[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018110231A - IGBT semiconductor structure - Google Patents

IGBT semiconductor structure Download PDF

Info

Publication number
JP2018110231A
JP2018110231A JP2017251624A JP2017251624A JP2018110231A JP 2018110231 A JP2018110231 A JP 2018110231A JP 2017251624 A JP2017251624 A JP 2017251624A JP 2017251624 A JP2017251624 A JP 2017251624A JP 2018110231 A JP2018110231 A JP 2018110231A
Authority
JP
Japan
Prior art keywords
semiconductor structure
layer
igbt semiconductor
region
igbt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017251624A
Other languages
Japanese (ja)
Other versions
JP6926366B2 (en
Inventor
ドゥーデク フォルカー
Dudek Volker
ドゥーデク フォルカー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
35 Power Electronics GmbH
Original Assignee
35 Power Electronics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 35 Power Electronics GmbH filed Critical 35 Power Electronics GmbH
Publication of JP2018110231A publication Critical patent/JP2018110231A/en
Application granted granted Critical
Publication of JP6926366B2 publication Critical patent/JP6926366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7398Vertical transistors, e.g. vertical IGBT with both emitter and collector contacts in the same substrate side
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/105Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with vertical doping variation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an IGBT semiconductor structure.SOLUTION: An IGBT semiconductor structure comprises: a psubstrate; a nlayer; at least one p region contacting with the nlayer; at least one nregion contacting with the p region; a dielectric layer; and three terminal contacts. The psubstrate, the nlayer, the p region, and the nregion respectively contains GaAs compound or are respectively made from the GaAs compound. A first pn junction is formed by the p region and the nlayer. A second pn junction is formed by nlayer and at least one p region. The dielectric layer covers the first pn junction and the second junction. The second terminal contact is formed on the dielectric layer as a field plate. An interlayer is arranged between the psubstrate and the nlayer in which a layer thickness (D3) is 1 μm-50 μm and dopant concentration is 10-10cm, and the interlayer is doped. The interlayer is connected by the material bonding with at least the psubstrate.SELECTED DRAWING: Figure 1

Description

本発明は、p+基板、n-層、p領域、n+領域、誘電層ならびに3つの端子コンタクトを備えているIGBT半導体構造に関する。 The present invention relates to an IGBT semiconductor structure comprising a p + substrate, an n layer, a p region, an n + region, a dielectric layer and three terminal contacts.

Josef Lutz等の「Semiconductor Power Devices」Springer Verlag、2011年、ISBN978−3−642−11124−2、第10章、第322頁、323頁および330頁から、IGBTの種々の実施の形態が公知である。その種の電力素子は、ケイ素またはSiCを基礎として製造される。   Various embodiments of IGBTs are known from Josef Lutz et al. "Semiconductor Power Devices" Springer Verlag, 2011, ISBN 978-3-642-11124-2, Chapter 10, pages 322, 323, and 330. is there. Such power devices are manufactured on the basis of silicon or SiC.

GaAsを基礎としている、高耐圧性を有しているp−n−i−pトランジスタならびに高耐圧性を有している半導体ダイオードp+−n−n+は、German Ashkinaziの「GaAs Power Devices」、ISBN965−7094−19−4、第5章、第97頁、ないし第7.8章、第225頁から公知である。 Has a GaAs-based semiconductor diode p + -n-n + is to have a p-n-i-p transistor and high withstand voltage and a high pressure resistance, the German Ashkinazi "GaAs Power Devices" , ISBN 965-7094-19-4, Chapter 5, page 97 to Chapter 7.8, page 225.

例えば原子層堆積(ALD:Atomic Layer Deposition)法を用いる、GaAsを基礎としている酸化物層の堆積は、M.Xu等の論文「New Insight into Fermi−Level Unpinning on GaAs: Impact of Different Surface Orientations」、Electron Device Meeting(IEDM)、IEEE、2009年、第865頁〜第868頁、およびG.K.Dalapati等の「Impact of Buffer Layer on Atomic Layer Deposited TiAlO Alloy Dielectric Quality for Epitaxial−GaAs/Ge Device Application」、IEEE Transactions on Electron Devices、Vol.60、No.1、2013年に記載されている。   The deposition of oxide layers based on GaAs, for example using the Atomic Layer Deposition (ALD) method, is described in M.C. Xu et al., “New Insight into Fermi-Level Unpinning on GaAs: Impact of Different Surface Orientations”, Electron Device Meeting (IEDM), pp. 9-65, IE68, pp. 9-65. K. Dalapati et al., “Impact of Buffer Layer on Atomic Layer Deposited TiAlO Alloy Dielectric Quality for Epitaxy ElectonElectric Application 60, no. 1, 2013.

この背景を基礎とする、本発明の課題は、従来技術をさらに発展させた装置を提供することである。   Based on this background, the object of the present invention is to provide a device which is a further development of the prior art.

この課題は、請求項1の特徴を備えているIGBT半導体構造によって解決される。本発明の有利な構成は、従属請求項の対象である。   This problem is solved by an IGBT semiconductor structure having the features of claim 1. Advantageous configurations of the invention are the subject matter of the dependent claims.

本発明の対象によれば、上面および下面を備えているIGBT半導体構造が提供される。   In accordance with the subject of the present invention, there is provided an IGBT semiconductor structure comprising an upper surface and a lower surface.

IGBT半導体構造は、そのIGBT半導体構造の下面に形成されているp+基板と、そのp+基板の上に載置されたn-層と、を有している。 The IGBT semiconductor structure has a p + substrate formed on the lower surface of the IGBT semiconductor structure, and an n layer placed on the p + substrate.

-層は、接しているp領域と、そのp領域に接している、少なくとも1つのn+領域と、を有している。 The n layer has a p region that is in contact with it, and at least one n + region that is in contact with the p region.

とりわけ、堆積された酸化物から成る誘電層、IGBT半導体構造の下面と導電性に接続されている第1の端子コンタクト、第2の端子コンタクトおよび第3の端子コンタクトを有している。   In particular, it has a dielectric layer of deposited oxide, a first terminal contact, a second terminal contact, and a third terminal contact that are conductively connected to the lower surface of the IGBT semiconductor structure.

+基板は、5×1018〜5×1020cm-3のドーパント濃度および50〜500μmの層厚を有している。 The p + substrate has a dopant concentration of 5 × 10 18 to 5 × 10 20 cm −3 and a layer thickness of 50 to 500 μm.

-層は、1012〜1017cm-3のドーパント濃度および10〜300μmの層厚を有している。 The n layer has a dopant concentration of 10 12 to 10 17 cm −3 and a layer thickness of 10 to 300 μm.

