JP2018103851A - Non-pressure tire and production method thereof - Google Patents
Non-pressure tire and production method thereof Download PDFInfo
- Publication number
- JP2018103851A JP2018103851A JP2016253105A JP2016253105A JP2018103851A JP 2018103851 A JP2018103851 A JP 2018103851A JP 2016253105 A JP2016253105 A JP 2016253105A JP 2016253105 A JP2016253105 A JP 2016253105A JP 2018103851 A JP2018103851 A JP 2018103851A
- Authority
- JP
- Japan
- Prior art keywords
- annular portion
- fiber reinforced
- reinforced plastic
- inner annular
- outer annular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims abstract description 86
- 239000011151 fibre-reinforced plastic Substances 0.000 claims abstract description 86
- 239000000463 material Substances 0.000 claims abstract description 33
- 239000013013 elastic material Substances 0.000 claims abstract description 25
- 238000005452 bending Methods 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 9
- 239000002994 raw material Substances 0.000 claims description 8
- 229920001187 thermosetting polymer Polymers 0.000 claims description 7
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 3
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 229920001971 elastomer Polymers 0.000 description 10
- 230000003014 reinforcing effect Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000005060 rubber Substances 0.000 description 6
- 239000000835 fiber Substances 0.000 description 5
- 239000011152 fibreglass Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 229920000459 Nitrile rubber Polymers 0.000 description 4
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 4
- 239000000806 elastomer Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 229920002725 thermoplastic elastomer Polymers 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920006124 polyolefin elastomer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
- Tyre Moulding (AREA)
- Tires In General (AREA)
Abstract
Description
本発明は、内側環状部と、その内側環状部の外側に同心円状に設けられる外側環状部と、前記内側環状部と前記外側環状部とを連結する連結部とを備える非空気圧タイヤ(non−pneumatic tire)及びその製造方法に関する。 The present invention provides a non-pneumatic tire (non-) including an inner annular portion, an outer annular portion provided concentrically outside the inner annular portion, and a connecting portion that connects the inner annular portion and the outer annular portion. pneumatic tire) and a method for manufacturing the same.
空気入りタイヤは、荷重の支持機能、接地面からの衝撃吸収能、および動力等の伝達能(加速、停止、方向転換)を有し、このため、多くの車両、特に自転車、オートバイ、自動車、トラックに採用されている。 The pneumatic tire has a load supporting function, a shock absorbing ability from the ground contact surface, and a transmission ability (acceleration, stop, change of direction) such as power. For this reason, many vehicles, particularly bicycles, motorcycles, automobiles, It is used in trucks.
特に、これらの能力は自動車、その他のモーター車両の発展に大きく貢献した。更に、空気入りタイヤの衝撃吸収能力は、医療機器や電子機器の運搬用カート、その他の用途でも有用である。 In particular, these capabilities greatly contributed to the development of automobiles and other motor vehicles. Furthermore, the impact absorbing ability of pneumatic tires is useful for medical equipment and electronic equipment transport carts and other applications.
従来の非空気圧タイヤとしては、例えばソリッドタイヤ、スプリングタイヤ、クッションタイヤ等が存在するが、空気入りタイヤの優れた性能を有していない。例えば、ソリッドタイヤおよびクッションタイヤは、接地部分の圧縮によって荷重を支持するが、この種のタイヤは重くて、堅く、空気入りタイヤのような衝撃吸収能力はない。また、非空気圧タイヤでは、弾性を高めてクッション性を改善することも可能であるが、空気入りタイヤが有するような荷重支持能または耐久性が悪くなるという問題がある。 Conventional non-pneumatic tires include, for example, solid tires, spring tires, cushion tires, and the like, but do not have the superior performance of pneumatic tires. For example, solid tires and cushion tires support the load by compressing the contact portion, but this type of tire is heavy and stiff, and does not have the ability to absorb shock like a pneumatic tire. Further, in the non-pneumatic tire, it is possible to improve the cushioning property by increasing the elasticity, but there is a problem that the load supporting ability or the durability as the pneumatic tire has is deteriorated.
非空気圧タイヤとして、例えば、下記の特許文献1には、車軸に取り付けられる取り付け体と、前記取り付け体をタイヤ径方向の外側から囲繞するリング状体と、前記取り付け体と前記リング状体とを変位自在に連結する連結部材と、を備え、前記連結部材は、合成樹脂材料で形成されるとともに、前記連結部材に補強部材が埋設されている非空気圧タイヤが記載されている。 As a non-pneumatic tire, for example, Patent Document 1 below includes an attachment body attached to an axle, a ring-like body that surrounds the attachment body from the outside in a tire radial direction, the attachment body, and the ring-like body. And a non-pneumatic tire in which a reinforcing member is embedded in the connecting member, the connecting member being formed of a synthetic resin material.
