[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018182118A - Magnetizing device and magnetizing method - Google Patents

Magnetizing device and magnetizing method Download PDF

Info

Publication number
JP2018182118A
JP2018182118A JP2017081284A JP2017081284A JP2018182118A JP 2018182118 A JP2018182118 A JP 2018182118A JP 2017081284 A JP2017081284 A JP 2017081284A JP 2017081284 A JP2017081284 A JP 2017081284A JP 2018182118 A JP2018182118 A JP 2018182118A
Authority
JP
Japan
Prior art keywords
magnetizing
magnet pieces
magnet
coils
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017081284A
Other languages
Japanese (ja)
Inventor
智行 木下
Tomoyuki Kinoshita
智行 木下
諭 山代
Satoshi Yamashiro
諭 山代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017081284A priority Critical patent/JP2018182118A/en
Publication of JP2018182118A publication Critical patent/JP2018182118A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetizing device which improves a magnetization ratio and enhances efficiency of magnetization operation when magnetizing a plurality of unmagnetized magnet pieces arranged at equal intervals.SOLUTION: The magnetizing device includes a pair of left and right magnetized coils 5a, 5b for magnetizing a plurality of unmagnetized magnet pieces 3 arranged at equal intervals. When denoting a width of each of the magnetized coils 5a, 5b along an arrangement direction of the magnet pieces 3 as β, denoting an arrangement pitch of the magnet pieces 3 as θ1, and denoting a width of the magnet piece difference 3 in the arrangement direction as θ2, a setting is so made to satisfy a relationship of θ1<β<θ1+(θ1-θ2)/2. Magnetization is performed so that mutually adjacent magnet pieces 3 have mutually different polarities.SELECTED DRAWING: Figure 3

Description

この発明は、回転電機の回転子の鉄心や固定子の鉄心、あるいはリニアモータの固定子のベース上に沿って配列配置された複数の未着磁の磁石片を着磁する着磁装置、及び着磁方法に関する。   According to the present invention, there is provided a magnetizing apparatus for magnetizing a plurality of unmagnetized magnet pieces arranged along the core of the rotor of the rotating electrical machine or the core of the stator of the rotor or the base of the stator of the linear motor. It relates to the magnetization method.

従来技術では、回転子鉄心内または回転子鉄心上に配置された複数の未着磁の磁石片を着磁する着磁装置として、鉄心に着磁コイルが巻装されてなる着磁ヨークの磁石片の配列方向に沿った幅が、各々の磁石片の配列方向の幅よりも小さく設定し、この着磁ヨークの複数個を、所定の磁石片分だけ離間した位置にそれぞれ配置することで、隣り合う磁石片同士の極性が互いに異なるように着磁するようにした着磁装置が提案されている(例えば、下記の特許文献1参照)。   In the prior art, as a magnetizing device for magnetizing a plurality of unmagnetized magnet pieces disposed in or on a rotor core, a magnet of a magnetizing yoke in which a magnetizing coil is wound around an iron core The width along the arrangement direction of the pieces is set smaller than the width in the arrangement direction of each magnet piece, and a plurality of the magnetizing yokes are arranged at positions separated by a predetermined number of magnet pieces, respectively. There has been proposed a magnetizing apparatus in which the magnet pieces adjacent to each other are magnetized so that the polarities thereof are different from each other (for example, see Patent Document 1 below).

この従来技術の着磁装置では、互いに隣り合う磁石片に対する逆磁界の影響を抑えることができ、外径、磁石片の形状及び極数などの異なる回転電機の回転子またはリニアモータの固定子の磁石片を着磁することができる。   In this prior art magnetizing apparatus, the influence of the reverse magnetic field on the magnet pieces adjacent to each other can be suppressed, and the rotor of a different rotating electrical machine or the stator of a linear motor such as the outer diameter, the shape of the magnet pieces and the number of poles can be reduced. The magnet pieces can be magnetized.

特開2014−72223号公報JP, 2014-72223, A

しかしながら、特許文献1記載の従来技術にあっては、着磁ヨークの磁石片の配列方向に沿った幅が、各々の磁石片の配列方向の幅よりも小さいため、個々の磁石片を着磁する場合にも、単一の磁石片に対して着磁ヨークの位置を変えて複数回にわたって着磁操作する必要があり、各々の磁石片の着磁操作に手間と時間を要する。   However, in the prior art described in Patent Document 1, since the width along the arrangement direction of the magnet pieces of the magnetizing yoke is smaller than the width in the arrangement direction of each magnet piece, the individual magnet pieces are magnetized Also in this case, it is necessary to change the position of the magnetizing yoke with respect to a single magnet piece and carry out the magnetizing operation a plurality of times, and it takes time and effort to magnetize each magnet piece.

また、上記従来技術の着磁装置では、個々の磁石片を1回の着磁操作で着磁しようとした場合、磁石片の端部の磁界が弱くて十分に着磁されず、磁石片の着磁率が低下する。さらに、隣り合う磁石片同士の極性が互いに異なるように着磁する際に、着磁ヨークの位置を複数回変えて着磁すると、着磁ヨークからの漏れ磁束により着磁対象の磁石片内で磁化方向と逆の磁界が印加される恐れが生じ、磁石片の着磁率の低下を招く。   In the prior art magnetizing apparatus of the prior art, when it is attempted to magnetize each magnet piece in a single magnetizing operation, the magnetic field at the end of the magnet piece is weak and not sufficiently magnetized. The magnetization rate decreases. Furthermore, when the magnetization is performed so that the polarities of the adjacent magnet pieces are different from each other, if the position of the magnetization yoke is changed a plurality of times and the magnetization is performed, the leakage magnetic flux from the magnetization yoke causes the magnetic flux to leak. There is a possibility that a magnetic field opposite to the magnetization direction is applied, resulting in a decrease in the magnetization of the magnet pieces.

