上できるため、本発明において好適に用いられる。   In particular, 2,2′-bishydroxymethylbutanol tris [3- (1-aziridinyl) propionate], when used in the present invention, can suppress protrusion during hot pressing and retain the flexibility of the cured coating film. Since heat resistance can be improved as it is, it is preferably used in the present invention.

<オキセタニル基含有化合物>]
硬化剤(B)の1つ、オキセタニル基含有化合物としては、例えば、1,4−ビス{[
(3−エチルオキセタン−3−イル)メトキシ]メチル}ベンゼン、3−エチル−3−{[(3−エチルオキセタン−3−イル)メトキシ]メチル}オキセタン、1,3−ビス[(3−エチルオキセタン−3−イル)メトキシ]ベンゼン、4,4’−ビス[(3−エチル−3−オキセタニル)メトキシメチル]ビフェニル、(2−エチル−2−オキセタニル)エタノールとテレフタル酸とのエステル化物、(2−エチル−2−オキセタニル)エタノールとフェノールノボラック樹脂とのエーテル化物、(2−エチル−2−オキセタニル)エタノールと多価カルボン酸化合物とのエステル化物等が挙げられる。
<Oxetanyl group-containing compound>]
As one of the curing agents (B), an oxetanyl group-containing compound, for example, 1,4-bis {[
(3-ethyloxetane-3-yl) methoxy] methyl} benzene, 3-ethyl-3-{[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane, 1,3-bis [(3-ethyl Oxetane-3-yl) methoxy] benzene, 4,4′-bis [(3-ethyl-3-oxetanyl) methoxymethyl] biphenyl, esterified product of (2-ethyl-2-oxetanyl) ethanol and terephthalic acid, ( Examples include etherified products of 2-ethyl-2-oxetanyl) ethanol and phenol novolac resins, esterified products of (2-ethyl-2-oxetanyl) ethanol and polyvalent carboxylic acid compounds, and the like.

本発明に用いられる硬化剤(B)は、前記樹脂(A)中の反応性官能基1molに対して、エポキシ基、イソシアネート基、アジリジニル基、およびオキセタニル基の合計が、0.1〜12molとなる範囲で含有することが好ましく、0.3〜10mol含有することがさらに好ましく、0.5〜5molモル含有することがさらに好ましい。樹脂(A)の反応性官能基に対し、硬化剤(B)中のエポキシ基等を0.1mol以上とすることにより、架橋密度を増加させ、耐熱性、絶縁性、接着性を向上できる。エポキシ基等を20mol以下とすることにより、屈曲性や電気絶縁性を向上できる。   The curing agent (B) used in the present invention has a total of 0.1 to 12 mol of an epoxy group, an isocyanate group, an aziridinyl group, and an oxetanyl group with respect to 1 mol of the reactive functional group in the resin (A). It is preferable to contain in the range which becomes, It is more preferable to contain 0.3-10 mol, It is more preferable to contain 0.5-5 molmol. By setting the epoxy group or the like in the curing agent (B) to 0.1 mol or more with respect to the reactive functional group of the resin (A), the crosslink density can be increased, and the heat resistance, insulation, and adhesiveness can be improved. By setting the epoxy group or the like to 20 mol or less, flexibility and electrical insulation can be improved.

<アルカリ金属化合物(C)>
本発明の熱硬化性接着シートは、硬化後のめっき液耐性の点からアルカリ金属元素の質量換算にてアルカリ金属化合物(C)を1〜110ppm含有する。アルカリ金属元素の質量換算でのアルカリ金属化合物(C)の含有量が1ppm以上であることにより、メッキ液耐性が付与できる。これの理由は定かではないが、イオン化傾向の高いアルカリ金属がめっき液浸漬中にイオン化が促進され、発生したイオンと樹脂の反応性官能基が強固な金属架橋を形成するためと考えられる。
また、アルカリ金属元素の質量換算でのアルカリ金属化合物(C)の含有率が110ppm以下であることにより、絶縁性を担保できる。110ppm以上含有していると、電気絶縁性が悪化する。アルカリ金属元素の質量換算でのアルカリ金属化合物(C)の含有率は、10〜90ppmであることが好ましく、30〜70ppmであることがより好ましい。
<Alkali metal compound (C)>
The thermosetting adhesive sheet of the present invention contains 1-110 ppm of an alkali metal compound (C) in terms of the mass of an alkali metal element in terms of resistance to plating solution after curing. When the content of the alkali metal compound (C) in terms of the mass of the alkali metal element is 1 ppm or more, plating solution resistance can be imparted. The reason for this is not clear, but it is considered that an alkali metal having a high ionization tendency promotes ionization during immersion of the plating solution, and the generated ions and the reactive functional group of the resin form a strong metal bridge.
Moreover, insulation can be ensured because the content rate of the alkali metal compound (C) in terms of mass of the alkali metal element is 110 ppm or less. If the content is 110 ppm or more, the electrical insulation properties deteriorate. The content of the alkali metal compound (C) in terms of mass of the alkali metal element is preferably 10 to 90 ppm, and more preferably 30 to 70 ppm.

本発明の熱硬化性接着シートに含まれるアルカリ金属化合物(C)は、樹脂(A)、硬化剤(B)、後述するその他の硬化剤や種々の添加剤に含まれるものであってよいし、樹脂(A)、硬化剤(B)等とは別に配合されるものであってもよい。また、アルカリ金属化合物(C)を多く含む樹脂(A)や硬化剤(B)等の場合には、洗浄によってアルカリ金属化合物(C)の量を減らして使用することもできる。
なお、アルカリ金属化合物(C)が、樹脂(A)、硬化剤(B)、後述するその他の硬化剤や種々の添加剤に含まれる場合、アルカリ金属化合物(C)は、それぞれの製造工程で使用した触媒やその分解物、あるいは工程上混入したものであってもよい。
The alkali metal compound (C) contained in the thermosetting adhesive sheet of the present invention may be contained in the resin (A), the curing agent (B), other curing agents described later, and various additives. , Resin (A), curing agent (B) and the like may be blended separately. In the case of a resin (A) or a curing agent (B) containing a large amount of alkali metal compound (C), the amount of alkali metal compound (C) can be reduced by washing.
In addition, when an alkali metal compound (C) is contained in resin (A), a hardening | curing agent (B), the other hardening | curing agent mentioned later, and various additives, an alkali metal compound (C) is each manufacturing process. It may be a catalyst used or a decomposition product thereof, or a catalyst mixed in the process.

熱硬化性組成物(熱硬化性接着シート)1g中に含まれるアルカリ金属化合物(C)の元素換算含有率X(ppm)は、以下のようにして求めることができる。
アルカリ金属化合物(C)の含有量:Y(g)、
アルカリ金属化合物(C)の分子量:A、
アルカリ金属化合物(C)中のアルカリ金属元素の量:B とすると
X=[Y×(B/A)]×106
例えば、炭酸リチウム(Li2CO3)の場合、
分子量Aが73.89、
含まれるアルカリ金属の量Bが(6.94×2)となり、
熱硬化性組成物(熱硬化性接着シート)1gに炭酸リチウムが0.0001g含まれる場合、
X=[0.0001×((6.94×2)/73.89)]×106
=18.8 となる。
The element conversion content X (ppm) of the alkali metal compound (C) contained in 1 g of the thermosetting composition (thermosetting adhesive sheet) can be determined as follows.
Content of alkali metal compound (C): Y (g),
Molecular weight of alkali metal compound (C): A,
Amount of alkali metal element in the alkali metal compound (C): B = X = [Y × (B / A)] × 10 6
For example, in the case of lithium carbonate (Li 2 CO 3 )
Molecular weight A is 73.89,
The amount B of alkali metal contained is (6.94 × 2),
When 0.0001 g of lithium carbonate is contained in 1 g of the thermosetting composition (thermosetting adhesive sheet),
X = [0.0001 × ((6.94 × 2) /73.89)] × 10 6
= 18.8.

熱硬化性組成物(熱硬化性接着シート)に含まれる各原料に含まれるアルカリ金属化合物(C)の種類と量をそれぞれ求めておき、それらの総和として、アルカリ金属化合物(C)の含有量:Y(g)を求め、元素換算含有率X(ppm)を求めることもできるが、以下のようして、元素換算含有率X(ppm)を求めることもできる。
即ち、任意の質量の熱硬化性組成物(熱硬化性接着シート)を以下の方法で分解し、得られた分解液についてICP発光分光分析法(以下、ICP分析という)により、含まれているアルカリ金属化合物(C)の元素換算含有率Xを求めることができる。
なお、同種アルカリ金属の化合物を両方含む場合、例えば、炭酸リチウムとアセト酢酸リチウムとを含む場合、ICP分析法によれば、リチウム元素換算含有率を求めることになる。
The type and amount of the alkali metal compound (C) contained in each raw material contained in the thermosetting composition (thermosetting adhesive sheet) are determined, and the total content of the alkali metal compound (C) is obtained. : Y (g) can be obtained and the element-conversion content X (ppm) can be obtained, but the element-conversion content X (ppm) can also be obtained as follows.
That is, a thermosetting composition (thermosetting adhesive sheet) having an arbitrary mass is decomposed by the following method, and the obtained decomposition solution is contained by ICP emission spectroscopic analysis (hereinafter referred to as ICP analysis). The element conversion content X of an alkali metal compound (C) can be calculated | required.
In addition, when both of the same kind of alkali metal compounds are included, for example, when lithium carbonate and lithium acetoacetate are included, according to the ICP analysis method, the lithium element equivalent content is obtained.

具体的には、秤量した試料を硝酸で熱分解した後、一定容量に希釈した後、ICP分析装置で測定実施し、目的元素の標準液で作成した検量線により定量することができる。   Specifically, a weighed sample is thermally decomposed with nitric acid, diluted to a constant volume, measured with an ICP analyzer, and quantified with a calibration curve prepared with a standard solution of the target element.

アルカリ金属化合物(D)の具体例としては、アルカリ金属の水酸化物、アルカリ金属の炭酸塩、アルカリ金属の炭酸水素塩、アルカリ金属のカルボン酸塩、アルキルアルカリ金属等が挙げられるが、これらに限定されるものではない。   Specific examples of the alkali metal compound (D) include alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, alkali metal carboxylates, alkyl alkali metals, and the like. It is not limited.

アルカリ金属の水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等が挙げられる。   Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide.

アルカリ金属の炭酸塩としては、例えば、炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸リチウム等、及びこれらの水和物等が挙げられる。   Examples of the alkali metal carbonate include sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, lithium carbonate and the like, and hydrates thereof.

アルカリ金属の炭酸水素塩としては、例えば、炭酸水素ナトリウム、炭酸水素カルシウム等、及びこれらの水和物等が挙げられる。   Examples of the alkali metal hydrogen carbonate include sodium hydrogen carbonate and calcium hydrogen carbonate, and hydrates thereof.

アルカリ金属のカルボン酸塩としては、炭素数1〜10のカルボン酸塩が好ましく、炭素数1〜3のカルボン酸塩がより好ましい。
カルボン酸の具体例としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリン酸、ペラルゴン酸等の直鎖飽和脂肪酸;シュウ酸、フマル酸、マレイン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸等の脂肪族ジカルボン酸;グリコール酸、乳酸、ヒドロキシ酪酸、酒石酸、リンゴ酸、メバロン酸等のヒドロキシ;安息香酸、テレフタル酸、イソフタル酸、オルソフタル酸等の芳香族カルボン酸等、及びこれらの水和物が挙げられる。
これらの中でも、アルカリ金属の水酸化物、アルカリ金属の酢酸塩、アルカリ金属の炭酸塩が好ましく、中でもアルカリ金属の水酸化物はアルカリ金属がイオン化しやすい。
As an alkali metal carboxylate, a C1-C10 carboxylate is preferable, and a C1-C3 carboxylate is more preferable.
Specific examples of the carboxylic acid include linear saturated fatty acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, capric acid, pelargonic acid; oxalic acid, fumaric acid, maleic acid, succinic acid Aliphatic dicarboxylic acids such as acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and azelaic acid; hydroxy such as glycolic acid, lactic acid, hydroxybutyric acid, tartaric acid, malic acid, and mevalonic acid; benzoic acid, terephthalic acid, isophthalic acid And aromatic carboxylic acids such as orthophthalic acid, and hydrates thereof.
Among these, alkali metal hydroxides, alkali metal acetates, and alkali metal carbonates are preferable. Among them, alkali metal hydroxides are easily ionized.

アルキルアルカリ金属としては、メチルリチウム、i−プロピルリチウム、sec−ブチルリチウム、n−ブチルリチウム、t−ブチルリチウム、n−ドデシルリチウム等が挙げられる。   Examples of the alkyl alkali metal include methyl lithium, i-propyl lithium, sec-butyl lithium, n-butyl lithium, t-butyl lithium, and n-dodecyl lithium.

その他、フェニルリチウム、α−及びβ−ナフチルリチウム、スチリルリチウム、ベンジルリチウム等が挙げられる。   Other examples include phenyl lithium, α- and β-naphthyl lithium, styryl lithium, benzyl lithium and the like.

アルカリ金属とは周期表において第1族に属する元素であり、具体例としては、ナトリウム、カリウム、リチウム、ルビジウム、セシウム等が挙げられる。   The alkali metal is an element belonging to Group 1 in the periodic table, and specific examples include sodium, potassium, lithium, rubidium, cesium and the like.

本発明の熱硬化性組成物(熱硬化性接着シート)は、前記樹脂(A)、硬化剤(B)、アルカリ金属化合物(C)に加えて、物性を損なわない範囲で、その他の硬化剤を含むことができる。
その他の硬化剤の具体例としては、カルボジイミド基含有化合物、ベンゾオキサジン化合物、β-ヒドロキシアルキルアミド基含有化合物、硫黄含有化合物などが挙げられるが
、特に限定されるものではない。
In addition to the resin (A), the curing agent (B), and the alkali metal compound (C), the thermosetting composition (thermosetting adhesive sheet) of the present invention has other curing agents as long as the physical properties are not impaired. Can be included.
Specific examples of the other curing agent include carbodiimide group-containing compounds, benzoxazine compounds, β-hydroxyalkylamide group-containing compounds, sulfur-containing compounds and the like, but are not particularly limited.

[カルボジイミド基含有化合物]
その他の硬化剤の1つ、カルボジイミド基含有化合物としては、日清紡績株式会社のカルボジライトシリーズが挙げられる。その中でもカルボジライトV−01、03、05、07、09は有機溶剤との相溶性に優れており好ましい。本発明に使用した場合、接着性の向上が期待できるため、好適に用いられる。
[Carbodiimide group-containing compound]
As one of the other curing agents, a carbodiimide group-containing compound, there is a carbodilite series manufactured by Nisshinbo Industries, Ltd. Among these, Carbodilite V-01, 03, 05, 07, and 09 are preferable because of excellent compatibility with organic solvents. When used in the present invention, an improvement in adhesiveness can be expected, so that it is preferably used.

[ベンゾオキサジン化合物]
その他の硬化剤の1つ、ベンゾオキサジン化合物としては、Macromolecules,36,6010(2003)記載の「P−a」、「P−alP」、「P−ala」、「B−ala」、Macromolecules,34,7257(2001)記載の「P−appe」、「B−appe」、四国化成株式会社製「B−a型ベンゾオキサジン」、「F−a型ベンゾオキサジン」、「B−m型ベンゾオキサジン」などが挙げられる。
[Benzoxazine compounds]
As one of the other curing agents, benzoxazine compounds include “P-a”, “P-alP”, “P-ala”, “B-ala”, Macromolecules, described in Macromolecules, 36, 6010 (2003). 34, 7257 (2001), “P-appe”, “B-appe”, “Ba-type benzoxazine”, “Fa-type benzoxazine”, “Bm-type benzoxazine” manufactured by Shikoku Kasei Co., Ltd. Or the like.