また、下記の特許文献2には、樹脂母材中に繊維が埋め込まれた複合筒体を補強要素として用いた非空気圧タイヤが記載されている。
Further,
また、下記の特許文献3には、内側環状部と、その内側環状部の外側に同心円状に設けられる外側環状部と、前記内側環状部と前記外側環状部とを連結する複数の連結部とを備え、内側環状部、外側環状部、及び連結部が補強繊維により補強された樹脂材料で成形されている非空気圧タイヤが記載されている。
Further, in
特許文献1〜3に記載された非空気圧タイヤは、樹脂材料で成形されており、継続した荷重負荷によるクリープが生じやすい。特に、駐車等によりタイヤの一部に負荷がかかる状況が続くと、その箇所が変形を起こし、元に戻らないことがある。タイヤの変形は、耐久性、乗り心地、燃費性等に影響を及ぼすことが懸念される。しかしながら、特許文献1〜3に記載された非空気圧タイヤは、耐クリープ性について何ら考慮されていない。 The non-pneumatic tires described in Patent Documents 1 to 3 are molded of a resin material, and creep due to a continuous load is likely to occur. In particular, when a load is applied to a part of the tire due to parking or the like, the portion may be deformed and may not be restored. There is a concern that the deformation of the tire may affect durability, riding comfort, fuel efficiency, and the like. However, the non-pneumatic tires described in Patent Documents 1 to 3 do not consider any creep resistance.
そこで、本発明の目的は、耐クリープ性を向上させた非空気圧タイヤ及びその製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a non-pneumatic tire with improved creep resistance and a method for manufacturing the same.
上記目的は、下記の如き本発明により達成できる。
即ち、本発明の非空気圧タイヤは、内側環状部と、その内側環状部の外側に同心円状に設けられる外側環状部と、前記内側環状部と前記外側環状部とを連結する連結部とを備える非空気圧タイヤであって、
前記内側環状部、前記外側環状部、及び前記連結部は、弾性材料からなる基材部と、前記基材部の中に埋設された繊維強化プラスチックとを備え、
前記内側環状部及び前記外側環状部の前記繊維強化プラスチックの曲げ弾性率が1GPa以上であり、かつ前記連結部の前記繊維強化プラスチックの引張弾性率が50GPa以上であることを特徴とする。
The above object can be achieved by the present invention as described below.
That is, the non-pneumatic tire of the present invention includes an inner annular portion, an outer annular portion provided concentrically on the outer side of the inner annular portion, and a connecting portion that connects the inner annular portion and the outer annular portion. A non-pneumatic tire,
The inner annular portion, the outer annular portion, and the connecting portion include a base material portion made of an elastic material, and a fiber reinforced plastic embedded in the base material portion,
The bending elastic modulus of the fiber reinforced plastic of the inner annular portion and the outer annular portion is 1 GPa or more, and the tensile elastic modulus of the fiber reinforced plastic of the connecting portion is 50 GPa or more.
この構成によれば、内側環状部及び外側環状部は、高い曲げ弾性率を有する繊維強化プラスチックによって補強されるため、内側環状部及び外側環状部の形状変化を抑えることができ、一方、連結部は、高い引張弾性率を有する繊維強化プラスチックによって補強されるため、内側環状部と外側環状部の位置関係を保持することができる。その結果、タイヤ全体として耐クリープ性を向上できる。 According to this configuration, since the inner annular portion and the outer annular portion are reinforced by the fiber reinforced plastic having a high bending elastic modulus, the shape change of the inner annular portion and the outer annular portion can be suppressed, while the connecting portion Is reinforced by a fiber reinforced plastic having a high tensile elastic modulus, so that the positional relationship between the inner annular portion and the outer annular portion can be maintained. As a result, creep resistance can be improved as a whole tire.
本発明に係る非空気圧タイヤにおいて、前記内側環状部、前記外側環状部、及び前記連結部の前記繊維強化プラスチックは、互いに結合されて一体となっていることが好ましい。 In the non-pneumatic tire according to the present invention, it is preferable that the inner annular portion, the outer annular portion, and the fiber reinforced plastic of the connecting portion are coupled to each other and integrated.
この構成によれば、すべての繊維強化プラスチックが一体となることによって、タイヤ全体としての形状安定性が高まるため、永久変形の抑制に有利である。 According to this configuration, since all the fiber reinforced plastics are integrated, the shape stability of the entire tire is increased, which is advantageous for suppressing permanent deformation.
また、本発明に係る非空気圧タイヤにおいて、前記基材部は熱硬化性ポリウレタンからなることが好ましい。 In the non-pneumatic tire according to the present invention, it is preferable that the base portion is made of thermosetting polyurethane.
また、本発明に係る非空気圧タイヤにおいて、前記熱硬化性ポリウレタンは10〜100MPaの引張弾性率を有することが好ましい。 In the non-pneumatic tire according to the present invention, the thermosetting polyurethane preferably has a tensile modulus of 10 to 100 MPa.
これらの構成によれば、耐クリープ性を効果的に向上できる。 According to these configurations, the creep resistance can be effectively improved.
また、本発明の非空気圧タイヤの製造方法は、内側環状部と、その内側環状部の外側に同心円状に設けられる外側環状部と、前記内側環状部と前記外側環状部とを連結する連結部とを備え、前記内側環状部、前記外側環状部、及び前記連結部は、弾性材料からなる基材部と、前記基材部の中に埋設された繊維強化プラスチックとを備える非空気圧タイヤの製造方法であって、
前記内側環状部、前記外側環状部、及び前記連結部をそれぞれ成型するための内側環状キャビティ、外側環状キャビティ、及び連結キャビティを有する金型を用いて、
前記内側環状キャビティ及び前記外側環状キャビティに曲げ弾性率が1GPa以上である前記繊維強化プラスチックをそれぞれ環状に配置する工程と、
前記連結キャビティに引張弾性率が50GPa以上である前記繊維強化プラスチックを配置する工程と、
前記内側環状キャビティ、前記外側環状キャビティ、及び前記連結キャビティに弾性材料の原料液を充填する工程と、
前記弾性材料の原料液を固化させる工程とを含むことを特徴とする。
The non-pneumatic tire manufacturing method of the present invention includes an inner annular portion, an outer annular portion provided concentrically on the outer side of the inner annular portion, and a connecting portion that connects the inner annular portion and the outer annular portion. And the inner annular portion, the outer annular portion, and the connecting portion are made of a base material portion made of an elastic material, and a fiber reinforced plastic embedded in the base material portion. A method,
Using a mold having an inner annular cavity, an outer annular cavity, and a connecting cavity for molding the inner annular part, the outer annular part, and the connecting part,
Arranging the fiber reinforced plastics having a bending elastic modulus of 1 GPa or more in the inner annular cavity and the outer annular cavity, respectively,
Placing the fiber reinforced plastic having a tensile modulus of 50 GPa or more in the connection cavity;
Filling the inner annular cavity, the outer annular cavity, and the connecting cavity with a raw material liquid of an elastic material;
And solidifying the raw material liquid of the elastic material.