少なくとも1つのp領域は、1014〜1018cm-3のドーパント濃度を有しており、少なくとも1つのn+領域は、少なくとも1019cm-3のドーパント濃度を有しており、ここで少なくとも1つのp領域は、n-層と共に第1のpn接合部を形成している。 At least one p-region has a dopant concentration of 10 14 to 10 18 cm −3 and at least one n + region has a dopant concentration of at least 10 19 cm −3 , wherein at least One p region forms a first pn junction with the n layer.

+領域は、p領域と共に第2のpn接合部を形成している。 The n + region forms a second pn junction with the p region.

+基板、n-層、p領域ならびにn+領域は、それぞれGaAs化合物を含有しているか、またはそれぞれGaAs化合物から成る。 The p + substrate, the n layer, the p region, and the n + region each contain a GaAs compound or are each made of a GaAs compound.

第1の端子コンタクト、第2の端子コンタクトおよび第3の端子コンタクトは、それぞれ金属または金属化合物を含有しているか、もしくはそれぞれ金属または金属化合物から成り、ここで第2の端子コンタクトは、フィールドプレートとして、誘電層の上に形成されている。   The first terminal contact, the second terminal contact, and the third terminal contact each contain a metal or a metal compound, or each consist of a metal or a metal compound, wherein the second terminal contact is a field plate Are formed on the dielectric layer.

第3の端子コンタクトは、少なくとも1つのp領域および少なくとも1つのn+領域と導電的に接続されている。 The third terminal contact is conductively connected to at least one p region and at least one n + region.

とりわけ、端子コンタクトはそれぞれ半導体構造の表面に配置されている。   In particular, the terminal contacts are each arranged on the surface of the semiconductor structure.

誘電層は、少なくとも、第1のpn接合部および第2のpn接合部を覆っており、かつn-層、p領域およびn+領域と素材結合によって結合されている。 The dielectric layer covers at least the first pn junction and the second pn junction and is coupled to the n layer, p region, and n + region by material bonding.

付加的に、p+基板とn-層との間には、1μm〜50μmの層厚および1012〜1017cm-3のドーパント濃度を備えており、かつドープされた中間層が配置されており、この場合、中間層は、少なくともp+基板と素材結合によって結合されている。 In addition, a doped intermediate layer is disposed between the p + substrate and the n layer, having a layer thickness of 1 μm to 50 μm and a dopant concentration of 10 12 to 10 17 cm −3. In this case, the intermediate layer is bonded to at least the p + substrate by material bonding.

第2の端子コンタクトは、ゲートと称されることを言及しておく。第1の端子コンタクトは、典型的には、コレクタまたはアノードと称され、他方、第3の端子コンタクトは、エミッタまたはカソードと称される。   Note that the second terminal contact is referred to as the gate. The first terminal contact is typically referred to as the collector or anode, while the third terminal contact is referred to as the emitter or cathode.

端子コンタクトは層として形成されていると解される。端子コンタクトは、それぞれ導電性であって金属性の特性を有しており、またとりわけ、金属性かつ導電性の半導体層または金属層またはそれら2つの層の組合せを含んでいるか、もしくはそのような層から成る。端子コンタクトは、直接的に接しているドープされた半導体層との、電気的に低抵抗性のコンタクトを形成している。   It is understood that the terminal contact is formed as a layer. Each terminal contact is electrically conductive and has metallic properties and includes, among other things, a metallic and conductive semiconductor layer or metal layer or a combination of the two layers, or such Consists of layers. The terminal contact forms an electrically low resistance contact with the doped semiconductor layer that is in direct contact.

さらに、端子コンタクトはとりわけボンディングワイヤを用いて、コンタクトフィンガ、いわゆるピンに接続されていると解される。   Furthermore, it is understood that the terminal contacts are connected to contact fingers, so-called pins, in particular using bonding wires.

さらに、中間層は、接している層と比較すると、少なくとも、異なるドーパント濃度を有していると解される。   Furthermore, it is understood that the intermediate layer has at least a different dopant concentration as compared to the layer in contact therewith.

有利には、GaAs半導体構造では、ケイ素に比べて、電荷がより少ない実効質量を有している。また、Siに比べて、素子が破壊されることなく、pn接合部においてより高い温度を達成することもできる。これによって、GaAs半導体構造を用いて、同等のSi半導体構造に比べて高いスイッチング周波数および低い損失を達成することができる。   Advantageously, the GaAs semiconductor structure has an effective mass with less charge compared to silicon. Further, as compared with Si, a higher temperature can be achieved at the pn junction without destroying the element. Thereby, using a GaAs semiconductor structure, a high switching frequency and a low loss can be achieved compared to an equivalent Si semiconductor structure.

さらなる利点は、III−IV族IGBT半導体構造を、SiCから成る同等の半導体構造に比べて廉価に製造できることである。   A further advantage is that the III-IV IGBT semiconductor structure can be manufactured cheaper than an equivalent semiconductor structure made of SiC.

本発明によるIII−V族IGBT半導体構造の別の利点は、300℃までの高い温度耐性である。換言すれば、III−V族半導体ダイオードを、高温の環境下でも使用することができる。   Another advantage of the III-V IGBT semiconductor structure according to the present invention is high temperature resistance up to 300 ° C. In other words, the III-V group semiconductor diode can be used even in a high temperature environment.

第1の実施の形態においては、中間層は、p型ドープされて形成されており、また代替的な発展形態によれば、ドーパントとして亜鉛および/またはケイ素を含有している。中間層のドーパント濃度は、好適には、p+基板のドーパント濃度よりも低い。特に好適には、ドーパント濃度は、係数2〜5オーダ未満の係数まで間の範囲にある。 In the first embodiment, the intermediate layer is formed by p-type doping and, according to an alternative development, contains zinc and / or silicon as a dopant. The dopant concentration of the intermediate layer is preferably lower than the dopant concentration of the p + substrate. Particularly preferably, the dopant concentration is in the range between a factor up to a factor of less than 2-5.

1つの別の実施の形態においては、中間層は、n型ドープされて形成されており、かつドーパントとして、とりわけケイ素および/またはスズを含有している。中間層のドーパント濃度は、好適には、n+基板のドーパント濃度よりも低い。特に好適には、ドーパント濃度は、n-層のドーパント濃度よりも係数100まで低い。 In one alternative embodiment, the intermediate layer is formed n-type doped and contains, among other things, silicon and / or tin as dopants. The dopant concentration of the intermediate layer is preferably lower than the dopant concentration of the n + substrate. Particularly preferably, the dopant concentration is lower by a factor of 100 than the dopant concentration of the n layer.

