JP2018190079A - Control device - Google Patents
Control device Download PDFInfo
- Publication number
- JP2018190079A JP2018190079A JP2017090360A JP2017090360A JP2018190079A JP 2018190079 A JP2018190079 A JP 2018190079A JP 2017090360 A JP2017090360 A JP 2017090360A JP 2017090360 A JP2017090360 A JP 2017090360A JP 2018190079 A JP2018190079 A JP 2018190079A
- Authority
- JP
- Japan
- Prior art keywords
- power failure
- voltage
- control device
- power supply
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Numerical Control (AREA)
- Stopping Of Electric Motors (AREA)
Abstract
Description
本件明細書では、電源からの電力により駆動する産業機械の制御装置であって、停電の発生を検出した際に、産業機械に退避動作を実行させる制御装置を開示する。 The present specification discloses a control device for an industrial machine that is driven by electric power from a power source, and causes the industrial machine to execute a retreat operation when the occurrence of a power failure is detected.
一般に、工作機械や生産ロボット等の産業機械では、交流電源(例えば商用電源)から供給された交流電力をコンバータにて直流電力に一旦変換した後、さらに、インバータで交流電力に変換し、この交流電力により、各駆動軸ごとに設けられた駆動モータを駆動している。かかる産業機械において、交流電源の停電を検出した場合、各駆動モータの保護動作(退避動作)を行う技術が知られている。 Generally, in industrial machines such as machine tools and production robots, AC power supplied from an AC power source (for example, commercial power source) is once converted into DC power by a converter, and then converted to AC power by an inverter. A drive motor provided for each drive shaft is driven by electric power. In such an industrial machine, a technique is known that performs a protection operation (retraction operation) of each drive motor when a power failure of an AC power supply is detected.
例えば、特許文献1では、電源電圧の値が、停電検出レベル未満となる状態が所定の継続時間以上継続した場合に停電と判断して、保護動作(退避動作)を実行する制御装置が開示されている。この制御装置では、停電検出レベルおよび継続時間を変更するための関数を、停電が発生する度に、更新する学習部を有している。かかる特許文献1の技術によれば、停電発生の度に、停電検出レベルおよび継続時間を変更するための関数が更新され、学習されるため、ある程度、正確に停電の発生を検出できる。
For example,
しかしながら、特許文献1では、停電の検出基準となる停電検出レベルおよび継続時間は、一度設定されると、停電を検出しない限り、再設定できず、一定値を取り続けることになる。しかし、実際の電源電圧は、日時や、曜日、季節等により、長周期で変動する。そのため、特許文献1の技術では、停電の誤検出が生じるおそれがあった。
However, in
例えば、通常、電源電圧は、朝は高く、昼間は、低くなる傾向がある。ここで、朝に、停電が発生したとする。特許文献1の制御装置において、この朝の停電のタイミングで学習を行うと、電源電圧が高めであっても停電を検出できるように関数が更新され、停電検出レベルが高め設定される。かかる停電検出レベルを、電源電圧が低い昼間にも適用すると、電源電圧のわずかな変動(低減)を停電と誤検出するおそれがある。この場合、工作機械は、退避動作を実行したうえで、その稼働を停止する。その結果、実際には停電していないにもかかわらず、工作機械を停止することになり、生産性の低下を招く。
For example, the power supply voltage usually tends to be high in the morning and low in the daytime. Here, assume that a power outage occurred in the morning. In the control device of
一方、昼間に、停電が発生した場合を考える。この場合、特許文献1の制御装置は、昼間の停電のタイミングで学習を行い、電源電圧が低めの場合に停電を検出できるように関数を更新するため、停電検出レベルが低め設定される。かかる停電検出レベルを、電源電圧が高い朝にも適用すると、停電に起因して電源電圧が低下しても、停電として検出できない検出スルーが生じるおそれがある。検出スルーが生じると、十分な退避動作ができないため、工具やワークが衝突し、破損する恐れがあった。
On the other hand, consider a case where a power outage occurs in the daytime. In this case, the control device of
さらに、特許文献1の技術では、停電が発生しない限り、停電検出レベルおよび継続時間が更新されないため、全体的に、停電の検出精度が低いといえる。
Furthermore, in the technique of
そこで、本明細書では、停電をより正確に検出できる制御装置を開示する。 Therefore, the present specification discloses a control device that can detect a power failure more accurately.