この構成によれば、内側環状部及び外側環状部は、高い曲げ弾性率を有する繊維強化プラスチックによって補強されるため、内側環状部及び外側環状部の形状変化を抑えることができ、一方、連結部は、高い引張弾性率を有する繊維強化プラスチックによって補強されるため、内側環状部と外側環状部の位置関係を保持することができる。その結果、タイヤ全体として耐クリープ性を向上できる。 According to this configuration, since the inner annular portion and the outer annular portion are reinforced by the fiber reinforced plastic having a high bending elastic modulus, the shape change of the inner annular portion and the outer annular portion can be suppressed, while the connecting portion Is reinforced by a fiber reinforced plastic having a high tensile elastic modulus, so that the positional relationship between the inner annular portion and the outer annular portion can be maintained. As a result, creep resistance can be improved as a whole tire.
また、本発明に係る非空気圧タイヤの製造方法において、前記弾性材料の原料液を充填する工程より前に、前記内側環状キャビティ及び前記外側環状キャビティに配置する前記繊維強化プラスチックと、前記連結キャビティに配置する前記繊維強化プラスチックとを結合して一体とする工程を含むことが好ましい。 Further, in the non-pneumatic tire manufacturing method according to the present invention, before the step of filling the elastic material material liquid, the fiber reinforced plastic disposed in the inner annular cavity and the outer annular cavity, and the connection cavity It is preferable to include a step of combining and integrating the fiber reinforced plastic to be arranged.
この構成によれば、すべての繊維強化プラスチックが一体となることによって、タイヤ全体としての形状安定性が高まるため、永久変形の抑制に有利である。 According to this configuration, since all the fiber reinforced plastics are integrated, the shape stability of the entire tire is increased, which is advantageous for suppressing permanent deformation.
以下、本発明の実施の形態について、図面を参照しながら説明する。図1は本発明の非空気圧タイヤの一例を示す正面図である。ここで、Oは軸芯を、CDはタイヤ周方向を、Hはタイヤ断面高さを、それぞれ示している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a front view showing an example of a non-pneumatic tire of the present invention. Here, O indicates the axial center, CD indicates the tire circumferential direction, and H indicates the tire cross-sectional height.
本発明の非空気圧タイヤTは、車両からの荷重を支持する支持構造体SSを有するものである。ただし、非空気圧タイヤTは、支持構造体SSの外側(外周側)や内側(内周側)に、トレッドに相当する部材、補強部材、車軸やリムとの適合用部材などを備えていてもよい。 The non-pneumatic tire T of the present invention has a support structure SS that supports a load from a vehicle. However, the non-pneumatic tire T may include a member corresponding to a tread, a reinforcing member, a member for fitting with an axle or a rim, and the like on the outer side (outer peripheral side) and the inner side (inner peripheral side) of the support structure SS. Good.
本実施形態の非空気圧タイヤTは、図1の正面図に示すように、支持構造体SSが、内側環状部1と、その外側に同心円状に設けられる外側環状部2と、内側環状部1と外側環状部2とを連結する複数の連結部3とを備えている。
As shown in the front view of FIG. 1, the non-pneumatic tire T of the present embodiment includes an inner annular portion 1, an outer
内側環状部1は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。また、内側環状部1の内周面には、車軸やリムとの装着のために、嵌合性を保持するための凹凸等を設けるのが好ましい。 The inner annular portion 1 is preferably a cylindrical shape having a constant thickness from the viewpoint of improving uniformity. Moreover, it is preferable to provide the inner peripheral surface of the inner annular portion 1 with irregularities or the like for maintaining fitting properties for mounting with an axle or a rim.
内側環状部1の厚みは、連結部3に力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの1〜20%が好ましく、2〜10%がより好ましい。
The thickness of the inner annular portion 1 is preferably 1 to 20% of the tire cross-section height H and more preferably 2 to 10% from the viewpoint of reducing weight and improving durability while sufficiently transmitting force to the connecting
内側環状部1の内径は、非空気圧タイヤTを装着するリムや車軸の寸法などに併せて適宜決定される。ただし、一般の空気入りタイヤの代替を想定した場合、250〜500mmが好ましく、330〜440mmがより好ましい。 The inner diameter of the inner annular portion 1 is appropriately determined in accordance with the rim on which the non-pneumatic tire T is mounted and the dimensions of the axle. However, when an alternative to a general pneumatic tire is assumed, 250 to 500 mm is preferable, and 330 to 440 mm is more preferable.