1つの別の実施の形態によれば、IGBT半導体構造は、n型ドープされたバッファ層を有しており、このバッファ層は、中間層とn-層との間に配置されており、1012〜1016cm-3のドーパント濃度および1μm〜50μmの層厚を有しており、かつGaAs化合物を含有しているか、またはGaAs化合物から成る。 According to one alternative embodiment, the IGBT semiconductor structure has an n-type doped buffer layer, which is arranged between the intermediate layer and the n layer. It has a dopant concentration of 12 to 10 16 cm −3 and a layer thickness of 1 μm to 50 μm and contains or consists of a GaAs compound.

1つの別の実施の形態においては、IGBT半導体構造は、トレンチ型のIGBT半導体構造として形成されており、この場合、誘電層は、IGBT半導体構造の上面に対して垂直に延びている。   In one alternative embodiment, the IGBT semiconductor structure is formed as a trench IGBT semiconductor structure, where the dielectric layer extends perpendicular to the top surface of the IGBT semiconductor structure.

+基板は、好適には、亜鉛を含有している。n-層および/またはn+領域は、好適には、ケイ素および/またはクロムおよび/またはパラジウムおよび/またはスズを含有しており、この場合、IGBT半導体構造は、特に好適にはモノリシックに形成されている。 The p + substrate preferably contains zinc. The n layer and / or the n + region preferably contain silicon and / or chromium and / or palladium and / or tin, in which case the IGBT semiconductor structure is particularly preferably formed monolithically. ing.

1つの別の実施の形態によれば、IGBT半導体構造の全高は、最大で150〜500μmであり、かつ/またはIGBT半導体構造の辺長または直径は、1mm〜15mmの間である。   According to one alternative embodiment, the overall height of the IGBT semiconductor structure is at most 150-500 μm and / or the side length or diameter of the IGBT semiconductor structure is between 1 mm and 15 mm.

1つの別の実施の形態においては、p領域および/またはn領域は、IGBT半導体構造の上面において円形に形成されているか、または構造の端面にそれぞれ配置されている半円形でもって形成されている。   In one alternative embodiment, the p region and / or the n region are formed in a circle on the top surface of the IGBT semiconductor structure or in a semicircle disposed respectively on the end face of the structure. .

1つの発展形態によれば、誘電層は、堆積された酸化物を含有しており、かつ10nm〜1μmまでの層厚を有している。   According to one development, the dielectric layer contains the deposited oxide and has a layer thickness from 10 nm to 1 μm.

1つの別の実施の形態においては、スタック状の層構造は、n-層とp+基板との間に形成されている半導体ボンディングを有している。 In one alternative embodiment, the stacked layer structure has a semiconductor bond formed between the n layer and the p + substrate.

用語「半導体ボンディング」は、用語「ウェハボンディング」と同義で用いられていることを言及しておく。   It is noted that the term “semiconductor bonding” is used synonymously with the term “wafer bonding”.

1つの実施の形態においては、p+基板から成る層構造は、第1の部分スタックを形成しており、またn+層およびn-層、また場合によってはバッファ層から成る層構造は、第2の部分スタックを形成している。 In one embodiment, the layer structure consisting of a p + substrate forms a first partial stack, and the layer structure consisting of n + and n layers and possibly a buffer layer is 2 partial stacks are formed.

1つの発展形態においては、スタック状の層構造は、p+基板とn-層との間に配置されている中間層を有している。ここで、第1の部分スタックは、中間層を含んでいる。半導体ボンディングは、中間層とn-層との間に、または中間層とバッファ層との間に配置されている。 In one development, the stacked layer structure has an intermediate layer disposed between the p + substrate and the n layer. Here, the first partial stack includes an intermediate layer. The semiconductor bonding is arranged between the intermediate layer and the n layer or between the intermediate layer and the buffer layer.

1つの発展形態においては、第1の部分スタックおよび第2の部分スタックは、それぞれモノリシックに形成されている。   In one development, the first partial stack and the second partial stack are each formed monolithically.

1つの別の発展形態においては、p+基板から出発してエピタキシを用いて中間層が形成されることによって、第1の部分スタックは形成される。とりわけ、p-層として形成されている中間層は、1013N/cm-3未満のドーパントを有しているか、つまり中間層は、真性ドーピングされているか、または1013N/cm-3〜1015N/cm-3の間のドーパントを有している。1つの実施の形態においては、p+基板は、ボンディングの前または後に、研磨プロセスによって200μm〜500μmの間の厚さまで薄くされる。 In one further development, the first partial stack is formed by forming an intermediate layer using epitaxy starting from a p + substrate. In particular, the intermediate layer formed as a p layer has a dopant of less than 10 13 N / cm −3 , that is, the intermediate layer is intrinsically doped or 10 13 N / cm −3 to It has a dopant between 10 15 N / cm −3 . In one embodiment, the p + substrate is thinned to a thickness between 200 μm and 500 μm by a polishing process before or after bonding.

1つの別の実施の形態においては、n-基板から出発して、n-基板がウェハボンディングプロセスによって第2のスタックと、すなわちn+層と接合されることによって、第2のスタックは形成される。1つの実施の形態においては、n+層は、n+基板として形成されている。 In one alternative embodiment, n - starting from the substrate, n - substrate by being bonded to the second stack by a wafer bonding process, i.e. the n + layer, the second stack is formed The In one embodiment, the n + layer is formed as an n + substrate.

さらなるプロセスステップにおいて、n-基板が所望の厚さまで薄くされる。 In a further process step, the n substrate is thinned to the desired thickness.

1つの発展形態においては、n-基板ないしn-層が薄くされた後に、エピタキシプロセスによってバッファ層は形成される。 In one development, the buffer layer is formed by an epitaxy process after the n substrate or n layer has been thinned.

とりわけ、n-基板ないしn-層の厚さは、50μm〜250μmまでの間の範囲にある。とりわけ、n-基板のドーパントは、1013N/cm-3〜1015N/cm-3の間の範囲にある。ウェハボンディングの1つの利点は、厚いn-層を容易に形成できることにある。これによって、エピタキシの際の長い堆積プロセスが省略される。また、ウェハボンディングによって、積層欠陥の数を低減することもできる。 In particular, the thickness of the n substrate or n layer is in the range between 50 μm and 250 μm. In particular, the dopant of the n substrate is in the range between 10 13 N / cm −3 to 10 15 N / cm −3 . One advantage of wafer bonding is that a thick n layer can be easily formed. This eliminates the long deposition process during epitaxy. In addition, the number of stacking faults can be reduced by wafer bonding.

1つの代替的な実施の形態においては、n-基板は、1010N/cm-3より高く、かつ1013N/cm-3未満のドーパントを有している。ドーパントを極端に低くすることによって、n-基板を、真性層と解することもできる。 In one alternative embodiment, the n substrate has a dopant greater than 10 10 N / cm −3 and less than 10 13 N / cm −3 . By making the dopant extremely low, the n substrate can also be interpreted as an intrinsic layer.