本明細書で開示する制御装置は、電源からの電力で駆動する産業機械を制御する制御装置であって、停電の発生を検出した際に、前記産業機械に退避動作を実行させる制御装置であって、少なくとも時間に関連するパラメータを変数として持つ電源電圧予測関数に基づいて、前記電源の予測電圧を予測する電源電圧予測部と、少なくとも、前記予測電圧、前記時間に関連するパラメータ、前回以前の停電発生状況を示すパラメータと、を変数として持つ閾値電圧決定関数に基づいて、前記停電発生の判断基準となる閾値電圧を決定する閾値電圧決定部と、前記電源の実測電圧が、前記閾値電圧決定部で決定された前記閾値電圧以下、または未満の場合に、前記停電が発生したと判断する停電検出部と、前記停電検出部で前記停電が発生したと判断された場合に、前記産業機械に退避動作を指示する退避動作指令部と、を備える、ことを特徴とする。 The control device disclosed in this specification is a control device that controls an industrial machine that is driven by electric power from a power source, and causes the industrial machine to execute a retreat operation when a power outage is detected. A power supply voltage prediction unit that predicts a predicted voltage of the power supply based on a power supply voltage prediction function having at least a parameter related to time as a variable, and at least the predicted voltage, a parameter related to time, Based on a threshold voltage determination function having a parameter indicating a power outage occurrence status as a variable, a threshold voltage determination unit that determines a threshold voltage that is a determination criterion for the occurrence of the power outage, and an actual voltage of the power supply is the threshold voltage determination The power failure detection unit that determines that the power failure has occurred when the threshold voltage is less than or less than the threshold voltage determined by the unit, and the power failure has occurred in the power failure detection unit If it is the cross-sectional, and an evacuation operation command section for instructing the operation of the saving the industrial machine, characterized in that.
前記電源電圧予測部は、前記停電検出部で前記停電が発生したと判断されたタイミング、または、規定の予測期間が経過したタイミングで、前記電源電圧予測関数を学習により更新してもよい。この場合、前記電源電圧予測部による前記学習では、少なくとも、前記予測電圧と前記実測電圧との差分値である予測誤差に基づいて報酬を決定するとともに、前記報酬が多くなるように前記電圧予測関数を更新してもよい。 The power supply voltage prediction unit may update the power supply voltage prediction function by learning at a timing when the power failure detection unit determines that the power failure has occurred or when a predetermined prediction period has elapsed. In this case, in the learning by the power supply voltage prediction unit, a reward is determined based on at least a prediction error that is a difference value between the predicted voltage and the measured voltage, and the voltage prediction function is set so that the reward increases. May be updated.
また、前記閾値電圧決定部は、前記停電検出部で前記停電が発生したと判断されたタイミングで、前記閾値電圧決定関数を学習により更新してもよい。この場合、前記電源電圧予測部による前記学習では、少なくとも、前記産業機械に指示した退避量指令量と前記産業機械が実際に移動した退避量実測値との差分値である退避誤差に基づいて報酬を決定するとともに、前記報酬が多くなるように前記閾値電圧決定関数を更新してもよい。 Further, the threshold voltage determination unit may update the threshold voltage determination function by learning at a timing when the power failure detection unit determines that the power failure has occurred. In this case, in the learning by the power supply voltage predicting unit, a reward is based on at least an evacuation error that is a difference value between the evacuation amount command amount instructed to the industrial machine and the evacuation amount actual value actually moved by the industrial machine. And the threshold voltage determination function may be updated so that the reward increases.
また、前記時間に関するパラメータは、時刻、日付、曜日、季節の少なくとも一つを含んでもよい。また、前記停電発生状況を示すパラメータは、少なくとも、停電発生直前における予測電圧と、実測電圧と、を含んでもよい。 The parameter relating to time may include at least one of time, date, day of the week, and season. The parameter indicating the power outage occurrence status may include at least a predicted voltage immediately before the occurrence of the power outage and an actually measured voltage.
本明細書に開示の制御装置によれば、電源電圧が、時間により長周期で変動する場合であっても、変動に追従して、閾値電圧を適切に設定することができる。結果として、退避動作の実行回数を最小限に抑えつつ、十分な退避量を確保することが可能となる。 According to the control device disclosed in the present specification, even when the power supply voltage fluctuates in a long cycle with time, the threshold voltage can be appropriately set following the fluctuation. As a result, it is possible to secure a sufficient amount of evacuation while minimizing the number of executions of the evacuation operation.
以下、産業機械の制御装置について説明する。図1は、制御装置200の機能構成を示すブロック図である。この制御装置200は、産業機械に設けられた1以上の可動部の移動を制御する。産業機械としては、工場や事業所等において外部電源から給電を受けて稼働する機械であればよく、例えば、工作機械や産業用ロボットなどでもよい。工作機械としては、金属、木材、石材、樹脂等に切断、穿孔、研削、研磨、圧延、鍛造、折り曲げ等の加工を施すための機械であればよく、例えば、旋盤やマシニングセンタ等でもよい。以下では、工作機械の制御装置を例に挙げて説明する。 Hereinafter, a control device for an industrial machine will be described. FIG. 1 is a block diagram illustrating a functional configuration of the control device 200. The control device 200 controls the movement of one or more movable parts provided in the industrial machine. The industrial machine may be any machine that operates by receiving power from an external power source in a factory or business office, and may be, for example, a machine tool or an industrial robot. The machine tool may be a machine for performing processing such as cutting, drilling, grinding, polishing, rolling, forging, and bending on metal, wood, stone, resin, and the like, and may be, for example, a lathe or a machining center. In the following, a control device for a machine tool will be described as an example.