内側環状部1のタイヤ幅方向の幅は、用途、車軸の長さ等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。 The width in the tire width direction of the inner annular portion 1 is appropriately determined according to the use, the length of the axle, and the like. However, when an alternative to a general pneumatic tire is assumed, 100 to 300 mm is preferable, and 130 to 250 mm is preferable. More preferred.
内側環状部1は、弾性材料からなる基材部11と、基材部11の中に埋設された環状の繊維強化プラスチック12とを備えている。繊維強化プラスチック12は、補強層として機能する。繊維強化プラスチック12のタイヤ幅方向の幅は、内側環状部1のタイヤ幅方向の幅と同じである。
The inner annular portion 1 includes a
内側環状部1の繊維強化プラスチック12は、曲げ弾性率が1GPa以上である。また、繊維強化プラスチック12は、曲げ弾性率が7GPa以下であることが好ましい。繊維強化プラスチック12の曲げ弾性率が1GPaより小さいと、内側環状部1の耐クリープ性が不十分となる。なお、本発明における曲げ弾性率は、JIS K7171に準じて曲げ試験を行い0.05%〜0.25%ひずみ時の応力差をひずみ差で割った値である。
The fiber reinforced
繊維強化プラスチック12を除いた内側環状部1の引張モジュラスは、連結部3に力を十分伝達しつつ、軽量化や耐久性の向上、装着性を図る観点から、1〜30MPaが好ましく、2〜10MPaがより好ましい。なお、本実施形態における引張モジュラスは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力の値である。
The tensile modulus of the inner annular portion 1 excluding the fiber reinforced
外側環状部2は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。
The outer
外側環状部2の厚みは、連結部3からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの1〜20%が好ましく、2〜10%がより好ましい。
The thickness of the outer
外側環状部2の内径は、その用途等に応じて適宜決定される。ただし、一般の空気入りタイヤの代替を想定した場合、420〜750mmが好ましく、480〜680mmがより好ましい。
The inner diameter of the outer
外側環状部2のタイヤ幅方向の幅は、用途、車軸の長さ等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。
The width of the outer
外側環状部2は、弾性材料からなる基材部21と、基材部21の中に埋設された環状の繊維強化プラスチック22とを備えている。繊維強化プラスチック22は、補強層として機能する。繊維強化プラスチック22のタイヤ幅方向の幅は、外側環状部2のタイヤ幅方向の幅と同じである。
The outer
外側環状部2の繊維強化プラスチック22は、曲げ弾性が1GPa以上である。また、繊維強化プラスチック22は、曲げ弾性が7GPa以下であることが好ましい。繊維強化プラスチック22の曲げ弾性率が1GPaより小さいと、外側環状部2の耐クリープ性が不十分となる。
The fiber reinforced
繊維強化プラスチック22を除いた外側環状部2の引張モジュラスは、連結部3に力を十分伝達しつつ、軽量化や耐久性の向上、装着性を図る観点から、1〜30MPaが好ましく、2〜10MPaがより好ましい。
The tensile modulus of the outer
連結部3は、内側環状部1と外側環状部2とを連結するものであり、両者の間に適当な間隔を置いて、タイヤ周方向CDに各々が独立するように複数設けられる。連結部3は、ユニフォミティを向上させる観点から、タイヤ周方向CDに規則的に設けることが好ましい。
The connecting
タイヤ全体の連結部3の数としては、車両からの荷重を十分支持しつつ、軽量化、動力伝達の向上、耐久性の向上を図る観点から、10〜80個が好ましく、40〜60個がより好ましい。図1には、連結部3を40個設けた例を示す。
The number of connecting
個々の連結部3の形状としては、板状体、柱状体などが挙げられるが、本実施形態では板状体の例を示す。これらの連結部3は、正面視において、タイヤ径方向又はタイヤ径方向から傾斜した方向に延びている。本発明では、正面視において、連結部3の延設方向が、タイヤ径方向±30°以内が好ましく、タイヤ径方向±15°以内がより好ましい。図1では、連結部3が、タイヤ径方向に延設されている例を示す。
Examples of the shape of each connecting
連結部3のタイヤ周方向CDの厚みは、内側環状部1及び外側環状部2からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、タイヤ断面高さHの1〜30%が好ましく、1〜20%がより好ましい。
The thickness of the connecting
連結部3のタイヤ幅方向の幅は、用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。
The width of the connecting
連結部3は、弾性材料からなる基材部31と、基材部31の中に埋設された繊維強化プラスチック32とを備えている。繊維強化プラスチック32は、補強層として機能する。繊維強化プラスチック32のタイヤ幅方向の幅は、連結部3のタイヤ幅方向の幅と同じである。
The connecting
本実施形態では、複数の連結部3のうち4個の連結部3にのみ繊維強化プラスチック32が埋設されているが、これに限定されない。3個以上の連結部3に繊維強化プラスチック32を埋設することが好ましく、すべての連結部3に繊維強化プラスチック32を埋設してもよい。また、複数の繊維強化プラスチック32は、バランスを考慮すると、タイヤ周方向CDに等間隔に設けられるのが好ましい。
In the present embodiment, the fiber reinforced
連結部3の繊維強化プラスチック32は、引張弾性率が50GPa以上である。また、繊維強化プラスチック32は、引張弾性率が300GPa以下であることが好ましい。繊維強化プラスチック32の引張弾性率が50GPaより小さいと、連結部3の耐クリープ性が不十分となる。なお、本発明における引張弾性率は、JIS K7312に準じて引張試験を行い5%〜10%ひずみ時の応力差をひずみ差で割った値である。
The fiber reinforced
繊維強化プラスチック32を除いた連結部3の引張モジュラスは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、1〜30MPaが好ましく、2〜10MPaがより好ましい。
The tensile modulus of the connecting