この発明は、上記課題を解決するためになされたもので、等間隔に配列された複数の未着磁の磁石片を着磁する場合に、着磁率を向上させるとともに、着磁操作を効率良く行うことができる着磁装置、及び着磁方法を提供することを目的とする。   The present invention has been made to solve the above problems, and in the case of magnetizing a plurality of unmagnetized magnet pieces arrayed at equal intervals, the magnetization rate is improved and the magnetizing operation is efficiently performed. An object of the present invention is to provide a magnetizing device and a magnetizing method that can be performed.

この発明に係る着磁装置は、等間隔に配列された複数の未着磁の磁石片について、互いに隣り合う磁石片同士の極性が互いに異なるように着磁するものであって、上記磁石片の着磁用の左右一対の着磁コイルを備え、各々の上記着磁コイルの上記磁石片の配列方向に沿った幅をβ、上記磁石片の配列ピッチをθ1、上記磁石片の配列方向の幅をθ2としたとき、
θ1<β<θ1+(θ1−θ2)/2
の関係を満たすように設定されていることを特徴とする。
The magnetizing apparatus according to the present invention magnetizes the plurality of unmagnetized magnet pieces arranged at equal intervals so that the polarities of the adjacent magnet pieces are different from each other, A pair of left and right magnetizing coils for magnetizing is provided, the width of the magnetizing coils along the arrangement direction of the magnet pieces is β, the arrangement pitch of the magnet pieces is θ1, and the width of the magnet pieces in the arrangement direction Where θ 2
θ1 <β <θ1 + (θ1−θ2) / 2
It is characterized in that it is set to satisfy the following relationship.

この発明に係る着磁方法は、上記の着磁装置を用い、上記磁石片の配列方向に沿って一対の上記着磁コイルを着磁済の磁石片の位置から次の着磁対象となる2つの隣り合う磁石片に対して位置するように移動させる移動工程と、上記移動工程後に上記着磁コイルに通電して2つの上記磁石片の極性が互いに異なるように2極同時に着磁する着磁工程と、を含むことを特徴とする。   A magnetizing method according to the present invention uses the magnetizing device described above, and a pair of magnetizing coils are to be magnetized next from the position of the magnetized magnet piece in the arrangement direction of the magnet pieces. The moving step of moving to position with respect to two adjacent magnet pieces, and the magnetizing coil which magnetizes the two poles simultaneously so that the polarities of the two magnet pieces are different from each other by energizing the magnetizing coil after the moving step And a step of

この発明の着磁装置、及び着磁方法によれば、個々の磁石片の左右端部に生じる磁界が強くなり、個々の磁石片の着磁率を向上することができ、しかも、隣り合う2つの磁石片同士の極性が互いに異なるように一度の着磁操作で着磁することができるため、着磁操作の効率を高めることができる。   According to the magnetizing apparatus and the magnetizing method of the present invention, the magnetic fields generated at the left and right ends of the individual magnet pieces can be strengthened, and the magnetizing rates of the individual magnet pieces can be improved. Since the magnet pieces can be magnetized by one magnetizing operation so that the polarities of the magnet pieces are different from each other, the efficiency of the magnetizing operation can be enhanced.

この発明の着磁装置を用いて着磁された磁石片を備えた回転電機の回転子を概略的に示す平面図である。It is a top view showing roughly the rotor of the rotation electrical machinery provided with the magnet piece magnetized using the magnetizing device of this invention. この発明の実施の形態1による着磁装置を用いて回転子の磁石片を着磁する場合の平面図である。It is a top view in the case of magnetizing a magnet piece of a rotor using a magnetizing device by Embodiment 1 of this invention. 図2において磁石片を着磁する部分を拡大した平面図である。It is the top view to which the part which magnetizes a magnet piece in FIG. 2 was expanded. この実施の形態1による着磁装置の着磁ヨークを図2に示した着磁位置から着磁対象となる他の磁石片の位置へ回転させたときの平面図である。FIG. 3 is a plan view when the magnetizing yoke of the magnetizing device according to Embodiment 1 is rotated from the magnetizing position shown in FIG. 2 to the position of another magnet piece to be magnetized; この発明の実施の形態2による着磁装置を用いて回転子の磁石片を着磁する部分を拡大した平面図である。It is the top view to which the part which magnetizes the magnet piece of a rotor using the magnetization apparatus by Embodiment 2 of this invention was expanded.

実施の形態1.
図1はこの発明の着磁装置を用いて着磁された磁石片を備えた回転電機の回転子を概略的に示す平面図である。
Embodiment 1
FIG. 1 is a plan view schematically showing a rotor of a rotating electrical machine provided with magnet pieces magnetized by using the magnetizing apparatus of the present invention.

図1に示した回転電機の回転子1は、ダイレクトドライブモータに使用される回転電機の回転子であって、一般的な回転電機の使用方法として、ギアなどの減速機を用いて回転出力を得るのに対し、ダイレクトドライブモータは減速機を使わず、直接負荷をつないで運転するものである。   The rotor 1 of the rotating electrical machine shown in FIG. 1 is a rotor of a rotating electrical machine used for a direct drive motor, and as a method of using a general rotating electrical machine, a rotational output is reduced using a reduction gear such as a gear. On the other hand, the direct drive motor does not use a reduction gear, but operates by connecting a load directly.

減速機を組み合わせて使用する場合、減速機のバックラッシュまたは出力の損失、騒音を生じるが、ダイレクトドライブモータは減速機を備えていないため、このような問題がなく、工作機械、搬送ロボットの回転軸等に幅広く使用されている。   When used in combination with a reduction gear, backlash or loss of power of the reduction gear or loss of power occurs, but since the direct drive motor does not have a reduction gear, there is no such problem, and rotation of the machine tool or transfer robot It is widely used for shafts and the like.

一方、大きなトルクを得るために、回転子1の径が大径化しやすいといった問題がある。ダイレクトドライブモータの回転子1には、図1に示すような、回転子鉄心2の外周側の周方向に沿って永久磁石からなる複数個の磁石片3を等間隔に配置した表面磁石型の回転子1が用いられている。表面磁石型の回転子1の磁石片3としては、磁石量を最小に抑えるためにセグメント磁石が使われている。   On the other hand, there is a problem that the diameter of the rotor 1 tends to be large in order to obtain a large torque. In the rotor 1 of the direct drive motor, as shown in FIG. 1, a surface magnet type in which a plurality of magnet pieces 3 consisting of permanent magnets are arranged at equal intervals along the circumferential direction on the outer peripheral side of the rotor core 2 A rotor 1 is used. A segment magnet is used as the magnet piece 3 of the surface magnet type rotor 1 in order to minimize the amount of magnet.

回転子1を製作する際には、回転子鉄心2の外周の周方向に沿って複数の磁石片3を等間隔に配列するために、回転子鉄心2の軸線方向に延在する凸部を複数設け、凸部の基部で磁石片3を均等配置し、磁石片3の薄肉端部を凸部の外周部に当接させて接着等の方法で固定している。   When manufacturing the rotor 1, in order to arrange the plurality of magnet pieces 3 at equal intervals along the circumferential direction of the outer periphery of the rotor core 2, convex portions extending in the axial direction of the rotor core 2 are used. A plurality of magnet pieces 3 are provided evenly at the base of the protrusion, and the thin end of the magnet piece 3 is brought into contact with the outer periphery of the protrusion and fixed by a method such as adhesion.

この場合、回転子鉄心2の周方向に沿った磁石片3の配置間隔が不均一であると、コギングトルクが増大し、回転中のトルクリップルが大きくなり、騒音または振動が発生するため、等間隔になるように位置決めがなされている。また、互いに隣接する磁石片3間の間隔が広いと、コギングトルクが増大し、トルクリップルが大きくなる。このような問題発生を抑制するために、磁石片3間の間隔は比較的短くなるように設定されている。   In this case, if the arrangement interval of the magnet pieces 3 along the circumferential direction of the rotor core 2 is uneven, the cogging torque increases, the torque ripple during rotation increases, and noise or vibration occurs, etc. Positioning is done so as to be an interval. In addition, when the distance between the magnet pieces 3 adjacent to each other is wide, the cogging torque is increased and the torque ripple is increased. In order to suppress such problems, the distance between the magnet pieces 3 is set to be relatively short.

永久磁石を構成するための各々の磁石片3の材料は、磁力の大きさによって様々あるが、例えばネオジムなどの希土類焼結磁石、フェライト焼結磁石、希土類材料またはフェライト材料と樹脂とを混練して形成されるボンド磁石等が挙げられる。ボンド磁石の構成として、単位長さ当たりの磁気抵抗が一定となるように磁石粉が樹脂材料に均一に混ぜられて構成されているため、磁石片3は径方向外側から径方向内側に向かって磁気抵抗が一定となるように形成されている。また、磁石片3の形状は、外周面が円弧であり内周面が直線であるかまぼこ型であり、回転子鉄心2の、磁石片3を配設する面の形状は、採用される磁石片3の内周面側の形状に対応している。   The material of each magnet piece 3 for constituting a permanent magnet varies depending on the magnitude of the magnetic force, but for example, a rare earth sintered magnet such as neodymium, a ferrite sintered magnet, a rare earth material or a ferrite material and a resin are mixed Bond magnets and the like. As the configuration of the bond magnet, the magnet powder is uniformly mixed with the resin material so that the magnetic resistance per unit length becomes constant, so that the magnet piece 3 is directed radially outward from the radially outer side. The magnetic resistance is formed to be constant. Further, the shape of the magnet piece 3 is a semicylindrical type in which the outer peripheral surface is an arc and the inner peripheral surface is a straight line, and the shape of the surface of the rotor core 2 on which the magnet piece 3 is disposed It corresponds to the shape of the inner peripheral surface side of 3.

図2はこの発明の実施の形態1による着磁装置を用いて回転子の磁石片を着磁する場合の平面図、図3は図2において磁石片を着磁する部分を拡大した平面図である。   FIG. 2 is a plan view in the case of magnetizing a magnet piece of a rotor using a magnetizing apparatus according to a first embodiment of the present invention, and FIG. 3 is an enlarged plan view of a portion for magnetizing a magnet piece in FIG. is there.

磁石片3が磁性を得るためには、磁界を発生させるための着磁装置4を使用して着磁される。この着磁装置4は、回転子鉄心2の周方向に沿って互いに隣り合う2つの磁石片3を2極ずつ同時に着磁するような着磁ヨーク7を備える。   In order to obtain magnetism, the magnet piece 3 is magnetized using a magnetizing device 4 for generating a magnetic field. The magnetizing device 4 includes a magnetizing yoke 7 that simultaneously magnetizes two magnet pieces 3 adjacent to each other along the circumferential direction of the rotor core 2 at two poles.

この着磁ヨーク7は、回転子鉄心2の周方向に沿った左右一対の着磁コイル5a、5bを有する。そして、各着磁コイル5a、5bは、図示しない着磁電源に接続されており、着磁電源から瞬間的に大きなパルス電流が印加されると、着磁コイル5a、5bが発生させる磁界が磁石片3内を貫くことにより、磁石片3が着磁される。   The magnetizing yoke 7 has a pair of magnetizing coils 5 a and 5 b along the circumferential direction of the rotor core 2. The magnetizing coils 5a and 5b are connected to a magnetizing power supply (not shown), and when a large pulse current is applied instantaneously from the magnetizing power supply, the magnetic field generated by the magnetizing coils 5a and 5b is a magnet. By penetrating the inside of the piece 3, the magnet piece 3 is magnetized.

ダイレクトドライブモータのように大径かつ多極の回転子1が備える多数の磁石片3を一度の着磁操作で着磁するには、着磁装置4が大型化するとともに、極数の違いで磁石片3の個数が異なる場合に十分に対応することが難しい。   In order to magnetize a large number of magnet pieces 3 included in a large diameter multipolar rotor 1 like a direct drive motor in one magnetizing operation, the size of the magnetizing apparatus 4 is increased and the number of poles is different. It is difficult to sufficiently cope with the case where the number of magnet pieces 3 is different.

そのため、この実施の形態1の着磁装置は、後で詳述するように、回転子鉄心2の周方向に沿って互いに隣り合う2つの磁石片3を互いに極性が異なるように2極ずつ同時に着磁するように着磁ヨーク7を構成しており、これによって、回転子1が備える複数個の磁石片3の着磁が可能となり、装置の大型化やコストアップを抑制することができる。   Therefore, in the magnetizing apparatus according to the first embodiment, as will be described in detail later, two magnet pieces 3 adjacent to each other along the circumferential direction of the rotor core 2 are simultaneously changed by two poles so as to have different polarities. The magnetizing yoke 7 is configured to magnetize, and this makes it possible to magnetize the plurality of magnet pieces 3 provided in the rotor 1 and to suppress an increase in size and cost of the device.

次に、上記の着磁装置4の具体的な構成、及び磁石片3への着磁方法について、図3、及び図4を用いてさらに詳しく説明する。   Next, the specific configuration of the magnetizing device 4 and the method of magnetizing the magnet piece 3 will be described in more detail with reference to FIGS. 3 and 4.

着磁装置4が備える着磁ヨーク7は、図示しない鉄心に着磁コイル5a、5bがそれぞれ所定の巻数だけ巻装されており、隣り合う一対の着磁コイル5a、5bは、極間に対して巻回の方向が逆になるように形成されている。すなわち、一方の着磁コイル5aが時計回りに巻回されていれば、その隣の着磁コイル5bは、反時計回りに巻回されている。   In the magnetizing yoke 7 included in the magnetizing device 4, the magnetizing coils 5a and 5b are wound around the iron core (not shown) by a predetermined number of turns, and the pair of magnetizing coils 5a and 5b adjacent to each other The direction of winding is reversed. That is, if one magnetizing coil 5a is wound clockwise, the magnetizing coil 5b next to it is wound counterclockwise.

しかも、各々の着磁コイル5a、5bの磁石片3の配列方向に沿った幅をβ、磁石片3の配列ピッチをθ1、磁石片3の配列方向の幅をθ2としたとき、
θ1<β<θ1+(θ1−θ2)/2 ……(1)
の関係を満たすように設定されている。なお、ここでは、β、θ1、θ2は角度単位として示している。
Moreover, assuming that the width along the arrangement direction of the magnet pieces 3 of the magnetizing coils 5a and 5b is β, the arrangement pitch of the magnet pieces 3 is θ1, and the width of the magnet pieces 3 in the arrangement direction is θ2.
θ1 <β <θ1 + (θ1−θ2) / 2 (1)
It is set to satisfy the relationship. Here, β, θ1 and θ2 are shown as angle units.

磁石片3と着磁コイル5a、5bがこのような位置関係で着磁装置4が配置された状態で、パルス電流が印加されると、一対の着磁コイル5a、5bを中心として図3の破線で示すような磁束線Pと、この磁束線Pの左右の位置に破線で示す磁束線Qa、Qbがそれぞれ矢印の方向に生じる。   With the magnet piece 3 and the magnetizing coils 5a and 5b arranged in such a positional relationship, when a pulse current is applied, the pair of magnetizing coils 5a and 5b is centered on FIG. Magnetic flux lines P as indicated by broken lines and magnetic flux lines Qa and Qb indicated by broken lines at the left and right positions of the magnetic flux lines P respectively occur in the directions of arrows.

ここで、図3において着磁対象となる隣り合う2つの磁石片3を区別するために符号3a、3bを付すとすれば、磁束線Pは、主に着磁対象の2つの磁石片3aおよび磁石片3bの内部を通過し、また、磁束線Qa、Qbは、磁石片3a、3bの外端部をそれぞれ通過するので、これらの隣り合う2つの磁石片3a、3bは、互いに極性が逆になるように同時に磁化される。   Here, if reference numerals 3a and 3b are added to distinguish two adjacent magnet pieces 3 to be magnetized in FIG. 3, the magnetic flux line P mainly includes two magnet pieces 3a to be magnetized and The magnetic flux lines Qa and Qb pass through the inside of the magnet piece 3b, and the magnetic flux lines Qa and Qb respectively pass through the outer end portions of the magnet pieces 3a and 3b. Therefore, these two adjacent magnet pieces 3a and 3b have opposite polarities to each other. It is simultaneously magnetized to become

この場合、着磁対象となる各々の磁石片3(3aまたは3b)の内部の磁束線に着目すると、各着磁コイル5a、5bの磁石片3の配列方向に沿った幅βが、磁石片3の配列ピッチθ1と同じか小さい場合(β≦θ1の場合)には、各磁石片3の端部に生じる磁界が弱くなって着磁率が低下してしまう。   In this case, focusing on the magnetic flux lines inside the magnet pieces 3 (3a or 3b) to be magnetized, the width β along the arrangement direction of the magnet pieces 3 of the magnetizing coils 5a and 5b is the magnet pieces When the pitch is the same as or smaller than the arrangement pitch θ1 of 3 (in the case of β ≦ θ1), the magnetic field generated at the end of each of the magnet pieces 3 becomes weak, and the magnetization rate decreases.

また、各着磁コイル5a、5bの幅βが磁石片3の配列ピッチθ1と互いに隣り合う磁石片3の配列方向に沿った離間間隔(θ1−θ2)/2とを合算した値(=θ1+(θ1−θ2)/2)よりも大きい場合には、着磁ヨーク7の着磁コイル5a、5bを次に周方向に沿って未着磁の2つの磁石片3の上に移動させて着磁する際に、各磁石片3の両端部に本来の磁化方向とは反対の逆磁界が印加されるので、同様に磁石片3の端部に生じる磁界が弱くなって着磁率が低下してしまう。   Further, a value (= θ1 +) obtained by adding the width β of each magnetizing coil 5a, 5b to the arrangement pitch θ1 of the magnet pieces 3 and the separation distance (θ1−θ2) / 2 along the arrangement direction of the magnet pieces 3 adjacent to each other. If it is larger than (θ1−θ2) / 2), the magnetizing coils 5a and 5b of the magnetizing yoke 7 are then moved along the circumferential direction onto the two unmagnetized magnet pieces 3 for coloring. At the time of magnetizing, a reverse magnetic field opposite to the original magnetization direction is applied to both ends of each magnet piece 3, so the magnetic field generated at the end of the magnet piece 3 is similarly weakened and the magnetic susceptibility decreases. I will.

したがって、この実施の形態1のように、各着磁コイル5a、5bの磁石片3の配列方向に沿った幅βについて、上記の(1)式に示すように、下限と上限とをそれぞれ規定することにより、各々の磁石片3の左右両端部への着磁効率が向上し、着磁率を向上させることが可能となる。   Therefore, as shown in the first embodiment, the lower limit and the upper limit of the width β of the magnetizing coils 5a and 5b along the arrangement direction of the magnet pieces 3 are defined as shown in the above equation (1). By doing this, it is possible to improve the magnetization efficiency to the left and right ends of each magnet piece 3 and to improve the magnetization rate.

図4は着磁装置の着磁ヨークを図2に示した着磁位置から、着磁対象となる他の磁石片の位置へと回転させたときの平面図である。なお、ここでは着磁ヨーク7を回転させた場合を示しているが、着磁ヨーク7の位置を固定して回転子1側を回転するようにしてもよい。   FIG. 4 is a plan view when the magnetizing yoke of the magnetizing device is rotated from the magnetizing position shown in FIG. 2 to the position of another magnet piece to be magnetized. Although the case where the magnetizing yoke 7 is rotated is shown here, the position of the magnetizing yoke 7 may be fixed to rotate the rotor 1 side.

着磁ヨーク7を回転子1の未着磁の2つの磁石片3の位置へ回転させて、隣り合う2つの磁石片3の極性が互いに異なるように着磁する。この場合の着磁方法は、図3に示した通りである。そして、この着磁操作を回転子1の全周に配置された全ての磁石片3に対して実施する。   The magnetizing yoke 7 is rotated to the position of the two unmagnetized magnet pieces 3 of the rotor 1, and the adjacent two magnet pieces 3 are magnetized so that the polarities thereof are different from each other. The magnetization method in this case is as shown in FIG. Then, this magnetizing operation is performed on all the magnet pieces 3 disposed on the entire circumference of the rotor 1.

このように、回転子鉄心2の全周に等間隔で配置された全ての磁石片3について着磁操作を行うことにより、各々の磁石片3の両端部への着磁効率が向上し、磁石片3の着磁率を向上することができる。磁石片3内の着磁率が低いと減磁し易くなり、回転電機の効率の低下を招いたり、トルクリップルの増大により、回転時の騒音が発生したりといった問題が生じるが、この実施の形態1の着磁装置により着磁した回転子1を使用すれば、減磁しにくく、トルクリップルの抑制が図れるため、回転子1の回転特性を向上することができる。   As described above, by performing the magnetizing operation on all the magnet pieces 3 arranged at equal intervals all around the rotor core 2, the magnetization efficiency to both end portions of each magnet piece 3 is improved, and the magnet It is possible to improve the magnetization of the piece 3. If the magnetization ratio in the magnet piece 3 is low, demagnetization is likely to occur, which causes a decrease in the efficiency of the rotating electrical machine, and an increase in torque ripple causes a problem such as generation of noise during rotation. If the rotor 1 magnetized by the magnetizing device 1 is used, demagnetization is difficult and torque ripple can be suppressed, so that the rotation characteristics of the rotor 1 can be improved.

なお、従来技術の着磁装置では、磁石ヘッドの周方向幅が磁石片の周方向幅より小さいため、個々の磁石片を完全に着磁するのに複数回の着磁操作が必要となるため、ダイレクトドライブモータのような回転電機の回転子1が大径であり、磁石片3の数も多い場合には、全体の磁石片3を着磁するには、着磁時間が大幅にかかってしまう。これに対して、この実施の形態1の構成による着磁装置4を用いれば、1回の着磁操作で互いに隣り合う2つの磁石片3を互いに極性が異なるように2極ずつ同時に着磁できるため、従来に比べて着磁時間を大幅に短縮することが可能となる。   In the prior art magnetizing apparatus, since the circumferential width of the magnet head is smaller than the circumferential width of the magnet pieces, multiple magnetizing operations are required to completely magnetize the individual magnet pieces. When the rotor 1 of a rotating electrical machine such as a direct drive motor has a large diameter and the number of magnet pieces 3 is large, it takes much time to magnetize the entire magnet piece 3 I will. On the other hand, two magnet pieces 3 adjacent to each other can be simultaneously magnetized so that their polarities differ from each other by one magnetization operation using the magnetizing device 4 having the configuration of the first embodiment. Therefore, it is possible to significantly shorten the magnetization time as compared with the prior art.

実施の形態2.
図5は、この発明の実施の形態2による着磁装置を用いて回転子の磁石片を着磁する部分を拡大した平面図である。
Second Embodiment
FIG. 5 is an enlarged plan view of a portion of a rotor for magnetizing a magnet piece using a magnetizing device according to a second embodiment of the present invention.

この実施の形態2における着磁装置4は、実施の形態1(図1〜図3)に示した構成の一対の着磁コイル5a、5bに対して、磁石片3の配列方向に沿った左右外側の位置に各着磁コイル5a、5bの巻数より少ない巻数の補助コイル6a、6bがそれぞれ巻装されている。   The magnetizing device 4 in the second embodiment is the left and right along the arrangement direction of the magnet pieces 3 with respect to the pair of magnetizing coils 5a and 5b having the configuration shown in the first embodiment (FIGS. 1 to 3). Auxiliary coils 6a and 6b each having a number of turns smaller than the number of turns of each of the magnetizing coils 5a and 5b are wound around the outer position.

実施の形態1の構成と同様、隣り合う着磁コイル5a、5bは、極間に対して巻回の方向が互いに逆となるように形成されている。また、各々の補助コイル6a、6bについても、同様に、隣り合うそれぞれの着磁コイル5a、5bと巻回の方向が逆となるように巻装されている。   Similar to the configuration of the first embodiment, adjacent magnetizing coils 5a and 5b are formed such that the winding directions are opposite to each other between the poles. Further, the respective auxiliary coils 6a and 6b are also wound so that the direction of winding is opposite to that of the adjacent magnetizing coils 5a and 5b.

しかも、この場合の補助コイル6の磁石片3の配列方向に沿った幅をαとしたとき、
α<θ1 ……(2)
の関係を満たすように設定されている。
Moreover, when the width of the auxiliary coil 6 in this case along the arrangement direction of the magnet pieces 3 is α,
α <θ 1 (2)
It is set to satisfy the relationship.

回転子1の磁石片3を着磁するために、着磁コイル5a、5b及び補助コイル6a、6bに大電流のパルス電流が印加される。このパルス電流の印加により、図5の破線で示すように、着磁コイル5a及びこれに隣り合う着磁コイル5bには磁束線Pが矢印の方向発生し、また、一方の着磁コイル5a及びこれに隣り合う補助コイル6aには磁束線Qaが矢印の方向発生し、また、他方の着磁コイル5b及びこれに隣り合う補助コイル6bには磁束線Qbが矢印の方向に発生する。   In order to magnetize the magnet piece 3 of the rotor 1, a pulse current of a large current is applied to the magnetizing coils 5a, 5b and the auxiliary coils 6a, 6b. By the application of this pulse current, as shown by the broken line in FIG. 5, magnetic flux lines P are generated in the direction of the arrow in the magnetizing coil 5a and the magnetizing coil 5b adjacent thereto, and one magnetizing coil 5a and A magnetic flux line Qa is generated in the direction of the arrow in the auxiliary coil 6a adjacent to this, and a magnetic flux line Qb is generated in the direction of the arrow in the other magnetized coil 5b and the auxiliary coil 6b adjacent thereto.

ここで、個々の磁石片3を区別するために、図5において互いに隣り合う4つの磁石片に対して図5の左側から符号3c、3a、3b、3dを付すとすれば、磁束線Pは、主に着磁対象の磁石片3a、3b内を通過し、これらの磁石片3a、3bが磁化される。磁束線Qa、Qbは、主に着磁対象である互いに隣り合う磁石片3a、3bの左右に位置する未着磁の磁石片3c、3d内の一端部を通過し、さらに着磁対象の磁石片3a、3bの端部も通過する。   Here, in order to distinguish the individual magnet pieces 3, assuming that the reference numerals 3c, 3a, 3b, 3d are given from the left side of FIG. 5 to the four magnet pieces adjacent to each other in FIG. Mainly passes through the magnet pieces 3a and 3b to be magnetized, and the magnet pieces 3a and 3b are magnetized. The magnetic flux lines Qa and Qb pass through one end in the unmagnetized magnet pieces 3c and 3d located on the left and right of the adjacent magnet pieces 3a and 3b which are mainly to be magnetized, and further to be magnetized The ends of the pieces 3a, 3b also pass.

ダイレクトドライブモータのような、大径で磁石片3を複数個使用する回転子1において、コギングトルクを低減するために、互いの磁石片3の間隔が狭く設定されているため、着磁対象の磁石片3a、3bと、着磁対象の磁石片3a、3bの隣に位置する未着磁の磁石片3c、3dとの間隔が近いと、着磁コイル5a、5bの漏れ磁束の影響により、未着磁の磁石片3c、3d内に、本来の磁化方向と反対の逆磁界が印加される可能性が高まり、着磁率の低下を招いてしまう。   In the rotor 1 using a plurality of magnet pieces 3 with a large diameter, such as a direct drive motor, the distance between the magnet pieces 3 is set to be narrow in order to reduce the cogging torque. If the distance between the magnet pieces 3a and 3b and the unmagnetized magnet pieces 3c and 3d located next to the magnet pieces 3a and 3b to be magnetized is close, the leakage flux of the magnetizing coils 5a and 5b causes the effects of In the unmagnetized magnet pieces 3c and 3d, the possibility that a reverse magnetic field opposite to the original magnetization direction is applied is increased, resulting in a decrease in the magnetization rate.

これに対して、この実施の形態2の構成のように、一対の着磁コイル5a、5bの隣り合う左右位置にそれぞれ補助コイル6a、6bを配置、かつ補助コイル6の磁石片3の配列方向に沿った幅αを磁石片3の配列ピッチθ1よりも小さく(α<θ1)設定することで、着磁コイル5a、5bの漏れ磁束の影響を打ち消し、図5に示した磁束線Qa、Qbの向きで着磁されるため、着磁対象の磁石片3a、3bの両隣の磁石片3c、3d内に逆磁界が生じるのを抑制することが可能となる。   On the other hand, as in the configuration of the second embodiment, auxiliary coils 6a and 6b are arranged at the left and right positions adjacent to a pair of magnetized coils 5a and 5b, respectively, and the arrangement direction of magnet pieces 3 of auxiliary coil 6 By setting the width α along the direction smaller than the arrangement pitch θ1 of the magnet pieces 3 (α <θ1), the influence of the leakage flux of the magnetizing coils 5a and 5b is cancelled, and the magnetic flux lines Qa and Qb shown in FIG. It is possible to suppress the generation of a reverse magnetic field in the magnet pieces 3c and 3d adjacent to the magnet pieces 3a and 3b to be magnetized.

なお、各補助コイル6a、6bの磁石片3の配列方向に沿った幅αは、上記の(2)式を満たす必要があるが、磁石片3の形状、間隔に応じて、逆磁界の影響を最も低減できるように幅αを設定するのが好ましい。   The width α along the arrangement direction of the magnet pieces 3 of each of the auxiliary coils 6a and 6b needs to satisfy the above equation (2), but depending on the shape and spacing of the magnet pieces 3, the influence of the reverse magnetic field It is preferable to set the width α so as to reduce the

その他の構成、及び作用効果は、実施の形態1の場合と同様であるから、ここでは詳しい説明は省略する。   Other configurations and effects are the same as in the case of the first embodiment, and thus detailed description will be omitted here.

その他の実施の形態.
なお、この発明は、上記の実施の形態1、2の構成のみに限定されるものではなく、この発明の趣旨を逸脱しない範囲内において、各実施の形態1、2の構成の一部を変更したり、その構成を省略することができ、また、各実施の形態1、2の構成を適宜組み合わせることが可能である。
Other Embodiments
The present invention is not limited to only the configurations of the first and second embodiments described above, and a part of the configuration of each of the first and second embodiments is modified without departing from the scope of the present invention. Alternatively, the configuration can be omitted, and the configurations of the first and second embodiments can be combined as appropriate.

すなわち、上記の実施の形態1、2では、ダイレクトドライブモータの回転子1を例にとって説明したが、これに限定されるものでなく、複数の磁石片3を備える大径の回転子1または固定子にこの発明を適用してもよい。   That is, in the above-described first and second embodiments, although the rotor 1 of the direct drive motor has been described as an example, the present invention is not limited to this, and the large diameter rotor 1 having a plurality of magnet pieces 3 or fixing The present invention may be applied to children.

また、上記の実施の形態1、2に示す回転子1は、磁石片3を30個用いているが、他の個数のものでも適用できる。また、表面磁石型の回転子1に限定されるものでなく、鉄心内に磁石片3を埋め込んだ埋込磁石型の回転子1または固定子であってもよい。   Moreover, although the rotor 1 shown to said Embodiment 1, 2 uses 30 magnet pieces 3, it is applicable also with another number. Further, the present invention is not limited to the surface magnet type rotor 1 and may be an embedded magnet type rotor 1 or a stator in which the magnet pieces 3 are embedded in an iron core.

また、磁石片3の形状は、外周と内周とがともに円弧である瓦型、外周面が円弧であり内周面が直線であるかまぼこ型、外周と内周とがともに直線である平板型など、いずれの形状であってもよい。   Further, the shape of the magnet piece 3 is a tile type whose outer and inner circumferences are both arcs, a semicylindrical type whose outer peripheral surface is an arc and whose inner peripheral surfaces are straight, and a flat type whose both outer and inner circumferences are straight. For example, any shape may be used.

このような構成の回転子または固定子を用いることで、全周に配置された全ての磁石片の内部に逆磁界が生じることを抑制しながら着磁することができるため、高効率、低騒音の回転電機を提供できる。さらに、1つの着磁装置で複数種類の回転子または固定子の磁石片へ着磁できるため、投資抑制に繋がり、低コストの回転電機を提供できる。   By using the rotor or stator having such a configuration, it is possible to magnetize while suppressing the occurrence of a reverse magnetic field inside all the magnet pieces disposed all around, so that high efficiency and low noise can be achieved. Can provide a rotating electric machine. Furthermore, since it is possible to magnetize the magnet pieces of a plurality of types of rotors or stators with one magnetizing device, investment can be reduced, and a low cost rotating electric machine can be provided.

さらに、上記の説明では、回転子または固定子に設けられた磁石片を着磁する場合について説明したが、これに限らず、リニアモータの固定子のベース上に沿って配列配置された複数の未着磁の磁石片を着磁する場合にもこの発明を適用することが可能である。この場合、上記(1)、(2)式に示したβ、θ1、θ2、αは角度単位ではなく長さの単位が採用される。   Furthermore, in the above description, the case of magnetizing the magnet pieces provided on the rotor or the stator has been described, but the present invention is not limited thereto, and a plurality of linear motors arranged along the base of the linear motor stator The present invention is also applicable to the case of magnetizing an unmagnetized magnet piece. In this case, a unit of length is employed instead of an angle unit as β, θ 1, θ 2 and α shown in the above equations (1) and (2).

1 回転子、2 回転子鉄心、3,3a,3b,3c,3d 磁石片、4 着磁装置、5a,5b 着磁コイル、6a,6b 補助コイル、7 着磁ヨーク、
θ1 磁石片の配列ピッチ、θ2 磁石片の配列方向の幅、
β 各着磁コイルの磁石片の配列方向に沿った幅、
α 補助コイルの磁石片の配列方向に沿った幅。
DESCRIPTION OF SYMBOLS 1 rotor, 2 rotor core, 3, 3a, 3b, 3c, 3d magnet piece, 4 magnetization apparatus, 5a, 5b magnetization coil, 6a, 6b auxiliary coil, 7 magnetization yoke,
Array pitch of θ1 magnet segments, width of θ2 magnet segments in the array direction,
β Width along the arrangement direction of the magnet pieces of each magnetizing coil,
α Width along the arrangement direction of the magnet pieces of the auxiliary coil.

Claims (4)

等間隔に配列された複数の未着磁の磁石片について、互いに隣り合う磁石片同士の極性が互いに異なるように着磁する着磁装置であって、
上記磁石片の着磁用の左右一対の着磁コイルを備え、各々の上記着磁コイルの上記磁石片の配列方向に沿った幅をβ、上記磁石片の配列ピッチをθ1、上記磁石片の配列方向の幅をθ2としたとき、
θ1<β<θ1+(θ1−θ2)/2
の関係を満たすように設定されていることを特徴とする着磁装置。
A magnetizing apparatus which magnetizes the plurality of unmagnetized magnet pieces arranged at equal intervals so that the polarities of the adjacent magnet pieces are different from each other,
The left and right magnetizing coils for magnetizing the magnet pieces are provided, the width along the arrangement direction of the magnet pieces of each magnetizing coil is β, the arrangement pitch of the magnet pieces is θ1, and the magnet pieces are When the width in the array direction is θ2,
θ1 <β <θ1 + (θ1−θ2) / 2
A magnetizing device characterized in that it is set to satisfy the following relationship.
一対の上記着磁コイルに対して、その上記磁石片の配列方向に沿った左右外側の位置には上記着磁コイルの巻数より少ない巻数の補助コイルがそれぞれ巻装されていることを特徴とする請求項1に記載の着磁装置。 An auxiliary coil having a number of turns smaller than the number of turns of the magnetizing coil is wound around the pair of magnetizing coils at the left and right outer positions along the arrangement direction of the magnet pieces. The magnetizing device according to claim 1. 各々の上記補助コイルは、その上記磁石片の配列方向に沿った幅をαとしたとき、
α<θ1
の関係を満たすように設定されていることを特徴とする請求項2に記載の着磁装置。
When the width of each of the auxiliary coils along the arrangement direction of the magnet pieces is α,
α <θ1
The magnetizing device according to claim 2, wherein the magnetizing device is set to satisfy the following relationship:
請求項1から請求項3のいずれか1項に記載の着磁装置を用い、上記磁石片の配列方向に沿って一対の上記着磁コイルが着磁済の磁石片の位置から次の着磁対象となる2つの隣り合う磁石片に対して位置するように移動させる移動工程と、上記移動工程後に上記着磁コイルに通電して2つの上記磁石片の極性が互いに異なるように2極同時に着磁する着磁工程と、を含むことを特徴とする着磁方法。 The magnetizing device according to any one of claims 1 to 3, wherein a pair of the magnetizing coils are magnetized in the direction of arrangement of the magnet pieces from the position of the magnet piece which has been magnetized. The moving step of moving so as to be positioned with respect to two adjacent magnet pieces to be targeted, and after the moving step, the magnetizing coil is energized and two poles are simultaneously attached so that the polarities of the two magnet pieces are different from each other. And a magnetizing step of magnetizing.
JP2017081284A 2017-04-17 2017-04-17 Magnetizing device and magnetizing method Pending JP2018182118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017081284A JP2018182118A (en) 2017-04-17 2017-04-17 Magnetizing device and magnetizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017081284A JP2018182118A (en) 2017-04-17 2017-04-17 Magnetizing device and magnetizing method

Publications (1)

Publication Number Publication Date
JP2018182118A true JP2018182118A (en) 2018-11-15

Family

ID=64276114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017081284A Pending JP2018182118A (en) 2017-04-17 2017-04-17 Magnetizing device and magnetizing method

Country Status (1)

Country Link
JP (1) JP2018182118A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113890290A (en) * 2021-09-22 2022-01-04 华中科技大学 Magnetizing coil magnetic field regulation and control method
CN114301247A (en) * 2021-12-28 2022-04-08 华中科技大学 Integral magnetizing method and device for multi-pole motor
JP7572477B2 (en) 2023-02-24 2024-10-23 本田技研工業株式会社 Magnetizing device and magnetizing method
JP7572478B2 (en) 2023-02-24 2024-10-23 本田技研工業株式会社 Magnetizing device and magnetizing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113890290A (en) * 2021-09-22 2022-01-04 华中科技大学 Magnetizing coil magnetic field regulation and control method
CN114301247A (en) * 2021-12-28 2022-04-08 华中科技大学 Integral magnetizing method and device for multi-pole motor
CN114301247B (en) * 2021-12-28 2023-02-10 华中科技大学 Integral magnetizing method and device for multi-pole motor
JP7572477B2 (en) 2023-02-24 2024-10-23 本田技研工業株式会社 Magnetizing device and magnetizing method
JP7572478B2 (en) 2023-02-24 2024-10-23 本田技研工業株式会社 Magnetizing device and magnetizing method

Similar Documents

Publication Publication Date Title
US7595575B2 (en) Motor/generator to reduce cogging torque
TW201112583A (en) Permanent magnet type synchronous motor
JP2010130818A (en) Method for manufacturing field element
JP5889155B2 (en) Magnetizing apparatus and magnetizing method
JP2013055872A (en) Switched reluctance motor
CN102308460B (en) Electric machine
US9601952B2 (en) Magnet embedded rotor and method of manufacturing the magnet embedded rotor
JP2005045984A (en) Rotor for permanent magnet synchronous motor
JP2018182118A (en) Magnetizing device and magnetizing method
JP2010279185A (en) Rotor for axial gap type rotary electric machine
JP2018082600A (en) Double-rotor dynamoelectric machine
JP5365049B2 (en) Rotating machine, radial type rotating machine, and method for determining back yoke thickness in rotating machine
KR101398702B1 (en) Motor with variable magnet flux
JP7047337B2 (en) Permanent magnet type rotary electric machine
JP2004072820A (en) Magnetizing jig for rotor of ac motor, and manufacturing method using it
JP2014039355A (en) Driving device and driving method
JP5041415B2 (en) Axial gap type motor
JP2005204477A (en) Apparatus and method for polarizing dynamo-electric machine
JP2017204961A (en) Dynamo-electric machine
JP2020191692A (en) Motor device
JP6589703B2 (en) Rotating electric machine
JP6385064B2 (en) Permanent magnet motor, magnetizing method and manufacturing method thereof
JP2017143663A (en) Embedded magnet type rotary machine
JP2015231253A (en) Magnet and dynamo-electric machine including the same
KR102622640B1 (en) Magnetic device of double spoke type rotor