1つの発展形態においては、n-基板またはバッファ層の表面は、半導体ボンディングプロセスステップによって、第1のスタックに直接的に接合される。続いて、n-基板の裏面が、n-層の所望の厚さまで薄くされる。n-基板ないしn-層を薄くした後に、エピタキシまたは高ドーズ注入によって、1018N/cm-3〜5×1019N/cm-3未満の間の範囲のドーパントを用いてn+層が形成される。 In one development, the surface of the n substrate or buffer layer is bonded directly to the first stack by a semiconductor bonding process step. Subsequently, the back surface of the n substrate is thinned to the desired thickness of the n layer. n - to no substrate the n - after thinning the layer, by epitaxy or high dose implantation, the n + layer with 10 18 N / cm -3 ~5 × 10 19 N / cm -3 underrange between the dopant It is formed.

-基板を薄くすることは、とりわけCMPステップを用いて、すなわち化学機械研磨を用いて行われると解される。 It is understood that thinning the n substrate is performed using, inter alia, a CMP step, ie using chemical mechanical polishing.

以下では、図面を参照しながら、本発明を詳細に説明する。図中、同種の部分には、同一の参照番号を付している。図示の実施の形態は、非常に概略的に示されている。つまり、間隔、横方向および縦方向の大きさは、縮尺通りではなく、また別記しない限りは、導き出すことができる相互の幾何学的な関係も有していない。   Hereinafter, the present invention will be described in detail with reference to the drawings. In the figure, the same reference numerals are assigned to the same types of parts. The illustrated embodiment is shown very schematically. That is, the spacing, the horizontal and vertical dimensions are not to scale and do not have a reciprocal geometric relationship that can be derived unless otherwise stated.

IGBTの本発明による第1の実施の形態の概略図を示す。1 shows a schematic diagram of a first embodiment of an IGBT according to the invention. FIG. IGBTの本発明による第1の実施の形態の概略的な平面図を示す。1 shows a schematic plan view of a first embodiment of an IGBT according to the present invention. FIG. IGBTの本発明による第2の実施の形態の概略図を示す。FIG. 3 shows a schematic diagram of a second embodiment of the IGBT according to the invention. IGBTの本発明による第3の実施の形態の概略図を示す。FIG. 4 shows a schematic diagram of a third embodiment of an IGBT according to the invention. IGBTの本発明による第3の実施の形態の概略的な平面図を示す。FIG. 6 shows a schematic plan view of a third embodiment of an IGBT according to the present invention. IGBTの本発明による第4の実施の形態の概略図を示す。FIG. 6 shows a schematic view of a fourth embodiment of the IGBT according to the invention.

図1は、3つの端子コンタクト14、16、18ならびに誘電層20を備えているIGBT半導体構造10の第1の実施の形態の断面図を示す。以下では半導体構造10とも記すIGBT半導体構造10は、上面12および下面22を有するようにスタック状に形成されており、また図示の実施例においては、いわゆるノンパンチスルー型の設計および全高H1を有している。   FIG. 1 shows a cross-sectional view of a first embodiment of an IGBT semiconductor structure 10 comprising three terminal contacts 14, 16, 18 and a dielectric layer 20. In the following, the IGBT semiconductor structure 10, also referred to as the semiconductor structure 10, is formed in a stack so as to have an upper surface 12 and a lower surface 22. doing.

第1の端子コンタクト14は、金属層として形成されており、この金属層は素材結合によって、半導体構造10の下面22と結合されている。   The first terminal contact 14 is formed as a metal layer, and this metal layer is bonded to the lower surface 22 of the semiconductor structure 10 by material bonding.

IGBT半導体構造の一番下の層は、p+基板24を形成している。したがって、p+基板は、半導体構造10の下面22を形成しており、かつ層厚D1を有している。p+基板には、弱くn型ドープされているか、または弱くp型ドープされている、層厚D3の薄い中間層26および層厚D2のn-層28が、この記載の順序で続いている。 The bottom layer of the IGBT semiconductor structure forms a p + substrate 24. The p + substrate thus forms the lower surface 22 of the semiconductor structure 10 and has a layer thickness D1. The p + substrate is followed by a light intermediate layer 26 of layer thickness D3 and an n layer 28 of layer thickness D2, which are weakly n-doped or weakly p-doped, in the order described. .

図示の実施例においては、n-層28は、半導体構造10の上面12の少なくとも一部を形成している。半導体構造10の上面12の別の部分は、p領域32によって形成され、ここでは、p領域32が、IGBT半導体構造10の上面12から深さT1まで、n-層内に延びている。 In the illustrated embodiment, the n layer 28 forms at least a portion of the top surface 12 of the semiconductor structure 10. Another portion of the top surface 12 of the semiconductor structure 10 is formed by a p region 32, where the p region 32 extends from the top surface 12 of the IGBT semiconductor structure 10 to a depth T 1 in the n layer.

半導体構造10の上面12の別の部分は、n+領域34によって形成され、ここでは、n+領域が、半導体構造10の上面12からT1よりも浅い深さT2まで、p領域内に延びている。 Another portion of the top surface 12 of the semiconductor structure 10 is formed by an n + region 34, where the n + region extends from the top surface 12 of the semiconductor structure 10 into a p region to a depth T2 shallower than T1. Yes.

つまり、半導体構造10の上面12に接して、p領域とn-層との間の第1のpn接合部36と、n+領域とp領域との間の第2のpn接合部38と、が形成されており、ここでは、誘電層20が、少なくとも、第1のpn接合部36および第2のpn接合部38を覆っており、半導体構造10の上面12と、特にn+領域、p領域およびn-層と素材結合によって結合されており、かつ層厚D5を有している。 That is, in contact with the upper surface 12 of the semiconductor structure 10, a first pn junction 36 between the p region and the n layer, and a second pn junction 38 between the n + region and the p region, Here, the dielectric layer 20 covers at least the first pn junction 36 and the second pn junction 38, and the upper surface 12 of the semiconductor structure 10, particularly the n + region, p It is bonded to the region and the n layer by material bonding and has a layer thickness D5.

第2の端子コンタクト16は、フィールドプレートとして、誘電層20の、半導体構造10とは反対側の表面に形成されている。   The second terminal contact 16 is formed as a field plate on the surface of the dielectric layer 20 opposite to the semiconductor structure 10.

第3の端子コンタクト18は、同様に、金属層として形成されており、この金属層は素材結合によって、半導体構造10の上面12の、p領域およびn+領域から形成された部分と結合されている。 Similarly, the third terminal contact 18 is formed as a metal layer, and this metal layer is bonded to the portion formed from the p region and the n + region of the upper surface 12 of the semiconductor structure 10 by material bonding. Yes.