非空気圧タイヤTは、繊維強化プラスチック11,21,31を除いて全体としては弾性材料で一体成形される。本発明における弾性材料とは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した引張モジュラスが、100MPa以下のものを指す。本発明の弾性材料としては、十分な耐久性を得ながら、適度な剛性を付与する観点から、好ましくは引張弾性率が10〜100MPaであり、より好ましくは20〜80MPaである。母材として用いられる弾性材料としては、熱可塑性エラストマー、架橋ゴム、その他の樹脂が挙げられる。
The non-pneumatic tire T is integrally formed of an elastic material as a whole except for the fiber reinforced
熱可塑性エラストマーとしては、ポリエステルエラストマー、ポリオレフィンエラストマー、ポリアミドエラストマー、ポリスチレンエラストマー、ポリ塩化ビニルエラストマー、ポリウレタンエラストマー等が例示される。架橋ゴム材料を構成するゴム材料としては、天然ゴムの他、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IIR)、ニトリルゴム(NBR)、水素添加ニトリルゴム(水添NBR)、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPDM)、フッ素ゴム、シリコンゴム、アクリルゴム、ウレタンゴム等の合成ゴムが例示される。これらのゴム材料は必要に応じて2種以上を併用してもよい。 Examples of the thermoplastic elastomer include polyester elastomer, polyolefin elastomer, polyamide elastomer, polystyrene elastomer, polyvinyl chloride elastomer, polyurethane elastomer and the like. Rubber materials constituting the crosslinked rubber material include natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IIR), nitrile rubber (NBR), hydrogenated nitrile rubber (hydrogenated NBR). And synthetic rubbers such as chloroprene rubber (CR), ethylene propylene rubber (EPDM), fluorine rubber, silicon rubber, acrylic rubber, and urethane rubber. These rubber materials may be used in combination of two or more as required.
その他の樹脂としては、熱可塑性樹脂又は熱硬化性樹脂が挙げられる。熱可塑性樹脂としては、ポリエチレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂などが挙げられ、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、シリコン樹脂、ポリイミド樹脂、メラミン樹脂などが挙げられる。 Examples of other resins include thermoplastic resins and thermosetting resins. Examples of the thermoplastic resin include polyethylene resin, polystyrene resin, and polyvinyl chloride resin, and examples of the thermosetting resin include epoxy resin, phenol resin, polyurethane resin, silicon resin, polyimide resin, and melamine resin.
上記の弾性材料のうち、成形・加工性やコストの観点から、好ましくは、ポリウレタン樹脂が用いられる。なお、弾性材料としては、発泡材料を使用してもよく、上記の熱可塑性エラストマー、架橋ゴム、その他の樹脂を発泡させたものも使用可能である。 Of the above elastic materials, a polyurethane resin is preferably used from the viewpoint of moldability / workability and cost. In addition, as an elastic material, you may use a foaming material, The thing which foamed said thermoplastic elastomer, crosslinked rubber, and other resin can also be used.
繊維強化プラスチック12,22,32としては、炭素繊維強化プラスチック、ガラス繊維強化プラスチックなどが例示される。なお、炭素繊維強化プラスチックからなる補強層は、炭素繊維(カーボンファイバー)のクロス(織物)に熱硬化性樹脂を含浸させたシート状の中間部材を使用することで、容易に形成できる。
Examples of the fiber reinforced
次に、本発明に係る非空気圧タイヤTを製造する方法について説明する。非空気圧タイヤTの製造方法は、内側環状部1、外側環状部2、及び連結部3をそれぞれ成型するための内側環状キャビティC1、外側環状キャビティC2、及び連結キャビティC3を有する金型9を用いて、内側環状キャビティC1及び外側環状キャビティC2に曲げ弾性率が1GPa以上である繊維強化プラスチック12,22をそれぞれ環状に配置する工程と、連結キャビティC3に引張弾性率が50GPa以上である繊維強化プラスチック32を配置する工程と、内側環状キャビティC1、外側環状キャビティC2、及び連結キャビティC3に弾性材料の原料液を充填する工程と、弾性材料の原料液を固化させる工程とを含む。
Next, a method for manufacturing the non-pneumatic tire T according to the present invention will be described. The method for manufacturing the non-pneumatic tire T uses a
図2は、非空気圧タイヤTの製造に用いられる金型9の平面図である。内側環状キャビティC1、外側環状キャビティC2、及び連結キャビティC3は、円筒状の内周側型部材91と、円筒状の外周側型部材92と、円盤状の底面型部材93と、断面扇形状の中子型部材94と、円盤状の上面型部材(図示していない)によって形成される。図2では、内側環状キャビティC1に繊維強化プラスチック12が配置され、外側環状キャビティC2に繊維強化プラスチック22が配置され、連結キャビティC3に繊維強化プラスチック32が配置されている。
FIG. 2 is a plan view of a
上記の工程により、内側環状部1と、その内側環状部1の外側に同心円状に設けられる外側環状部2と、内側環状部1と外側環状部2とを連結する連結部3とを備える非空気圧タイヤTであって、内側環状部1、外側環状部2、及び連結部3は、弾性材料からなる基材部11,21,31と、基材部11,21,31の中に埋設された繊維強化プラスチック12,22,32とを備え、内側環状部1及び外側環状部2の繊維強化プラスチック12,22の曲げ弾性率が1GPa以上であり、かつ連結部3の繊維強化プラスチック32の引張弾性率が50GPa以上である非空気圧タイヤTを製造できる。一体成形された非空気圧タイヤTは、タイヤ幅方向に金型9から脱型される。