[β−ヒドロキシアルキルアミド基含有化合物]
その他の硬化剤の1つ、β−ヒドロキシアルキルアミド基含有化合物としては、例えば、N,N,N’,N’−テトラキス(ヒドロキシエチル)アジパミド(エムスケミー社製Primid XL-552)をはじめとする種々の化合物を挙げることができる。
[β-Hydroxyalkylamide group-containing compound]
As one of the other curing agents, the β-hydroxyalkylamide group-containing compound includes, for example, N, N, N ′, N′-tetrakis (hydroxyethyl) adipamide (Primid XL-552 manufactured by Ems Chemie). Various compounds can be mentioned.

[硫黄含有化合物]
その他の硬化剤の1つ、硫黄含有化合物としては、チオール化合物、スルフィド化合物、ポリスルフィド化合物が挙げられる。本発明に使用した場合、接着性、耐熱性の向上が期待できるため、好適に用いられる。
[Sulfur-containing compounds]
One of the other curing agents, sulfur-containing compounds, includes thiol compounds, sulfide compounds, and polysulfide compounds. When used in the present invention, it can be suitably used because it can be expected to improve adhesion and heat resistance.

[チオール化合物]
チオール化合物は、例えば、チオール基と、直鎖、枝分かれ、又は環式の炭化水素基とを少なくとも含有する。チオール基を2つ以上含有してもよい。炭化水素基は飽和でもよく、不飽和でもよい。炭化水素基の水素原子の一部が水酸基、アミノ基、カルボキシル基、ハロゲン原子、アルコキシシリル基などで置換されていてもよい。より具体的には、無色のチオール類としては、例えば、1-プロパンチオール、3-メルカプトプロピオン酸、(3-メルカプトプロピル)トリメトキシシラン、1-ブタンチオール、2-ブタンチオール、イソブチルメルカプタン、イソアミルメルカプタン、シクロペンタンチオール、1-ヘキサンチオール、シクロヘキサンチオール、6-ヒドロキシ-1-ヘキサンチオール、6-アミノ-1-ヘキサンチオール塩酸塩、1-ヘプタンチオール、7-カルボキシ-1-ヘプタンチオール、7-ア
ミド-1-ヘプタンチオール、1-オクタンチオール、tert-オクタンチオール、8-ヒドロキシ-1-オクタンチオール、8-アミノ-1-オクタンチオール塩酸塩、1H,1H,2H,2H-パーフルオロオクタンチオール、1-ノナンチオール、1-デカンチオール、10-カルボキシ-1-デカンチオール、10-アミド-1-デカンチオール、1-ナフタレンチオール、2-ナフタレンチオール、1-ウンデカンチオール、11-アミノ-1-ウンデカンチオール塩酸塩、11-ヒドロキシ-1-ウンデカンチオール、1-ドデカンチオール、1-テトラデカンチオール、1-ヘキサデカンチオール、16-ヒドロキシ-1-ヘキサデカンチオール、16-アミノ-1-ヘキサデカンチオール塩酸塩、1-オクタデカンチオール、1,4-ブタンジチオール、2,3-ブタンジチオール、1,6-ヘキサンジチオール、1,2-ベンゼンジチオール、1,9-ノナンジチオール、1,10-デカンジチオール
、1,3,5-ベンゼントリチオール、3-メルカプトプロピルメチルジメトキシシラン、3-メル
カプトプロピルトリメトキシシランなどが挙げられる。これらのチオール類は1種または2種以上組み合わせて用いることができる。
[Thiol compound]
The thiol compound contains, for example, at least a thiol group and a linear, branched, or cyclic hydrocarbon group. Two or more thiol groups may be contained. The hydrocarbon group may be saturated or unsaturated. Some of the hydrogen atoms of the hydrocarbon group may be substituted with a hydroxyl group, amino group, carboxyl group, halogen atom, alkoxysilyl group, or the like. More specifically, examples of colorless thiols include 1-propanethiol, 3-mercaptopropionic acid, (3-mercaptopropyl) trimethoxysilane, 1-butanethiol, 2-butanethiol, isobutylmercaptan, isoamyl. Mercaptan, cyclopentanethiol, 1-hexanethiol, cyclohexanethiol, 6-hydroxy-1-hexanethiol, 6-amino-1-hexanethiol hydrochloride, 1-heptanethiol, 7-carboxy-1-heptanethiol, 7- Amido-1-heptanethiol, 1-octanethiol, tert-octanethiol, 8-hydroxy-1-octanethiol, 8-amino-1-octanethiol hydrochloride, 1H, 1H, 2H, 2H-perfluorooctanethiol, 1-nonanethiol, 1-decanethiol, 10-carboxy-1-decanethiol, 10-amido-1-decanethiol, 1- Phthalene thiol, 2-naphthalene thiol, 1-undecane thiol, 11-amino-1-undecane thiol hydrochloride, 11-hydroxy-1-undecane thiol, 1-dodecane thiol, 1-tetradecane thiol, 1-hexadecane thiol, 16 -Hydroxy-1-hexadecanethiol, 16-amino-1-hexadecanethiol hydrochloride, 1-octadecanethiol, 1,4-butanedithiol, 2,3-butanedithiol, 1,6-hexanedithiol, 1,2-benzene Examples include dithiol, 1,9-nonanedithiol, 1,10-decanedithiol, 1,3,5-benzenetrithiol, 3-mercaptopropylmethyldimethoxysilane, and 3-mercaptopropyltrimethoxysilane. These thiols can be used alone or in combination of two or more.

[スルフィド化合物]
スルフィド化合物は、例えば、スルフィド基と、直鎖、枝分かれ、又は環式の炭化水素基とを少なくとも含有する。スルフィド基を2つ以上含有してもよい。炭化水素基の水素原子の一部が水酸基、アミノ基、カルボキシル基、ハロゲン原子、アルコキシシリル基などで置換されていてもよい。
より具体的には、スルフィド化合物として、例えば、プロピルスルフィド、フルフリルスルフィド、ヘキシルスルフィド、フェニルスルフィド、フェニルトリフルオロメチルスルフィド、ビス(4-ヒドロキシフェニル)スルフィド、ヘプチルスルフィド、オクチルスルフィド、ノニルスルフィド、デシルスルフィド、ドデシルメチルスルフィド、ドデシルスルフィド、テトラデシルスルフィド、ヘキサデシルスルフィド、オクタデシルスルフィド、ビス(トリエトキシシリルプロピル)テトラスルフィドなどが挙げられる。これらのスルフィド類は1種または2種以上組み合わせて用いることができる。
[Sulphide compounds]
The sulfide compound contains, for example, at least a sulfide group and a linear, branched, or cyclic hydrocarbon group. Two or more sulfide groups may be contained. Some of the hydrogen atoms of the hydrocarbon group may be substituted with a hydroxyl group, amino group, carboxyl group, halogen atom, alkoxysilyl group, or the like.
More specifically, as the sulfide compound, for example, propyl sulfide, furfuryl sulfide, hexyl sulfide, phenyl sulfide, phenyl trifluoromethyl sulfide, bis (4-hydroxyphenyl) sulfide, heptyl sulfide, octyl sulfide, nonyl sulfide, decyl Examples thereof include sulfide, dodecylmethyl sulfide, dodecyl sulfide, tetradecyl sulfide, hexadecyl sulfide, octadecyl sulfide, bis (triethoxysilylpropyl) tetrasulfide and the like. These sulfides can be used alone or in combination of two or more.

[ポリスルフィド化合物]
ポリスルフィド化合物としては、例えば、2-ヒドロキシエチルジスルフィド、プロピルジスルフィド、イソプロピルジスルフィド、3-カルボキシプロピルジスルフィド、アリルジスルフィド、イソブチルジスルフィド、tert-ブチルジスルフィド、アミルジスルフィ
ド、イソアミルジスルフィド、5-カルボキシペンチルジスルフィド、フルフリルジスルフィド、ヘキシルジスルフィド、シクロヘキシルジスルフィド、フェニルジスルフィド、4-アミノフェニルジスルフィド、ヘプチルジスルフィド、7-カルボキシヘプチルジスルフィド、ベンジルジスルフィド、tert-オクチルジスルフィド、デシルジスルフィド、10-カルボキシデシルジスルフィド、ヘキサデシルジスルフィド、チウラムジスルフィドなどを用いることができる。
[Polysulfide compound]
Examples of the polysulfide compound include 2-hydroxyethyl disulfide, propyl disulfide, isopropyl disulfide, 3-carboxypropyl disulfide, allyl disulfide, isobutyl disulfide, tert-butyl disulfide, amyl disulfide, isoamyl disulfide, 5-carboxypentyl disulfide, furfuryl. Disulfide, hexyl disulfide, cyclohexyl disulfide, phenyl disulfide, 4-aminophenyl disulfide, heptyl disulfide, 7-carboxyheptyl disulfide, benzyl disulfide, tert-octyl disulfide, decyl disulfide, 10-carboxydecyl disulfide, hexadecyl disulfide, thiuram disulfide, etc. Can be used.

本発明において、その他の硬化剤の使用量は、特に限定されるものではないが、前記樹脂(A)の反応性官能基1molに対して、0.01〜20mol含有することが好ましく、0.5〜10mol含有することがさらに好ましく、0.1〜5mol含有することがさらに好ましい。
あるいは、硬化剤(B)中のエポキシ基等1molに対して、0.01〜20mol含有することが好ましく、0.5〜10mol含有することがさらに好ましく、0.1〜5mol含有することがさらに好ましい。
In the present invention, the amount of other curing agent used is not particularly limited, but is preferably 0.01 to 20 mol per 1 mol of the reactive functional group of the resin (A). It is more preferable to contain 5-10 mol, and it is more preferable to contain 0.1-5 mol.
Or it is preferable to contain 0.01-20 mol with respect to 1 mol of epoxy groups etc. in a hardening | curing agent (B), It is more preferable to contain 0.5-10 mol, It is further containing 0.1-5 mol preferable.

<フィラー>
次に、本発明で用い得るフィラーについて詳細に説明する。
本発明の熱硬化性接着シートは、難燃性の付与、接着剤の流動性制御、硬化物の弾性率向上等の目的でフィラーを含有することができる。
<Filler>
Next, the filler that can be used in the present invention will be described in detail.
The thermosetting adhesive sheet of the present invention can contain a filler for the purpose of imparting flame retardancy, controlling the fluidity of the adhesive, and improving the elastic modulus of the cured product.

フィラーとしては、特に限定されないが、形状としては球状、粉状、繊維状、針状、鱗片状等が挙げられる。
フィラーとしては例えば、ポリテトラフルオロエチレン粉末、ポリエチレン粉末、ポリアクリル酸エステル粉末、エポキシ樹脂粉末、ポリアミド粉末、ポリウレタン粉末、ポリシロキサンン粉末等の他、シリコーン、アクリル、スチレンブタジエンゴム、ブタジエンゴム等を用いた多層構造のコアシェル等の高分子フィラー;
リン酸メラミン、ポリリン酸メラミン、リン酸グアニジン、ポリリン酸グアニジン、リン酸アンモニウム、ポリリン酸アンモニウム、リン酸アミドアンモニウム、ポリリン酸アミドアンモニウム、リン酸カルバメート、ポリリン酸カルバメート等の(ポリ)リン酸塩系化合物、有機リン酸エステル化合物、ホスファゼン化合物、ホスホン酸化合物、ジエチ
ルホスフィン酸アルミニウム、メチルエチルホスフィン酸アルミニウム、ジフェニルホスフィン酸アルミニウム、エチルブチルホスフィン酸アルミニウム、メチルブチルホスフィン酸アルミニウム、ポリエチレンホスフィン酸アルミニウム等のホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、ホスホルアミド化合物等のリン系難燃フィラー;
ベンゾグアナミン、メラミン、メラム、メレム、メロン、メラミンシアヌレート、シアヌル酸化合物、イソシアヌル酸化合物、トリアゾール系化合物、テトラゾール化合物、ジアゾ化合物、尿素等の窒素系難燃フィラー;
シリカ、マイカ、タルク、カオリン、クレー、ハイドロタルサイト、ウォラストナイト、ゾノトライト、窒化ケイ素、窒化ホウ素、窒化アルミニウム、リン酸水素カルシウム、リン酸カルシウム、ガラスフレーク、水和ガラス、チタン酸カルシウム、セピオライト、硫酸マグネシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウム、水酸化バリウム、水酸化カルシウム、酸化チタン、酸化スズ、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化アンチモン、酸化ニッケル、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、ホウ酸亜鉛、ホウ酸アルミニウム等の無機フィラー等が挙げられる。
Although it does not specifically limit as a filler, As a shape, spherical shape, powder shape, fibrous shape, needle shape, scale shape, etc. are mentioned.
Examples of fillers include polytetrafluoroethylene powder, polyethylene powder, polyacrylic acid ester powder, epoxy resin powder, polyamide powder, polyurethane powder, polysiloxane powder, silicone, acrylic, styrene butadiene rubber, butadiene rubber, etc. Polymer filler such as core shell of multilayer structure used;
(Poly) phosphates such as melamine phosphate, melamine polyphosphate, guanidine phosphate, guanidine polyphosphate, ammonium phosphate, ammonium polyphosphate, ammonium amidophosphate, ammonium amidophosphate, carbamate phosphate, carbamate polyphosphate Compounds, organophosphate ester compounds, phosphazene compounds, phosphonic acid compounds, diethyl diethylphosphinate, aluminum methylethylphosphinate, aluminum diphenylphosphinate, aluminum ethylbutylphosphinate, aluminum methylbutylphosphinate, aluminum polyethylenephosphinate, etc. Phosphorus flame retardant fillers such as acid compounds, phosphine oxide compounds, phosphorane compounds, phosphoramide compounds;
Nitrogen-based flame retardant fillers such as benzoguanamine, melamine, melam, melem, melon, melamine cyanurate, cyanuric acid compound, isocyanuric acid compound, triazole compound, tetrazole compound, diazo compound, urea;
Silica, mica, talc, kaolin, clay, hydrotalcite, wollastonite, zonotlite, silicon nitride, boron nitride, aluminum nitride, calcium hydrogen phosphate, calcium phosphate, glass flakes, hydrated glass, calcium titanate, sepiolite, sulfuric acid Magnesium, aluminum hydroxide, magnesium hydroxide, zirconium hydroxide, barium hydroxide, calcium hydroxide, titanium oxide, tin oxide, aluminum oxide, magnesium oxide, zirconium oxide, zinc oxide, molybdenum oxide, antimony oxide, nickel oxide, carbonic acid Examples include inorganic fillers such as zinc, magnesium carbonate, calcium carbonate, barium carbonate, zinc borate, and aluminum borate.

なかでもフィラーとしては、近年取り沙汰されている、環境への影響を配慮すると、リン系難燃フィラーや窒素系難燃フィラー等のノンハロゲン系難燃剤を使用することが望ましく、中でも本発明の接着剤組成物との併用によって、難燃性により効果のあるホスファゼン化合物、ホスフィン化合物、ポリリン酸メラミン、ポリリン酸アンモニウム、メラミンシアヌレート等を用いることが好ましい。また、誘電率や誘電正接をさらに低下させる点では、ポリテトラフルオロエチレン粉末を使用することが好ましく、誘電特性のみならず接着性、屈曲性、電気絶縁性、耐熱性とのバランスに優れた硬化物を得ることができるようになる。本発明において、これらフィラーは、単独又は複数を併用して用いることができる。   Among them, it is desirable to use a non-halogen flame retardant such as a phosphorus flame retardant filler or a nitrogen flame retardant filler, which has been recently taken into consideration as the filler, and in particular, the adhesive of the present invention. It is preferable to use a phosphazene compound, a phosphine compound, a melamine polyphosphate, an ammonium polyphosphate, a melamine cyanurate, or the like that is more effective in flame retardancy when used in combination with the composition. In addition, it is preferable to use polytetrafluoroethylene powder from the viewpoint of further reducing the dielectric constant and dielectric loss tangent, and it has excellent balance not only with dielectric properties but also with adhesion, flexibility, electrical insulation and heat resistance. You can get things. In the present invention, these fillers can be used alone or in combination.