+領域34、p領域32およびn-層28は、誘電層20および3つの端子コンタクト14、16、18と共に、MOSトランジスタ、すなわちバイポーラモジュールを形成しており、その一方で、p基板24、中間層26およびn-層28は、pinダイオードを表している。 The n + region 34, the p region 32 and the n layer 28 together with the dielectric layer 20 and the three terminal contacts 14, 16, 18 form a MOS transistor or bipolar module, while the p substrate 24, The intermediate layer 26 and the n layer 28 represent pin diodes.

図2には、IGBT半導体構造10の上面12の平面図が示されている。p領域32もn+領域34も円形に形成されている。IGBT半導体構造10は、第1の辺長K1および第2の辺長K2を備えている矩形の上面12を有している。 In FIG. 2, a plan view of the top surface 12 of the IGBT semiconductor structure 10 is shown. Both the p region 32 and the n + region 34 are formed in a circular shape. The IGBT semiconductor structure 10 has a rectangular upper surface 12 having a first side length K1 and a second side length K2.

図3には、IGBT半導体構造10の別の実施の形態が示されている。以下では、図1との相異のみを説明する。半導体構造10は、いわゆるパンチスルー型のIGBTとして形成されており、中間層26とn層28との間には、弱くn型ドープされているかまたは弱くp型ドープされている、層厚D4のバッファ層40が配置されている。   In FIG. 3, another embodiment of an IGBT semiconductor structure 10 is shown. Only the differences from FIG. 1 will be described below. The semiconductor structure 10 is formed as a so-called punch-through type IGBT, and is weakly n-type doped or weakly p-type doped between the intermediate layer 26 and the n layer 28 and has a layer thickness D4. A buffer layer 40 is disposed.

図4には、IGBT半導体構造10の別の実施の形態が示されている。以下では、図1および図3との相異のみを説明する。半導体構造10は、いわゆるトレンチ型のIGBTとして形成されている。   In FIG. 4, another embodiment of an IGBT semiconductor structure 10 is shown. Only the differences from FIGS. 1 and 3 will be described below. The semiconductor structure 10 is formed as a so-called trench type IGBT.

p領域32はn-層の上に、またn+領域34はp領域32の上に、それぞれ層として形成されており、半導体構造10は、上面12から層状のn領域および層状のp領域を貫通してn-層まで達する溝42、いわゆるトレンチを有している。 The p region 32 is formed as a layer on the n layer and the n + region 34 is formed as a layer on the p region 32. The semiconductor structure 10 includes a layered n region and a layered p region from the upper surface 12. It has a groove 42 that penetrates to reach the n layer, a so-called trench.

第1のpn接合部36および第2のpn接合部38は、溝42の側面44に対して垂直に延びている。溝の側面44ならび底部48は、誘電層20によって覆われている。フィールドプレートとして形成されている第2の端子コンタクト16は、相応に、誘電層20上に延びている。第3の端子コンタクト18は、溝42の側面44とは反対側に位置している、半導体構造10の側面50に配置されており、かつ層状のn+領域34ならびに層状のp領域32と導電的に接続されている。 The first pn junction 36 and the second pn junction 38 extend perpendicular to the side surface 44 of the groove 42. The side surface 44 and the bottom 48 of the groove are covered with the dielectric layer 20. A second terminal contact 16, which is formed as a field plate, extends correspondingly on the dielectric layer 20. The third terminal contact 18 is disposed on the side surface 50 of the semiconductor structure 10, which is located on the opposite side of the side surface 44 of the groove 42, and is electrically connected to the layered n + region 34 and the layered p region 32. Connected.

図6に示されている1つの代替的な実施の形態においては、第3の端子コンタクト18が上面12に配置されている。換言すれば、第2のpn接合部38は、図1に示した実施の形態に応じて、表面においても形成されている。   In one alternative embodiment shown in FIG. 6, a third terminal contact 18 is disposed on the top surface 12. In other words, the second pn junction 38 is also formed on the surface according to the embodiment shown in FIG.

図4によるトレンチ型のIGBTの概略的な平面図が図5に示されている。溝42は、長円の形状を有しており、またIGBT半導体構造10は、直径A1を有している。   A schematic plan view of the trench IGBT according to FIG. 4 is shown in FIG. The groove 42 has an oval shape, and the IGBT semiconductor structure 10 has a diameter A1.

図6には、IGBT半導体構造10の別の実施の形態が示されている。以下では、図4との相異のみを説明する。同様にトレンチ型のIGBTとして形成されている半導体構造10は、中間層26とn-層28との間にバッファ層40を有している。 In FIG. 6, another embodiment of an IGBT semiconductor structure 10 is shown. Only the differences from FIG. 4 will be described below. Similarly, the semiconductor structure 10 formed as a trench IGBT has a buffer layer 40 between the intermediate layer 26 and the n layer 28.

Claims (16)

上面(12)および下面(22)を備えているIGBT半導体構造(10)において、
前記IGBT半導体構造(10)の前記下面(22)に形成されており、5×1018〜5×1020cm-3のドーパント濃度および50〜500μmの層厚(D1)を有しており、かつGaAs化合物を含有しているか、またはGaAs化合物から成る、p+基板(24)と、
1012〜1017cm-3のドーパント濃度および10〜300μmの層厚(D2)を備えており、かつGaAs化合物を含有しているか、またはGaAs化合物から成る、n-層(28)と、
1014〜1018cm-3のドーパント濃度を備えており、かつGaAs化合物を含有しているか、またはGaAs化合物から成る、前記n-層(28)に接している少なくとも1つのp領域(32)と、
少なくとも1019cm-3のドーパント濃度を備えており、かつGaAs化合物を含有しているか、またはGaAs化合物から成る、前記p領域(32)に接している少なくとも1つのn+領域(34)と、
誘電層(20)と、
前記IGBT半導体構造(10)の前記下面(22)と導電的に接続されており、かつ金属または金属化合物を含有しているか、または金属または金属化合物から成る、第1の端子コンタクト(14)と、
それぞれが、金属または金属化合物を含有しているか、または金属または金属化合物から成る、第2の端子コンタクト(16)および第3の端子コンタクト(18)と、
を有しており、
前記少なくとも1つのp領域(32)は、前記n-層(28)と共に、第1のpn接合部(36)を形成しており、
前記少なくとも1つのn+領域(34)は、前記少なくとも1つのp領域(32)と共に、第2のpn接合部(38)を形成しており、
前記誘電層(20)は、少なくとも、前記第1のpn接合部(36)および前記第2のpn接合部(38)を覆っており、かつ前記n-層(28)、前記p領域(32)および前記n+領域(34)と素材結合によって結合されており、
前記第2の端子コンタクト(16)は、フィールドプレートとして、前記誘電層(20)の上に形成されており、
前記第3の端子コンタクト(18)は、前記少なくとも1つのp領域(32)および前記少なくとも1つのn+領域(34)と導電的に接続されている、
IGBT半導体構造(10)において、
前記p+基板(24)と前記n-層(28)との間には、1μm〜50μmの層厚(D3)および1012〜1017cm-3のドーパント濃度を備えており、かつドープされた中間層(26)が配置されており、
前記中間層(26)は、少なくとも、前記p+基板(24)と素材結合によって結合されている、ことを特徴とする
IGBT半導体構造(10)。
In an IGBT semiconductor structure (10) comprising an upper surface (12) and a lower surface (22),
Formed on the lower surface (22) of the IGBT semiconductor structure (10), having a dopant concentration of 5 × 10 18 to 5 × 10 20 cm −3 and a layer thickness (D1) of 50 to 500 μm; And a p + substrate (24) containing or consisting of a GaAs compound;
An n layer (28) having a dopant concentration of 10 12 to 10 17 cm −3 and a layer thickness (D2) of 10 to 300 μm and containing or consisting of a GaAs compound;
At least one p-region (32) in contact with said n layer (28) comprising a dopant concentration of 10 14 to 10 18 cm −3 and containing or consisting of a GaAs compound When,
At least one n + region (34) in contact with said p region (32), having a dopant concentration of at least 10 19 cm −3 and containing or consisting of a GaAs compound;
A dielectric layer (20);
A first terminal contact (14) electrically conductively connected to the lower surface (22) of the IGBT semiconductor structure (10) and containing or consisting of a metal or metal compound; ,
A second terminal contact (16) and a third terminal contact (18), each containing or consisting of a metal or metal compound;
Have
The at least one p region (32), together with the n layer (28), forms a first pn junction (36);
The at least one n + region (34), together with the at least one p region (32), forms a second pn junction (38);
The dielectric layer (20) covers at least the first pn junction (36) and the second pn junction (38), and the n layer (28) and the p region (32). ) And the n + region (34) by a material bond,
The second terminal contact (16) is formed on the dielectric layer (20) as a field plate,
The third terminal contact (18) is conductively connected to the at least one p region (32) and the at least one n + region (34);
In the IGBT semiconductor structure (10),
Between the p + substrate (24) and the n layer (28), having a layer thickness (D3) of 1 μm to 50 μm and a dopant concentration of 10 12 to 10 17 cm −3 and being doped Intermediate layer (26) is disposed,
The IGBT semiconductor structure (10), wherein the intermediate layer (26) is bonded to at least the p + substrate (24) by material bonding.
前記中間層(26)は、p型ドープされて形成されていることを特徴とする、
請求項1記載のIGBT半導体構造(10)。
The intermediate layer (26) is formed by p-type doping,
An IGBT semiconductor structure (10) according to claim 1.
前記中間層(26)のドーパント濃度は、前記p+基板(24)のドーパント濃度よりも低くされているか、または前記中間層(26)のドーパント濃度は、前記p+基板(24)のドーパント濃度の、係数2〜5オーダ未満の係数までの間の範囲にあることを特徴とする、
請求項2記載のIGBT半導体構造(10)。
The intermediate layer (26) has a dopant concentration lower than that of the p + substrate (24), or the intermediate layer (26) has a dopant concentration of the p + substrate (24). , Characterized in that it is in the range between the coefficients up to a coefficient less than 2-5,
An IGBT semiconductor structure (10) according to claim 2.
前記中間層(26)は、亜鉛および/またはケイ素を含有していることを特徴とする、
請求項2または3記載のIGBT半導体構造(10)。
The intermediate layer (26) contains zinc and / or silicon,
An IGBT semiconductor structure (10) according to claim 2 or 3.
前記中間層(26)は、n型ドープされて形成されていることを特徴とする、
請求項1記載のIGBT半導体構造(10)。
The intermediate layer (26) is formed by n-type doping,
An IGBT semiconductor structure (10) according to claim 1.
前記中間層(26)は、ケイ素および/またはスズを含有していることを特徴とする、
請求項5記載のIGBT半導体構造(10)。
The intermediate layer (26) contains silicon and / or tin,
An IGBT semiconductor structure (10) according to claim 5.
前記中間層(26)のドーパント濃度は、前記n-層(28)のドーパント濃度よりも係数100まで程度低いことを特徴とする、
請求項5または6記載のIGBT半導体構造(10)。
The dopant concentration of the intermediate layer (26) is approximately lower than the dopant concentration of the n layer (28) by a factor of 100,
An IGBT semiconductor structure (10) according to claim 5 or 6.
前記IGBT半導体構造(10)は、n型ドープされたバッファ層(40)を有しており、前記バッファ層(40)は、前記中間層(26)と前記n-層(28)との間に配置されており、1012〜1017cm-3のドーパント濃度および1μm〜50μmの層厚(D4)を有しており、かつGaAs化合物を含有しているか、またはGaAs化合物から成ることを特徴とする、
請求項1から7までのいずれか1項記載のIGBT半導体構造(10)。
The IGBT semiconductor structure (10) has an n-type doped buffer layer (40), which is between the intermediate layer (26) and the n layer (28). Characterized in that it has a dopant concentration of 10 12 to 10 17 cm −3 and a layer thickness (D4) of 1 μm to 50 μm and contains or consists of a GaAs compound And
An IGBT semiconductor structure (10) according to any one of the preceding claims.
前記IGBT半導体構造(10)は、トレンチ型のIGBT半導体構造(10)として形成されており、前記誘電層(20)は、前記IGBT半導体構造(10)の前記上面(12)に対して垂直に延びていることを特徴とする、
請求項1から8までのいずれか1項記載のIGBT半導体構造(10)。
The IGBT semiconductor structure (10) is formed as a trench type IGBT semiconductor structure (10), and the dielectric layer (20) is perpendicular to the upper surface (12) of the IGBT semiconductor structure (10). It is characterized by extending,
An IGBT semiconductor structure (10) according to any one of the preceding claims.
前記p+基板(24)は、亜鉛を含有していることを特徴とする、
請求項1から9までのいずれか1項記載のIGBT半導体構造(10)。
The p + substrate (24) contains zinc,
An IGBT semiconductor structure (10) according to any one of the preceding claims.
前記n-層(28)および/または前記n+領域(34)は、ケイ素および/またはクロムおよび/またはパラジウムおよび/またはスズを含有していることを特徴とする、
請求項1から10までのいずれか1項記載のIGBT半導体構造(10)。
The n layer (28) and / or the n + region (34) contain silicon and / or chromium and / or palladium and / or tin,
IGBT semiconductor structure (10) according to any one of the preceding claims.
前記IGBT半導体構造(10)は、モノリシックに形成されていることを特徴とする、
請求項1から11までのいずれか1項記載のIGBT半導体構造(10)。
The IGBT semiconductor structure (10) is monolithically formed,
An IGBT semiconductor structure (10) according to any one of the preceding claims.
前記IGBT半導体構造(10)の全高(H1)は、最大で150〜500μmであることを特徴とする、
請求項1から12までのいずれか1項記載のIGBT半導体構造(10)。
The total height (H1) of the IGBT semiconductor structure (10) is 150 to 500 μm at the maximum,
IGBT semiconductor structure (10) according to any one of the preceding claims.
前記p領域(32)および/または前記n+領域(34)は、前記IGBT半導体構造(10)の前記上面(12)において、楕円形または真円形に形成されていることを特徴とする、
請求項1から13までのいずれか1項記載のIGBT半導体構造(10)。
The p region (32) and / or the n + region (34) is formed in an elliptical shape or a true circular shape in the upper surface (12) of the IGBT semiconductor structure (10),
IGBT semiconductor structure (10) according to any one of the preceding claims.
前記IGBT半導体構造(10)は、1mm〜15mmまでの辺長(K1,K2)または直径(A1)を有していることを特徴とする、
請求項1から14までのいずれか1項記載のIGBT半導体構造(10)。
The IGBT semiconductor structure (10) has a side length (K1, K2) or diameter (A1) of 1 mm to 15 mm,
IGBT semiconductor structure (10) according to any one of the preceding claims.
前記誘電層(20)は、堆積された酸化物を含有しており、かつ10nm〜1μmまでの層厚(D5)を有していることを特徴とする、
請求項1から15までのいずれか1項記載のIGBT半導体構造(10)。
The dielectric layer (20) contains a deposited oxide and has a layer thickness (D5) from 10 nm to 1 μm,
IGBT semiconductor structure (10) according to any one of the preceding claims.
JP2017251624A 2016-12-28 2017-12-27 IGBT semiconductor structure Active JP6926366B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016015475.6 2016-12-28
DE102016015475.6A DE102016015475B3 (en) 2016-12-28 2016-12-28 IGBT semiconductor structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020174768A Division JP7283768B2 (en) 2016-12-28 2020-10-16 IGBT semiconductor structure

Publications (2)

Publication Number Publication Date
JP2018110231A true JP2018110231A (en) 2018-07-12
JP6926366B2 JP6926366B2 (en) 2021-08-25

Family

ID=60676752

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017251624A Active JP6926366B2 (en) 2016-12-28 2017-12-27 IGBT semiconductor structure
JP2020174768A Active JP7283768B2 (en) 2016-12-28 2020-10-16 IGBT semiconductor structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020174768A Active JP7283768B2 (en) 2016-12-28 2020-10-16 IGBT semiconductor structure

Country Status (5)

Country Link
US (1) US11171226B2 (en)
EP (1) EP3343636B1 (en)
JP (2) JP6926366B2 (en)
CN (2) CN114664922A (en)
DE (1) DE102016015475B3 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019000166B4 (en) * 2019-01-14 2022-08-04 Tdk-Micronas Gmbh device semiconductor structure
DE102019000165B4 (en) * 2019-01-14 2024-06-27 Tdk-Micronas Gmbh Semiconductor sensor structure
JP7046894B2 (en) * 2019-11-27 2022-04-04 株式会社北電子 Pachinko machine

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837294A (en) * 1994-07-25 1996-02-06 Hitachi Ltd Semiconductor device and inverter device provided therewith
JPH0964350A (en) * 1995-08-23 1997-03-07 Toshiba Corp Semiconductor device
JP2000357801A (en) * 1999-06-16 2000-12-26 Toyota Motor Corp Hetero-junction semiconductor device
JP2001077357A (en) * 1999-08-31 2001-03-23 Toshiba Corp Semiconductor device
JP2001176884A (en) * 1999-12-17 2001-06-29 Nec Corp Field-effct transistor and manufacturing method therefor
JP2005286042A (en) * 2004-03-29 2005-10-13 Toyota Motor Corp Insulated gate type semiconductor device and its manufacturing method
JP2009016482A (en) * 2007-07-03 2009-01-22 Renesas Technology Corp Semiconductor device, and manufacturing method thereof
WO2010098294A1 (en) * 2009-02-24 2010-09-02 三菱電機株式会社 Silicon carbide semiconductor device
JP2014082521A (en) * 2010-04-06 2014-05-08 Mitsubishi Electric Corp Power semiconductor device
JP2015156489A (en) * 2014-02-20 2015-08-27 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Semiconductor device and rc-igbt with zones directly adjoining rear side electrode
US20160322472A1 (en) * 2015-04-30 2016-11-03 Infineon Technologies Ag Producing a Semiconductor Device by Epitaxial Growth

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1247293B (en) * 1990-05-09 1994-12-12 Int Rectifier Corp POWER TRANSISTOR DEVICE PRESENTING AN ULTRA-DEEP REGION, AT A GREATER CONCENTRATION
US5359220A (en) * 1992-12-22 1994-10-25 Hughes Aircraft Company Hybrid bipolar/field-effect power transistor in group III-V material system
EP0631326B1 (en) * 1993-05-12 1999-02-24 Zaidan Hojin Handotai Kenkyu Shinkokai Semiconductor memory device and method of manufacturing same
JPH09172167A (en) 1995-12-19 1997-06-30 Toshiba Corp Semiconductor device
US7485920B2 (en) * 2000-06-14 2009-02-03 International Rectifier Corporation Process to create buried heavy metal at selected depth
DE10120656C2 (en) * 2001-04-27 2003-07-10 Infineon Technologies Ag Semiconductor component with increased avalanche strength
US7652326B2 (en) * 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
DE102004039209B4 (en) * 2004-08-12 2009-04-23 Infineon Technologies Austria Ag Method for producing an n-doped field stop zone in a semiconductor body and semiconductor device with a field stop zone
US7902542B2 (en) * 2006-06-14 2011-03-08 3M Innovative Properties Company Adapted LED device with re-emitting semiconductor construction
US20080157117A1 (en) * 2006-12-28 2008-07-03 Mcnutt Ty R Insulated gate bipolar transistor with enhanced conductivity modulation
US7888794B2 (en) * 2008-02-18 2011-02-15 Infineon Technologies Ag Semiconductor device and method
US8022474B2 (en) * 2008-09-30 2011-09-20 Infineon Technologies Austria Ag Semiconductor device
US8779510B2 (en) * 2010-06-01 2014-07-15 Alpha And Omega Semiconductor Incorporated Semiconductor power devices manufactured with self-aligned processes and more reliable electrical contacts
WO2012006261A2 (en) * 2010-07-06 2012-01-12 Maxpower Semiconductor Inc. Power semiconductor devices, structures, and related methods
US8614478B2 (en) * 2010-07-26 2013-12-24 Infineon Technologies Austria Ag Method for protecting a semiconductor device against degradation, a semiconductor device protected against hot charge carriers and a manufacturing method therefor
IT1402879B1 (en) * 2010-11-19 2013-09-27 St Microelectronics Srl IGBT DEVICE WITH REGULATIONS OF BURIED EMITTERS
US8354733B2 (en) * 2011-03-04 2013-01-15 International Rectifier Corporation IGBT power semiconductor package having a conductive clip
WO2013073623A1 (en) * 2011-11-15 2013-05-23 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
WO2013147710A1 (en) * 2012-03-29 2013-10-03 Agency For Science, Technology And Research Iii-nitride high electron mobility transistor structures and methods for fabrication of same
JP6011066B2 (en) * 2012-06-28 2016-10-19 住友電気工業株式会社 Manufacturing method of semiconductor device
EP2682593A3 (en) * 2012-07-03 2018-09-12 Fuji Electric Co., Ltd. Ignition device with single chip for internal combustion engine
US9263271B2 (en) * 2012-10-25 2016-02-16 Infineon Technologies Ag Method for processing a semiconductor carrier, a semiconductor chip arrangement and a method for manufacturing a semiconductor device
US9166005B2 (en) * 2013-03-01 2015-10-20 Infineon Technologies Austria Ag Semiconductor device with charge compensation structure
US9425153B2 (en) * 2013-04-04 2016-08-23 Monolith Semiconductor Inc. Semiconductor devices comprising getter layers and methods of making and using the same
US20140306284A1 (en) * 2013-04-12 2014-10-16 Infineon Technologies Austria Ag Semiconductor Device and Method for Producing the Same
US20150014706A1 (en) * 2013-07-15 2015-01-15 Laurence P. Sadwick Vertical Hetero Wide Bandgap Transistor
US9570570B2 (en) 2013-07-17 2017-02-14 Cree, Inc. Enhanced gate dielectric for a field effect device with a trenched gate
JP6119564B2 (en) * 2013-11-08 2017-04-26 住友電気工業株式会社 Method for manufacturing silicon carbide semiconductor device
US9337270B2 (en) * 2013-12-19 2016-05-10 Infineon Technologies Ag Semiconductor device
US9184248B2 (en) * 2014-02-04 2015-11-10 Maxpower Semiconductor Inc. Vertical power MOSFET having planar channel and its method of fabrication
DE102014113375A1 (en) * 2014-09-17 2016-03-17 Infineon Technologies Austria Ag SEMICONDUCTOR DEVICE WITH FIELD EFFECT STRUCTURE
CN104241126B (en) * 2014-09-17 2017-10-31 中航(重庆)微电子有限公司 Groove-shaped IGBT and preparation method
DE102014223315B4 (en) * 2014-11-14 2019-07-11 Infineon Technologies Ag Semiconductor-metal transition
US9443973B2 (en) * 2014-11-26 2016-09-13 Infineon Technologies Austria Ag Semiconductor device with charge compensation region underneath gate trench
DE102015106979B4 (en) * 2015-05-05 2023-01-12 Infineon Technologies Austria Ag Semiconductor wafers and methods of manufacturing semiconductor devices in a semiconductor wafer
DE102015114177A1 (en) * 2015-08-26 2017-03-02 Infineon Technologies Ag Semiconductor device, silicon wafer and method for producing a silicon wafer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837294A (en) * 1994-07-25 1996-02-06 Hitachi Ltd Semiconductor device and inverter device provided therewith
JPH0964350A (en) * 1995-08-23 1997-03-07 Toshiba Corp Semiconductor device
JP2000357801A (en) * 1999-06-16 2000-12-26 Toyota Motor Corp Hetero-junction semiconductor device
JP2001077357A (en) * 1999-08-31 2001-03-23 Toshiba Corp Semiconductor device
JP2001176884A (en) * 1999-12-17 2001-06-29 Nec Corp Field-effct transistor and manufacturing method therefor
JP2005286042A (en) * 2004-03-29 2005-10-13 Toyota Motor Corp Insulated gate type semiconductor device and its manufacturing method
JP2009016482A (en) * 2007-07-03 2009-01-22 Renesas Technology Corp Semiconductor device, and manufacturing method thereof
WO2010098294A1 (en) * 2009-02-24 2010-09-02 三菱電機株式会社 Silicon carbide semiconductor device
JP2014082521A (en) * 2010-04-06 2014-05-08 Mitsubishi Electric Corp Power semiconductor device
JP2015156489A (en) * 2014-02-20 2015-08-27 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Semiconductor device and rc-igbt with zones directly adjoining rear side electrode
US20160322472A1 (en) * 2015-04-30 2016-11-03 Infineon Technologies Ag Producing a Semiconductor Device by Epitaxial Growth

Also Published As

Publication number Publication date
JP6926366B2 (en) 2021-08-25
US11171226B2 (en) 2021-11-09
DE102016015475B3 (en) 2018-01-11
CN114664922A (en) 2022-06-24
US20180182874A1 (en) 2018-06-28
EP3343636B1 (en) 2020-07-08
JP2021005740A (en) 2021-01-14
JP7283768B2 (en) 2023-05-30
CN108258030A (en) 2018-07-06
EP3343636A1 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP7030348B2 (en) III-V semiconductor diodes
JP6567118B2 (en) III-V semiconductor diode
US9911733B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP6603349B2 (en) III-V semiconductor diode
JP2018082172A (en) Group iii-v semiconductor diode
JP7283768B2 (en) IGBT semiconductor structure
CN109545842B (en) Terminal structure of silicon carbide device and manufacturing method thereof
JP6713669B2 (en) Stack type III-V semiconductor diode
US10236339B2 (en) Semiconductor device
JP6771125B2 (en) Stack-type III-V semiconductor module
JP2017135175A (en) Semiconductor device, power conversion device, and method for manufacturing semiconductor device
JP6885619B2 (en) Stack type III-V semiconductor module
JP2012248736A (en) Semiconductor device
JP6570599B2 (en) Stacked Schottky diode
KR20230155954A (en) Bipolar junction transistors and P-N junction diodes including stacked nano-semiconductor layers
CN113614924A (en) Semiconductor device and method for manufacturing semiconductor device
CN216054719U (en) Semiconductor structure
US20240194668A1 (en) Electrostatic discharge protection structure
CN111180421B (en) Transistor structure for electrostatic protection and manufacturing method thereof
CN110854187B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP2024154505A (en) Compound Semiconductor Device
JP2017123361A (en) Semiconductor device
KR20160100524A (en) nitride-based insulated gate bipolar transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181126

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190722

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201016

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201026

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201027

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201211

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201222

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210329

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210412

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210524

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210628

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210706

R150 Certificate of patent or registration of utility model

Ref document number: 6926366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250