By the above-described steps, the inner annular portion 1, the outer
また、非空気圧タイヤTの製造方法は、弾性材料の原料液を充填する工程より前に、内側環状キャビティC1及び外側環状キャビティC2に配置する繊維強化プラスチック12,22と、連結キャビティC3に配置する繊維強化プラスチック32とを結合して一体とする工程を含むことが好ましい。具体的には、環状の繊維強化プラスチック12と環状の繊維強化プラスチック22を平板状の繊維強化プラスチック32によって連結して一体化し、一体化した繊維強化プラスチック12,22,32を図2のように金型9に配置することが好ましい。
Further, in the method of manufacturing the non-pneumatic tire T, the fiber reinforced
[他の実施形態]
(1)内側環状部1の繊維強化プラスチック12と外側環状部2の繊維強化プラスチック22は、タイヤ周方向CDに延びる繊維及びタイヤ幅方向に延びる繊維を含むことが好ましい。また、連結部3の繊維強化プラスチック32は、連結部3の延設方向(図1の例ではタイヤ径方向)に延びる繊維及びタイヤ幅方向に延びる繊維を含むことが好ましい。
[Other Embodiments]
(1) The fiber reinforced
(2)非空気圧タイヤTは、内側環状部1の外側かつ外側環状部2の内側に同心円状に設けられる中間環状部をさらに備えるようにしてもよい。また、中間環状部が、弾性材料からなる基材部と、基材部の中に埋設された繊維強化プラスチックとを備えるようにしてもよい。
(2) The non-pneumatic tire T may further include an intermediate annular portion provided concentrically outside the inner annular portion 1 and inside the outer
以下、本発明の構成と効果を具体的に示す実施例等について説明する。耐クリープ性の指標として、永久変形率を用いた。作製した模擬タイヤに一定荷重(500N)を22時間かけたときの圧縮量と、除荷後、1時間後の残留歪み量とを測定し、残留歪み量/圧縮量を永久変形率(%)として算出した。永久変形率が小さいほど、耐クリープ性が優れていることを示す。 Examples and the like specifically showing the configuration and effects of the present invention will be described below. Permanent deformation rate was used as an index of creep resistance. The amount of compression when a constant load (500 N) was applied to the produced simulated tire for 22 hours and the amount of residual strain after 1 hour after unloading were measured, and the amount of residual strain / compression was determined as the permanent deformation rate (%). Calculated as The smaller the permanent deformation rate, the better the creep resistance.
比較例及び実施例
内側環状部及び外側環状部の繊維強化プラスチックと連結部の繊維強化プラスチックとの組み合わせを表1のように異ならせて、それぞれ比較例1〜3及び実施例1〜9とした。評価結果を表1に示す。
Comparative Examples and Examples Comparative Examples 1 to 3 and Examples 1 to 9 were made by changing the combinations of the fiber reinforced plastic of the inner annular part and the outer annular part and the fiber reinforced plastic of the connecting part as shown in Table 1. . The evaluation results are shown in Table 1.
表1の「環状部の繊維強化プラスチック」は、内側環状部及び外側環状部の繊維強化プラスチックの種類であり、「連結部の繊維強化プラスチック」は、連結部の繊維強化プラスチックの種類である。「ガラス1」は、ガラス繊維強化プラスチックを意味し、使用したガラス繊維強化プラスチックは、ガラス繊維を7層積層したものであり、引張弾性率が175GPa、曲げ弾性率が3GPaである。また、「ガラス2」は、「ガラス1」とは別のガラス繊維強化プラスチックを意味し、使用したガラス繊維強化プラスチックは、ガラス繊維を2層積層したものであり、引張弾性率が70GPa、曲げ弾性率が1.5GPaである。「カーボン1」は、炭素繊維強化プラスチックを意味し、使用した炭素繊維強化プラスチックは、カーボン繊維を7層積層したものであり、引張弾性率が230GPa、曲げ弾性率が5GPaである。
The “fiber reinforced plastic of the annular portion” in Table 1 is a type of fiber reinforced plastic of the inner annular portion and the outer annular portion, and “fiber reinforced plastic of the connection portion” is a type of fiber reinforced plastic of the connection portion. “Glass 1” means a glass fiber reinforced plastic, and the glass fiber reinforced plastic used is a laminate of seven layers of glass fibers, and has a tensile elastic modulus of 175 GPa and a bending elastic modulus of 3 GPa. “
また、表1の「繊維強化プラスチックの結合」は、内側環状部、外側環状部、及び連結部の繊維強化プラスチックが互いに結合されているか否かを表している。結合されていれば、「有」とし、結合されていなければ、「無」とする。 Further, “bonding of fiber reinforced plastic” in Table 1 represents whether or not the fiber reinforced plastics of the inner annular portion, the outer annular portion, and the connecting portion are bonded to each other. If it is combined, “Yes” is set. If not combined, “No” is set.