これらフィラーの平均粒子径D50としては、0.1μmから25μmであることが好ましい。0.1μmに近い平均粒子径を示すフィラーを用いた場合、フィラーによる改質効果が得やすく、さらに分散性や分散液の安定性が向上しやすい。また、25μmに近い平均粒子径を示すフィラーを用いた場合、硬化膜の機械特性が向上しやすくなる。   The average particle diameter D50 of these fillers is preferably 0.1 μm to 25 μm. When a filler having an average particle diameter close to 0.1 μm is used, a modification effect by the filler is easily obtained, and further, dispersibility and stability of the dispersion liquid are easily improved. Moreover, when the filler which shows the average particle diameter near 25 micrometers is used, the mechanical characteristic of a cured film becomes easy to improve.

フィラーの添加量としては、前記樹脂(A)100質量部に対して0.01〜500質量部であることが好ましい。フィラー添加量がこの範囲を下回るとフィラーによる改質効果が得られにくく、この範囲を上回ると硬化膜の機械的特性が大きく損なわれる恐れがある。   As an addition amount of a filler, it is preferable that it is 0.01-500 mass parts with respect to 100 mass parts of said resin (A). If the amount of filler added is below this range, the modification effect by the filler is difficult to obtain, and if it exceeds this range, the mechanical properties of the cured film may be greatly impaired.

フィラーの添加方法は特に制限されるものではなく、従来公知のいかなる方法を用いても良いが、具体的には、重合前または途中に重合反応液に添加する方法、3本ロールなどを用いてフィラーを混錬する方法、フィラーを含む分散液を用意しこれを混合する方法などが挙げられる。また、フィラーを良好に分散させ、また分散状態を安定化させるために分散剤、増粘剤等を接着シート物性に影響を及ぼさない範囲で用いることもできる。   The method for adding the filler is not particularly limited, and any conventionally known method may be used. Specifically, a method of adding to the polymerization reaction solution before or during the polymerization, using a three roll, etc. Examples thereof include a method of kneading the filler and a method of preparing a dispersion containing the filler and mixing it. Further, in order to disperse the filler satisfactorily and stabilize the dispersion state, a dispersant, a thickener and the like can be used as long as the physical properties of the adhesive sheet are not affected.

<その他添加剤>
この他、本発明の熱硬化性接着シートには、目的を損なわない範囲で任意成分として更に、染料、顔料、酸化防止剤、重合禁止剤、消泡剤、レベリング剤、イオン捕集剤、保湿剤、粘度調整剤、防腐剤、抗菌剤、帯電防止剤、アンチブロッキング剤、紫外線吸収剤、赤外線吸収剤、電磁波シールド剤などを添加することができる。
<Other additives>
In addition, the thermosetting adhesive sheet of the present invention may further include dyes, pigments, antioxidants, polymerization inhibitors, antifoaming agents, leveling agents, ion scavengers, moisturizing agents as optional components as long as the purpose is not impaired. An agent, a viscosity modifier, an antiseptic, an antibacterial agent, an antistatic agent, an antiblocking agent, an ultraviolet absorber, an infrared absorber, an electromagnetic wave shielding agent, and the like can be added.

[シート状基材付き熱硬化性接着シート]
本発明のシート状基材付き熱硬化性接着シートは、例えば、以下のようにして得ることができる。
溶液ないし分散液状態の熱硬化性接着剤を、シート状基材の少なくとも片面に、塗布後、通常40〜150℃で乾燥することにより、いわゆるBステージ状態の熱硬化性接着シートにシート状基材の付いたものを得ることができる。次いで熱硬化性接着シートの他方の面を他のシート状基材で覆うことにより、本発明のシート状基材付き熱硬化性接着シートを得ることができる。
用いるシート状基材の少なくとも一方は、剥離性のシート状基材であることが好ましい。すなわち、剥離性のシート状基材に、溶液ないし分散液状態の熱硬化性接着剤を塗布・乾燥し、熱硬化性接着シートを形成し、次いで熱硬化性接着シートの他方の面を他の剥離性のシート状基材で覆うこともできるし、被着体となる剥離性のないシート状基材で覆うこともできる。あるいは、被着体となる剥離性のないシート状基材に、溶液ないし分散液状態の熱硬化性接着剤を塗布・乾燥し、熱硬化性接着シートを形成し、次いで熱硬化性接着シートの他方の面を他の剥離性のシート状基材で覆うこともできる。
[Thermosetting adhesive sheet with sheet-like substrate]
The thermosetting adhesive sheet with a sheet-like substrate of the present invention can be obtained, for example, as follows.
After applying the thermosetting adhesive in a solution or dispersion state to at least one side of the sheet-like substrate, it is usually dried at 40 to 150 ° C., thereby forming a sheet-like base on the so-called B-stage thermosetting adhesive sheet. You can get the one with the material. Next, the other surface of the thermosetting adhesive sheet is covered with another sheet-like base material, whereby the thermosetting adhesive sheet with the sheet-like base material of the present invention can be obtained.
At least one of the sheet-like substrates to be used is preferably a peelable sheet-like substrate. That is, a thermosetting adhesive in a solution or dispersion state is applied to a peelable sheet-like substrate and dried to form a thermosetting adhesive sheet, and the other surface of the thermosetting adhesive sheet is then placed on the other side. It can also be covered with a peelable sheet-like base material, or can be covered with a non-peelable sheet-like base material to be an adherend. Alternatively, a thermosetting adhesive in a solution or dispersion state is applied to a non-peelable sheet-like substrate to be an adherend and dried to form a thermosetting adhesive sheet, and then the thermosetting adhesive sheet The other surface can be covered with another peelable sheet-like substrate.

熱硬化性接着シートの乾燥膜厚は、充分な接着性、ハンダ耐熱性を発揮させる為、また取り扱い易さの点から、5〜500μmであることが好ましく、更に好ましくは10〜100μmである。
塗布方法としては、例えば、コンマコート、ナイフコート、ダイコート、リップコート、ロールコート、カーテンコート、バーコート、グラビア印刷、フレキソ印刷、ディップコート、スプレーコート、スピンコート等が挙げられる。
The dry film thickness of the thermosetting adhesive sheet is preferably 5 to 500 μm, more preferably 10 to 100 μm, from the viewpoint of easy handling and sufficient adhesiveness and solder heat resistance.
Examples of the coating method include comma coating, knife coating, die coating, lip coating, roll coating, curtain coating, bar coating, gravure printing, flexographic printing, dip coating, spray coating, and spin coating.

用いられるシート状基材のうち剥離性のないものとしては、各種プラスチックフィルムが挙げられ、例えば、ポリイミドフィルム、ポリエステルフィルム、ポリフェニレンエーテルフィルム、ポリフェニレンサルファイドフィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリエーテルエーテルケトンフィルムが挙げられる。
用いられるシート状基材のうち剥離性のあるものとしては、各種プラスチックフィルムに剥離処理をしたものや、紙に剥離処理をしたもの等が挙げられる。剥離処理の対象とされる各種プラスチックフィルムとしては、ポリエステルフィルム、ポリオレフィンフィルムが挙げられる。
Examples of the non-peelable sheet-like substrate used include various plastic films, such as polyimide films, polyester films, polyphenylene ether films, polyphenylene sulfide films, polystyrene films, polycarbonate films, polyether ether ketone films. Is mentioned.
Examples of the sheet-like base material that can be peeled include those obtained by subjecting various plastic films to release treatment and those obtained by subjecting paper to release treatment. Examples of the various plastic films to be subjected to the peeling treatment include polyester films and polyolefin films.

[シート状硬化物]、[保護シート付きプリント配線板]
本発明のシート状硬化物は、本発明の熱硬化性接着シートを熱硬化、例えば40〜200℃程度の温度で硬化してなるものである。
[Cured sheet], [Printed wiring board with protective sheet]
The sheet-like cured product of the present invention is obtained by thermosetting the thermosetting adhesive sheet of the present invention, for example, at a temperature of about 40 to 200 ° C.

熱硬化性接着シートの片面を剥離性のシート状基材が覆い、他方の面を被着体(例えば、ポリイミドフィルムやポリエステルフィルム)が覆っているシート状基材付き熱硬化性接着シートを用いる場合について説明する。
シート状基材付き熱硬化性接着シートから剥離性シート状基材を剥がす。露出した熱硬化性接着シートに他の被着体(例えば、導電性回路を有するプリント配線板の前記回路面側)を重ねる。次いで、加熱・加圧することによって、両被着体に挟まれた熱硬化性接着シートを熱硬化する。
このようにすれば、シート状硬化物を介して、導電性回路を有するプリント配線板の前記回路面が、シート状基材で保護されてなる、保護シート付きプリント配線板を得ることができる。
Use a thermosetting adhesive sheet with a sheet-like substrate in which one side of the thermosetting adhesive sheet is covered with a peelable sheet-like substrate and the other surface is covered with an adherend (for example, a polyimide film or a polyester film). The case will be described.
The peelable sheet-like substrate is peeled off from the thermosetting adhesive sheet with the sheet-like substrate. Another adherend (for example, the circuit surface side of the printed wiring board having a conductive circuit) is overlaid on the exposed thermosetting adhesive sheet. Next, the thermosetting adhesive sheet sandwiched between both adherends is thermoset by heating and pressurizing.
If it does in this way, the printed circuit board with a protection sheet which the said circuit surface of the printed wiring board which has an electroconductive circuit protected by a sheet-like base material can be obtained through a sheet-like hardened | cured material.

次に、熱硬化性接着シートの両面を2つの剥離性のシート状基材がそれぞれ覆っているシート状基材付き熱硬化性接着シートを用いる場合について説明する。
シート状基材付き熱硬化性接着シートから一方の剥離性シート状基材を剥がす。露出した熱硬化性接着シートに被着体(例えば、ポリイミドフィルムやポリエステルフィルム)
を重ねる。熱硬化性接着シートの他方の面を覆っていた他の剥離性シート状基材を剥がす。露出した熱硬化性接着シートに他の被着体(例えば、導電性回路を有するプリント配線板の前記回路面側)を重ねる。次いで、加熱・加圧することによって、両被着体に挟まれた熱硬化性接着シートを熱硬化する。剥離性シート状基材を最初に剥がした面に、導電性回路を有するプリント配線板の前記回路面側を重ね、熱硬化性接着シートに他方の面にポリイミドフィルムやポリエステルフィルムを重ねることもできる。
Next, the case where the thermosetting adhesive sheet with a sheet-like base material in which two peelable sheet-like base materials respectively cover both surfaces of the thermosetting adhesive sheet is described.
One peelable sheet-like substrate is peeled off from the thermosetting adhesive sheet with the sheet-like substrate. An adherend (for example, polyimide film or polyester film) on the exposed thermosetting adhesive sheet
Repeat. The other peelable sheet-like substrate that has covered the other surface of the thermosetting adhesive sheet is peeled off. Another adherend (for example, the circuit surface side of the printed wiring board having a conductive circuit) is overlaid on the exposed thermosetting adhesive sheet. Next, the thermosetting adhesive sheet sandwiched between both adherends is thermoset by heating and pressurizing. The circuit surface side of the printed wiring board having a conductive circuit can be overlaid on the surface from which the peelable sheet-like substrate is first peeled off, and a polyimide film or a polyester film can be overlaid on the other surface of the thermosetting adhesive sheet. .

導電性回路を有するプリント配線板としては、ポリエステルやポリイミド等の可とう性、絶縁性のあるプラスチックフィルム上に、導電性回路を形成したフレキシブルプリント配線板が挙げられる。
導電性回路を設ける方法としては、例えば、接着剤層を介して又は介さずにベースフィルム上に銅箔を設けてなるフレキシブル銅張板の銅箔上に感光性エッチングレジスト層を形成し、回路パターンを持つマスクフィルムを通して露光させて、露光部のみを硬化させ、次いで未露光部の銅箔をエッチングにより除去した後、残っているレジスト層を剥離するなどして、銅箔から導電性回路を形成することができる。
あるいは、ベースフィルム上にスパッタリングやめっき等の手段で必要な回路のみを設ける方法も挙げられる。
あるいは、銀や銅の粒子を含有する導電性インキを用い、プリント技術によってベースフィルム上に導電性回路を形成する方法も挙げられる。
Examples of the printed wiring board having a conductive circuit include a flexible printed wiring board in which a conductive circuit is formed on a plastic film having flexibility and insulation such as polyester and polyimide.
As a method for providing a conductive circuit, for example, a photosensitive etching resist layer is formed on a copper foil of a flexible copper-clad plate in which a copper foil is provided on a base film with or without an adhesive layer. Expose the conductive circuit from the copper foil by exposing it through a mask film with a pattern, curing only the exposed area, then removing the unexposed area of the copper foil by etching, and then peeling off the remaining resist layer. Can be formed.
Or the method of providing only a required circuit by means, such as sputtering and plating, on a base film is also mentioned.
Or the method of forming an electroconductive circuit on a base film by a printing technique using the electroconductive ink containing the particle | grains of silver and copper is also mentioned.

本発明の熱硬化性接着シートは、保護シート付きプリント配線板の製造に好適に用いられる他、以下のように用いることもできる。
<複数のフレキシブルプリント配線の多層化>
複数のフレキシブルプリント配線の間に、本発明の熱硬化性接着シートを挟み、加熱・加圧することによって、熱硬化性接着シートを硬化させ、多層フレキシブルプリント配線板を得ることもできる。
<フレキシブルプリント配線板用のベースフィルムと銅箔との貼り合わせ>
例えば、ポリイミドフィルムと銅箔との間に、本発明の熱硬化性接着シートを挟み、加熱・加圧することによって、熱硬化性接着シートを硬化させることもできる。
The thermosetting adhesive sheet of the present invention is suitably used for producing a printed wiring board with a protective sheet, and can also be used as follows.
<Multi-layering of multiple flexible printed wiring>
By sandwiching the thermosetting adhesive sheet of the present invention between a plurality of flexible printed wirings and heating and pressing, the thermosetting adhesive sheet can be cured to obtain a multilayer flexible printed wiring board.
<Lamination of base film for flexible printed wiring board and copper foil>
For example, the thermosetting adhesive sheet can be cured by sandwiching the thermosetting adhesive sheet of the present invention between a polyimide film and a copper foil, and heating and pressing.

以下に、実施例により、本発明をさらに具体的に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。なお、実施例における、「部」および「%」は、「重量部」および「重量%」をそれぞれ表し、Mwは質量平均分子量を意味する。   The present invention will be described more specifically with reference to the following examples. However, the following examples do not limit the scope of rights of the present invention. In the examples, “parts” and “%” represent “parts by weight” and “% by weight”, respectively, and Mw represents a mass average molecular weight.

<水酸基価(フェノール性およびアルコール性)の測定方法>
フェノール性およびアルコール性の水酸基価は、樹脂固形1g中に含まれる水酸基の量を、水酸基をアセチル化させたときに水酸基と結合した酢酸を中和するために必要な水酸化カリウムの量(mg)で表したものである。
水酸基価は、JIS K0070に準じて測定し、下記式に示す通り、酸価を考慮して計算する。
<Measuring method of hydroxyl value (phenolic and alcoholic)>
The phenolic and alcoholic hydroxyl value is the amount of potassium hydroxide required to neutralize acetic acid bonded to a hydroxyl group when the hydroxyl group is acetylated by the amount of hydroxyl group contained in 1 g of resin solids (mg ).
The hydroxyl value is measured according to JIS K0070, and is calculated in consideration of the acid value as shown in the following formula.

共栓三角フラスコ中に試料約1gを精密に量り採り、シクロヘキサノン溶媒100mlを加えて溶解する。更にアセチル化剤(無水酢酸25gをピリジンで溶解し、容量100mlとした溶液)を正確に5ml加え、約1時間攪拌した。これに、フェノールフタレイン試液を指示薬として加え、30秒間持続する。その後、溶液が淡紅色を呈するまで0.5Nアルコール性水酸化カリウム溶液で滴定する。
水酸基価は次式により求めた(単位:mgKOH/g)。
水酸基価(mgKOH/g)=[{(b−a)×F×28.05}/S]+D
ただし、
S:試料の採取量(g)
a:0.5Nアルコール性水酸化カリウム溶液の消費量(ml)
b:空実験の0.5Nアルコール性水酸化カリウム溶液の消費量(ml)
F:0.5Nアルコール性水酸化カリウム溶液の力価
D:酸価(mgKOH/g)
<酸価の測定>
共栓三角フラスコ中に試料約1gを精密に量り採り、シクロヘキサノン溶媒100mlを加えて溶解する。これに、フェノールフタレイン試液を指示薬として加え、30秒間保持する。その後、溶液が淡紅色を呈するまで0.1Nアルコール性水酸化カリウム溶液で滴定する。酸価は次式により求めた(単位:mgKOH/g)。
酸価(mgKOH/g)=(5.611×a×F)/S
ただし、
S:試料の採取量(g)
a:0.1Nアルコール性水酸化カリウム溶液の消費量(ml)
F:0.1Nアルコール性水酸化カリウム溶液の力価
About 1 g of a sample is accurately weighed in a stoppered Erlenmeyer flask and dissolved by adding 100 ml of cyclohexanone solvent. Further, exactly 5 ml of an acetylating agent (a solution in which 25 g of acetic anhydride was dissolved in pyridine to make a volume of 100 ml) was added and stirred for about 1 hour. To this, phenolphthalein reagent is added as an indicator and lasts for 30 seconds. Thereafter, the solution is titrated with a 0.5N alcoholic potassium hydroxide solution until the solution becomes light red.
The hydroxyl value was determined by the following formula (unit: mgKOH / g).
Hydroxyl value (mgKOH / g) = [{(ba) × F × 28.05} / S] + D
However,
S: Sample collection amount (g)
a: Consumption of 0.5N alcoholic potassium hydroxide solution (ml)
b: Consumption of the 0.5N alcoholic potassium hydroxide solution in the blank experiment (ml)
F: Potency of 0.5N alcoholic potassium hydroxide solution D: Acid value (mgKOH / g)
<Measurement of acid value>
About 1 g of a sample is accurately weighed in a stoppered Erlenmeyer flask and dissolved by adding 100 ml of cyclohexanone solvent. To this is added phenolphthalein reagent as an indicator and held for 30 seconds. Thereafter, the solution is titrated with a 0.1N alcoholic potassium hydroxide solution until the solution becomes light red. The acid value was determined by the following formula (unit: mgKOH / g).
Acid value (mgKOH / g) = (5.611 × a × F) / S
However,
S: Sample collection amount (g)
a: Consumption of 0.1N alcoholic potassium hydroxide solution (ml)
F: Potency of 0.1N alcoholic potassium hydroxide solution

<酸無水物価の測定方法>
共栓三角フラスコ中に試料約1gを精密に量り採り、1,4−ジオキサン溶媒100mlを加えて溶解した。これにオクチルアミン、1,4−ジオキサン、水の混合溶液(重量の混合比は1.49/800/80)を10mL加えて15分攪拌し、反応を完了させた。
その後、過剰のオクチルアミンを0.02M過塩素酸、1,4−ジオキサンの混合溶液で滴定した。また、試料を加えていない、オクチルアミン、1,4−ジオキサン、水の混合溶液(重量の混合比は1.49/800/80)10mLもブランクとして測定を実施した
。酸無水物価は次式により求めた(単位:mgKOH/g)
酸無水物価(mgKOH/g)=0.02×(B−S)×F×56.11/W
B:ブランクの滴定量(mL)
S:試料の滴定量(mL)
W:試料固形量(g)
F:0.02mol/L過塩素酸の力価
<Method for measuring acid anhydride value>
About 1 g of a sample was accurately weighed in a stoppered Erlenmeyer flask and dissolved by adding 100 ml of 1,4-dioxane solvent. 10 mL of a mixed solution of octylamine, 1,4-dioxane and water (weight mixing ratio: 1.49 / 800/80) was added thereto, and the mixture was stirred for 15 minutes to complete the reaction.
Thereafter, excess octylamine was titrated with a mixed solution of 0.02M perchloric acid and 1,4-dioxane. Moreover, the measurement was carried out using 10 mL of a mixed solution of octylamine, 1,4-dioxane, and water (weight mixing ratio: 1.49 / 800/80), to which no sample was added, as a blank. The acid anhydride value was determined by the following formula (unit: mgKOH / g).
Acid anhydride value (mgKOH / g) = 0.02 × (B−S) × F × 56.11 / W
B: Blank titration (mL)
S: Sample titration (mL)
W: Sample solid content (g)
F: 0.02 mol / L perchloric acid titer

<質量平均分子量(Mw)の測定方法>
Mwの測定は東ソー株式会社製GPC(ゲルパーミエーションクロマトグラフィー)「HPC−8020」を用いた。GPCは溶媒(THF;テトラヒドロフラン)に溶解した物質をその分子サイズの差によって分離定量する液体クロマトグラフィーである。本発明における測定は、カラムに「LF−604」(昭和電工株式会社製:迅速分析用GPCカラム:6mmID×150mmサイズ)を直列に2本接続して用い、流量0.6ml/m
in、カラム温度40℃の条件で行い、重量平均分子量(Mw)の決定はポリスチレン換算で行った。
<Measurement method of mass average molecular weight (Mw)>
For measurement of Mw, GPC (gel permeation chromatography) “HPC-8020” manufactured by Tosoh Corporation was used. GPC is liquid chromatography that separates and quantifies substances dissolved in a solvent (THF; tetrahydrofuran) based on the difference in molecular size. For the measurement in the present invention, two columns “LF-604” (manufactured by Showa Denko KK: GPC column for rapid analysis: 6 mm ID × 150 mm size) are connected in series, and the flow rate is 0.6 ml / m.
in, the column temperature was 40 ° C., and the weight average molecular weight (Mw) was determined in terms of polystyrene.

[合成例1]
<アクリル樹脂の合成例>
撹拌機、還流冷却管、窒素導入管、導入管、温度計を備えた4口フラスコに、メチルエチルケトン(以下、MEKという)300gを入れ、容器に窒素ガスを注入しながら80℃に加熱して、同温度でメタクリル酸ブチル30g、メタクリル酸メチル28g、メタクリル酸ラウリルとメタクリル酸トリデシルとの1:1(質量比)混合品3g、メタクリル酸12g、2,2’-アゾビスイソブチロニトリル0.8gの混合物を1時間かけて滴下
して重合反応を行った。滴下終了後、さらに80℃で3時間反応させた後、2,2’−アゾビスイソブチロニトリル1.2部をMEK50gに溶解させたものを添加し、80℃で1時間反応させて、アクリル樹脂溶液を得た。質量平均分子量は5.2万、酸価は78.2mgKOH/gであった。
[Synthesis Example 1]
<Synthesis example of acrylic resin>
In a four-necked flask equipped with a stirrer, reflux condenser, nitrogen inlet pipe, inlet pipe, thermometer, 300 g of methyl ethyl ketone (hereinafter referred to as MEK) is heated to 80 ° C. while injecting nitrogen gas into the container. At the same temperature, 30 g of butyl methacrylate, 28 g of methyl methacrylate, 3 g of 1: 1 (mass ratio) mixture of lauryl methacrylate and tridecyl methacrylate, 12 g of methacrylic acid, 2,2′-azobisisobutyronitrile 8 g of the mixture was added dropwise over 1 hour to conduct a polymerization reaction. After the completion of the dropwise addition, the mixture was further reacted at 80 ° C. for 3 hours, then 1.2 parts of 2,2′-azobisisobutyronitrile dissolved in 50 g of MEK was added, and the mixture was reacted at 80 ° C. for 1 hour. An acrylic resin solution was obtained. The mass average molecular weight was 52,000, and the acid value was 78.2 mgKOH / g.

[合成例2〜3]
合成例1と同様の方法で、表1の組成に従って合成を行い、アクリル樹脂を得た。
[Synthesis Examples 2-3]
Synthesis was performed according to the composition shown in Table 1 in the same manner as in Synthesis Example 1 to obtain an acrylic resin.

[合成例4]
<ポリエステル樹脂の合成例>
撹拌機、還流冷却管、窒素導入管、導入管、温度計を備えた4口フラスコに、セバシン酸57.6g、トリメシン酸3.2g、シクロへキサンジメタノール27.5g、1.6−ヘキサンジオール9.7g、テトラブチルチタネート0.012gを仕込み、発熱の温度が一定になるまで撹拌した。温度が安定したら110℃まで昇温し、温度が安定したのを確認してから、30分後に温度を120℃に昇温し、その後、30分ごとに10℃ずつ昇温しながら脱水反応を続けた。温度が230℃になったら、そのままの温度で3時間反応を続け、約2KPaの真空下で、1時間保持した。その後、温度を低下し、ポリエステル樹脂を得た。質量平均分子量は3.2万、酸価は39.8mgKOH/gであった。
[Synthesis Example 4]
<Examples of polyester resin synthesis>
In a four-necked flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, inlet tube and thermometer, 57.6 g of sebacic acid, 3.2 g of trimesic acid, 27.5 g of cyclohexanedimethanol, 1.6-hexane Diol 9.7 g and tetrabutyl titanate 0.012 g were charged and stirred until the temperature of the exotherm became constant. When the temperature is stabilized, the temperature is raised to 110 ° C. After confirming that the temperature has stabilized, the temperature is raised to 120 ° C. after 30 minutes, and then the dehydration reaction is performed while raising the temperature by 10 ° C. every 30 minutes. Continued. When the temperature reached 230 ° C., the reaction was continued for 3 hours at the same temperature, and held for 1 hour under a vacuum of about 2 KPa. Thereafter, the temperature was lowered to obtain a polyester resin. The mass average molecular weight was 32,000, and the acid value was 39.8 mgKOH / g.

[合成例5〜10]
合成例4と同様の方法で、表2の組成に従って合成を行い、ポリエステル系樹脂を得た。
[Synthesis Examples 5 to 10]
Synthesis was performed in the same manner as in Synthesis Example 4 according to the composition shown in Table 2 to obtain a polyester resin.

[合成例11]
<ポリウレタン系樹脂の合成例>
撹拌機、還流冷却管、窒素導入管、導入管、温度計を備えた4口フラスコに、1.6−ヘキサンジオール10.6g、C36ダイマージオール(PRIPOL2033:クロー
ダジャパン株式会社、OH価=207mgKOH/g)113.3g、トリレンジイソシアネート44.3g、溶剤としてトルエン240gを仕込み、窒素気流下、攪拌しながら
60℃まで昇温し、均一に溶解させた。続いてこのフラスコに、触媒としてジブチル錫ジラウレート0.016gを投入し、100℃で3時間攪拌し、ウレタン化の反応を行った。次に、トルエン40g、無水トリメリット酸17.6gを投入し、90℃で1時間攪拌後、135℃に昇温し、4時間反応させた。室温まで冷却し、ポリウレタン系樹脂を得た。質量平均分子量は1.1万、酸価は55.3mgKOH/gであった。
[Synthesis Example 11]
<Synthesis example of polyurethane resin>
In a four-necked flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, inlet tube, thermometer, 1.6-hexanediol 10.6 g, C36 dimer diol (PRIPOL 2033: CRODA JAPAN, OH value = 207 mgKOH / g) 113.3 g, 44.3 g of tolylene diisocyanate, and 240 g of toluene as a solvent were charged, and the mixture was heated to 60 ° C. with stirring in a nitrogen stream and dissolved uniformly. Subsequently, 0.016 g of dibutyltin dilaurate was added to the flask as a catalyst, and the mixture was stirred at 100 ° C. for 3 hours to carry out a urethanization reaction. Next, 40 g of toluene and 17.6 g of trimellitic anhydride were added, stirred at 90 ° C. for 1 hour, then heated to 135 ° C. and reacted for 4 hours. Cooling to room temperature gave a polyurethane resin. The mass average molecular weight was 11,000, and the acid value was 55.3 mgKOH / g.

[合成例12]
合成例11と同様の方法で、表3の組成に従って合成を行い、ポリウレタン系樹脂を得た。
[Synthesis Example 12]
Synthesis was performed according to the composition shown in Table 3 in the same manner as in Synthesis Example 11 to obtain a polyurethane resin.

[合成例13]
<ポリウレタンウレア系樹脂の合成例>
撹拌機、還流冷却管、窒素導入管、導入管、温度計を備えた4口フラスコに、1.6−ヘキサンジオール28.4g、ジメチロールブタン酸8.9g、トリレンジイソシアネート55.6g、溶剤としてトルエン122gを仕込み、窒素気流下、攪拌しながら60℃
まで昇温し、均一に溶解させた。続いてこのフラスコに、触媒としてジブチル錫ジラウレート0.008gを投入し、100℃で3時間攪拌し、ウレタン化の反応を行った。次に、80℃に降温してトルエン20gに溶解させたヘキシルアミン1.9gを30分かけて滴下し、その後100℃で6時間攪拌した。室温まで冷却し、ポリウレタンウレア系樹脂を得た。質量平均分子量は1.4万、酸価は34.8mgKOH/gであった。
[Synthesis Example 13]
<Synthesis example of polyurethane urea resin>
In a four-necked flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, inlet tube and thermometer, 28.4 g of 1.6-hexanediol, 8.9 g of dimethylolbutanoic acid, 55.6 g of tolylene diisocyanate, solvent As a solution, 122 g of toluene was charged and stirred at 60 ° C. under a nitrogen stream.
The solution was heated up to be dissolved uniformly. Subsequently, 0.008 g of dibutyltin dilaurate was added to the flask as a catalyst and stirred at 100 ° C. for 3 hours to carry out a urethanization reaction. Next, the temperature was lowered to 80 ° C. and 1.9 g of hexylamine dissolved in 20 g of toluene was dropped over 30 minutes, and then stirred at 100 ° C. for 6 hours. After cooling to room temperature, a polyurethaneurea resin was obtained. The mass average molecular weight was 14,000, and the acid value was 34.8 mgKOH / g.

[合成例14]
<ポリウレタンウレア系樹脂の合成例>
合成例13と同様の方法で、表4の組成に従って合成を行い、ポリウレタンウレア系樹脂を得た。
[Synthesis Example 14]
<Synthesis example of polyurethane urea resin>
Synthesis was performed according to the composition shown in Table 4 in the same manner as in Synthesis Example 13 to obtain a polyurethaneurea resin.

[合成例15]
<ポリアミド系樹脂の合成例>
撹拌機、還流冷却管、窒素導入管、導入管、温度計を備えた4口フラスコに、セバシン酸54.5g、トリメシン酸6.4g、プリアミン1074:クローダジャパン(株)製、C36ダイマージアミン(アミン価:210mgKOH/g)148.4g、イオン交換水を100g仕込み、発熱の温度が一定になるまで撹拌した。温度が安定したら110℃まで昇温し、水の流出を確認してから、30分後に温度を120℃に昇温し、その後、30分ごとに10℃ずつ昇温しながら脱水反応を続けた。温度が230℃になったら、そのままの温度で3時間反応を続け、約2KPaの真空下で、1時間保持した。その後、温度を低下し、ポリアミド樹脂を得た。質量平均分子量は2.8万、酸価は20.0mgKOH/gであった。
[Synthesis Example 15]
<Synthesis example of polyamide resin>
In a four-necked flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, inlet tube, and thermometer, 54.5 g of sebacic acid, 6.4 g of trimesic acid, preamine 1074: C36 dimer diamine (manufactured by Croda Japan Co., Ltd.) (Amine value: 210 mg KOH / g) 148.4 g and 100 g of ion-exchanged water were charged, and the mixture was stirred until the temperature of heat generation became constant. When the temperature was stabilized, the temperature was raised to 110 ° C., and after confirming the outflow of water, the temperature was raised to 120 ° C. after 30 minutes, and then the dehydration reaction was continued while raising the temperature by 10 ° C. every 30 minutes. . When the temperature reached 230 ° C., the reaction was continued for 3 hours at the same temperature, and held for 1 hour under a vacuum of about 2 KPa. Thereafter, the temperature was lowered to obtain a polyamide resin. The mass average molecular weight was 28,000, and the acid value was 20.0 mgKOH / g.

[合成例16〜17]
合成例15と同様の方法で、表5の組成に従って合成を行い、ポリアミド系樹脂を得た。
[Synthesis Examples 16 to 17]
Synthesis was performed in the same manner as in Synthesis Example 15 in accordance with the composition shown in Table 5 to obtain a polyamide resin.

[合成例18]
<ポリイミド系樹脂の合成例>
撹拌機、還流冷却管、窒素導入管、導入管、温度計を備えた4口フラスコに、4,4'-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物「6FDA」88.8g、ダイマージイソシアネート(BASFジャパン株式会社製、NCO%=13.8%)110.1gIPDIヌレート(イソホロンジイソシアネートのヌレート体)6.06gを仕込み、発熱の温度が一定になるまで撹拌した。温度が安定したら110℃まで昇温し、水の流出を確認してから、30分後に温度を120℃に昇温し、その後、30分毎に10℃ずつ昇温しながら脱水反応を続けた。温度が230℃になったら、そのままの温度で3時間反応を続け、約2kPaの真空下で3時間保持した。その後、温度を低下し、ポリイミド樹脂を得た。質量平均分子量は3.4万、酸無水物価は7.5mgKOH/gであった。
[Synthesis Example 18]
<Synthesis example of polyimide resin>
In a four-necked flask equipped with a stirrer, reflux condenser, nitrogen inlet pipe, inlet pipe, and thermometer, 88.8 g of 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride “6FDA”, dimer isocyanate (BASF) Japan Co., Ltd., NCO% = 13.8%) 110.1 g IPDI nurate (nuphorate of isophorone diisocyanate) 6.06 g was charged and stirred until the temperature of heat generation became constant. When the temperature was stabilized, the temperature was raised to 110 ° C., and after confirming the outflow of water, the temperature was raised to 120 ° C. after 30 minutes, and then the dehydration reaction was continued while raising the temperature by 10 ° C. every 30 minutes. . When the temperature reached 230 ° C., the reaction was continued for 3 hours at the same temperature, and kept under a vacuum of about 2 kPa for 3 hours. Thereafter, the temperature was lowered to obtain a polyimide resin. The mass average molecular weight was 34,000, and the acid anhydride value was 7.5 mgKOH / g.

[合成例19〜23]
合成例18と同様の方法で、表6の組成に従って合成を行い、ポリイミド系樹脂を得た。
[Synthesis Examples 19 to 23]
Synthesis was performed according to the composition shown in Table 6 in the same manner as in Synthesis Example 18 to obtain a polyimide resin.

[合成例24]
<ポリカーボネート系樹脂の合成例>
撹拌機、還流冷却管、窒素導入管、導入管、温度計を備えた4口フラスコに、炭酸エチレン25.2g、1,4−シクロへキサンジメタノール38.9g、トリメチロールプロパン4.0g、テトラブチルチタネート0.003gを仕込み、常圧、攪拌下、シクロへキサンジメタノールと炭酸エチレンの混合物を留去しながら、エステル交換反応を8時間行なった。この間、30分ごとに10℃ずつ昇温しながら反応温度は190℃まで徐々に昇温させ、留出物の組成はシクロへキサンジメタノールと炭酸エチレンの混合物の共沸組成の近傍となるように調節した。そのままの温度で3時間反応を続け、約2KPaの真空下で、さらに3時間保持した。その後、温度を低下し、ポリカーボネート樹脂を得た。質量平均分子量は1.4万、水酸基価は48.2mgKOH/gであった。
[Synthesis Example 24]
<Synthesis example of polycarbonate resin>
In a four-necked flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, inlet tube, thermometer, ethylene carbonate 25.2 g, 1,4-cyclohexanedimethanol 38.9 g, trimethylolpropane 4.0 g, The transesterification was carried out for 8 hours while adding 0.003 g of tetrabutyl titanate and distilling off a mixture of cyclohexanedimethanol and ethylene carbonate under normal pressure and stirring. During this time, the temperature of the reaction is gradually raised to 190 ° C. while raising the temperature by 10 ° C. every 30 minutes, so that the composition of the distillate is close to the azeotropic composition of the mixture of cyclohexanedimethanol and ethylene carbonate. Adjusted. The reaction was continued for 3 hours at the same temperature, and was further maintained for 3 hours under a vacuum of about 2 KPa. Thereafter, the temperature was lowered to obtain a polycarbonate resin. The mass average molecular weight was 14,000, and the hydroxyl value was 48.2 mgKOH / g.

[合成例25]
<ポリカーボネート系樹脂の合成例>
撹拌機、還流冷却管、窒素導入管、導入管、温度計を備えた4口フラスコに、炭酸エチレン25.2g、1.6−ヘキサンジオール35.5g、テトラブチルチタネート0.003gを仕込み、常圧、攪拌下、1.6ヘキサンジオールと炭酸エチレンの混合物を留去
しながら、エステル交換反応を8時間行なった。この間、30分ごとに10℃ずつ昇温しながら反応温度は190℃まで徐々に昇温させ、留出物の組成は1.6−ヘキサンジオールと炭酸エチレンの混合物の共沸組成の近傍となるように調節した。そのままの温度で3時間反応を続け、約2KPaの真空下で、さらに3時間保持した。その後、温度を低下し、無水トリメリット酸2.2g、トルエン30gを添加し、110℃で3時間反応させ、その後、温度を低下し、ポリカーボネート樹脂を得た。質量平均分子量は1.3万、酸価は20.4mgKOH/g、水酸基価は15.3mgKOH/gであった。
[Synthesis Example 25]
<Synthesis example of polycarbonate resin>
A 4-neck flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, inlet tube, and thermometer was charged with 25.2 g of ethylene carbonate, 35.5 g of 1.6-hexanediol, and 0.003 g of tetrabutyl titanate. The ester exchange reaction was carried out for 8 hours while distilling off a mixture of 1.6 hexanediol and ethylene carbonate under pressure and stirring. During this period, the reaction temperature is gradually raised to 190 ° C. while raising the temperature by 10 ° C. every 30 minutes, and the composition of the distillate is close to the azeotropic composition of the mixture of 1.6-hexanediol and ethylene carbonate. Adjusted as follows. The reaction was continued for 3 hours at the same temperature, and was further maintained for 3 hours under a vacuum of about 2 KPa. Thereafter, the temperature was decreased, 2.2 g of trimellitic anhydride and 30 g of toluene were added and reacted at 110 ° C. for 3 hours, and then the temperature was decreased to obtain a polycarbonate resin. The mass average molecular weight was 13,000, the acid value was 20.4 mgKOH / g, and the hydroxyl value was 15.3 mgKOH / g.

[合成例26]
<ポリフェニレンエーテル系樹脂の合成例>
撹拌機、還流冷却管、窒素導入管、導入管、温度計を備えた4口フラスコを30℃の恒温水槽中に置いた。塩化銅(I)9.9gをピリジン2.0gに加え、酸素を吹き込みながらかき混ぜ、トルエン5.0gを加えることで、触媒溶液となる銅(II)ピリジン錯体溶液を得た。また、2,6−ジメチルフェノール98.0gと2.2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン30.0gをトルエン3.0gに溶解し、フェノール溶液を得た。その後、30℃に保持し、酸素置換した反応容器内に触媒、フェノール両溶液を滴下混合し、激しくかき混ぜた。モノマー添加開始時から66分後に、酸素を窒素に切り換え、重合を停止させた。反応溶液を0.3gの濃塩酸を含む110gのメタノール中に滴下した。沈殿したポリマーをろ過し、25.0gのメタノール、ついで1.0gの濃塩酸を含む25.0gのメタノール、最後に25.0gのメタノールで洗浄した。120℃で3時間乾燥させ、トルエン50.0g、2−プロパノール50.0gで希釈して、ポリフェニレンエーテル樹脂を得た。質量平均分子量は1.5万、フェノール性水酸基価は15.4mgKOH/gであった。
[Synthesis Example 26]
<Synthesis example of polyphenylene ether resin>
A four-necked flask equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, an inlet tube, and a thermometer was placed in a constant temperature water bath at 30 ° C. 9.9 g of copper (I) chloride was added to 2.0 g of pyridine, stirred while blowing oxygen, and 5.0 g of toluene was added to obtain a copper (II) pyridine complex solution serving as a catalyst solution. In addition, 98.0 g of 2,6-dimethylphenol and 30.0 g of 2.2-bis (4-hydroxy-3,5-dimethylphenyl) propane were dissolved in 3.0 g of toluene to obtain a phenol solution. Thereafter, both the catalyst and phenol solutions were added dropwise and mixed vigorously in a reaction vessel maintained at 30 ° C. and purged with oxygen. 66 minutes after the start of monomer addition, the oxygen was switched to nitrogen to stop the polymerization. The reaction solution was dropped into 110 g of methanol containing 0.3 g of concentrated hydrochloric acid. The precipitated polymer was filtered and washed with 25.0 g methanol, then 25.0 g methanol containing 1.0 g concentrated hydrochloric acid and finally 25.0 g methanol. It was dried at 120 ° C. for 3 hours and diluted with 50.0 g of toluene and 50.0 g of 2-propanol to obtain a polyphenylene ether resin. The mass average molecular weight was 15,000, and the phenolic hydroxyl value was 15.4 mgKOH / g.

[合成例27]<スチレン系エラストマーの合成例>
ポリマーのブロック比において(以下、同様)スチレン:ブタジエン=15:85(質
量%)、質量平均分子量60000のスチレン系エラストマー100gに対して、無水マ
レイン酸0.49g、ベンゾイルパーオキサイド0.1g、イルガノックス1010(BASFジャパン社製、酸化防止剤)0.6gをドライブレンドし、ベント付き32ミリの二軸押出機を用いて、更に混合し、溶融混錬し、ペレット状サンプルを得た。混合、溶融混練時の二軸押出機の温度は、ホッパー下部40℃、混合ゾーン80℃、反応ゾーン170℃、ダイス180℃とした。
得られたペレット状サンプル100質量部に、アセトン85質量部、ヘプタン85質量部を加え、耐圧反応器中、85℃で2時間加熱攪拌した。同操作終了後、金網でペレットを回収し、これを140℃、0.1Torrで20時間真空乾燥して、酸無水物基を有するスチレン−ブタジエンブロック共重合体を得た。分子量分布は狭く、質量平均分子量は60000、酸無水物価は2.8mgCHONa/gであった。
[Synthesis Example 27] <Synthesis Example of Styrenic Elastomer>
With respect to the block ratio of the polymer (hereinafter the same), styrene: butadiene = 15: 85 (mass%), 100 g of styrene elastomer having a mass average molecular weight of 60000, maleic anhydride 0.49 g, benzoyl peroxide 0.1 g, iruga 0.6 g of Knox 1010 (manufactured by BASF Japan, antioxidant) was dry blended, further mixed and melt-kneaded using a vented 32 mm twin screw extruder to obtain a pellet sample. The temperature of the twin screw extruder at the time of mixing and melt kneading was set to 40 ° C. below the hopper, 80 ° C. mixing zone, 170 ° C. reaction zone, and 180 ° C. die.
To 100 parts by mass of the obtained pellet-like sample, 85 parts by mass of acetone and 85 parts by mass of heptane were added, and the mixture was heated and stirred at 85 ° C. for 2 hours in a pressure resistant reactor. After completion of the operation, the pellets were collected with a wire mesh and vacuum-dried at 140 ° C. and 0.1 Torr for 20 hours to obtain a styrene-butadiene block copolymer having an acid anhydride group. The molecular weight distribution was narrow, the mass average molecular weight was 60000, and the acid anhydride value was 2.8 mg CH 3 ONa / g.

[合成例28]
使用したスチレン系エラストマーを、スチレン:イソプレン=15:85(質量%)とした以外は合成例1と同様の方法で表1に示すような質量平均分子量および酸無水物基価を有する酸無水物基を有するスチレン−イソプレンブロック共重合体を得た。
[Synthesis Example 28]
An acid anhydride having a mass average molecular weight and an acid anhydride base value as shown in Table 1 in the same manner as in Synthesis Example 1 except that the styrene elastomer used was styrene: isoprene = 15: 85 (mass%). A styrene-isoprene block copolymer having a group was obtained.

[合成例29]
使用したスチレン系エラストマーを、スチレン:[エチレン/ブチレン]=15:85(質量%)とした以外は合成例1と同様の方法で表1に示すような質量平均分子量および酸無水物基価を有する酸無水物基を有するスチレン−エチレン/ブチレン−スチレンブロッ
ク共重合体を得た。
[Synthesis Example 29]
Except that the styrene elastomer used was styrene: [ethylene / butylene] = 15: 85 (mass%), the mass average molecular weight and acid anhydride value as shown in Table 1 were set in the same manner as in Synthesis Example 1. A styrene-ethylene / butylene-styrene block copolymer having an acid anhydride group was obtained.

[合成例30〜33]
使用する無水マレイン酸の量を変え、変性量を変更した以外は合成例29と同様の方法で、表9に示すような質量平均分子量および酸無水物基価を有する酸無水物基を有するスチレン−エチレン/ブチレン−スチレンブロック共重合体を得た
[Synthesis Examples 30 to 33]
Styrene having an acid anhydride group having a mass average molecular weight and an acid anhydride group as shown in Table 9 in the same manner as in Synthesis Example 29 except that the amount of maleic anhydride used was changed and the amount of modification was changed. -An ethylene / butylene-styrene block copolymer was obtained.

[合成例34]
<フッ素系樹脂の合成例>
1000mLのステンレス製オートクレーブに、ヘキサフルオロプロピレン35.2g、ピバリン酸ビニル46.5g、ヒドロキシブチルビニルエーテル4.93g、エチルビニルエーテル12.7g、クロトン酸0.7g及びジイソプロピルパーオキシジカーボネート0.8gを仕込み、0℃ に冷却した後、減圧下に脱気した。その後、攪拌下で40
℃ に加熱し、24時間反応させ、反応器内圧が5kg/cm2から2kg/cm2に下が
った時点で反応を停止し、フッ素系樹脂を得た。質量平均分子量は4.8万、酸価は4.6mgKOH/gであった。
[Synthesis Example 34]
<Synthesis example of fluororesin>
A 1000 mL stainless steel autoclave is charged with 35.2 g of hexafluoropropylene, 46.5 g of vinyl pivalate, 4.93 g of hydroxybutyl vinyl ether, 12.7 g of ethyl vinyl ether, 0.7 g of crotonic acid and 0.8 g of diisopropyl peroxydicarbonate. After cooling to 0 ° C., the mixture was degassed under reduced pressure. Then, under stirring, 40
The reaction was stopped when the reactor internal pressure dropped from 5 kg / cm 2 to 2 kg / cm 2 , and a fluororesin was obtained. The mass average molecular weight was 48,000, and the acid value was 4.6 mgKOH / g.

[合成例35]
<フッ素系樹脂の合成例>
合成例34と同様の方法で、表10の組成に従って合成を行い、フッ素系樹脂を得た。
[Synthesis Example 35]
<Synthesis example of fluororesin>
Synthesis was performed according to the composition shown in Table 10 in the same manner as in Synthesis Example 34 to obtain a fluororesin.

[合成例36]
<スチレン無水マレイン酸系樹脂の合成例>
撹拌機、還流冷却管、窒素導入管、導入管、温度計を備えた4口フラスコに、MEK300gを入れ、容器に窒素ガスを注入しながら80℃に加熱して、同温度でスチレン516.1g、無水マレイン酸48.4g、過酸化ベンゾイル0.2gの混合物を1時間かけて滴下して重合反応を行った。滴下終了後、さらに80℃で3時間反応させた後、過酸化ベンゾイル0.2gをMEK50gに溶解させたものを添加し、80℃で1時間反応させて、スチレン無水マレイン酸系樹脂溶液を得た。質量平均分子量は6.2万、酸無水物価は49.0mgKOH/gであった。
[Synthesis Example 36]
<Synthesis Example of Styrene Maleic Anhydride Resin>
In a 4-neck flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, inlet tube, and thermometer, 300 g of MEK was placed, heated to 80 ° C. while injecting nitrogen gas into the vessel, and 516.1 g of styrene at the same temperature. Then, a mixture of 48.4 g of maleic anhydride and 0.2 g of benzoyl peroxide was added dropwise over 1 hour to carry out a polymerization reaction. After completion of the dropwise addition, the mixture was further reacted at 80 ° C. for 3 hours, and then 0.2 g of benzoyl peroxide dissolved in 50 g of MEK was added and reacted at 80 ° C. for 1 hour to obtain a styrene maleic anhydride resin solution. It was. The weight average molecular weight was 62,000, and the acid anhydride value was 49.0 mgKOH / g.

[合成例37〜38]
<スチレン無水マレイン酸系樹脂の合成例>
合成例36と同様の方法で、表11の組成に従って合成を行い、スチレン無水マレイン酸系樹脂を得た。
[Synthesis Examples 37 to 38]
<Synthesis Example of Styrene Maleic Anhydride Resin>
Synthesis was performed according to the composition shown in Table 11 in the same manner as in Synthesis Example 36 to obtain a styrene maleic anhydride resin.

以下、表1〜11において共通
BMA:n−ブチルメタクリレート
MMA:メチルメタクリレート
LMA:ラウリルメタクリレート
TDMA:トリデシルメタクリレート
LMA/TDMA=1/1混合品
tBA:ter-ブチルアクリレート
MAA:メタクリル酸
HEMA:2−ヒドロキシエチルメタクリレート
AIBN:アゾビスイソブチロニトリル
プリポール2033:クローダジャパン(株)製、C36ダイマージオール(OH価:20
7mgKOH/g)
プリポール1009:クローダジャパン(株)製、C36ダイマー酸(酸価:195.0m
gKOH/g)
TDI:トリレンジイソシアネート
TMA:無水トリメリット酸
プリアミン1074:クローダジャパン(株)製、C36ダイマージアミン(アミン価:2
10mgKOH/g)
NBDA:ノルボルナンジアミン
ビスアニリンM:三井化学ファイン(株)製、1,3−ビス[2−(4−アミノフェニル)−2−プロピル]ベンゼン
IPDIヌレート:イソホロンジイソシアネートのヌレート体
ワンダミンHM:新日本理化(株)製、4,4’−ジアミノジシクロヘキシルメタン
KF−8010:信越シリコーン(株)製、両末端アミノ変性シリコーンオイル(アミン価:430mgKOH/g)
HAB:4,4'−ジアミノー3,3'―ジヒドロキシビフェニル
1,6−HD:1,6−ヘキサンジオール
2,6−DMP:2,6−ジメチルフェノール
BXF:2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン
Hereinafter, in Tables 1 to 11, common BMA: n-butyl methacrylate MMA: methyl methacrylate LMA: lauryl methacrylate TDMA: tridecyl methacrylate LMA / TDMA = 1/1 mixture tBA: ter-butyl acrylate MAA: methacrylic acid HEMA: 2- Hydroxyethyl methacrylate AIBN: Azobisisobutyronitrile preporal 2033: C36 dimer diol (OH value: 20) manufactured by Croda Japan Co., Ltd.
7mgKOH / g)
Pripol 1009: C36 dimer acid (acid value: 195.0m), manufactured by Croda Japan
gKOH / g)
TDI: tolylene diisocyanate TMA: trimellitic anhydride preamine 1074: manufactured by Claude Japan, C36 dimer diamine (amine value: 2)
10mgKOH / g)
NBDA: norbornanediamine bisaniline M: manufactured by Mitsui Chemicals Fine Co., Ltd., 1,3-bis [2- (4-aminophenyl) -2-propyl] benzene IPDI nurate: nurate Wandamine HM of isophorone diisocyanate HM: Shin Nippon Rika 4,4'-diaminodicyclohexylmethane KF-8010 manufactured by Shin-Etsu Silicone Co., Ltd., both terminal amino-modified silicone oil (amine value: 430 mgKOH / g)
HAB: 4,4′-diamino-3,3′-dihydroxybiphenyl 1,6-HD: 1,6-hexanediol 2,6-DMP: 2,6-dimethylphenol BXF: 2,2-bis (4-hydroxy -3,5-dimethylphenyl) propane

(実施例1)
樹脂(A)である合成例30で得られたスチレン系エラストマー中の反応性官能基1モルに対して、硬化剤(B)として、jER1031S(三菱化学(株)製、4官能テトラキスフェノール型エポキシ化合物)中のエポキシ基が1.1モルとなる量添加し、アルカリ金属化合物(C)として炭酸リチウムを添加し、シクロヘキサノン溶剤で固形分濃度が25%になるように溶解して熱硬化性組成物を調整した。
この熱硬化性組成物を剥離処理されたポリエステルフィルム上に、乾燥後の膜厚が30μmとなるように均一に塗工して乾燥させ、接着シートを設けた。次に、剥離処理された別のポリエステルフィルムを前記接着シート上にラミネートし、両面保護フィルム付きの接着シートを得た。
なお、熱硬化性組成物の固形分中のリチウム量を、下記手順に従ってICP発光分光分析法により求めたところ、50ppmであった。
Example 1
As a curing agent (B), jER1031S (manufactured by Mitsubishi Chemical Corporation, tetrafunctional tetrakisphenol type epoxy) with respect to 1 mol of the reactive functional group in the styrene-based elastomer obtained in Synthesis Example 30 which is the resin (A). Compound) is added in an amount of 1.1 mol of epoxy groups, lithium carbonate is added as an alkali metal compound (C), and dissolved in a cyclohexanone solvent so that the solid concentration is 25%. I adjusted things.
This thermosetting composition was uniformly applied onto a release-treated polyester film so that the film thickness after drying was 30 μm and dried to provide an adhesive sheet. Next, another release-treated polyester film was laminated on the adhesive sheet to obtain an adhesive sheet with a double-sided protective film.
In addition, when the amount of lithium in the solid content of the thermosetting composition was determined by ICP emission spectroscopic analysis according to the following procedure, it was 50 ppm.

上記で作製した接着シートから両面保護フィルムを除去し、約0.25gをマイクロウエーブ試料分解装置(アナリティックイエナ社製 TOPwave)のテフロン容器に精秤し、硝酸7mlを加え1時間静置した後、専用のフタ、外容器に入れ装置に設置した。装置中で最終200℃で10分間加熱処理を行った。その後、室温まで冷却し処理液を50mlメスフラスコに入れ、処理後のテフロン容器を超純水で洗浄しながら同メスフラスコに入れ、不溶物がある場合No.6ろ紙で濾過し、超純水で50ml定容とし、測定サンプ
ルを準備した。その後、処理液をICP分析装置(SPECTRO社製、AECOS)で測定実施し、目的元素の標準液で作成した検量線により接着シート中のアルカリ金属元素量を定量した。
After removing the double-sided protective film from the adhesive sheet prepared above and weighing about 0.25 g in a Teflon container of a microwave sample disassembly device (TOPwave manufactured by Analytic Jena), add 7 ml of nitric acid and let stand for 1 hour. , Put in a dedicated lid, outer container and installed in the device. Heat treatment was performed at 200 ° C. for 10 minutes in the apparatus. Then, it is cooled to room temperature, the treatment liquid is put into a 50 ml volumetric flask, and the treated Teflon container is put into the volumetric flask while washing with ultrapure water. To prepare a measurement sample. Thereafter, the treatment liquid was measured with an ICP analyzer (manufactured by SPECTRO, AECOS), and the amount of alkali metal element in the adhesive sheet was quantified using a calibration curve prepared with a standard solution of the target element.

[実施例2〜8]
実施例1で用いた炭酸リチウムの代わりに表12に示したアルカリ金属化合物(D)を
それぞれ添加した以外は、実施例1と同様にして、両面保護フィルム付きの接着シートを作成した。
[Examples 2 to 8]
An adhesive sheet with a double-sided protective film was prepared in the same manner as in Example 1 except that the alkali metal compound (D) shown in Table 12 was added instead of the lithium carbonate used in Example 1.

[比較例1]
炭酸リチウムを添加しなかった以外は、実施例1と同様にして、両面保護フィルム付きの接着シートを作成した。
[Comparative Example 1]
An adhesive sheet with a double-sided protective film was prepared in the same manner as in Example 1 except that lithium carbonate was not added.

[比較例2〜4]
実施例1で用いた炭酸リチウムの代わりに表12に示したアルカリ土類金属化合物等をそれぞれ添加した以外は、実施例1と同様にして、両面保護フィルム付きの接着シートを作成した。
[Comparative Examples 2 to 4]
An adhesive sheet with a double-sided protective film was prepared in the same manner as in Example 1 except that the alkaline earth metal compounds shown in Table 12 were added in place of the lithium carbonate used in Example 1, respectively.

[実施例9〜16]、[比較例5〜8]
表13に示すように、合成例30で得たスチレン系エラストマーの代わりに、合成例26で得たポリフェニレンエーテル系樹脂を用いた以外は、実施例1〜8、比較例1〜4と同様にして、両面保護フィルム付きの接着シートを作成した。
[Examples 9 to 16], [Comparative Examples 5 to 8]
As shown in Table 13, in the same manner as in Examples 1-8 and Comparative Examples 1-4, except that the polyphenylene ether resin obtained in Synthesis Example 26 was used instead of the styrene elastomer obtained in Synthesis Example 30. Thus, an adhesive sheet with a double-sided protective film was prepared.

[実施例17〜24]、[比較例9〜12]
表14に示すように、合成例30で得たスチレン系エラストマーを用い、アルカリ金属化合物やアルカリ土類金属化合物等の量を変えた以外は、実施例1と同様にして、両面保護フィルム付きの接着シートを作成した。
[Examples 17 to 24], [Comparative Examples 9 to 12]
As shown in Table 14, using the styrene-based elastomer obtained in Synthesis Example 30 and changing the amount of the alkali metal compound, the alkaline earth metal compound, etc. An adhesive sheet was prepared.

[実施例25〜32]、[比較例13〜16]
表15に示すように、合成例26で得たポリフェニレンエーテル系樹脂を用い、アルカリ金属化合物やアルカリ土類金属化合物等の量を変えた以外は、実施例9と同様にして、両面保護フィルム付きの接着シートを作成した。
[Examples 25 to 32], [Comparative Examples 13 to 16]
As shown in Table 15, with a double-sided protective film in the same manner as in Example 9, except that the polyphenylene ether-based resin obtained in Synthesis Example 26 was used and the amounts of alkali metal compounds and alkaline earth metal compounds were changed. An adhesive sheet was prepared.

[実施例33〜40]
表16に示すように、合成例30で得たスチレン系エラストマーを用い、アルカリ金属化合物を2種類併用した以外は、実施例1と同様にして、両面保護フィルム付きの接着シートを作成した。
[Examples 33 to 40]
As shown in Table 16, an adhesive sheet with a double-sided protective film was prepared in the same manner as in Example 1 except that the styrene elastomer obtained in Synthesis Example 30 was used and two kinds of alkali metal compounds were used in combination.

[実施例41〜48]
表17に示すように、合成例26で得たポリフェニレンエーテル系樹脂を用い、アルカリ金属化合物を2種類併用した以外は、実施例9と同様にして、両面保護フィルム付きの接着シートを作成した。
[Examples 41 to 48]
As shown in Table 17, an adhesive sheet with a double-sided protective film was prepared in the same manner as in Example 9 except that the polyphenylene ether resin obtained in Synthesis Example 26 was used and two kinds of alkali metal compounds were used in combination.

[実施例49〜51]、[比較例17]
表18に示すように、合成例30で得たスチレン系エラストマーを用い、エポキシ基含有化合物(C)として、jER1031Sの代わりに、後述する他のエポキシ基含有化合物を用いた以外は、実施例1と同様にして、両面保護フィルム付きの接着シートを作成した。
なお、実施例1も合わせて表18に示す。
[Examples 49 to 51], [Comparative Example 17]
As shown in Table 18, Example 1 except that the styrene-based elastomer obtained in Synthesis Example 30 was used and, as an epoxy group-containing compound (C), another epoxy group-containing compound described later was used instead of jER1031S. In the same manner as described above, an adhesive sheet with a double-sided protective film was prepared.
Example 18 is also shown in Table 18.

[実施例52〜58]、[比較例18]
表19に示すように、合成例26で得たポリフェニレンエーテル系樹脂を用い、エポキシ基含有化合物(C)として、jER1031Sの代わりに、後述する他のエポキシ基含有化合物を用いた以外は、実施例9と同様にして、両面保護フィルム付きの接着シートを作成した。
なお、実施例9も合わせて表19に示す。
[Examples 52 to 58], [Comparative Example 18]
As shown in Table 19, Examples were used except that the polyphenylene ether-based resin obtained in Synthesis Example 26 was used, and another epoxy group-containing compound described later was used as the epoxy group-containing compound (C) instead of jER1031S. In the same manner as in Example 9, an adhesive sheet with a double-sided protective film was prepared.
In addition, Example 9 is also shown in Table 19.

[実施例59〜68]
表20に示すように、合成例30で得たスチレン系エラストマーを用い、硬化剤(B)の種類と量を変えた以外は、実施例1と同様にして、両面保護フィルム付きの接着シートを作成した。
[Examples 59 to 68]
As shown in Table 20, an adhesive sheet with a double-sided protective film was used in the same manner as in Example 1 except that the styrene-based elastomer obtained in Synthesis Example 30 was used and the type and amount of the curing agent (B) were changed. Created.

[実施例69〜83]
表21に示すように、合成例26で得たポリフェニレンエーテル系樹脂を用い、硬化剤(B)の種類と量を変えた以外は、実施例9と同様にして、両面保護フィルム付きの接着シートを作成した。
[Examples 69 to 83]
As shown in Table 21, an adhesive sheet with a double-sided protective film was used in the same manner as in Example 9 except that the polyphenylene ether-based resin obtained in Synthesis Example 26 was used and the type and amount of the curing agent (B) were changed. It was created.

[実施例84〜108]、[実施例115〜119]
表22〜28、30〜31に示すように、合成例30で得られたスチレン系エラストマーの代わりに、樹脂(A)として合成例1〜25、34〜38で得られた各樹脂を、jER1031Sの代わりに硬化剤(B)として、BL4265SN:住化バイエルウレタン(株)製、イソホロンジイソシアネート(以下、IPDIともいう)の多官能タイプをメチルエチルケトンオキシムでブロックしたイソシアネートを用いた以外は実施例1と同様にして、両面保護フィルム付きの接着シートを作成した。
[Examples 84 to 108], [Examples 115 to 119]
As shown in Tables 22-28 and 30-31, instead of the styrene-based elastomer obtained in Synthesis Example 30, each resin obtained in Synthesis Examples 1-25 and 34-38 as resin (A) was replaced with jER1031S. Example 1 except that, as a curing agent (B), BL4265SN: manufactured by Sumika Bayer Urethane Co., Ltd., an isophorone diisocyanate (hereinafter also referred to as IPDI) polyfunctional type was blocked with methyl ethyl ketone oxime was used. Similarly, an adhesive sheet with a double-sided protective film was prepared.

[実施例109〜114]
表29に示すように、合成例30で得られたスチレン系エラストマーの代わりに、合成例29〜33で得られたスチレン系エラストマーを用いた以外は実施例1と同様にして、両面保護フィルム付きの接着シートを作成した。
[Examples 109 to 114]
As shown in Table 29, with a double-sided protective film in the same manner as in Example 1 except that the styrene elastomer obtained in Synthesis Examples 29 to 33 was used instead of the styrene elastomer obtained in Synthesis Example 30. An adhesive sheet was prepared.

[実施例120〜125]
表32に示すように、合成例30で得られたスチレン系エラストマーの代わりに、樹脂(A)として合成例29、26、15、20、34、11、1で得られた各樹脂を用いた以外は実施例49と同様にして、両面保護フィルム付きの接着シートを作成した。
なお、実施例52も合わせて表32に示す。
[Examples 120 to 125]
As shown in Table 32, each resin obtained in Synthesis Examples 29, 26, 15, 20, 34, 11, and 1 was used as the resin (A) instead of the styrene-based elastomer obtained in Synthesis Example 30. Except that, an adhesive sheet with a double-sided protective film was prepared in the same manner as in Example 49.
Example 52 is also shown in Table 32.

以下、表12〜32において共通。
jER1031S:三菱化学(株)製、4官能テトラキスフェノール型エポキシ化合物
TETRAD−X:三菱ガス化学(株)製、4官能グリシジルアミン化合物
BL4265SN:住化バイエルウレタン(株)製、イソホロンジイソシアネート(以下、IPDIともいう)の多官能タイプをメチルエチルケトンオキシムでブロックしたイソシアネート
BL3175:住化バイエルウレタン(株)製、ヘキサメチレンジイソシネート(以下、
HDIという)の三量体(ヌレート体)をメチルエチルケトンオキシクでブロックしたイソシアネート
BL1100:住化バイエルウレタン(株)製、トリレンジイソシアネート(以下、TDIともいう)をプレポリマータイプにしたものをε-カプロラクタムでブロックしたイソ
シアネート
OXTP:宇部興産(株)製、2官能オキセタン化合物
OXT−121:東亜合成(株)製、2官能オキセタン化合物
ケミタイトPZ: (株)日本触媒製、多官能アジリジン化合物
Hereinafter, it is common in Tables 12-32.
jER1031S: manufactured by Mitsubishi Chemical Corporation, tetrafunctional tetrakisphenol type epoxy compound TETRAD-X: manufactured by Mitsubishi Gas Chemical Co., Ltd., tetrafunctional glycidylamine compound BL4265SN: manufactured by Sumika Bayer Urethane Co., Ltd., isophorone diisocyanate (hereinafter referred to as IPDI) Isocyanate BL3175 blocked with methyl ethyl ketone oxime: manufactured by Sumika Bayer Urethane Co., Ltd., hexamethylene diisocyanate
Isocyanate BL1100 obtained by blocking a trimer (nurate) of HDI) with methyl ethyl ketone oxyk: a product made by Sumika Bayer Urethane Co., Ltd., a prepolymer type of tolylene diisocyanate (hereinafter also referred to as TDI). Isocyanate OXTP blocked with caprolactam: manufactured by Ube Industries, Ltd., bifunctional oxetane compound OXT-121: manufactured by Toa Gosei Co., Ltd., bifunctional oxetane compound Chemitite PZ: manufactured by Nippon Shokubai Co., Ltd., polyfunctional aziridine compound

実施例および比較例で得られた接着シートについて、めっき液耐性、接着性、耐熱性、屈曲性、電気絶縁性を以下の方法で評価した。結果を表21〜52に示す。   About the adhesive sheet obtained by the Example and the comparative example, plating solution tolerance, adhesiveness, heat resistance, flexibility, and electrical insulation were evaluated by the following methods. The results are shown in Tables 21-52.

<評価> <Evaluation>

(1)めっき液耐性
片面の保護フィルムを除去した、65mm×65mmの大きさの接着シートを、新日鉄住金化学(株)製の2層CCL[エスパネックスMC18-25-00FRM]銅面の上に80℃でラミネートし、続いて160℃、1.0MPaの条件で30分圧着処理を行った。さらに、この試験片を160℃で2時間熱硬化させ、最後に保護フィルムを剥離し評価用試験片を作成した。この試験片に対して、下記a〜gの手順及び条件に従って、無電解ニッケル処理を行った。
a.酸性脱脂工程:40℃のICPクリーンS−135K(奥野製薬工業(株)製)に4分間浸漬

b.ソフトエッチング工程:30℃の過硫酸ナトリウム に1分間浸漬

c.デスマット工程:25℃の硫酸 に1分間浸漬

d.プリディップ工程:25℃の塩酸 に30秒間浸漬

e.活性化工程:30℃のICPアクセラ(奥野製薬工業(株)製) に1分間浸漬

f.ポストディップ工程:25℃の硫酸 に1分間浸漬

g.無電解ニッケルめっき工程:85℃のIPニコロンFPF(奥野製薬工業(株)製)に20分間浸漬。
(1) Resistance to plating solution An adhesive sheet having a size of 65 mm × 65 mm from which the protective film on one side has been removed is placed on a two-layer CCL [Espanex MC18-25-00FRM] copper surface manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. Lamination was performed at 80 ° C., followed by a pressure bonding treatment at 160 ° C. and 1.0 MPa for 30 minutes. Furthermore, this test piece was heat-cured at 160 ° C. for 2 hours, and finally the protective film was peeled off to prepare an evaluation test piece. The test piece was subjected to electroless nickel treatment according to the following procedures and conditions a to g.
a. Acid degreasing process: Immersion in ICP Clean S-135K (Okuno Pharmaceutical Co., Ltd.) at 40 ° C for 4 minutes ↓
b. Soft etching process: Soaked in sodium persulfate at 30 ° C for 1 minute ↓
c. Desmut process: Immerse in sulfuric acid at 25 ° C for 1 minute ↓
d. Pre-dip process: Immerse in hydrochloric acid at 25 ℃ for 30 seconds ↓
e. Activation process: Immersion in 30 ° C ICP Axela (Okuno Pharmaceutical Co., Ltd.) ↓
f. Post-dip process: 1 minute immersion in sulfuric acid at 25 ° C ↓
g. Electroless nickel plating process: Immersion in 85 ° C IP Nicolon FPF (Okuno Pharmaceutical Co., Ltd.) for 20 minutes.

無電解ニッケルめっき液に浸漬後の試験片の外観を目視で観察し、硬化後接着層の膨れ、剥がれ等の異常の有無を確認し、異常の無いものは更にa〜gの工程を繰り返した。
この試験はめっき液に対する硬化後接着層の耐性を外観で評価するものであり、a〜gの繰り返し回数で耐性を評価した。
A・・・4回目の浸漬後も外観不良なし。
B・・・3回目の浸漬では外観不良が無いが、4回目の浸漬後には発生。
C・・・2回目の浸漬では外観不良が無いが、3回目の浸漬後には発生。
D・・・1回目の浸漬では外観不良が無いが、2回目の浸漬後には発生。
E・・・1回目の浸漬で外観不良発生。
The appearance of the test piece after immersion in the electroless nickel plating solution was visually observed, and after curing, the presence or absence of abnormalities such as swelling and peeling of the adhesive layer was confirmed. For those having no abnormality, the steps a to g were further repeated. .
This test evaluates the resistance of the adhesive layer after curing to the plating solution by appearance, and the resistance was evaluated by the number of repetitions of a to g.
A: No poor appearance after the fourth immersion.
B: No appearance defect in the third immersion, but occurs after the fourth immersion.
C: No appearance defect in the second immersion, but occurs after the third immersion.
D: No appearance defect in the first immersion, but occurs after the second immersion.
E: Appearance defect occurred in the first immersion.

(2)接着性
保護フィルムを除去した、65mm×65mmの大きさの接着シートを、厚さが75μmのポリイミドフィルム[東レ・デュポン(株)製「カプトン300H」]の間に挟み、80℃でラミネートし、続いて160℃、1.0MPaの条件で30分圧着処理を行った。さらに、この試験片を160℃で2時間熱硬化させ、評価用試験片を作成した。この試験片を幅10mm、長さ65mmに切り出し、23℃相対湿度50%の雰囲気下で、引っ張り速度300mm/minでTピール剥離試験を行い、接着強度(N/cm)を測定し
た。この試験は、常温使用時における接着層の接着強度を評価するものであり、結果を次の基準で判断した。
A・・・「12(N/cm) < 接着強度」
B・・・「8(N/cm) < 接着強度 ≦ 12(N/cm)」
C・・・「5(N/cm) < 接着強度 ≦ 8(N/cm)」
D・・・「3(N/cm) < 接着強度 ≦ 5(N/cm)」
E・・・「接着強度 ≦ 3(N/cm)」
(2) Adhesive A 65 mm × 65 mm adhesive sheet with the protective film removed is sandwiched between 75 μm thick polyimide film [“Kapton 300H” manufactured by Toray DuPont Co., Ltd.] at 80 ° C. Lamination was performed, followed by pressure bonding at 160 ° C. and 1.0 MPa for 30 minutes. Furthermore, this test piece was heat-cured at 160 ° C. for 2 hours to prepare an evaluation test piece. This test piece was cut out to a width of 10 mm and a length of 65 mm, and a T peel peel test was performed at an elongation rate of 300 mm / min in an atmosphere of 23 ° C. and a relative humidity of 50%, and the adhesive strength (N / cm) was measured. This test evaluates the adhesive strength of the adhesive layer when used at room temperature, and the results were judged according to the following criteria.
A ... "12 (N / cm) <Adhesive strength"
B: “8 (N / cm) <Adhesion strength ≦ 12 (N / cm)”
C: “5 (N / cm) <Adhesion strength ≦ 8 (N / cm)”
D: “3 (N / cm) <Adhesion strength ≦ 5 (N / cm)”
E ... "Adhesive strength ≤ 3 (N / cm)"

(3)耐熱性
上記(2)と同様に、幅10mm、長さ65mmに切り出した試験片を、23℃相対湿度50%の雰囲気下で24時間以上保管し、その後、各種温度にて溶融半田にポリイミドフィルム面を接触させて1分間浮かべた。その後、試験片の外観を目視で観察し、硬化接着層の発泡、浮き、剥がれ等の接着異常の有無を評価した。この試験は、半田接触時における硬化接着層の熱安定性を、外観で評価するものであり、耐熱性の良好なものは、外観が変化しないのに対して、耐熱性の悪いものは、半田処理後に発泡や剥がれが発生する。これらの評価結果を次の基準で判断した。
A・・・「300℃でも外観変化全く無し」
B・・・「280℃で外観変化全く無し。300℃では発泡が確認される」
C・・・「260℃でも外観変化全く無し。280℃では発泡が確認される」D・・・「240℃でも外観変化全く無し。260℃では発泡が確認される」E・・・「240℃にて発泡が観察される」
(3) Heat resistance As in (2) above, test pieces cut out to a width of 10 mm and a length of 65 mm are stored for 24 hours or more in an atmosphere of 23 ° C. and 50% relative humidity, and then molten solder at various temperatures. The polyimide film surface was brought into contact with and floated for 1 minute. Then, the external appearance of the test piece was observed visually, and the presence or absence of adhesion abnormality such as foaming, floating, and peeling of the cured adhesive layer was evaluated. This test evaluates the thermal stability of the cured adhesive layer at the time of solder contact by appearance. Good heat resistance does not change the appearance, while poor heat resistance has no solder. Foaming or peeling occurs after treatment. These evaluation results were judged according to the following criteria.
A ... "No change in appearance even at 300 ° C"
B: “No change in appearance at 280 ° C. Foaming is confirmed at 300 ° C.”
C: "No change in appearance even at 260 ° C. Foaming is confirmed at 280 ° C" D: "No change in appearance at 240 ° C. Foaming is confirmed at 260 ° C" E: "240 Foaming is observed at ℃. ''

(4)屈曲性
保護フィルムを除去した、65mm×65mmの大きさの接着シートを、厚さが25μmのポリイミドフィルム[東レ・デュポン(株)製「カプトン100H」]とポリイミド上に銅回路が形成された櫛型パターン(導体パターン幅/スペース幅=50μm/50μm)プリント配線板との間に挟み、80℃でラミネートし、続いて160℃、1.0MPaの条件で30分圧着処理を行った。さらに、この試験片を160℃で2時間熱硬化させ、評価用試験片を作成した。評価用試験片を、硬化塗膜面を外側にして500gの荷重をかけて180度折り曲げ、ひび割れが発生するまでの回数を次の基準で評価した。
A・・・「20回屈曲させてもクラック(ひび割れ)が見られない」
B・・・「14回屈曲させてもクラックが見られない。20回までにクラック発生」
C・・・「8回屈曲させてもクラックが見られない。14回までにクラック発生」
D・・・「3回屈曲させてもクラックが見られない。8回までにクラック発生」
E・・・「3回屈曲させるまでにクラック発生」
(4) Flexibility A 65 mm x 65 mm adhesive sheet from which the protective film has been removed is formed on a polyimide film with a thickness of 25 μm ["Kapton 100H" manufactured by Toray DuPont Co., Ltd.] and a polyimide circuit. Between the printed comb pattern (conductor pattern width / space width = 50 μm / 50 μm) and printed wiring board, laminated at 80 ° C., and subsequently subjected to a pressure bonding treatment at 160 ° C. and 1.0 MPa for 30 minutes. . Furthermore, this test piece was heat-cured at 160 ° C. for 2 hours to prepare an evaluation test piece. The test piece for evaluation was bent 180 degrees with a load of 500 g with the cured coating surface facing outward, and the number of times until cracking occurred was evaluated according to the following criteria.
A ... "No cracks are seen even after bending 20 times"
B ... "No cracks are seen even after bending 14 times. Cracks occur up to 20 times"
C ... "No cracks are seen even if bent 8 times. Cracks occur up to 14 times"
D: “No cracks are seen even if bent 3 times. Cracks occur up to 8 times”
E ... "Crack occurs before bending 3 times"

(5)電気絶縁性
保護フィルムを除去した、65mm×65mmの大きさの接着シートを、厚さが25μmのポリイミドフィルム[東レ・デュポン(株)製「カプトン100H」]とポリイミド上に銅回路が形成された櫛型パターン(導体パターン幅/スペース幅=50μm/50μm)プリント配線板との間に挟み、80℃でラミネートし、続いて160℃、1.0MPaの条件で30分圧着処理を行った。さらに、この試験片を160℃で2時間熱硬化させ、評価用試験片を作成した。この試験片の導体回路に、温度130℃、相対湿度85%の雰囲気下で直流電圧50Vを連続的に100時間加え、100時間後の導体間の絶縁抵抗値を測定した。評価基準は以下の通りである。
A・・・絶縁抵抗値109Ω以上
B・・・絶縁抵抗値108以上109Ω未満
C・・・絶縁抵抗値107以上108Ω未満
D・・・絶縁抵抗値106以上107Ω未満
E・・・絶縁抵抗値106未満
(5) Electrical insulation The 65 mm x 65 mm adhesive sheet, from which the protective film has been removed, is a 25 µm thick polyimide film ["Kapton 100H" manufactured by Toray DuPont Co., Ltd.] and a copper circuit on the polyimide. It is sandwiched between the formed comb pattern (conductor pattern width / space width = 50 μm / 50 μm) and printed wiring board, laminated at 80 ° C., and then subjected to crimping for 30 minutes at 160 ° C. and 1.0 MPa. It was. Furthermore, this test piece was heat-cured at 160 ° C. for 2 hours to prepare an evaluation test piece. A DC voltage of 50 V was continuously applied to the conductor circuit of this test piece for 100 hours under an atmosphere of a temperature of 130 ° C. and a relative humidity of 85%, and the insulation resistance value between the conductors after 100 hours was measured. The evaluation criteria are as follows.
A: Insulation resistance value 10 9 Ω or more B ... Insulation resistance value 10 8 or more and less than 10 9 Ω C ... Insulation resistance value 10 7 or more and less than 10 8 Ω D ... Insulation resistance value 10 6 or more 10 Less than 7 Ω E ・ ・ ・ Insulation resistance less than 10 6

表12〜32に示す実施例と比較例をみてわかる通り、比較例1、5では、アルカリ金属化合物(C)を用いていないため、めっき液耐性が悪化した。また、比較例2〜4、6〜8では、アルカリ金属化合物(C)の代わりに別の金属化合物を添加したため、めっき液耐性が悪化した。さらに、アルカリ金属化合物(C)を含有する場合でも、比較例9、11、13、15のように、アルカリ金属化合物(C)の含有量が1ppm未満の場合は、めっき液耐性が悪化した。また、比較例10、12、14、16のように、110ppmよりも過剰にアルカリ金属化合物(C)を含有していると、電気絶縁性が悪化した。
また、比較例17、比較例18からわかるように、硬化剤(B)を含有していない場合、耐熱性や絶縁性が著しく悪化した。
As can be seen from the examples and comparative examples shown in Tables 12 to 32, in Comparative Examples 1 and 5, since the alkali metal compound (C) was not used, the plating solution resistance deteriorated. Moreover, in Comparative Examples 2-4 and 6-8, since another metal compound was added instead of the alkali metal compound (C), plating solution tolerance deteriorated. Further, even when the alkali metal compound (C) was contained, as in Comparative Examples 9, 11, 13, and 15, when the content of the alkali metal compound (C) was less than 1 ppm, the plating solution resistance deteriorated. Moreover, when the alkali metal compound (C) was contained in excess of 110 ppm as in Comparative Examples 10, 12, 14, and 16, the electrical insulating properties deteriorated.
Further, as can be seen from Comparative Examples 17 and 18, when the curing agent (B) was not contained, the heat resistance and the insulation were significantly deteriorated.

一方、実施例記載のように、樹脂(A)、硬化剤(B)、およびアルカリ金属化合物(C)を含み、アルカリ金属元素の質量換算にてアルカリ金属化合物(C)を1〜110ppm含有する場合は、比較例で二律背反にあっためっき液耐性と電気絶縁性の両立に加え
、接着性や耐熱性、屈曲性を満足することができた。これは、樹脂(A)と硬化剤(B)で接着性や耐熱性、屈曲性を付与しつつ、さらにアルカリ金属化合物(C)を含有することで、めっき液浸漬時に金属架橋を形成し、より強固な膜が形成できたためと考えられる。
On the other hand, as described in Examples, the resin (A), the curing agent (B), and the alkali metal compound (C) are contained, and the alkali metal compound (C) is contained in an amount of 1 to 110 ppm in terms of the mass of the alkali metal element. In this case, in addition to the compatibility of the plating solution resistance and electrical insulation, which were in contradiction in the comparative example, the adhesiveness, heat resistance, and flexibility were satisfied. This is because the resin (A) and the curing agent (B) provide adhesiveness, heat resistance and flexibility, and further contains an alkali metal compound (C), thereby forming a metal crosslink when immersed in the plating solution, This is probably because a stronger film could be formed.

本発明の接着シート形成に用いられる熱硬化性組成物は、めっき液耐性、接着性、加湿後の耐熱性、耐熱性、屈曲性、電気絶縁性、に優れた硬化物を与えるので、プリント配線板をはじめとする電子材料用のコーティング剤、回路被覆用ソルダーレジスト、カバーレイフィルム、電磁波シールド用接着剤、めっきレジスト、プリント配線板用層間電気絶縁材料、光導波路等に好適に用いることができる。
The thermosetting composition used for forming the adhesive sheet of the present invention provides a cured product excellent in plating solution resistance, adhesiveness, heat resistance after humidification, heat resistance, flexibility, and electrical insulation. It can be suitably used for coating materials for electronic materials including boards, solder resists for circuit coating, coverlay films, adhesives for electromagnetic wave shields, plating resists, interlayer electrical insulation materials for printed wiring boards, optical waveguides, etc. .

Claims (9)

下記条件(1)〜(5)の全てを満たす熱硬化性組成物から形成されてなる熱硬化性接着シート。
(1)樹脂(A)、硬化剤(B)、およびアルカリ金属化合物(C)を含む。
(2)硬化剤(B)は、エポキシ基含有化合物、イソシアネート基含有化合物、アジリジニル基含有化合物、およびオキセタニル基含有化合物からなる群より選ばれる少なくとも一種である。
(3)樹脂(A)は、エポキシ基、イソシアネート基、アジリジニル基、およびオキセタニル基を有さず、前記硬化剤(B)と反応し得る、反応性官能基を有する。
(4)前記樹脂(A)が、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリウレタンポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、スチレン系エラストマー、フッ素樹脂およびスチレン無水マレイン酸系樹脂からなる群より選ばれる少なくとも一種である。
(5)アルカリ金属元素の質量換算にてアルカリ金属化合物(C)を、熱硬化性組成物の固形分中、1〜110ppm含有する。
A thermosetting adhesive sheet formed from a thermosetting composition that satisfies all of the following conditions (1) to (5).
(1) A resin (A), a curing agent (B), and an alkali metal compound (C) are included.
(2) The curing agent (B) is at least one selected from the group consisting of an epoxy group-containing compound, an isocyanate group-containing compound, an aziridinyl group-containing compound, and an oxetanyl group-containing compound.
(3) The resin (A) does not have an epoxy group, an isocyanate group, an aziridinyl group, and an oxetanyl group, and has a reactive functional group that can react with the curing agent (B).
(4) The resin (A) is an acrylic resin, a polyester resin, a polyurethane resin, a polyurethane polyurea resin, a polyamide resin, a polyimide resin, a polycarbonate resin, a polyphenylene ether resin, a styrene elastomer, a fluorine resin, and a styrene maleic anhydride resin. Is at least one selected from the group consisting of
(5) The alkali metal compound (C) is contained in an amount of 1 to 110 ppm in terms of the mass of the alkali metal element in the solid content of the thermosetting composition.
反応性官能基が、カルボキシル基、アルコール性水酸基、フェノール性水酸基および酸無水物基からなる群より選ばれる少なくとも一種である、請求項1記載の熱硬化性接着シート。   The thermosetting adhesive sheet according to claim 1, wherein the reactive functional group is at least one selected from the group consisting of a carboxyl group, an alcoholic hydroxyl group, a phenolic hydroxyl group, and an acid anhydride group. 樹脂(A)1gの反応性官能基価の合計が、水酸化カリウム換算で1〜80mgである、請求項1または2記載の熱硬化性接着シート。   The thermosetting adhesive sheet according to claim 1 or 2, wherein the total reactive functional group value of 1 g of the resin (A) is 1 to 80 mg in terms of potassium hydroxide. 樹脂(A)の反応性官能基1molに対し、硬化剤(B)中のエポキシ基、イソシアネート基、アジリジニル基、およびオキセタニル基の合計が0.1〜12molである、請求項1〜3いずれか1項に記載の熱硬化性接着シート。   The total of the epoxy group, isocyanate group, aziridinyl group, and oxetanyl group in the curing agent (B) is 0.1 to 12 mol with respect to 1 mol of the reactive functional group of the resin (A). The thermosetting adhesive sheet according to item 1. 請求項1〜4いずれか1項に記載の熱硬化性接着シートと、前記熱硬化性接着シートの両面を覆う2つのシート状基材とを有する、シート状基材付き熱硬化性接着シート。   The thermosetting adhesive sheet with a sheet-like base material which has the thermosetting adhesive sheet of any one of Claims 1-4, and two sheet-like base materials which cover both surfaces of the said thermosetting adhesive sheet. 2つのシート状基材のうち、少なくとも一方が剥離性シート状基材である、請求項5記載のシート状基材付き熱硬化性接着シート。   The thermosetting adhesive sheet with a sheet-like substrate according to claim 5, wherein at least one of the two sheet-like substrates is a peelable sheet-like substrate. シート状基材の少なくとも片面に、下記条件(1)〜(5)の全てを満たす熱硬化性組成物を塗工し、乾燥し、熱硬化性接着シートを形成し、前記熱硬化性接着シートの他方の面に、他のシート状基材を重ねる、シート状基材付き熱硬化性接着シートの製造方法。
(1)樹脂(A)、硬化剤(B)、およびアルカリ金属化合物(C)を含む。
(2)硬化剤(B)は、エポキシ基含有化合物、イソシアネート基含有化合物、アジリジニル基含有化合物、およびオキセタニル基含有化合物からなる群より選ばれる少なくとも一種である。
(3)樹脂(A)は、エポキシ基、イソシアネート基、アジリジニル基およびオキセタニル基を有さず、前記硬化剤(B)と反応し得る、反応性官能基を有する。
(4)前記樹脂(A)が、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリウレタンポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、スチレン系エラストマー、フッ素樹脂およびスチレン無水マレイン酸系樹脂からなる群より選ばれる少なくとも一種である。
(5)アルカリ金属元素の質量換算にてアルカリ金属化合物(D)を、熱硬化性組成物の固形分中、1〜110ppm含有する。
A thermosetting composition satisfying all of the following conditions (1) to (5) is applied to at least one surface of the sheet-like base material, dried to form a thermosetting adhesive sheet, and the thermosetting adhesive sheet A method for producing a thermosetting adhesive sheet with a sheet-like substrate, wherein another sheet-like substrate is stacked on the other surface of the sheet.
(1) A resin (A), a curing agent (B), and an alkali metal compound (C) are included.
(2) The curing agent (B) is at least one selected from the group consisting of an epoxy group-containing compound, an isocyanate group-containing compound, an aziridinyl group-containing compound, and an oxetanyl group-containing compound.
(3) The resin (A) does not have an epoxy group, an isocyanate group, an aziridinyl group, and an oxetanyl group, and has a reactive functional group that can react with the curing agent (B).
(4) The resin (A) is an acrylic resin, a polyester resin, a polyurethane resin, a polyurethane polyurea resin, a polyamide resin, a polyimide resin, a polycarbonate resin, a polyphenylene ether resin, a styrene elastomer, a fluorine resin, and a styrene maleic anhydride resin. Is at least one selected from the group consisting of
(5) The alkali metal compound (D) is contained in an amount of 1 to 110 ppm in terms of the mass of the alkali metal element in the solid content of the thermosetting composition.
請求項1〜4いずれか1項に記載の熱硬化性接着シートを熱硬化してなるシート状硬化物を介して、導電性回路を有するプリント配線板の前記回路面が、シート状基材で保護されてなる、保護シート付きプリント配線板。   The said circuit surface of the printed wiring board which has a conductive circuit is a sheet-like base material through the sheet-like hardened | cured material formed by thermosetting the thermosetting adhesive sheet of any one of Claims 1-4. Protected printed wiring board with protective sheet. 請求項1〜4いずれか1項に記載の熱硬化性接着シートを、導電性回路を有するプリント配線板の前記回路面と、シート状基材との間に挟み、前記熱硬化性接着シートを熱硬化する、保護シート付きプリント配線板の製造方法。
The thermosetting adhesive sheet according to any one of claims 1 to 4 is sandwiched between the circuit surface of a printed wiring board having a conductive circuit and a sheet-like base material, and the thermosetting adhesive sheet is A method for producing a printed wiring board with a protective sheet, which is thermoset.
JP2017204515A 2017-10-23 2017-10-23 Thermosetting adhesive sheet and use thereof Pending JP2018123301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017204515A JP2018123301A (en) 2017-10-23 2017-10-23 Thermosetting adhesive sheet and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017204515A JP2018123301A (en) 2017-10-23 2017-10-23 Thermosetting adhesive sheet and use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017018194A Division JP6237944B1 (en) 2017-02-03 2017-02-03 Thermosetting adhesive sheet and use thereof

Publications (1)

Publication Number Publication Date
JP2018123301A true JP2018123301A (en) 2018-08-09

Family

ID=63111040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017204515A Pending JP2018123301A (en) 2017-10-23 2017-10-23 Thermosetting adhesive sheet and use thereof

Country Status (1)

Country Link
JP (1) JP2018123301A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113286835A (en) * 2019-01-29 2021-08-20 东洋纺株式会社 Adhesive composition containing dimer alcohol copolymerized polyimide polyurethane resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113286835A (en) * 2019-01-29 2021-08-20 东洋纺株式会社 Adhesive composition containing dimer alcohol copolymerized polyimide polyurethane resin
CN113286835B (en) * 2019-01-29 2023-09-29 东洋纺Mc株式会社 Adhesive composition containing dimeric alcohol copolymerized polyimide polyurethane resin

Similar Documents

Publication Publication Date Title
JP6237944B1 (en) Thermosetting adhesive sheet and use thereof
JP6074698B1 (en) Thermosetting adhesive sheet and use thereof
WO2017154995A1 (en) Laminate, manufacturing method for same, and resin film with adhesive layer
JP6090504B2 (en) Photosensitive resin composition and cured product thereof, and method for producing photosensitive resin
JP2014141603A (en) Adhesive agent composition excellent in dielectric property, adhesive agent sheet using the same and printed wiring board
JP2015163669A (en) organic metal-containing curable resin composition
WO2007105713A1 (en) Heat curable resin composition, overcoating agent for flexible circuit board, and surface protective film
CN107207852B (en) Low dielectric resin composition
KR20200116052A (en) Resin composition
CN111936575A (en) Curable resin composition, dry film, cured product, and electronic component
WO2020262350A1 (en) Resin composition, laminate with resin composition layer, laminate, and electromagnetic shielding film
JP2013159638A (en) Thermosetting resin composition including fluorine-containing modified ester resin
JP6365755B1 (en) Thermosetting adhesive sheet and use thereof
JP6943270B2 (en) Thermosetting adhesive sheet and its use
JP2018123301A (en) Thermosetting adhesive sheet and use thereof
JP6555491B2 (en) Thermosetting adhesive sheet and use thereof
JP7302209B2 (en) resin composition
JP7484517B2 (en) Thermosetting adhesive sheet and its use
TW201829691A (en) Printed wiring board with protective sheet, thermosetting adhesive sheet with sheet-like substrate, manufacturing methods thereof and thermosetting adhesive sheet wherein the printed wiring board is excellent in adhesiveness and heat resistance
US11884815B2 (en) Thermosetting resin composition, coverlay film, adhesive sheet, and flexible printed wiring board
JP2021085030A (en) Resin composition
KR102543365B1 (en) Curable composition, dry film, cured product and printed wiring board
TWI814141B (en) Thermosetting resin composition, cover film, adhesive sheet, and flexible printed wiring board
JP2021028699A (en) Photosensitive resin composition, cured product of photosensitive resin composition, resin sheet, printed wiring board, and semiconductor device
WO2023008186A1 (en) Adhesive resin sheet, printed wiring board, and electronic device