工作機械(産業機械)は、1以上の可動部を有しており、各可動部は、1以上の駆動モータ204により駆動される。なお、図1では、一つの駆動モータ204のみを例示しているが、駆動モータ204は、複数でもよい。
A machine tool (industrial machine) has one or more movable parts, and each movable part is driven by one or
駆動モータ204は、交流電源201(例えば商用電源)からの電力で駆動される。具体的には、交流電源201で供給された交流電力は、コンバータ202により直流電力に一旦変換される。その後、直流電力は、さらに、インバータ203で交流電力に変換され、駆動モータ204に供給される。また、交流電源201の電圧は、図示しない電圧センサで検出され、実測電圧Vrとして、後述する制御装置200に入力される。インバータ203は、複数のスイッチング素子を有したインバータ回路と、当該インバータ回路を駆動するドライバと、を有している。ドライバには、駆動モータ204に関するパラメータを記憶するメモリが組み込まれている。
The
駆動モータ204は、可動部を動かすためのモータである。駆動モータ204の回転位置は、位置センサ214により、モータ検出位置Pとして検出される。検出されたモータ検出位置Pは、インバータ203のドライバに設けられたメモリに記憶される。
The
制御装置200は、工作機械の駆動を制御するものである。この制御装置200は、各種演算を行うCPUや、種々の制御パラメータや制御プログラム、関数等を記憶する記憶装置、データの入出力を可能にする通信インターフェース等を備えている。図1には、この制御装置200の機能構成を示す機能ブロック図を示している。なお、図1では、主に、停電の発生検知に関する機能のみを図示しているが、制御装置200は、駆動モータ204の位置制御機能等も有している。こうした駆動モータ204の位置制御機能は、公知の従来技術を用いて実現できるため、ここでの詳説は、省略する。
The control device 200 controls driving of the machine tool. The control device 200 includes a CPU that performs various calculations, a storage device that stores various control parameters, control programs, functions, and the like, a communication interface that enables data input and output, and the like. FIG. 1 is a functional block diagram showing a functional configuration of the control device 200. Although FIG. 1 mainly shows only functions related to detection of occurrence of power failure, the control device 200 also has a position control function of the
図1に示す通り、制御装置200は、交流電源201の停電を検出する停電検出部210と、停電が検出された際に退避動作の実行を指示する退避動作指令部211と、停電検出に必要なパラメータを学習により最適化していく機械学習装置と、を有している。
As shown in FIG. 1, the control device 200 is necessary for detecting a power failure, a power
停電検出部210は、工作機械の稼働中、交流電源201の実測電圧Vrと、機械学習装置から出力された閾値電圧Vthとの比較を、規定の制御周期Tcごとに行い、停電が発生するか否かを判断する。比較の結果、実測電圧Vrが、閾値電圧Vth以上の場合には、停電検出部210は、停電は発生しないと判断する。一方、実測電圧Vrが、閾値電圧Vth未満の場合、停電が発生すると判断し、退避動作指令部211および機械学習装置に、停電発生を示す信号、すなわち、停電検出信号を出力する。
Whether the power
退避動作指令部211は、停電検出信号を受信した場合、退避指令をインバータ203に出力する。退避指令を受けたインバータ203は、駆動モータ204が予め規定された退避量指令値L*だけ、退避移動するように、駆動モータ204を駆動する。このとき、インバータ203は、退避指令を受けた時点でのモータ検出位置P1と、退避移動後に駆動モータ204が停止した時点でのモータ検出位置P2とを記憶する。
When the save
機械学習装置は、停電発生の判断基準となる閾値電圧Vthを学習しながら決定するもので、交流電源電圧記録部205と、交流電源電圧予測部206と、閾値電圧決定部209と、予測指令部207と、時計208と、を有している。予測指令部207は、工作機械が起動されたタイミング、または、後述する電源電圧予測関数feが更新されたタイミングで、交流電源電圧予測部206に予測指令を出力する。
The machine learning device determines a threshold voltage Vth that is a criterion for occurrence of a power failure while learning, and includes an AC power supply voltage recording unit 205, an AC power supply
交流電源電圧予測部206は、交流電源電圧の予測値、すなわち、予測電圧Veを、電源電圧予測関数feに基づいて、予測する。交流電源電圧予測部206は、予測指令を受け取ると、現在から規定の予測期間Te(Te<<Tc)だけ経過した時刻Tまでの予測電圧Veの群を算出する。すなわち、制御周期Tcごとの予測電圧Veの時系列Ve(t)を算出する。
The AC power supply
電源電圧予測関数feは、少なくとも時間に関連するパラメータを変数として電源電圧を予測する関数である。時間に関するパラメータは、時刻t、日付d、曜日w、季節sの少なくとも一つを含む。このように電源電圧予測関数feが、時間に関するパラメータを変数として持つのは、電源電圧が、日時や、曜日、季節等により、長周期で変動するからである。例えば、電源電圧は、一般的には、深夜よりも朝、朝よりも昼間〜夜間のほうが低くなる傾向がある。また、電源電圧は、平日よりも休日のほうが高くなる傾向がある。また、電源電圧は、空調の需要が高い夏および冬よりも、春および秋のほうが高くなる傾向がある。電源電圧予測関数feは、こうした時間に関するパラメータを変数として持ち、当該変数(時間)に対する電源電圧の変化を模した関数となっている。電源電圧予測関数feに基づいて算出された予測電圧Veは、当該算出に用いた変数(時刻t、日付d、曜日w、季節s等)の値とともに、交流電源電圧記録部205および閾値電圧決定部209に出力される。
The power supply voltage prediction function fe is a function that predicts a power supply voltage using at least a parameter related to time as a variable. The parameter relating to time includes at least one of time t, date d, day of week w, season s. The reason why the power supply voltage prediction function fe has a parameter related to time as a variable is that the power supply voltage fluctuates in a long cycle depending on the date, day of the week, season, and the like. For example, the power supply voltage generally tends to be lower in the morning than in the middle of the night and in the daytime to nighttime than in the morning. Also, the power supply voltage tends to be higher on holidays than on weekdays. Also, the power supply voltage tends to be higher in spring and autumn than in summer and winter, when demand for air conditioning is high. The power supply voltage prediction function fe has a parameter related to time as a variable, and is a function simulating a change in power supply voltage with respect to the variable (time). The predicted voltage Ve calculated based on the power supply voltage prediction function fe is determined along with the values of variables (time t, date d, day w, season s, etc.) used in the calculation, as well as AC power supply voltage recording unit 205 and threshold voltage determination. Is output to the
また、交流電源電圧予測部206は、時刻Tに達したタイミング、または、停電発生が検知されたタイミングで、電源電圧予測関数feを学習して、更新する。電源電圧予測関数feの学習は、電源電圧の予測誤差Err_Vが小さくなるように行う。予測誤差Err_Vは、例えば、各制御周期Tc毎に得られる予測電圧Veと実測電圧Vrとの偏差ΔVから求まる値で、例えば、各制御周期Tc毎に得られる偏差ΔVの二乗平均値等である。
Further, the AC power supply
学習アルゴリズムとしては、特に限定されないが、例えば、強化学習アルゴリズムを用いる場合について説明する。強化学習は、ある環境内におけるエージェント(行動主体)が、現在の状態を観測し、取るべき行動を決定する、というものである。エージェントは行動を選択することで環境から報酬を得て、一連の行動を通じて報酬が最も多く得られるような方策を学習する。強化学習の代表的な手法として、Q学習(Q−learning)やTD学習(TD−learning)が知られている。例えば、Q学習の場合、行動価値関数Q(s,a)の一般的な更新式(行動価値テーブル)は式1で表される。
式1において、stは、時刻tにおける環境を表し、atは、時刻tにおける行動を表す。行動atにより、環境はst+1に変わる。rt+1は、その環境の変化によってもらえる報酬(reward)を表し、γは、割引率を表し、αは、学習係数を表す。電源電圧の予測に、Q学習を適用した場合、予測電圧Veが行動atとなり、電源電圧予測関数feが、環境stとなる。また、報酬rは、電源電圧の予測誤差Err_Vが小さいほど高くなる。
In
交流電源電圧記録部205は、電圧センサで検出された実測電圧Vrと、交流電源電圧予測部206から出力された予測電圧Veと、予測電圧Veの算出時に用いられた変数の値(例えば、時間に関するパラメータの値)と、を互いに関連づけて記憶する。なお、電圧センサの検出値に替えて、インターネットを通じて電力会社等から提供される電圧値を、実測電圧Vrとして記憶してもよい。
The AC power supply voltage recording unit 205 includes an actual measurement voltage Vr detected by the voltage sensor, a predicted voltage Ve output from the AC power supply
次に、閾値電圧決定部209について説明する。閾値電圧決定部209は、停電発生の判断基準となる閾値電圧Vthを、閾値電圧決定関数fvに基づいて、決定する。具体的には、閾値電圧決定部209は、交流電源電圧予測部206から予測電圧Veの時系列Ve(t)を受け取ると、現在から規定の予測期間Te(Te<<Tc)経過した時刻Tまでの閾値電圧Vthの群を算出する。すなわち、制御周期Tcごとの閾値電圧Vthの時系列Vth(t)を算出する。
Next, the threshold
閾値電圧決定関数fvは、少なくとも、交流電源電圧予測部206で算出された予測電圧Veと、時間に関連するパラメータと、前回以前の停電発生状況を示すパラメータと、を変数として持ち、閾値電圧Vthを予測する関数である。時間に関連するパラメータは、上述した通り、時刻t、日付d、曜日w、季節sの少なくとも一つを含む。停電発生状況を示すパラメータは、少なくとも、停電発生直前(例えば10秒前等)における予測電圧Veおよび実測電圧Vrと、を含む。閾値電圧決定関数fvが、予測電圧Veを変数として持つことで、時間に応じて長周期で変動する電源電圧(予測電圧Ve)に応じた閾値電圧Vthを決定することができる。例えば、予測電圧Veが高いタイミングでは、閾値電圧Vthも高めに算出し、予測電圧Veが低いタイミングでは、閾値電圧も低めに算出することができる。また、時間に関連するパラメータ、および、前回以前の停電発生状況を変数として持つことで、予測電圧Veの信頼度を加味した閾値電圧Vthを算出できる。例えば、電源電圧の変動が大きい時期は、電源電圧の予測精度が低下し、予測電圧Veの信頼性が低いと考えることができる。また、前回の停電発生直前における予測電圧Veと実測電圧Vrとの乖離が大きい場合にも、予測電圧Veの信頼性が低いと考えることができる。したがって、そのような場合には、停電の検知スルーを防止するために、閾値電圧Vthを高めに設定してもよい。閾値電圧決定関数fvに基づいて算出された閾値電圧Vthは、停電検出部210に出力される。
The threshold voltage determination function fv has at least the predicted voltage Ve calculated by the AC power supply
また、閾値電圧決定部209は、停電発生が検知されたタイミングで、閾値電圧決定関数fvを学習して、更新する。閾値電圧決定関数fvの学習は、退避誤差Err_Lが小さくなるように行う。退避誤差Err_Lは、規定の退避量指令値L*と、実際の退避量である退避量実測値Lrとの差分値である。そして、退避量実測値Lrは、インバータ203に記憶されている退避動作開始時のモータ検出位置P1と、退避動作終了時のモータ検出位置P2との差分値である。
Further, the threshold
学習アルゴリズムは、電源電圧予測関数feの学習と同様に、特に限定されないが、例えば、Q学習やTD学習等の強化学習を用いることができる。閾値電圧の決定に、Q学習を適用した場合、閾値電圧Vthが行動atとなり、閾値電圧決定関数fvが、環境stとなる。また、報酬rは、退避誤差Err_Lが小さいほど高くなる。なお、駆動モータ204が複数存在する場合、退避誤差Err_Lも複数得られることになる。この場合には、複数の退避誤差Err_Lの統計値(二乗平均値や最大値、積算値等)が、小さい程、報酬rが高くなるようにすればよい。
The learning algorithm is not particularly limited as in the learning of the power supply voltage prediction function fe. For example, reinforcement learning such as Q learning or TD learning can be used. The determination of the threshold voltage, the case of applying the Q-learning, the threshold voltage Vth action a t becomes, the threshold voltage decision function fv, the environmental s t. Also, the reward r increases as the evacuation error Err_L decreases. If there are a plurality of
次に、以上のような制御装置200による停電の発生の検出処理について説明する。図2は、停電発生の検出処理の流れを示すフローチャートである。なお、フローチャートには記載していないが、交流電源電圧記録部205は、常時、交流電源201の実測電圧Vrと、交流電源電圧予測部206から算出された予測電圧Veの時系列Ve(t)と、その算出に用いられたパラメータの値(時刻t、日付d、曜日w、季節s等)を、記録し続けている。
Next, the detection process of the occurrence of a power failure by the control device 200 as described above will be described. FIG. 2 is a flowchart showing the flow of detection processing for occurrence of a power failure. Although not described in the flowchart, the AC power supply voltage recording unit 205 always has a measured voltage Vr of the
工作機械が起動されれば、予測指令部207は、交流電源電圧予測部206に対して予測指令を出力する(S301)。予測指令を受けた交流電源電圧予測部206は、現時刻から予測期間Te経過後の時刻Tまでの、予測電圧の時系列Ve(t)を算出する(S302)。この算出のために、交流電源電圧予測部206は、時計208を参照して時間に関するパラメータを取得し、当該パラメータを電源電圧予測関数feに適用する。予測電圧の時系列Ve(t)が算出できれば、交流電源電圧予測部206は、算出された時系列Ve(t)を、算出に利用した変数の値とともに、交流電源電圧記録部205および閾値電圧決定部209に出力する。
When the machine tool is activated, the
閾値電圧決定部209は、現時刻から予測期間Te経過後の時刻Tまでの、閾値電圧の時系列Vth(t)を算出する(S303)。具体的には、閾値電圧決定部209は、交流電源電圧記録部205を参照して、前回以前の停電発生状況を示すパラメータとして、前回以前の停電直前の予測電圧Veと実測電圧Vrとを取得する。そして、閾値電圧決定部209は、この前回以前の停電発生状況を示すパラメータと、交流電源電圧予測部206から入力された予測電圧Veと、算出に利用した変数の値(時間に関するパラメータの値)と、を電圧決定関数fvに適用し、閾値電圧の時系列Vth(t)を算出する。算出された時系列Vth(t)は、停電検出部210に送られる。
The threshold
停電検出部210は、停電が発生するか否かを監視する(S304)。具体的には、停電検出部210は、現在の閾値電圧Vthと実測電圧Vrと、を比較し、実測電圧Vrが、閾値電圧Vth未満の場合は、停電が発生すると判断する。この場合、ステップS307に進む。一方、実測電圧Vrが、閾値電圧Vth以上の場合、停電検出部210は、停電は、発生しないと判断する。この場合、時刻Tに達するまで、停電の発生の監視を続ける(S306)。
The power
停電が発生すると判断された場合(S304でYes)、停電検出部210は、停電検出信号を、退避動作指令部211に出力する。退避動作指令部211は、停電検出信号を受け取ると、インバータ203に対して、退避量指令値L*だけ、退避移動する退避動作の実行を指令する。退避動作指令を受け取ったインバータ203は、退避量指令値L*だけ、退避移動するように、駆動モータ204を駆動する(S307)。また、インバータ203は、退避動作を開始した時点での駆動モータ204の検出位置P1と、退避動作を終了した時点での駆動モータ204の検出位置P2と、を取得し、記憶する。
When it is determined that a power failure occurs (Yes in S304), the power
退避動作が終了すれば、続いて、閾値電圧決定部209は、閾値電圧決定関数fvを学習により更新する(S308)。具体的には、閾値電圧決定部209は、インバータ203に記憶されている検出位置P1と検出位置P2とから、退避量実測値L=P1−P2を算出し、さらに、退避量実測値Lと退避量指令値L*との差分値である退避誤差Err_L=|L−L*|を算出する。そして、閾値電圧決定部209は、停電発生時の閾値電圧Vthを行動at、閾値電圧Vthの算出に用いた電圧決定関数fvを環境stとして、退避誤差Err_Lが小さくなるように(報酬が大きくなるように)、電圧決定関数fvを更新する。
When the saving operation is completed, the threshold
電圧決定関数fvが更新(すなわち停電が発生)されたタイミング、または、時刻Tになったタイミングで、交流電源電圧予測部206は、予測関数feを学習により更新する(S309)。具体的には、交流電源電圧予測部206は、交流電源電圧記録部205を参照し、過去の予測電圧Veと、実測電圧Vrとの差分である予測誤差Err_Vを取得する。交流電源電圧予測部206は、予測電圧Veを行動at、閾値電圧Vthの算出に用いた電源電圧予測関数feを環境stとして、予測誤差Err_Vが小さくなるように(報酬が大きくなるように)、電源電圧予測関数feを更新する。電源電圧予測関数feが更新されれば、ステップS301に戻り、同様の処理を繰り返す。
The AC power supply
以上の説明から明らかな通り、本明細書で開示する制御装置200では、長周期で変動する電源電圧を予測電圧Veとして予測し、予測電圧Veを参照して、閾値電圧Vthを算出している。この場合、閾値電圧Vthは、停電が発生しなくても、電源電圧に追従するように変動するため、停電の発生をより正確に検出することができる。また、本明細書で開示する制御装置200では、適宜、電源電圧予測関数feおよび電圧決定関数fvを学習により更新している。そのため、予測電圧Veおよび閾値電圧Vthをより適切に決定できる。特に、電源電圧予測関数feは、停電が発生しなくても、所定の予測期間Teがタイムアウトすれば更新する。そのため、停電が長期間、発生しない場合でも、予測電圧Veを正確に予測でき、ひいては、停電の発生をより正確に検出することができる。 As is clear from the above description, the control device 200 disclosed in this specification predicts a power supply voltage that fluctuates over a long period as the predicted voltage Ve, and calculates the threshold voltage Vth with reference to the predicted voltage Ve. . In this case, the threshold voltage Vth fluctuates so as to follow the power supply voltage even if a power failure does not occur, so that the occurrence of the power failure can be detected more accurately. Further, in the control device 200 disclosed in this specification, the power supply voltage prediction function fe and the voltage determination function fv are appropriately updated by learning. Therefore, the predicted voltage Ve and the threshold voltage Vth can be determined more appropriately. In particular, the power supply voltage prediction function fe is updated when a predetermined prediction period Te times out even if no power failure occurs. Therefore, even when a power failure does not occur for a long period of time, the predicted voltage Ve can be accurately predicted, and hence the occurrence of the power failure can be detected more accurately.
なお、これまで説明した構成は、一例であり、少なくとも、時間に関するパラメータを変数として持つ電源電圧予測関数feに基づいて、予測電圧Veを算出し、この予測電圧Veに応じて閾値電圧Vthを決定するのであれば、他の構成は、適宜、変更されてよい。例えば、上述の説明では、電源電圧予測関数feは、時間に関するパラメータに加えて、さらに、他のパラメータを変数として持っていてもよい。他のパラメータとしては、例えば、温度に関するパラメータ等が考えられる。また、閾値電圧決定関数fvも、予測電圧Veと、時間に関連するパラメータと、前回以前の停電発生状況を示すパラメータと、に加え、他のパラメータを変数として持っていてもよい。他のパラメータとしては、例えば、産業機械の特性に関連するパラメータ(例えば退避動作実行に必要な時間等)等が考えられる。また、これまでの説明では、予測期間Te分の予測電圧Veおよび閾値電圧Vthを、一括で算出しているが、これらは、随時、算出するのでもよい。 The configuration described so far is merely an example. At least the predicted voltage Ve is calculated based on the power supply voltage prediction function fe having a parameter relating to time as a variable, and the threshold voltage Vth is determined according to the predicted voltage Ve. If so, other configurations may be changed as appropriate. For example, in the above description, the power supply voltage prediction function fe may have another parameter as a variable in addition to the parameter related to time. As other parameters, for example, parameters related to temperature can be considered. The threshold voltage determination function fv may also have other parameters as variables in addition to the predicted voltage Ve, a parameter related to time, and a parameter indicating the power outage occurrence status before the previous time. As other parameters, for example, parameters related to the characteristics of the industrial machine (for example, the time required for executing the save operation) can be considered. In the description so far, the predicted voltage Ve and the threshold voltage Vth for the predicted period Te are calculated in a lump, but these may be calculated at any time.
200 制御装置、201 交流電源、202 コンバータ、203 インバータ、204 駆動モータ、205 交流電源電圧記録部、206 交流電源電圧予測部、207 予測指令部、208 時計、209 閾値電圧決定部、210 停電検出部、211 退避動作指令部、214 位置センサ。
200 Control Device, 201 AC Power Supply, 202 Converter, 203 Inverter, 204 Drive Motor, 205 AC Power Supply Voltage Recording Unit, 206 AC Power Supply Voltage Prediction Unit, 207 Prediction Command Unit, 208 Clock, 209 Threshold Voltage Determination Unit, 210 Power
Claims (7)
少なくとも時間に関連するパラメータを変数として持つ電源電圧予測関数に基づいて、前記電源の予測電圧を予測する電源電圧予測部と、
少なくとも、前記予測電圧、前記時間に関連するパラメータ、前回以前の停電発生状況を示すパラメータと、を変数として持つ閾値電圧決定関数に基づいて、前記停電発生の判断基準となる閾値電圧を決定する閾値電圧決定部と、
前記電源の実測電圧が、前記閾値電圧決定部で決定された前記閾値電圧以下、または未満の場合に、前記停電が発生したと判断する停電検出部と、
前記停電検出部で前記停電が発生したと判断された場合に、前記産業機械に退避動作を指示する退避動作指令部と、
を備える、ことを特徴とする制御装置。 A control device that controls an industrial machine that is driven by power from a power source, and when the occurrence of a power failure is detected, the control device that causes the industrial machine to perform a retreat operation,
A power supply voltage prediction unit that predicts a predicted voltage of the power supply based on a power supply voltage prediction function having at least a parameter related to time as a variable;
A threshold value for determining a threshold voltage that is a criterion for determining the occurrence of a power failure based on a threshold voltage determination function having at least the predicted voltage, a parameter relating to the time, and a parameter indicating the power failure occurrence status before the previous time as variables. A voltage determining unit;
A power failure detection unit that determines that the power failure has occurred when the measured voltage of the power source is less than or less than the threshold voltage determined by the threshold voltage determination unit;
When it is determined that the power failure has occurred in the power failure detection unit, a retreat operation command unit that instructs the industrial machine to perform a retreat operation,
A control device comprising:
前記電源電圧予測部は、前記停電検出部で前記停電が発生したと判断されたタイミング、または、規定の予測期間が経過したタイミングで、前記電源電圧予測関数を学習により更新する、ことを特徴とする制御装置。 The control device according to claim 1,
The power supply voltage prediction unit is configured to update the power supply voltage prediction function by learning at a timing when the power failure detection unit determines that the power failure has occurred, or when a predetermined prediction period has elapsed. Control device.
前記電源電圧予測部による前記学習では、少なくとも、前記予測電圧と前記実測電圧との差分値である予測誤差に基づいて報酬を決定するとともに、前記報酬が多くなるように前記電圧予測関数を更新する、ことを特徴とする制御装置。 The control device according to claim 2,
In the learning by the power supply voltage prediction unit, a reward is determined based on at least a prediction error that is a difference value between the predicted voltage and the measured voltage, and the voltage prediction function is updated so that the reward increases. A control device characterized by that.
前記閾値電圧決定部は、前記停電検出部で前記停電が発生したと判断されたタイミングで、前記閾値電圧決定関数を学習により更新する、ことを特徴とする制御装置。 The control device according to any one of claims 1 to 3,
The control device, wherein the threshold voltage determination unit updates the threshold voltage determination function by learning at a timing when the power failure detection unit determines that the power failure has occurred.
前記電源電圧予測部による前記学習では、少なくとも、前記産業機械に指示した退避量指令量と前記産業機械が実際に移動した退避量実測値との差分値である退避誤差に基づいて報酬を決定するとともに、前記報酬が多くなるように前記閾値電圧決定関数を更新する、ことを特徴とする制御装置。 The control device according to claim 4,
In the learning by the power supply voltage predicting unit, a reward is determined based on at least a save error that is a difference value between a save amount command amount instructed to the industrial machine and an actual save value that the industrial machine has actually moved. In addition, the control device updates the threshold voltage determination function so that the reward increases.
前記時間に関するパラメータは、時刻、日付、曜日、季節の少なくとも一つを含む、ことを特徴とする制御装置。 The control device according to any one of claims 1 to 5,
The control device characterized in that the parameter relating to time includes at least one of time, date, day of the week, and season.
前記停電発生状況を示すパラメータは、少なくとも、停電発生直前における予測電圧と、実測電圧と、を含む、ことを特徴とする制御装置。
The control device according to any one of claims 1 to 6,
The parameter indicating the power outage occurrence status includes at least a predicted voltage immediately before the occurrence of the power outage and an actually measured voltage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017090360A JP6863815B2 (en) | 2017-04-28 | 2017-04-28 | Control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017090360A JP6863815B2 (en) | 2017-04-28 | 2017-04-28 | Control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018190079A true JP2018190079A (en) | 2018-11-29 |
JP6863815B2 JP6863815B2 (en) | 2021-04-21 |
Family
ID=64480213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017090360A Active JP6863815B2 (en) | 2017-04-28 | 2017-04-28 | Control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6863815B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002233156A (en) * | 2001-02-02 | 2002-08-16 | Toshiba It & Control Systems Corp | Power converter |
JP2009075799A (en) * | 2007-09-20 | 2009-04-09 | Okuma Corp | Machine tool numerical control device |
JP2011209936A (en) * | 2010-03-29 | 2011-10-20 | Okuma Corp | Control device for power interruption |
JP2017034832A (en) * | 2015-07-31 | 2017-02-09 | ファナック株式会社 | Motor controller including protection operation control unit, and machine learning device and method for the same |
JP2017064830A (en) * | 2015-09-29 | 2017-04-06 | ファナック株式会社 | Wire electric discharge machining machine having moving shaft abnormal load alarm function |
-
2017
- 2017-04-28 JP JP2017090360A patent/JP6863815B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002233156A (en) * | 2001-02-02 | 2002-08-16 | Toshiba It & Control Systems Corp | Power converter |
JP2009075799A (en) * | 2007-09-20 | 2009-04-09 | Okuma Corp | Machine tool numerical control device |
JP2011209936A (en) * | 2010-03-29 | 2011-10-20 | Okuma Corp | Control device for power interruption |
JP2017034832A (en) * | 2015-07-31 | 2017-02-09 | ファナック株式会社 | Motor controller including protection operation control unit, and machine learning device and method for the same |
JP2017064830A (en) * | 2015-09-29 | 2017-04-06 | ファナック株式会社 | Wire electric discharge machining machine having moving shaft abnormal load alarm function |
Also Published As
Publication number | Publication date |
---|---|
JP6863815B2 (en) | 2021-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10668619B2 (en) | Controller and machine learning device | |
CN109581972B (en) | Numerical control system, numerical control device, method for checking abnormality in operating state, and learning model set | |
JP6392819B2 (en) | Manufacturing management system that changes abnormality detection conditions based on manufacturing time information | |
JP5746128B2 (en) | Machine tools with a function to determine the replacement time of maintenance parts | |
CN106919141B (en) | Preventive maintenance management system, unit control device, and preventive maintenance management method | |
US11531319B2 (en) | Failure prediction device and machine learning device | |
KR102470437B1 (en) | Robot control device, robot control method, and robot control program | |
KR101849894B1 (en) | Fault Diagnosis Device and Fault Diagnosis Method | |
JP2002202242A (en) | Method for detecting change in technical system due to ageing, device therefor, program, storage medium, detection system, and device for determining abrasion model | |
CN109719756B (en) | Life prediction device | |
JP2015196199A (en) | Thermal displacement correction device of machine tool | |
KR20170093908A (en) | Robot maintenance assist device and method | |
JPWO2009142006A1 (en) | Robot abnormality determination method | |
JP2008183680A (en) | Loading machine controller and its collision detecting threshold value renewing method | |
JP2019185742A (en) | Controller and control method | |
JP6325497B2 (en) | Electronic device with a function to notify the remaining battery level | |
JP2019150932A (en) | Collison position estimation device and machine learning device | |
JP6863815B2 (en) | Control device | |
CN104850060A (en) | Numerical controller for machine tool with efficient regular inspection function for components | |
US11131977B2 (en) | Data collection system and method | |
JP2017120618A (en) | Cell controller and preventive maintenance management method | |
JP6378249B2 (en) | Numerical control device with machining time prediction function considering servo control and machine motion delay | |
JP7255353B2 (en) | Robot control device and control method | |
JP2021109289A (en) | Machine tool, machine tool control method and machine tool control program | |
CN105278450A (en) | Numerical controller performing repetitive machining |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210112 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210330 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210401 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6863815 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |