[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018189863A - Diffractive optical element and optical system using the same - Google Patents

Diffractive optical element and optical system using the same Download PDF

Info

Publication number
JP2018189863A
JP2018189863A JP2017093481A JP2017093481A JP2018189863A JP 2018189863 A JP2018189863 A JP 2018189863A JP 2017093481 A JP2017093481 A JP 2017093481A JP 2017093481 A JP2017093481 A JP 2017093481A JP 2018189863 A JP2018189863 A JP 2018189863A
Authority
JP
Japan
Prior art keywords
optical element
diffractive optical
refractive index
grating
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017093481A
Other languages
Japanese (ja)
Inventor
礼生奈 牛込
Reona Ushigome
礼生奈 牛込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017093481A priority Critical patent/JP2018189863A/en
Publication of JP2018189863A publication Critical patent/JP2018189863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that in a conventional adhered two-layer DOE, refractive index sensitivity of a material constituting a diffraction grating is high, resulting in fluctuations in wavelength characteristics of diffraction efficiency including a behavior of a grating wall surface.SOLUTION: A diffractive optical element of the present invention can give uniform wavelength characteristics of diffraction efficiency by controlling a film width of a thin film even when the refractive index of the refractive optical element fluctuates.SELECTED DRAWING: Figure 2

Description

本発明は、回折光学素子およびこれを有する光学系に関する。   The present invention relates to a diffractive optical element and an optical system having the same.

従来、硝材の組み合わせによりレンズ系の色収差を減じる方法に対して、レンズの表面やレンズ系の一部に回折作用を有する回折光学素子を設けることでレンズ系の色収差を減じる方法が知られている。この回折光学素子を用いる方法は、光学系中の屈折面と回折面とでは、ある基準波長の光線に対する偏向方向が逆方向になるという物理現象を利用したものである。また、回折光学素子は、その周期的構造の周期を適宜変化させることで非球面レンズ的な効果を持たせることができるので、色収差以外の諸収差の低減にも効果がある。一般的に回折光学素子は格子面と格子側面から構成されるブレーズ構造より成っている。このようなブレーズ構造の回折光学素子は特定の一つの次数(以下、「特定次数」又は「設計次数」とも言う)と特定の波長に対して高い効率で光を回折することができる。一方、この特定次数の回折効率を可視波長帯域全域で十分高く得るための回折光学素子構成が知られている。   Conventionally, a method of reducing chromatic aberration of a lens system by providing a diffractive optical element having a diffractive action on the surface of the lens or a part of the lens system is known as opposed to a method of reducing chromatic aberration of a lens system by combining glass materials. . This method using a diffractive optical element utilizes the physical phenomenon that the deflection direction with respect to a light beam having a certain reference wavelength is reversed between the refracting surface and the diffractive surface in the optical system. In addition, the diffractive optical element can have an effect of an aspheric lens by appropriately changing the period of the periodic structure, and thus is effective in reducing various aberrations other than chromatic aberration. In general, a diffractive optical element has a blazed structure composed of a grating surface and a grating side surface. Such a diffractive optical element having a blazed structure can diffract light with high efficiency with respect to a specific one order (hereinafter also referred to as “specific order” or “design order”) and a specific wavelength. On the other hand, there is known a diffractive optical element configuration for obtaining this specific order diffraction efficiency sufficiently high over the entire visible wavelength band.

具体的には、特許文献1に開示されているように、2つの回折格子を密着配置すると共に、各回折格子を構成する材料に低屈折率高分散材料と高屈折率低分散材料を用い、回折格子の高さを適切に設定し(以下、このような回折光学素子を「密着2層DOE」という)特定の次数の回折光に対し、広い波長帯域で高い回折効率を得ることができる。なお、回折効率は全透過光束の光量に対する各次数の回折光の光量の割合と定義する。   Specifically, as disclosed in Patent Document 1, two diffraction gratings are arranged in close contact with each other, and a low refractive index high dispersion material and a high refractive index low dispersion material are used as materials constituting each diffraction grating, High diffraction efficiency can be obtained in a wide wavelength band with respect to diffracted light of a specific order by appropriately setting the height of the diffraction grating (hereinafter, such a diffractive optical element is referred to as “adherent two-layer DOE”). The diffraction efficiency is defined as the ratio of the amount of diffracted light of each order to the amount of total transmitted light flux.

さらに、特許文献2に開示されているように、可視波長域全域で99%以上の高い回折効率を得るためには、部分分散比θgFが通常の材料より小さな値(リニア異常分散性)を有する材料を用いることが知られている。   Further, as disclosed in Patent Document 2, in order to obtain a high diffraction efficiency of 99% or more in the entire visible wavelength range, the partial dispersion ratio θgF has a smaller value (linear anomalous dispersion) than that of a normal material. It is known to use materials.

特許第3717555号公報Japanese Patent No. 3717555 特開2008−241734号公報JP 2008-241734 A

しかしながら、従来の密着2層DOEでは回折格子を構成する材料の屈折率敏感度が高く、格子壁面の振る舞いを含めた回折効率の波長特性がばらつくという問題があった。   However, the conventional two-layer DOE has a problem that the refractive index sensitivity of the material constituting the diffraction grating is high, and the wavelength characteristics of the diffraction efficiency including the behavior of the grating wall surface vary.

本発明は、このような問題に鑑みてなされたものであり、格子壁面の振る舞いを含めた設計次数の回折光における回折効率の波長特性のばらつきを低減する回折光学素子を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a diffractive optical element that reduces variations in wavelength characteristics of diffraction efficiency in diffracted light of a designed order including the behavior of a grating wall surface. To do.

上記の目的を達成するために、本発明に係る回折光学素子は、
2つの分散の異なる材料より成る第1、第2の回折格子を積層し、
前記第1、第2の回折格子は互いの格子面が密着され、
前記第1、第2の回折格子壁面に薄膜を有し、
前記薄膜を構成する材料の青波長帯域の平均消衰係数k、赤波長帯域の平均消衰係数kが以下の式を満たすことを特徴とする。
In order to achieve the above object, the diffractive optical element according to the present invention includes:
Laminating first and second diffraction gratings made of two materials having different dispersions;
The first and second diffraction gratings are in close contact with each other,
A thin film on the first and second diffraction grating walls;
The material constituting the thin film has an average extinction coefficient k B in the blue wavelength band and an average extinction coefficient k R in the red wavelength band satisfying the following expressions.

0.1<k−k<0.5 0.1 <k B −k R <0.5

本発明によれば、密着2層DOEにおいて、格子壁面の振る舞いを含めた設計次数の回折光における回折効率の波長特性のばらつきを低減する回折光学素子およびそれを有する光学系を提供することができる。   According to the present invention, it is possible to provide a diffractive optical element that reduces variation in wavelength characteristics of diffraction efficiency in diffracted light of a designed order including the behavior of a grating wall surface in an adhesive two-layer DOE, and an optical system having the diffractive optical element. .

回折光学素子の要部概略図Schematic diagram of essential parts of diffractive optical element 本実施例の回折光学素子の素子構造を示す模式図Schematic diagram showing the element structure of the diffractive optical element of this example 実施例1の回折光学素子の回折効率のグラフGraph of diffraction efficiency of the diffractive optical element of Example 1 実施例2の回折光学素子の回折効率のグラフGraph of diffraction efficiency of diffractive optical element of Example 2 実施例3の回折光学素子の回折効率のグラフGraph of diffraction efficiency of diffractive optical element of Example 3 比較例の回折光学素子の素子構造を示す模式図Schematic diagram showing the element structure of the diffractive optical element of the comparative example 比較例1の回折光学素子の回折効率のグラフGraph of diffraction efficiency of the diffractive optical element of Comparative Example 1 比較例2の回折光学素子の回折効率のグラフGraph of diffraction efficiency of the diffractive optical element of Comparative Example 2 比較例3の回折光学素子の回折効率のグラフGraph of diffraction efficiency of the diffractive optical element of Comparative Example 3 本発明の実施例4である撮影光学系の構成を示す断面図Sectional drawing which shows the structure of the imaging optical system which is Example 4 of this invention.

以下に、本発明の実施例を、添付の図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

[実施例1]
図1は本発明の回折光学素子の正面図及び側面図である。
[Example 1]
FIG. 1 is a front view and a side view of a diffractive optical element of the present invention.

平板又はレンズより成る基板レンズ20、30の面に回折光学素子10が形成されている。そして、回折光学素子10が形成されている基板レンズ20、30の面は、曲面となっている。回折光学素子10は光軸Oを中心とした同心円状の回折格子形状からなり、レンズ作用を有している。図2は図1の回折光学素子10を図中A−A′断面で切断した断面形状である。図2は、格子形状を分かりやすくするために、かなりデフォルメされた図となっている。図2において、回折光学素子10は、第1の回折格子1と第2の回折格子2が密着配置(積層)した密着DOEの構成となっている。第1、第2の回折格子は同心円状のブレーズ構造の格子形状からなり、格子ピッチを中心(光軸)から周辺へ向かって徐々に変化させることでレンズ作用(収斂作用又は発散作用)を得ている。そして、各回折格子は、全層を通して一つの回折光学素子10として作用している。また、ブレーズ構造にすることで、回折光学素子10に入射した入射光は特定の回折次数(図では+1次)方向に集中して回折する。   A diffractive optical element 10 is formed on the surfaces of substrate lenses 20 and 30 made of flat plates or lenses. The surfaces of the substrate lenses 20 and 30 on which the diffractive optical element 10 is formed are curved surfaces. The diffractive optical element 10 has a concentric diffraction grating shape centered on the optical axis O and has a lens action. FIG. 2 shows a cross-sectional shape of the diffractive optical element 10 shown in FIG. FIG. 2 is a considerably deformed view for easy understanding of the lattice shape. In FIG. 2, the diffractive optical element 10 has a contact DOE structure in which a first diffraction grating 1 and a second diffraction grating 2 are closely disposed (laminated). The first and second diffraction gratings have a concentric blazed grating shape, and a lens action (convergence action or diverging action) is obtained by gradually changing the grating pitch from the center (optical axis) to the periphery. ing. Each diffraction grating acts as one diffractive optical element 10 through all layers. Further, by using a blazed structure, incident light incident on the diffractive optical element 10 is concentrated and diffracted in a specific diffraction order (+ 1st order in the figure) direction.

また、本発明の回折光学素子の使用波長領域は可視域である。このため、可視領域全体で設計次数の回折光の回折効率が高くなるように、第1の回折格子1及び第2の回折格子2を構成する材料及び格子高さを選択している。すなわち、複数の回折格子(回折格子1,2)を通過する光の最大光路長差(回折部の山と谷の光学光路長差の最大値)が使用波長域内で、その波長の整数倍付近となるよう、各回折格子の材料及び格子高さが定められている。このように回折格子の材料、形状を適切に設定することによって、使用波長全域で高い回折効率が得られる。なお、一般的に、回折格子の格子高さは、格子周期方向に垂直な方向(面法線方向)の格子先端と格子溝の高さで定義される。   In addition, the operating wavelength region of the diffractive optical element of the present invention is the visible region. For this reason, the material and grating height which comprise the 1st diffraction grating 1 and the 2nd diffraction grating 2 are selected so that the diffraction efficiency of the diffracted light of the design order may become high in the whole visible region. That is, the maximum optical path length difference (the maximum value of the optical path length difference between the peaks and valleys of the diffraction part) of light passing through a plurality of diffraction gratings (diffraction gratings 1 and 2) is in the operating wavelength range, and near an integral multiple of that wavelength. The material and grating height of each diffraction grating are determined so that Thus, by appropriately setting the material and shape of the diffraction grating, high diffraction efficiency can be obtained over the entire wavelength range. In general, the grating height of the diffraction grating is defined by the height of the grating tip and the grating groove in the direction (plane normal direction) perpendicular to the grating period direction.

回折格子部10は、回折格子(第1の回折格子)1と回折格子(第2の回折格子)2とが光軸方向に密着することによって形成され、回折格子1および2の格子壁面には薄膜3が設けられている。   The diffraction grating portion 10 is formed by closely attaching the diffraction grating (first diffraction grating) 1 and the diffraction grating (second diffraction grating) 2 in the optical axis direction. A thin film 3 is provided.

回折光学素子の具体的に構成する材料は第1の回折格子の材料としてアクリル系紫外線硬化樹脂にITO微粒子を混合させた紫外線硬化樹脂、第2の回折格子の材料としてアクリル系紫外線硬化樹脂にZrO2微粒子を混合させた紫外線硬化樹脂を用いている。さらに屈折率を調整し、表1に示す材料を用いている。なお、格子高さdは11.00μm、設計次数は+1次、入射角度は0deg、格子ピッチは100μmである。   Specifically, the material constituting the diffractive optical element is an ultraviolet curable resin in which ITO fine particles are mixed with an acrylic ultraviolet curable resin as a first diffraction grating material, and ZrO2 in an acrylic ultraviolet curable resin as a second diffraction grating material. An ultraviolet curable resin mixed with fine particles is used. Further, the refractive index is adjusted, and the materials shown in Table 1 are used. The grating height d is 11.00 μm, the design order is + 1st order, the incident angle is 0 deg, and the grating pitch is 100 μm.

また、微粒子を分散させた樹脂材料は、紫外線硬化樹脂であって、アクリル系、フッ素系、ビニル系、エポキシ系のいずれかの有機樹脂を含むが、特に限定されない。また、本実施例では設計次数を+1次にしているが、設計次数を+1次以外であっても同様の効果が得られるため、設計次数に限定されない。   The resin material in which the fine particles are dispersed is an ultraviolet curable resin, and includes any organic resin of acrylic, fluorine, vinyl, and epoxy, but is not particularly limited. In this embodiment, the design order is + 1st order, but the same effect can be obtained even if the design order is other than + 1st order, and the design order is not limited to the design order.

微粒子は、酸化物、金属、セラミックス、複合物、混合物を含むが、特に限定されない。微粒子材料の平均粒子径は、回折光学素子への入射光の波長(使用波長又は設計波長)の1/4以下であることが好ましい。これよりも粒子径が大きくなると、微粒子材料を樹脂材料に混合した際に、レイリー散乱が大きくなる可能性が生じる。   The fine particles include, but are not particularly limited to, oxides, metals, ceramics, composites, and mixtures. The average particle diameter of the fine particle material is preferably ¼ or less of the wavelength (use wavelength or design wavelength) of light incident on the diffractive optical element. When the particle diameter is larger than this, there is a possibility that Rayleigh scattering becomes large when the fine particle material is mixed with the resin material.

微粒子を分散させた樹脂材料の代わりに、樹脂材料等の有機材料、ガラス材料、光学結晶材料、セラミックス材料等を使用してもよい。   Instead of the resin material in which the fine particles are dispersed, an organic material such as a resin material, a glass material, an optical crystal material, a ceramic material, or the like may be used.

薄膜3を構成する材料は着色組成物等に代表されるように消衰係数の波長特性が可視波長帯域内で急激に変化する材料が知られている。特に青波長帯域の平均消衰係数k、赤波長帯域の平均消衰係数kが以下の式を満たす材料を設けている。膜厚wは80nmである。 As a material constituting the thin film 3, a material in which the wavelength characteristic of the extinction coefficient rapidly changes in the visible wavelength band as represented by a colored composition or the like is known. In particular, a material is provided in which the average extinction coefficient k B in the blue wavelength band and the average extinction coefficient k R in the red wavelength band satisfy the following expressions. The film thickness w is 80 nm.

1<k−k<0.5
この下限値を満たさないと回折効率の波長特性を均一にすることが困難になるため、好ましくない。上限値を満たさないと薄膜との界面で反射が発生してしまうので好ましくない。
1 <k B −k R <0.5
If this lower limit is not satisfied, it is difficult to make the wavelength characteristics of diffraction efficiency uniform, which is not preferable. If the upper limit is not satisfied, reflection occurs at the interface with the thin film, which is not preferable.

また、前記薄膜を構成する材料は青波長帯域の平均消衰係数k、緑波長帯域の平均消衰係数k、赤波長帯域の平均消衰係数kが以下の式を満たしている。 In the material constituting the thin film, the average extinction coefficient k B in the blue wavelength band, the average extinction coefficient k G in the green wavelength band, and the average extinction coefficient k R in the red wavelength band satisfy the following expressions.

<k<k
この式を満たさないと回折効率の波長特性を均一にすることが困難になるため、好ましくない。
k R <k G <k B
If this equation is not satisfied, it is difficult to make the wavelength characteristics of diffraction efficiency uniform, which is not preferable.

これは例えば特許文献、特開2007−147738号公報に開示されている透過率と膜厚から導出することが可能である。   This can be derived from the transmittance and film thickness disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-147738.

吸収層の着色組成物は染料または顔料を分散した樹脂組成物で構成され、所望の特性を得ることができる。染料または顔料は分光透過率特性、耐熱性、耐光性、樹脂への分散性およびその安定性を考慮して選択することができる。具体的にはモノアゾ系材料,ジアゾ系材料,縮合ジアゾ系材料、フタロシアニン系材料、アントラキノン系材料、レーキ系材料など種々あり、さらにそれらを混合することによって所望の材料が得られる。顔料の微粒子径は分光透過率特性、分散性、均一性、安定性を考慮して選択することができる。一般的には顔料を分散した樹脂組成物のほうが耐久性が高く、より好ましい。   The colored composition of the absorption layer is composed of a resin composition in which a dye or pigment is dispersed, and can obtain desired characteristics. The dye or pigment can be selected in consideration of spectral transmittance characteristics, heat resistance, light resistance, dispersibility in resin, and stability thereof. Specifically, there are various monoazo materials, diazo materials, condensed diazo materials, phthalocyanine materials, anthraquinone materials, lake materials, and the like, and a desired material can be obtained by mixing them. The fine particle diameter of the pigment can be selected in consideration of spectral transmittance characteristics, dispersibility, uniformity, and stability. In general, a resin composition in which a pigment is dispersed has a higher durability and is more preferable.

回折効率を評価した結果を図3に示す。図3は設計次数+1次の回折光の回折効率の波長特性である。可視波長帯域である400〜700nmに対して、壁面の振る舞いを考慮した回折効率の波長特性がほぼ均一になっている。   The results of evaluating the diffraction efficiency are shown in FIG. FIG. 3 shows the wavelength characteristics of the diffraction efficiency of the designed order + 1 order diffracted light. With respect to the visible wavelength band of 400 to 700 nm, the wavelength characteristic of diffraction efficiency considering the behavior of the wall surface is almost uniform.

[実施例2]
実施例2は実施例1の材料の屈折率がばらついた場合の実施例である。第1の回折格子の材料としてアクリル系紫外線硬化樹脂にITO微粒子を混合させた紫外線硬化樹脂、第2の回折格子の材料としてアクリル系紫外線硬化樹脂にZrO2微粒子を混合させた紫外線硬化樹脂を用いている。材料が表2に示すように第1の回折格子の材料が実施例1の材料と比較して+0.00050ばらついた材料を用いている。なお、格子高さdは11.00μm、設計次数は+1次、入射角度は0deg、格子ピッチは100μmである。薄膜3を構成する材料は実施例1と同じで、膜厚wは50nmである。
[Example 2]
Example 2 is an example where the refractive index of the material of Example 1 varies. As a material for the first diffraction grating, an ultraviolet curable resin in which ITO fine particles are mixed with an acrylic ultraviolet curable resin, and as a material for the second diffraction grating, an ultraviolet curable resin in which ZrO2 fine particles are mixed in an acrylic ultraviolet curable resin are used. Yes. As shown in Table 2, a material in which the material of the first diffraction grating varies +0.00050 as compared with the material of Example 1 is used. The grating height d is 11.00 μm, the design order is + 1st order, the incident angle is 0 deg, and the grating pitch is 100 μm. The material constituting the thin film 3 is the same as that in Example 1, and the film thickness w is 50 nm.

回折効率を評価した結果を図4に示す。図4は設計次数+1次の回折光の回折効率の波長特性である。可視波長帯域である400〜700nmに対して、壁面の振る舞いを考慮した回折効率の波長特性がほぼ均一になっている。後に示す比較例と比較して、材料の屈折率が2つの材料の屈折率差が大きい方向にばらついた場合でも薄膜の膜幅を変更することにより回折効率の波長特性がほぼ均一にすることができる。   The results of evaluating the diffraction efficiency are shown in FIG. FIG. 4 shows the wavelength characteristics of the diffraction efficiency of the designed order + 1 order diffracted light. With respect to the visible wavelength band of 400 to 700 nm, the wavelength characteristic of diffraction efficiency considering the behavior of the wall surface is almost uniform. Compared with the comparative example shown later, even when the refractive index of the material varies in the direction in which the difference in refractive index between the two materials is large, the wavelength characteristic of the diffraction efficiency can be made substantially uniform by changing the film width of the thin film. it can.

[実施例3]
実施例3は実施例1の材料の屈折率がばらついた場合の実施例である。第1の回折格子の材料としてアクリル系紫外線硬化樹脂にITO微粒子を混合させた紫外線硬化樹脂、第2の回折格子の材料としてアクリル系紫外線硬化樹脂にZrO2微粒子を混合させた紫外線硬化樹脂を用いている。材料が表3に示すように第1の回折格子の材料が実施例1の材料と比較して−0.00050ばらついた材料を用いている。なお、格子高さdは11.00μm、設計次数は+1次、入射角度は0deg、格子ピッチは100μmである。薄膜3を構成する材料は実施例1と同じで、膜厚wは100nmである。
[Example 3]
Example 3 is an example when the refractive index of the material of Example 1 varies. As a material for the first diffraction grating, an ultraviolet curable resin in which ITO fine particles are mixed with an acrylic ultraviolet curable resin, and as a material for the second diffraction grating, an ultraviolet curable resin in which ZrO2 fine particles are mixed in an acrylic ultraviolet curable resin are used. Yes. As shown in Table 3, a material in which the material of the first diffraction grating is -0.00050, which is different from the material of Example 1, is used. The grating height d is 11.00 μm, the design order is + 1st order, the incident angle is 0 deg, and the grating pitch is 100 μm. The material constituting the thin film 3 is the same as in Example 1, and the film thickness w is 100 nm.

回折効率を評価した結果を図5に示す。図5は設計次数+1次の回折光の回折効率の波長特性である。可視波長帯域である400〜700nmに対して、壁面の振る舞いを考慮した回折効率の波長特性がほぼ均一になっている。後に示す比較例と比較して、材料の屈折率が2つの材料の屈折率差が小さい方向にばらついた場合でも薄膜の膜幅を変更することにより回折効率の波長特性がほぼ均一にすることができる。   The result of evaluating the diffraction efficiency is shown in FIG. FIG. 5 shows the wavelength characteristics of the diffraction efficiency of the designed order + 1st order diffracted light. With respect to the visible wavelength band of 400 to 700 nm, the wavelength characteristic of diffraction efficiency considering the behavior of the wall surface is almost uniform. Compared with the comparative example shown later, even when the refractive index of the material varies in the direction where the difference in refractive index between the two materials is small, the wavelength characteristic of the diffraction efficiency can be made substantially uniform by changing the film width of the thin film. it can.

実施例1〜3より回折光学素子の屈折率がばらついた場合でも薄膜の膜幅を調整することによって、回折効率の波長特性をほぼ均一にすることが可能である。   Even when the refractive index of the diffractive optical element varies from Examples 1 to 3, the wavelength characteristics of the diffraction efficiency can be made substantially uniform by adjusting the film width of the thin film.

本発明の回折光学素子は薄膜の全体の幅w及び格子ピッチPは、以下の式を満たす。   In the diffractive optical element of the present invention, the entire width w and grating pitch P of the thin film satisfy the following expressions.

w/P<0.01
この式を満たさないと設計次数の回折効率の絶対値が低下するため好ましくなくなる。
w / P <0.01
If this equation is not satisfied, the absolute value of the diffraction efficiency of the designed order is lowered, which is not preferable.

また、薄膜を構成する材料の屈折率は前記第1の回折格子または前記第2の回折格子を構成する材料のうち低い屈折率を有する材料の該屈折率より高いほうが好ましい。これを満たさないと薄膜と回折格子の界面で反射が発生してしまうので好ましくない。   The refractive index of the material constituting the thin film is preferably higher than the refractive index of the material having a low refractive index among the materials constituting the first diffraction grating or the second diffraction grating. If this is not satisfied, reflection occurs at the interface between the thin film and the diffraction grating, which is not preferable.

また、薄膜を構成する材料のd線の屈折率nd3、及び、前記第1の回折格子または前記第2の回折格子を構成する材料のうち高い屈折率を有する材料のd線の屈折率nd2は、以下の式を満たすことが好ましい。   Further, the d-line refractive index nd3 of the material constituting the thin film and the d-line refractive index nd2 of the material having a high refractive index among the materials constituting the first diffraction grating or the second diffraction grating are: The following formula is preferably satisfied.

|nd3−nd2|<0.2
これを満たさないと薄膜と回折格子の界面で反射が発生してしまうので好ましくない。
| Nd3-nd2 | <0.2
If this is not satisfied, reflection occurs at the interface between the thin film and the diffraction grating, which is not preferable.

[比較例1]
本発明の効果をより明らかにするために比較例1を示す。比較例1は実施例1〜3とは異なり、図6のように薄膜が設けられていない場合である。第1の回折格子の材料としてアクリル系紫外線硬化樹脂にITO微粒子を混合させた紫外線硬化樹脂、第2の回折格子の材料としてアクリル系紫外線硬化樹脂にZrO2微粒子を混合させた紫外線硬化樹脂を用いている。さらに屈折率を調整し、表4に示す材料を用いている。なお、格子高さdは11.00μm、設計次数は+1次、入射角度は0deg、格子ピッチは100μmである。
[Comparative Example 1]
Comparative example 1 is shown in order to clarify the effect of the present invention. Comparative Example 1 is different from Examples 1 to 3 in that no thin film is provided as shown in FIG. As a material for the first diffraction grating, an ultraviolet curable resin in which ITO fine particles are mixed with an acrylic ultraviolet curable resin, and as a material for the second diffraction grating, an ultraviolet curable resin in which ZrO2 fine particles are mixed in an acrylic ultraviolet curable resin are used. Yes. Further, the refractive index is adjusted, and the materials shown in Table 4 are used. The grating height d is 11.00 μm, the design order is + 1st order, the incident angle is 0 deg, and the grating pitch is 100 μm.

回折効率を評価した結果を図7に示す。図7は設計次数+1次の回折光の回折効率の波長特性である。可視波長帯域である400〜700nmに対して、壁面の振る舞いを考慮した回折効率の波長特性がほぼ均一になっている。   The result of evaluating the diffraction efficiency is shown in FIG. FIG. 7 shows the wavelength characteristics of the diffraction efficiency of the designed order + 1 order diffracted light. With respect to the visible wavelength band of 400 to 700 nm, the wavelength characteristic of diffraction efficiency considering the behavior of the wall surface is almost uniform.

[比較例2]
比較例2は比較例1の材料の屈折率がばらついた場合の実施例である。第1の回折格子の材料としてアクリル系紫外線硬化樹脂にITO微粒子を混合させた紫外線硬化樹脂、第2の回折格子の材料としてアクリル系紫外線硬化樹脂にZrO2微粒子を混合させた紫外線硬化樹脂を用いている。材料が表5に示すように第1の回折格子の材料が比較例1の材料と比較して+0.00050ばらついた材料を用いている。なお、格子高さdは11.00μm、設計次数は+1次、入射角度は0deg、格子ピッチは100μmである。
[Comparative Example 2]
Comparative Example 2 is an example where the refractive index of the material of Comparative Example 1 varies. As a material for the first diffraction grating, an ultraviolet curable resin in which ITO fine particles are mixed with an acrylic ultraviolet curable resin, and as a material for the second diffraction grating, an ultraviolet curable resin in which ZrO2 fine particles are mixed in an acrylic ultraviolet curable resin are used. Yes. As shown in Table 5, a material in which the material of the first diffraction grating varies +0.00050 as compared with the material of Comparative Example 1 is used. The grating height d is 11.00 μm, the design order is + 1st order, the incident angle is 0 deg, and the grating pitch is 100 μm.

回折効率を評価した結果を図8に示す。図8は設計次数+1次の回折光の回折効率の波長特性である。可視波長帯域である400〜700nmに対して、壁面の振る舞いを考慮した回折効率の波長特性は短波長側が低くなっている。   The results of evaluating the diffraction efficiency are shown in FIG. FIG. 8 shows the wavelength characteristics of the diffraction efficiency of the designed order + 1 order diffracted light. With respect to the visible wavelength band of 400 to 700 nm, the wavelength characteristic of diffraction efficiency considering the behavior of the wall surface is lower on the short wavelength side.

[比較例3]
比較例3は比較例1の材料の屈折率がばらついた場合の実施例である。第1の回折格子の材料としてアクリル系紫外線硬化樹脂にITO微粒子を混合させた紫外線硬化樹脂、第2の回折格子の材料としてアクリル系紫外線硬化樹脂にZrO2微粒子を混合させた紫外線硬化樹脂を用いている。材料が表6に示すように第1の回折格子の材料が比較例1の材料と比較して−0.00050ばらついた材料を用いている。なお、格子高さdは11.00μm、設計次数は+1次、入射角度は0deg、格子ピッチは100μmである。
[Comparative Example 3]
Comparative Example 3 is an example where the refractive index of the material of Comparative Example 1 varies. As a material for the first diffraction grating, an ultraviolet curable resin in which ITO fine particles are mixed with an acrylic ultraviolet curable resin, and as a material for the second diffraction grating, an ultraviolet curable resin in which ZrO2 fine particles are mixed in an acrylic ultraviolet curable resin are used. Yes. As shown in Table 6, a material in which the material of the first diffraction grating is -0.00050 as compared with the material of Comparative Example 1 is used. The grating height d is 11.00 μm, the design order is + 1st order, the incident angle is 0 deg, and the grating pitch is 100 μm.

回折効率を評価した結果を図9に示す。図9は設計次数+1次の回折光の回折効率の波長特性である。可視波長帯域である400〜700nmに対して、壁面の振る舞いを考慮した回折効率の波長特性は短波長側が高くなっている。   The result of evaluating the diffraction efficiency is shown in FIG. FIG. 9 shows the wavelength characteristics of the diffraction efficiency of the designed order + 1 order diffracted light. With respect to the visible wavelength band of 400 to 700 nm, the wavelength characteristic of the diffraction efficiency considering the behavior of the wall surface is higher on the short wavelength side.

比較例1〜3より回折光学素子の屈折率がばらついた場合、回折効率の波長特性がばらつくことがわかる。   From Comparative Examples 1 to 3, it can be seen that when the refractive index of the diffractive optical element varies, the wavelength characteristic of the diffraction efficiency varies.

[実施例4]
本発明の実施例4の概略図を図10に示す。図10はカメラ等の撮影光学系の断面を示したものであり、同図中、101は撮影レンズで、内部に絞り40と本発明の前述した各実施例の回折光学素子10を有している。41はフィルムまたはCCD等の光電変換素子の結像面である。回折光学素子10は撮影レンズ101の色収差を補正している。本発明の回折光学素子を適用すれば、波長特性が良好で且つ高い回折効率を可能にしているので、フレアが少ない高性能な撮影レンズが得られる。図10では前玉のレンズの貼り合せ面に回折光学素子10を設けたが、これに限定されるものではなく、撮影光学系内に複数、回折光学素子を使用しても良い。また、本実施例では、カメラの撮影光学系の場合を示したが、これに限定されるものではなく、ビデオカメラの撮影レンズ、事務機のイメージスキャナーや、デジタル複写機のリーダーレンズなど広波長域で使用される光学機器に使用しても同様の効果が得られる。
[Example 4]
A schematic diagram of Example 4 of the present invention is shown in FIG. FIG. 10 shows a cross section of a photographic optical system such as a camera. In FIG. 10, reference numeral 101 denotes a photographic lens having an aperture 40 and the diffractive optical element 10 of each of the above-described embodiments of the present invention. Yes. Reference numeral 41 denotes an image forming surface of a photoelectric conversion element such as a film or a CCD. The diffractive optical element 10 corrects chromatic aberration of the taking lens 101. When the diffractive optical element of the present invention is applied, the wavelength characteristics are good and high diffraction efficiency is made possible, so that a high-performance photographic lens with less flare can be obtained. In FIG. 10, the diffractive optical element 10 is provided on the surface of the front lens, but the present invention is not limited to this, and a plurality of diffractive optical elements may be used in the photographing optical system. In this embodiment, the case of a camera optical system is shown. However, the present invention is not limited to this, and a wide wavelength such as a video camera photographing lens, an office image scanner, or a digital copier reader lens. The same effect can be obtained even if it is used in an optical instrument used in the area.

10 回折光学素子、1 第1の回折格子、2 第2の回折格子、
20,30 基板レンズ、40 絞り、41 結像面、101 撮影レンズ
10 diffractive optical element, 1st diffraction grating, 2nd diffraction grating,
20, 30 Substrate lens, 40 Aperture, 41 Imaging surface, 101 Shooting lens

Claims (6)

2つの分散の異なる材料より成る第1、第2の回折格子を積層し、
前記第1、第2の回折格子は互いの格子面が密着され、
前記第1、第2の回折格子壁面に薄膜を有し、
前記薄膜を構成する材料の青波長帯域の平均消衰係数k、赤波長帯域の平均消衰係数kが以下の式を満たすことを特徴とする回折光学素子。
1<k−k<0.5
Laminating first and second diffraction gratings made of two materials having different dispersions;
The first and second diffraction gratings are in close contact with each other,
A thin film on the first and second diffraction grating walls;
A diffractive optical element characterized in that an average extinction coefficient k B in a blue wavelength band and an average extinction coefficient k R in a red wavelength band of the material constituting the thin film satisfy the following expressions.
1 <k B −k R <0.5
前記薄膜を構成する材料の青波長帯域の平均消衰係数k、緑波長帯域の平均消衰係数k、赤波長帯域の平均消衰係数kが以下の式を満たすことを特徴とする請求項1に記載の回折光学素子。
<k<k
The material constituting the thin film has an average extinction coefficient k B in the blue wavelength band, an average extinction coefficient k G in the green wavelength band, and an average extinction coefficient k R in the red wavelength band satisfying the following expressions: The diffractive optical element according to claim 1.
k R <k G <k B
前記薄膜の全体の幅w及び格子ピッチPは、以下の式を満たすことを特徴とする請求項1又は請求項2に記載の回折光学素子。
w/P<0.01
The diffractive optical element according to claim 1, wherein the entire width w and the grating pitch P of the thin film satisfy the following expression.
w / P <0.01
前記薄膜を構成する材料の屈折率は、前記第1の回折格子または前記第2の回折格子を構成する材料のうち低い屈折率を有する材料の該屈折率より高いことを特徴とする請求項1乃至請求項3の何れか一項に記載の回折光学素子。   The refractive index of the material constituting the thin film is higher than the refractive index of a material having a low refractive index among the materials constituting the first diffraction grating or the second diffraction grating. The diffractive optical element according to claim 3. 前記薄膜を構成する材料のd線の屈折率nd3、及び、前記第1の回折格子または前記第2の回折格子を構成する材料のうち高い屈折率を有する材料のd線の屈折率nd2は、以下の式を満たすことを特徴とする請求項1乃至請求項4の何れか一項に記載の回折光学素子。
|nd3−nd2|<0.2
The refractive index nd3 of the d-line of the material constituting the thin film and the refractive index nd2 of the d-line of the material having a high refractive index among the materials constituting the first diffraction grating or the second diffraction grating are: The diffractive optical element according to claim 1, wherein the following expression is satisfied.
| Nd3-nd2 | <0.2
請求項1乃至請求項5の何れか一項に記載の回折光学素子を有することを特徴とする光学系。   An optical system comprising the diffractive optical element according to any one of claims 1 to 5.
JP2017093481A 2017-05-10 2017-05-10 Diffractive optical element and optical system using the same Pending JP2018189863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017093481A JP2018189863A (en) 2017-05-10 2017-05-10 Diffractive optical element and optical system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017093481A JP2018189863A (en) 2017-05-10 2017-05-10 Diffractive optical element and optical system using the same

Publications (1)

Publication Number Publication Date
JP2018189863A true JP2018189863A (en) 2018-11-29

Family

ID=64479882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017093481A Pending JP2018189863A (en) 2017-05-10 2017-05-10 Diffractive optical element and optical system using the same

Country Status (1)

Country Link
JP (1) JP2018189863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004304A1 (en) * 2020-06-30 2022-01-06 富士フイルム株式会社 Blazed diffraction optical element, and method for manufacturing blazed diffraction optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004304A1 (en) * 2020-06-30 2022-01-06 富士フイルム株式会社 Blazed diffraction optical element, and method for manufacturing blazed diffraction optical element
JP7473648B2 (en) 2020-06-30 2024-04-23 富士フイルム株式会社 Blazed diffractive optical element and method for manufacturing blazed diffractive optical element

Similar Documents

Publication Publication Date Title
JP4630645B2 (en) Optical system
JP5137432B2 (en) Adherent two-layer type diffractive optical element and optical system and optical apparatus using the same
JP5413714B2 (en) Eyepiece
JP5132284B2 (en) Diffractive optical element, optical system having the same, and optical instrument
TWI413795B (en) Photographic lens and camera
JP5596859B2 (en) Diffractive optical element
JP2012018380A (en) Diffractive optical element, optical system and optical equipment
JP2007065590A (en) Optical system and imaging device having the same
JP5258204B2 (en) Diffractive optical element, optical system using the same, and optical instrument
JP2006301416A (en) Optical system
JP4006362B2 (en) Diffractive optical element and optical system having the same
US20100134889A1 (en) Diffractive optical element, optical system and optical apparatus
JP6873602B2 (en) Diffractive optical elements, optical systems, and optical equipment
US9285518B2 (en) Diffractive optical element, optical system, and optical apparatus
JP4776988B2 (en) Optical system and optical apparatus having the same
JP4579553B2 (en) Optical system and optical apparatus having the same
JP5765998B2 (en) Diffractive optical element, optical system and optical instrument
JP2009015026A (en) Imaging optical system and optical equipment
JP2018189863A (en) Diffractive optical element and optical system using the same
JP2011257663A (en) Diffraction optical element, optical system and optical equipment
JP2012247450A (en) Optical system
JP5615065B2 (en) Diffractive optical element, optical system and optical instrument
JP4817705B2 (en) Optical system
JP5459966B2 (en) Diffractive optical element, optical system having the same, and optical instrument
JP5063226B2 (en) Optical system and optical apparatus having the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20191125