表1の結果から以下のことが分かる。実施例1〜9の非空気圧タイヤは、繊維強化プラスチックが埋設されていない比較例1に比べ、耐クリープ性が向上した。なお、内側環状部及び外側環状部のみに繊維強化プラスチックを埋設した比較例2及び比較例3の非空気圧タイヤは、比較例1と略同等の耐クリープ性となった。これにより、内側環状部、外側環状部、及び連結部のすべてに繊維強化プラスチックを埋設することで耐クリープ性が向上することが分かる。 From the results in Table 1, the following can be understood. The non-pneumatic tires of Examples 1 to 9 had improved creep resistance as compared with Comparative Example 1 in which no fiber reinforced plastic was embedded. In addition, the non-pneumatic tires of Comparative Example 2 and Comparative Example 3 in which the fiber reinforced plastics were embedded only in the inner annular portion and the outer annular portion had substantially the same creep resistance as Comparative Example 1. Thereby, it turns out that creep resistance improves by embedding fiber reinforced plastic in all of an inner side annular part, an outer side annular part, and a connection part.
1 内側環状部
2 外側環状部
3 連結部
11 基材部
12 繊維強化プラスチック
21 基材部
22 繊維強化プラスチック
31 基材部
32 繊維強化プラスチック
T 非空気圧タイヤ
DESCRIPTION OF SYMBOLS 1
Claims (6)
前記内側環状部、前記外側環状部、及び前記連結部は、弾性材料からなる基材部と、前記基材部の中に埋設された繊維強化プラスチックとを備え、
前記内側環状部及び前記外側環状部の前記繊維強化プラスチックの曲げ弾性率が1GPa以上であり、かつ前記連結部の前記繊維強化プラスチックの引張弾性率が50GPa以上であることを特徴とする非空気圧タイヤ。 A non-pneumatic tire comprising an inner annular portion, an outer annular portion provided concentrically outside the inner annular portion, and a connecting portion that connects the inner annular portion and the outer annular portion,
The inner annular portion, the outer annular portion, and the connecting portion include a base material portion made of an elastic material, and a fiber reinforced plastic embedded in the base material portion,
The non-pneumatic tire characterized in that the bending elastic modulus of the fiber reinforced plastic of the inner annular portion and the outer annular portion is 1 GPa or more, and the tensile elastic modulus of the fiber reinforced plastic of the connecting portion is 50 GPa or more. .
前記内側環状部、前記外側環状部、及び前記連結部をそれぞれ成型するための内側環状キャビティ、外側環状キャビティ、及び連結キャビティを有する金型を用いて、
前記内側環状キャビティ及び前記外側環状キャビティに曲げ弾性率が1GPa以上である前記繊維強化プラスチックをそれぞれ環状に配置する工程と、
前記連結キャビティに引張弾性率が50GPa以上である前記繊維強化プラスチックを配置する工程と、
前記内側環状キャビティ、前記外側環状キャビティ、及び前記連結キャビティに弾性材料の原料液を充填する工程と、
前記弾性材料の原料液を固化させる工程とを含むことを特徴とする非空気圧タイヤの製造方法。 An inner annular portion, an outer annular portion concentrically provided on the outer side of the inner annular portion, and a connecting portion connecting the inner annular portion and the outer annular portion, the inner annular portion and the outer annular portion. And the connecting part is a method of manufacturing a non-pneumatic tire comprising a base part made of an elastic material and a fiber reinforced plastic embedded in the base part,
Using a mold having an inner annular cavity, an outer annular cavity, and a connecting cavity for molding the inner annular part, the outer annular part, and the connecting part,
Arranging the fiber reinforced plastics having a bending elastic modulus of 1 GPa or more in the inner annular cavity and the outer annular cavity, respectively,
Placing the fiber reinforced plastic having a tensile modulus of 50 GPa or more in the connection cavity;
Filling the inner annular cavity, the outer annular cavity, and the connecting cavity with a raw material liquid of an elastic material;
And a step of solidifying the raw material liquid of the elastic material.
Prior to the step of filling the raw material liquid of the elastic material, the fiber reinforced plastic disposed in the inner annular cavity and the outer annular cavity and the fiber reinforced plastic disposed in the connection cavity are combined and integrated. The method for producing a non-pneumatic tire according to claim 5, further comprising a step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016253105A JP6772055B2 (en) | 2016-12-27 | 2016-12-27 | Non-pneumatic tires and their manufacturing methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016253105A JP6772055B2 (en) | 2016-12-27 | 2016-12-27 | Non-pneumatic tires and their manufacturing methods |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018103851A true JP2018103851A (en) | 2018-07-05 |
JP6772055B2 JP6772055B2 (en) | 2020-10-21 |
Family
ID=62786387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016253105A Active JP6772055B2 (en) | 2016-12-27 | 2016-12-27 | Non-pneumatic tires and their manufacturing methods |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6772055B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7561026B2 (en) | 2020-12-28 | 2024-10-03 | Toyo Tire株式会社 | NON-PNEUMATIC TIRE AND METHOD FOR MANUFACTURING NON-PNEUMATIC TIRE |
EP4263237A4 (en) * | 2020-12-18 | 2024-11-06 | Bridgestone Americas Tire Operations Llc | Non-pneumatic tire with fiber metal laminate construction |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02182501A (en) * | 1988-07-27 | 1990-07-17 | Sumitomo Rubber Ind Ltd | Non-pneumatic tire |
WO1998007586A1 (en) * | 1996-08-22 | 1998-02-26 | Fukunaga Engineering Co., Ltd. | Tire core for solid tire |
JP2010126070A (en) * | 2008-11-28 | 2010-06-10 | Toyo Tire & Rubber Co Ltd | Non-pneumatic tire |
US20110011506A1 (en) * | 2009-07-20 | 2011-01-20 | Ali Manesh | Tension-based non-pneumatic tire |
JP2011219009A (en) * | 2010-04-12 | 2011-11-04 | Toyo Tire & Rubber Co Ltd | Non-pneumatic tire, and method of manufacturing the same |
JP2013071652A (en) * | 2011-09-28 | 2013-04-22 | Toyo Tire & Rubber Co Ltd | Non-pneumatic tire |
US20140367007A1 (en) * | 2013-06-15 | 2014-12-18 | Ronald H. Thompson | Annular ring and non-pneumatic tire |
US20150034225A1 (en) * | 2013-07-30 | 2015-02-05 | Caterpillar Inc. | Reinforced non-pneumatic tire and system for molding reinforced non-pneumatic tire |
JP2015039987A (en) * | 2013-08-22 | 2015-03-02 | 東洋ゴム工業株式会社 | Non-pneumatic tire |
JP2016088375A (en) * | 2014-11-07 | 2016-05-23 | 株式会社ブリヂストン | Pneumatic tire |
JP2016113104A (en) * | 2014-12-17 | 2016-06-23 | 東洋ゴム工業株式会社 | Non-pneumatic tire |
JP2016199069A (en) * | 2015-04-07 | 2016-12-01 | 東洋ゴム工業株式会社 | Non-pneumatic tire |
-
2016
- 2016-12-27 JP JP2016253105A patent/JP6772055B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02182501A (en) * | 1988-07-27 | 1990-07-17 | Sumitomo Rubber Ind Ltd | Non-pneumatic tire |
WO1998007586A1 (en) * | 1996-08-22 | 1998-02-26 | Fukunaga Engineering Co., Ltd. | Tire core for solid tire |
JP2010126070A (en) * | 2008-11-28 | 2010-06-10 | Toyo Tire & Rubber Co Ltd | Non-pneumatic tire |
US20110011506A1 (en) * | 2009-07-20 | 2011-01-20 | Ali Manesh | Tension-based non-pneumatic tire |
JP2011219009A (en) * | 2010-04-12 | 2011-11-04 | Toyo Tire & Rubber Co Ltd | Non-pneumatic tire, and method of manufacturing the same |
JP2013071652A (en) * | 2011-09-28 | 2013-04-22 | Toyo Tire & Rubber Co Ltd | Non-pneumatic tire |
US20140367007A1 (en) * | 2013-06-15 | 2014-12-18 | Ronald H. Thompson | Annular ring and non-pneumatic tire |
US20150034225A1 (en) * | 2013-07-30 | 2015-02-05 | Caterpillar Inc. | Reinforced non-pneumatic tire and system for molding reinforced non-pneumatic tire |
JP2015039987A (en) * | 2013-08-22 | 2015-03-02 | 東洋ゴム工業株式会社 | Non-pneumatic tire |
JP2016088375A (en) * | 2014-11-07 | 2016-05-23 | 株式会社ブリヂストン | Pneumatic tire |
JP2016113104A (en) * | 2014-12-17 | 2016-06-23 | 東洋ゴム工業株式会社 | Non-pneumatic tire |
JP2016199069A (en) * | 2015-04-07 | 2016-12-01 | 東洋ゴム工業株式会社 | Non-pneumatic tire |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4263237A4 (en) * | 2020-12-18 | 2024-11-06 | Bridgestone Americas Tire Operations Llc | Non-pneumatic tire with fiber metal laminate construction |
JP7561026B2 (en) | 2020-12-28 | 2024-10-03 | Toyo Tire株式会社 | NON-PNEUMATIC TIRE AND METHOD FOR MANUFACTURING NON-PNEUMATIC TIRE |
Also Published As
Publication number | Publication date |
---|---|
JP6772055B2 (en) | 2020-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4530231B2 (en) | Non-pneumatic tire | |
JP6092046B2 (en) | Non-pneumatic tire | |
JP5530258B2 (en) | Non-pneumatic tire and manufacturing method thereof | |
JP6378625B2 (en) | Non-pneumatic tire | |
JP5808048B2 (en) | Non-pneumatic tire | |
JP4818220B2 (en) | Non-pneumatic tire and manufacturing method thereof | |
JP6099519B2 (en) | Non-pneumatic tire | |
JP6013899B2 (en) | Non-pneumatic tire | |
JP5461303B2 (en) | Non-pneumatic tire | |
JP5972149B2 (en) | Non-pneumatic tire | |
JP2013079037A (en) | Non-pneumatic tire | |
JP5921364B2 (en) | Non-pneumatic tire | |
JP2018058541A (en) | Non-pneumatic tire and manufacturing method of the same | |
JP2011183894A (en) | Non-pneumatic tire | |
JP6180313B2 (en) | Non-pneumatic tire | |
JP2014008952A (en) | Non-pneumatic tire | |
JP6377515B2 (en) | Non-pneumatic tire | |
JP2014100932A (en) | Non-pneumatic tire | |
JP6535498B2 (en) | Non pneumatic tire | |
JP6772055B2 (en) | Non-pneumatic tires and their manufacturing methods | |
JP6182452B2 (en) | Non-pneumatic tire | |
JP6092045B2 (en) | Non-pneumatic tire | |
JP6351109B2 (en) | Non-pneumatic tire | |
JP6143660B2 (en) | Non-pneumatic tire | |
JP6045401B2 (en) | Non-pneumatic tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191028 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200916 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200930 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6772055 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |