[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018171321A - Circulation liquid control device and method of controlling circulation liquid - Google Patents

Circulation liquid control device and method of controlling circulation liquid Download PDF

Info

Publication number
JP2018171321A
JP2018171321A JP2017072021A JP2017072021A JP2018171321A JP 2018171321 A JP2018171321 A JP 2018171321A JP 2017072021 A JP2017072021 A JP 2017072021A JP 2017072021 A JP2017072021 A JP 2017072021A JP 2018171321 A JP2018171321 A JP 2018171321A
Authority
JP
Japan
Prior art keywords
liquid
classifier
storage tank
concentrated
circulating fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017072021A
Other languages
Japanese (ja)
Inventor
義郎 山羽
Yoshiro Yamaha
義郎 山羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2017072021A priority Critical patent/JP2018171321A/en
Publication of JP2018171321A publication Critical patent/JP2018171321A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Physical Water Treatments (AREA)
  • Hydroponics (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a circulation liquid control device and a method of controlling a circulation liquid capable of efficiently irradiating microbes contaminating a liquid phase with ultraviolet and improving the deactivation rate of the microbe even in the case of low ultraviolet transmittance of the liquid while maintaining a total amount of the liquid used circularly in a facility as long as possible.SOLUTION: There is provided a circulation liquid control device 10 used for a facility 2 comprising a circulation circuit 1 circulating the liquid in which microbes breed accompanying the use thereof. The device is equipped with: a classification part 20 separating by centrifugal separation, a microbe-including liquid circulating in the circuit 1 into a concentrated liquid in which the microbe is concentrated and a non-concentration liquid in which the concentrated liquid is removed; a deactivation treatment part 30 deactivation-treating the microbe in the concentrated liquid classified by the classification part 20 by ultraviolet irradiation; and a rotary flow part 40 returning the non-concentration liquid and the concentrated liquid after deactivation treatment into the circulation circuit 1.SELECTED DRAWING: Figure 1

Description

本発明は、設備での使用に伴って微生物が繁殖する液を管理する技術に関する。   The present invention relates to a technique for managing a liquid in which microorganisms propagate with use in equipment.

この種の設備としては、例えば工作機械設備が知られている。従来から、切削や研削等の金属加工をする工作機械設備において、潤滑や冷却を目的として水溶性切削油が用いられている。この種の水溶性切削油は、工作機械設備で潤滑や冷却に用いられた後、工作機械設備から切削油を供給する循環回路中に戻されて再利用される。ここで、この種の水溶性切削油は、設備での循環使用に伴って液相に細菌等の微生物が混入し、その微生物が液相中で次第に繁殖して異臭が発生する場合がある。このような異臭は、設備での作業環境を悪化させるのみならず、工作機械付属の切削油ノズルの詰まりの発生により流量が変化し、工作対象物の品質に影響する加工条件の悪化を引き起こすという問題がある。   For example, machine tool equipment is known as this type of equipment. Conventionally, water-soluble cutting oil has been used for the purpose of lubrication and cooling in machine tool equipment that performs metal processing such as cutting and grinding. This type of water-soluble cutting oil is used for lubrication and cooling in machine tool equipment, and then returned to the circulation circuit for supplying cutting oil from the machine tool equipment and reused. Here, with this type of water-soluble cutting oil, microorganisms such as bacteria may be mixed in the liquid phase with the circulation use in the equipment, and the microorganisms may gradually propagate in the liquid phase to generate a strange odor. Such a strange odor not only worsens the working environment in the facility, but also changes the flow rate due to the clogging of the cutting oil nozzle attached to the machine tool, causing deterioration of machining conditions affecting the quality of the workpiece. There's a problem.

そこで、この種の問題を解決する技術として、例えば特許文献1には、液に混入している微生物に紫外線を照射する紫外線照射装置が開示されている。同文献記載の技術では、設備で使用される液を薄膜化し、その薄膜化した部分に紫外線ランプで紫外線を照射する。同文献記載の技術によれば、液を薄膜化した部分に紫外線を照射するので、液の紫外線透過率が低い場合であっても、その液相に混入した微生物に紫外線を照射して不活化することができる。   Therefore, as a technique for solving this type of problem, for example, Patent Document 1 discloses an ultraviolet irradiation device that irradiates a microorganism mixed in a liquid with ultraviolet rays. In the technique described in this document, the liquid used in the facility is thinned, and the thinned portion is irradiated with ultraviolet rays by an ultraviolet lamp. According to the technique described in the same document, ultraviolet light is irradiated to the thinned part of the liquid, so that even when the liquid has a low ultraviolet transmittance, the microorganisms mixed in the liquid phase are irradiated with ultraviolet light and inactivated. can do.

特開2011−25676号公報JP 2011-25676 A

しかしながら、特許文献1記載の紫外線照射装置は、設備で使用される液の全量を紫外線の照射対象としており、液の全量に対して順次に薄膜化を行って紫外線を照射するので、設備で使用される液全体に存する微生物に対して効率的に紫外線を照射する上で改善の余地がある。   However, the ultraviolet irradiation device described in Patent Document 1 is intended for ultraviolet irradiation of the entire amount of liquid used in the facility, and is used in the facility because the entire amount of liquid is irradiated with ultraviolet rays after being thinned sequentially. There is room for improvement in efficiently irradiating the microorganisms existing in the whole liquid with ultraviolet rays.

そこで、本発明は、このような問題点に着目してなされたものであって、設備で循環使用される液の総量を可及的に維持しつつ、液の紫外線透過率が低い場合であっても、液相に混入した細菌等の微生物に対して効率的に紫外線を照射でき、微生物の不活化率を向上させ得る循環液管理装置および循環液の管理方法を提供することを課題とする。   Therefore, the present invention has been made paying attention to such problems, and is a case where the total amount of liquid circulated and used in the facility is maintained as much as possible while the ultraviolet transmittance of the liquid is low. However, it is an object of the present invention to provide a circulating fluid management apparatus and a circulating fluid management method capable of efficiently irradiating ultraviolet rays to microorganisms such as bacteria mixed in the liquid phase and improving the inactivation rate of the microorganisms. .

上記課題を解決するために、本発明のうち、本発明の一態様に係る循環液管理装置は、使用に伴って微生物が繁殖する液を循環させる循環回路を備える設備に用いられる循環液管理装置であって、前記循環回路を循環する前記液中の微生物を遠心分離により濃縮した濃縮液と該濃縮液を前記液から除いた非濃縮液とに分ける分級部と、前記分級部で分級された濃縮液に紫外線を照射して当該濃縮液中の微生物を不活化処理する不活化処理部と、前記非濃縮液および前記不活化処理後の濃縮液を前記循環回路中に戻す環流部と、を備えることを特徴とする。   In order to solve the above-mentioned problems, a circulating fluid management device according to one aspect of the present invention is a circulating fluid management device used in equipment including a circulation circuit that circulates a fluid in which microorganisms propagate with use. A classification part for separating the concentrated microorganisms in the liquid circulating through the circulation circuit into a concentrated liquid by centrifugation and a non-concentrated liquid obtained by removing the concentrated liquid from the liquid; An inactivation treatment unit for irradiating the concentrate with ultraviolet rays to inactivate microorganisms in the concentrate, and a reflux unit for returning the non-concentrated liquid and the inactivated concentrate to the circulation circuit. It is characterized by providing.

本発明の一態様に係る循環液管理装置によれば、分級部により、設備の循環回路で使用される液を遠心分離により分級できる。そして、不活化処理部により、分級部で分級された微生物を含む濃縮液に対し、紫外線を照射して不活化処理を行えるので、設備で使用される液の全量を紫外線の照射対象とする技術に比べて、非濃縮液を紫外線の照射対象から除外できる。そのため、液の紫外線透過率が低い場合であっても、液相に混入した微生物に対して高いエネルギー効率で効率的に紫外線を照射できる。そして、本発明の一態様に係る循環液管理装置によれば、環流部により、非濃縮液と不活化処理後の濃縮液とを循環回路中に戻すので、設備で循環使用される液の総量を可及的に維持できる。   According to the circulating fluid management apparatus according to one aspect of the present invention, the liquid used in the circulating circuit of the facility can be classified by centrifugation using the classification unit. And since the inactivation treatment can be performed by irradiating the concentrated liquid containing the microorganisms classified in the classification section by irradiating with ultraviolet rays, the technology to make the total amount of the liquid used in the equipment to be irradiated with ultraviolet rays In comparison with the above, the non-concentrated liquid can be excluded from the ultraviolet irradiation target. Therefore, even when the ultraviolet transmittance of the liquid is low, it is possible to efficiently irradiate the microorganisms mixed in the liquid phase with high energy efficiency. And according to the circulating fluid management apparatus concerning one mode of the present invention, the non-concentrated liquid and the concentrated liquid after the inactivation treatment are returned to the circulating circuit by the circulating portion, so that the total amount of the liquid that is circulated in the facility Can be maintained as much as possible.

また、上記課題を解決するために、本発明の一態様に係る循環液の管理方法は、設備で循環されて使用されその使用に伴って微生物が繁殖する液を管理する方法であって、前記液を、微生物を含む濃縮液と該濃縮液を前記液から除いた非濃縮液とに遠心分離により分級する分級工程と、前記分級工程で分級された濃縮液にのみ深紫外線を照射して濃縮液中の微生物を不活化処理する不活化処理工程と、前記非濃縮液と前記不活化処理後の濃縮液とを前記液中に戻す環流工程と、を含むことを特徴とする。   In order to solve the above problems, a method for managing a circulating liquid according to an aspect of the present invention is a method for managing a liquid that is used by being circulated in equipment and propagates microorganisms as it is used. The liquid is classified into a concentrated liquid containing microorganisms and a non-concentrated liquid obtained by removing the concentrated liquid from the liquid by centrifugation, and the concentrated liquid classified in the classification process is irradiated with deep ultraviolet rays for concentration. An inactivation treatment step for inactivating microorganisms in the liquid; and a reflux step for returning the non-concentrated liquid and the concentrated liquid after the inactivation treatment to the liquid.

本発明の一態様に係る循環液の管理方法によれば、分級工程にて、設備で循環使用される液を遠心分離により分級し、不活化処理工程にて、微生物を含む濃縮液のみに対して深紫外線の照射により不活化処理を行うので、設備で使用される液の全量を紫外線の照射対象とする技術に比べて、非濃縮液を紫外線の照射対象から除外できる。そのため、液相に混入した微生物に対して高いエネルギー効率で効率的に紫外線を照射できる。そして、本発明に係る循環液の管理方法によれば、環流工程にて、非濃縮液と不活化処理後の濃縮液とを液中に戻すので、設備で循環使用される液の総量を可及的に維持できる。   According to the method for managing a circulating liquid according to one aspect of the present invention, in the classification process, the liquid that is circulated and used in the equipment is classified by centrifugation, and in the inactivation process, only the concentrated liquid containing microorganisms is classified. Therefore, the non-concentrated liquid can be excluded from the ultraviolet irradiation target as compared with the technique in which the entire amount of the liquid used in the facility is the target of the ultraviolet irradiation. Therefore, ultraviolet rays can be efficiently irradiated with high energy efficiency to microorganisms mixed in the liquid phase. According to the method for managing the circulating liquid according to the present invention, the non-concentrated liquid and the concentrated liquid after the inactivation treatment are returned to the liquid in the recirculation process. Can be maintained as much as possible.

ここで、本明細書において、「微生物」とは、菌・ウィルスを含む上位概念であり、例えば、被処理水中の耐塩素微生物のクリプトスポリジウムや他の微生物・大腸菌等の菌類・ウィルス・藻類等を含むものと定義する。   Here, in the present specification, “microorganism” is a superordinate concept including fungi and viruses, such as chlorine-resistant microorganisms Cryptosporidium and other microorganisms such as Escherichia coli, viruses, and algae in treated water. Is defined as including.

また、本明細書において、「濃縮液」とは、処理対象の微生物が分級の結果、より多く在する側の液を意味するものと定義する。つまり、液に対して処理対象となる微生物の比重が重い場合には、遠心分離の外周側が濃縮液である。他方、液に対して処理対象となる微生物の比重が軽い場合には、遠心分離の内周側が濃縮液である。   Further, in this specification, “concentrated liquid” is defined to mean a liquid on the side where more microorganisms to be treated are present as a result of classification. That is, when the specific gravity of the microorganism to be processed is heavy relative to the liquid, the outer peripheral side of the centrifugation is the concentrated liquid. On the other hand, when the specific gravity of the microorganism to be processed is light relative to the liquid, the inner peripheral side of the centrifugation is the concentrated liquid.

上述のように、本発明によれば、設備で循環使用される液の総量を可及的に維持しつつ、液の紫外線透過率が低い場合であっても、液相に混入した微生物に対して効率的に紫外線を照射でき、微生物の不活化率を向上させることができる。   As described above, according to the present invention, it is possible to prevent microorganisms mixed in the liquid phase even when the ultraviolet transmittance of the liquid is low while maintaining the total amount of the liquid circulated and used in the facility as much as possible. Therefore, it is possible to efficiently irradiate ultraviolet rays and improve the inactivation rate of microorganisms.

本発明の一態様に係る循環液管理装置を備える設備の第一実施形態を示す模式図である。It is a mimetic diagram showing a first embodiment of equipment provided with a circulating fluid management device concerning one mode of the present invention. 本発明の一態様に係る循環液管理装置を備える設備の第二実施形態を示す模式図である。It is a schematic diagram which shows 2nd embodiment of the installation provided with the circulating fluid management apparatus which concerns on 1 aspect of this invention. 本発明の一態様に係る循環液管理装置を備える設備の第三実施形態を示す模式図である。It is a schematic diagram which shows 3rd embodiment of the installation provided with the circulating fluid management apparatus which concerns on 1 aspect of this invention. 本発明の一態様に係る循環液管理装置を備える設備の第四実施形態を示す模式図である。It is a schematic diagram which shows 4th embodiment of the installation provided with the circulating fluid management apparatus which concerns on 1 aspect of this invention. 本発明の一態様に係る循環液管理装置を備える設備の第五実施形態を示す模式図である。It is a schematic diagram which shows 5th embodiment of the equipment provided with the circulating fluid management apparatus which concerns on 1 aspect of this invention. 本発明の一態様に係る循環液管理装置を備える設備の第六実施形態を示す模式図である。It is a schematic diagram which shows 6th embodiment of the equipment provided with the circulating fluid management apparatus which concerns on 1 aspect of this invention. 本発明の一態様に係る循環液管理装置を備える設備の第七実施形態を示す模式図である。It is a schematic diagram which shows 7th embodiment of the equipment provided with the circulating fluid management apparatus which concerns on 1 aspect of this invention.

以下、本発明の各実施形態について、図面を適宜参照しつつ説明する。なお、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。また、以下に示す各実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態に特定するものではない。   Hereinafter, each embodiment of the present invention will be described with reference to the drawings as appropriate. The drawings are schematic. For this reason, it should be noted that the relationship between the thickness and the planar dimension, the ratio, and the like are different from the actual ones, and the dimensional relationship and the ratio are different between the drawings. In addition, each embodiment shown below exemplifies an apparatus and a method for embodying the technical idea of the present invention, and the technical idea of the present invention is the material, shape, structure, The arrangement and the like are not specified in the following embodiments.

[第一実施形態]
まず、第一実施形態について図1を参照しつつ説明する。なお、第一実施形態の例は、本発明の基本構造を説明するものである。
同図に示すように、第一実施形態の循環液管理装置10は、循環回路1を備える設備2に用いられる。設備2は、循環回路1に、使用に伴って微生物が繁殖する液を循環するものであれば種々の設備を対象とすることができる。本実施形態の設備2は、例えば機械加工工場における、切削や研削等の金属加工をする工作機械設備である。また、循環回路1を循環する液は、例えば工作機械設備で用いられる水溶性切削油である(以下、単に「切削油」ともいう)。
[First embodiment]
First, a first embodiment will be described with reference to FIG. In addition, the example of 1st embodiment demonstrates the basic structure of this invention.
As shown in the figure, the circulating fluid management device 10 of the first embodiment is used for equipment 2 including a circulating circuit 1. The equipment 2 can be a variety of equipment as long as it circulates in the circulation circuit 1 a liquid in which microorganisms propagate with use. The facility 2 of this embodiment is a machine tool facility that performs metal processing such as cutting and grinding in a machining factory, for example. Further, the liquid circulating in the circulation circuit 1 is, for example, water-soluble cutting oil used in machine tool equipment (hereinafter also simply referred to as “cutting oil”).

循環回路1は、設備2の上流側に接続された一次側管路7と、設備2の下流側に接続された二次側管路8とを有し、これら管路7、8が切削油を循環可能に配管される。第一実施形態では、一次側管路7と二次側管路8との間に循環液管理装置10が介装されている。循環液管理装置10の上流側には第一ポンプ5が設けられ、不活化処理に必要な切削油が所望流量および所望圧で循環液管理装置10に供給可能になっている。   The circulation circuit 1 has a primary side pipe line 7 connected to the upstream side of the equipment 2 and a secondary side pipe line 8 connected to the downstream side of the equipment 2, and these pipe lines 7 and 8 are cutting oil. The piping is circulated. In the first embodiment, the circulating fluid management device 10 is interposed between the primary side pipe line 7 and the secondary side pipe line 8. A first pump 5 is provided on the upstream side of the circulating fluid management device 10 so that cutting oil necessary for the inactivation process can be supplied to the circulating fluid management device 10 at a desired flow rate and a desired pressure.

循環液管理装置10は、サイクロン式の分級機20を備える。分級機20は、円錐状のサイクロン部を有し、第一ポンプ5からの導入管路は、サイクロン部の大径部側の側部に接続される。また、分級機20は、大径部の上部中央が、相対比重の軽い分級液を吐出するオーバーフロー管路に接続され、サイクロン部の小径部の下部中央が、相対比重の重い分級液を吐出するアンダーフロー管路に接続される。   The circulating fluid management device 10 includes a cyclone classifier 20. The classifier 20 has a conical cyclone part, and the introduction pipe line from the first pump 5 is connected to the side of the cyclone part on the large diameter part side. In the classifier 20, the upper center of the large-diameter portion is connected to an overflow pipe that discharges a classification liquid having a low relative specific gravity, and the lower center of the small-diameter portion of the cyclone section discharges a classification liquid having a high relative specific gravity. Connected to the underflow line.

分級機20は、第一ポンプ5から所望流量および所望圧で導入管路から導入された切削油が、サイクロン部内でフィードチャンバに沿った高速の旋回流とされ、遠心分離により、相対比重の軽い分級液がオーバーフロー管路に導かれ、相対比重の重い分級液がアンダーフロー管路に導かれるようになっている。   In the classifier 20, the cutting oil introduced from the first pump 5 at a desired flow rate and pressure at a desired flow rate is turned into a high-speed swirl flow along the feed chamber in the cyclone section, and has a low relative specific gravity by centrifugation. The classification liquid is led to the overflow pipe, and the classification liquid having a high relative specific gravity is led to the underflow pipe.

ここで、第一実施形態の循環液管理装置10では、不活化処理の処理対象となる微生物は、切削油よりも比重が重いものを想定した例である。つまり、本実施形態では、分級の結果、処理対象の微生物がより多く在する側の「濃縮液」は、アンダーフロー管路に導かれることになり、濃縮液を除いた「非濃縮液」は、オーバーフロー管路に導かれる。   Here, in the circulating fluid management apparatus 10 according to the first embodiment, the microorganism that is the target of the inactivation process is an example assuming that the specific gravity is heavier than the cutting oil. That is, in this embodiment, as a result of classification, the “concentrated liquid” on the side where more microorganisms to be processed are present is led to the underflow pipe, and the “non-concentrated liquid” excluding the concentrated liquid is Led to the overflow line.

以下、本明細書では、「濃縮液」が導かれる管路を第一送液路41とよび、「非濃縮液」が導かれる管路を第二送液路42とよぶ。第一送液路41および第二送液路42は、いずれも上記一次側管路7に合流する環流部40を構成するように配管され、非濃縮液および不活化処理後の濃縮液が循環回路1中に戻るようになっている。   Hereinafter, in this specification, the conduit through which the “concentrated liquid” is guided is referred to as a first liquid supply path 41, and the conduit through which the “non-concentrated liquid” is guided is referred to as a second liquid supply path 42. Both the first liquid supply path 41 and the second liquid supply path 42 are piped so as to constitute the circulating portion 40 that joins the primary side pipe 7, and the non-concentrated liquid and the inactivated concentrated liquid circulate. It returns to the circuit 1.

第一実施形態の循環液管理装置10では、第一送液路41の途中部分に、紫外線照射器30が付設されている。紫外線照射器30は、濃縮液中の微生物を不活化処理する不活化処理部であり、深紫外線を照射する一または複数の深紫外LED31を有する。
第一実施形態の紫外線照射器30は、分級機20の下部に配置され、第一送液路41を囲繞するように且つ第一送液路41に沿って複数の深紫外LED31が配置されている。なお、第一送液路41は、紫外線照射器30を設置する箇所が、石英ガラス等の紫外線透過性の高い材料によって形成されている。
また、深紫外LED31は、不活化効果の高い波長(例えば、265nm近辺)のUV−Cを効率良く発光する深紫外LEDが用いられている。これにより、サイクロン部において分級された切削油の濃縮液は、第一送液路41の深紫外LED31に対向する位置を通過時に、深紫外線が照射されて不活化されるようになっている。
In the circulating fluid management apparatus 10 of the first embodiment, an ultraviolet irradiator 30 is attached to the middle portion of the first liquid feeding path 41. The ultraviolet irradiator 30 is an inactivation processing unit that inactivates microorganisms in the concentrated liquid, and includes one or a plurality of deep ultraviolet LEDs 31 that irradiate deep ultraviolet rays.
The ultraviolet irradiator 30 of the first embodiment is arranged at the lower part of the classifier 20, and a plurality of deep ultraviolet LEDs 31 are arranged so as to surround the first liquid feeding path 41 and along the first liquid feeding path 41. Yes. In addition, as for the 1st liquid supply path 41, the location in which the ultraviolet irradiator 30 is installed is formed of a material having high ultraviolet transparency such as quartz glass.
The deep ultraviolet LED 31 is a deep ultraviolet LED that efficiently emits UV-C having a wavelength with a high inactivation effect (for example, around 265 nm). As a result, the concentrated concentrate of the cutting oil classified in the cyclone portion is inactivated by irradiation with deep ultraviolet rays when passing through the position of the first liquid supply passage 41 facing the deep ultraviolet LED 31.

次に、第一実施形態の循環液管理装置10およびこれを用いた循環液の管理方法の作用効果について説明する。
第一実施形態の設備2は、上述したように、工作機械設備であり、循環回路1の一次側管路7から切削油が設備2に供給される。切削油は、設備2において切削や研削等の金属加工をする際に潤滑や冷却に用いられる。その後、切削油は、二次側管路8から循環回路1中に戻されて再利用される。
Next, the effect of the circulating fluid management apparatus 10 of the first embodiment and the circulating fluid management method using the same will be described.
As described above, the facility 2 of the first embodiment is a machine tool facility, and the cutting oil is supplied to the facility 2 from the primary side pipe 7 of the circulation circuit 1. The cutting oil is used for lubrication and cooling when performing metal processing such as cutting and grinding in the equipment 2. Thereafter, the cutting oil is returned from the secondary side pipe line 8 into the circulation circuit 1 and reused.

ここで、この種の水溶性切削油は、循環使用していると、工作機械設備における機械加工時の熱や外気温の上昇に伴う熱などにより、細菌等の微生物が繁殖して異臭を発生する場合がある。このような異臭は、作業環境を悪化させることがある。そこで、第一実施形態の設備2は、循環回路1に装備した循環液管理装置10により循環液を管理し、設備で循環使用される液の総量を可及的に維持しつつ、液の紫外線透過率が低い場合であっても、液相に混入した微生物に対して効率的に紫外線を照射し、微生物の不活化率を向上させている。   Here, when this type of water-soluble cutting oil is used in a circulating manner, microorganisms such as bacteria propagate due to heat generated during machining in machine tool equipment and heat accompanying an increase in the outside air temperature, and a strange odor is generated. There is a case. Such off-flavors can worsen the work environment. Therefore, the facility 2 of the first embodiment manages the circulating fluid by the circulating fluid management device 10 provided in the circulation circuit 1, and maintains the total amount of the fluid that is circulated and used in the facility as much as possible, while maintaining the ultraviolet rays of the fluid. Even when the transmittance is low, the microorganisms mixed in the liquid phase are efficiently irradiated with ultraviolet rays to improve the inactivation rate of the microorganisms.

つまり、第一実施形態では、循環回路1において第一ポンプ5が駆動されると、第一ポンプ5の吐出側の分級機20に導入された切削油は、微生物を含む濃縮液と該濃縮液を切削油から除いた非濃縮液とに遠心分離により分級される(分級工程)。次いで、濃縮液は、第一送液路41に導入されるが、第一送液路41には、濃縮液中の微生物を不活化処理可能な紫外線照射器30が付設されているので、分級機20による分級工程で分級された濃縮液にのみ深紫外線を照射して濃縮液中の微生物を不活化処理することができる(不活化処理工程)。そして、上述したように、第一送液路41および第二送液路42は、いずれも一次側管路7に合流する環流部40を構成するので、非濃縮液および不活化処理後の濃縮液が循環回路1中に戻される(環流工程)。   That is, in the first embodiment, when the first pump 5 is driven in the circulation circuit 1, the cutting oil introduced into the classifier 20 on the discharge side of the first pump 5 is a concentrated liquid containing microorganisms and the concentrated liquid. Is classified by centrifugation into a non-concentrated liquid from which cutting oil has been removed (classification step). Next, the concentrated liquid is introduced into the first liquid supply path 41. Since the first liquid supply path 41 is provided with an ultraviolet irradiator 30 that can inactivate microorganisms in the concentrated liquid, classification is performed. Only the concentrated liquid classified in the classification process by the machine 20 can be irradiated with deep ultraviolet rays to inactivate microorganisms in the concentrated liquid (inactivation processing process). And as above-mentioned, since both the 1st liquid supply path 41 and the 2nd liquid supply path 42 comprise the reflux part 40 which merges with the primary side pipe line 7, the concentration after a non-concentrated liquid and an inactivation process The liquid is returned to the circulation circuit 1 (circulation process).

このように、第一実施形態の循環液管理装置10およびこれを用いる循環液の管理方法によれば、分級機20により、設備2の循環回路1で使用される切削油を遠心分離により分級できる。そして、紫外線照射器30により、分級機20で分級された微生物を含む濃縮液のみに対し、深紫外線を照射して不活化処理を行える。そのため、設備で使用される切削油の全量を紫外線の照射対象とする技術に比べて、非濃縮液を紫外線の照射対象から除外できる。したがって、切削油の紫外線透過率が低い場合であっても、液相に混入した微生物に対して高いエネルギー効率で効率的に深紫外線を照射できる。そして、この循環液管理装置10によれば、環流部40により、非濃縮液と不活化処理後の濃縮液とを循環回路1中に戻すので、設備2で循環使用される切削油の総量を可及的に維持できる。   Thus, according to the circulating fluid management apparatus 10 of the first embodiment and the circulating fluid management method using the same, the cutting oil used in the circulating circuit 1 of the equipment 2 can be classified by centrifugation by the classifier 20. . And only the concentrated liquid containing the microorganisms classified by the classifier 20 can be inactivated by irradiating deep ultraviolet rays with the ultraviolet irradiator 30. Therefore, the non-concentrated liquid can be excluded from the ultraviolet irradiation target as compared with the technique in which the entire amount of the cutting oil used in the facility is the target of the ultraviolet irradiation. Therefore, even when the ultraviolet transmittance of the cutting oil is low, it is possible to efficiently irradiate the microorganisms mixed in the liquid phase with deep ultraviolet rays with high energy efficiency. And according to this circulating fluid management device 10, since the non-concentrated liquid and the concentrated liquid after the inactivation treatment are returned to the circulation circuit 1 by the circulating portion 40, the total amount of cutting oil circulated and used in the facility 2 is reduced. It can be maintained as much as possible.

[第二実施形態]
次に、第二実施形態について図2を参照しつつ説明する。第二実施形態の例は、第一実施形態に対して、工作機械設備に適用する上で好適な構成例を付加したものである。そのため、以下、第一実施形態に付加した構成例とそれに伴う作用効果を説明し、第一実施形態に対応する構成には同一の符号を付すとともにその説明を適宜省略する。
[Second Embodiment]
Next, a second embodiment will be described with reference to FIG. The example of 2nd embodiment adds the example of a suitable structure when applying to machine tool equipment with respect to 1st embodiment. Therefore, hereinafter, a configuration example added to the first embodiment and the operation effect associated therewith will be described. The components corresponding to the first embodiment are denoted by the same reference numerals and the description thereof will be omitted as appropriate.

図2に示すように、第二実施形態に係る循環回路1は、設備2で用いられる切削油を設備2の上流側で貯留する第一貯留槽3と、設備2と、設備2で用いられた切削油を設備2の下流側で貯留する第二貯留槽4と、をこの順に循環させるものである。なお、第二実施形態のシステム全体は、不図示の制御部(例えば管理用のコンピュータ)によって制御される。   As shown in FIG. 2, the circulation circuit 1 according to the second embodiment is used in the first storage tank 3 that stores the cutting oil used in the facility 2 on the upstream side of the facility 2, the facility 2, and the facility 2. The second storage tank 4 that stores the cutting oil on the downstream side of the facility 2 is circulated in this order. In addition, the whole system of 2nd embodiment is controlled by the control part (for example, computer for management) not shown.

循環回路1の二次側管路8は、第二貯留槽4に連通しており、設備2内の切削油を第二貯留槽4に供給するように配管される。また、一次側管路7は、第一貯留槽3から設備2内に切削油を供給するように配管される。第二貯留槽4には、例えばサイクロン式の濾過装置が内蔵され、使用済みの切削油に含まれるスラッジや加工滓を槽内で速やかに沈殿させ、そのスラッジや加工滓を含む廃液を廃棄物槽9に集積して分離可能になっている。第二貯留槽4で濾過後の切削油は、第一ポンプ5の駆動により、第二貯留槽4から第一貯留槽3に向けて送出される。   The secondary side pipe line 8 of the circulation circuit 1 communicates with the second storage tank 4 and is piped so as to supply the cutting oil in the facility 2 to the second storage tank 4. Further, the primary side pipe line 7 is piped so as to supply cutting oil from the first storage tank 3 into the facility 2. In the second storage tank 4, for example, a cyclone type filtration device is built in, and sludge and processing soot contained in the used cutting oil are quickly settled in the tank, and the waste liquid containing the sludge and processing soot is disposed of as waste. It can be separated and accumulated in the tank 9. The cutting oil filtered in the second storage tank 4 is sent from the second storage tank 4 toward the first storage tank 3 by driving the first pump 5.

第一貯留槽3および第二貯留槽4には、槽内の油量を検知する不図示の液面検知器が設けられる。液面検知器は、各槽内に貯留される切削油の液面の高さを検知し、その高さを示す信号を制御部に送信する。また、一次側管路7の途中には、揚液用の第二ポンプ6および不図示の圧力センサが設けられる。圧力センサは、一次側管路7の圧力を随時に測定し、制御部は、当該測定圧を監視して、適圧を維持するように第二ポンプ6を駆動し、第一貯留槽3から設備2内に送出される切削油の供給状態を安定的に制御する。   The first storage tank 3 and the second storage tank 4 are provided with a liquid level detector (not shown) that detects the amount of oil in the tank. A liquid level detector detects the height of the liquid level of the cutting oil stored in each tank, and transmits a signal indicating the height to the control unit. A second pump 6 for pumping liquid and a pressure sensor (not shown) are provided in the middle of the primary side pipe line 7. The pressure sensor measures the pressure of the primary side pipe line 7 at any time, and the control unit monitors the measurement pressure and drives the second pump 6 so as to maintain the appropriate pressure. The supply state of the cutting oil delivered into the facility 2 is stably controlled.

また、制御部は、各貯留槽3、4の液面検出器の信号から各貯留槽3、4の液面高さを検知し、液面が所定高さを維持するように、二つのポンプ5、6を駆動して、第一貯留槽3に第二貯留槽4内の切削油を適宜供給する。また、制御部は、設備2側の稼働信号を受信し、設備2側の稼働状況に応じて、一次側管路7に設けられた第二ポンプ6を適切に稼働する。設備2側は、工作機械の潤滑や冷却に用いた切削油を第二貯留槽4に向けて二次側管路8に導出する。これにより、第二実施形態では、切削油は、第一貯留槽3、設備2および第二貯留槽4をこの順に安定して循環して再利用される。   Further, the control unit detects the liquid level height of each storage tank 3 and 4 from the signal of the liquid level detector of each storage tank 3 and 4, and the two pumps so that the liquid level maintains a predetermined height. 5 and 6 are driven, and the cutting oil in the second storage tank 4 is appropriately supplied to the first storage tank 3. Moreover, a control part receives the operation signal by the side of the installation 2, and operates the 2nd pump 6 provided in the primary side pipe line 7 appropriately according to the operating condition by the side of the installation 2. On the equipment 2 side, the cutting oil used for lubrication and cooling of the machine tool is led to the secondary reservoir 8 toward the second storage tank 4. Thereby, in 2nd embodiment, cutting oil circulates through the 1st storage tank 3, equipment 2, and the 2nd storage tank 4 stably in this order, and is reused.

ここで、第二貯留槽4と第一貯留槽3との間には、第一実施形態同様の、循環液管理装置10が介装されている。循環液管理装置10は、切削油の濃縮液を分級するサイクロン部が装備された一または複数の分級機20と、一または複数の紫外線照射器30とを備える。第二実施形態では、一台の分級機20と一台の紫外線照射器30とを有する。第二実施形態の循環回路1では、第二貯留槽4で濾過後の切削油が、循環液管理装置10介して不活化処理された後に、第一貯留槽3に貯留されて再利用される。   Here, between the 2nd storage tank 4 and the 1st storage tank 3, the circulating fluid management apparatus 10 similar to 1st embodiment is interposed. The circulating fluid management apparatus 10 includes one or a plurality of classifiers 20 equipped with a cyclone unit that classifies the concentrated concentrate of cutting oil, and one or a plurality of ultraviolet irradiators 30. In the second embodiment, one classifier 20 and one ultraviolet irradiator 30 are provided. In the circulation circuit 1 of the second embodiment, the cutting oil filtered in the second storage tank 4 is inactivated through the circulating fluid management device 10 and then stored in the first storage tank 3 and reused. .

また、第二実施形態の循環回路1では、制御部が第一ポンプ5を必要に応じて駆動して、第二貯留槽4内の切削油を揚水して分級機20のサイクロン部に供給する。サイクロン部に供給された切削油は、遠心分離により濃縮液と非濃縮液とに分級される。そして、制御部は、不活化処理部である紫外線照射器30を動作させ、分級部で分級された微生物を含む濃縮液に対し、深紫外線を照射して不活化処理を実行する。切削油の濃縮液に対して深紫外線を照射することで、切削油中の微生物が不活化される。不活化された濃縮液は、環流部40から第一貯留槽3に貯留される。よって、第一貯留槽3には、不純物が除去されるとともに、不活化処理された管理状態の良い切削油が貯留される。   In the circulation circuit 1 of the second embodiment, the control unit drives the first pump 5 as necessary to pump up the cutting oil in the second storage tank 4 and supply it to the cyclone unit of the classifier 20. . The cutting oil supplied to the cyclone section is classified into a concentrated liquid and a non-concentrated liquid by centrifugation. And a control part operates the ultraviolet irradiation device 30 which is an inactivation process part, and irradiates deep ultraviolet rays with respect to the concentrate containing the microorganisms classified by the classification part, and performs an inactivation process. The microorganisms in the cutting oil are inactivated by irradiating the concentrated oil of the cutting oil with deep ultraviolet rays. The inactivated concentrated liquid is stored in the first storage tank 3 from the circulating portion 40. Therefore, the first storage tank 3 stores the cutting oil in which the impurities are removed and the inactivated processing is in a good management state.

このように、第二実施形態によれば、第二貯留槽4と第一貯留槽3との間に、循環液管理装置10が介装され、第二貯留槽4で濾過後の切削油は、循環液管理装置10介して不活化処理された後に、第一貯留槽3に供給されて再利用される。よって、第二実施形態によれば、上述した第一実施形態の作用効果に加え、第二貯留槽4で不純物を除去できるとともに、循環液管理装置10に対しても、不純物が除去された切削油を導入できるため、分級工程での分級品質を向上させる上で好適である。   Thus, according to the second embodiment, the circulating fluid management device 10 is interposed between the second storage tank 4 and the first storage tank 3, and the cutting oil filtered in the second storage tank 4 is Then, after being inactivated through the circulating fluid management device 10, it is supplied to the first storage tank 3 and reused. Therefore, according to the second embodiment, in addition to the operational effects of the first embodiment described above, impurities can be removed in the second storage tank 4, and also the circulating fluid management device 10 has the impurities removed. Since oil can be introduced, it is suitable for improving the classification quality in the classification process.

[第三実施形態]
次に、第三実施形態について図3を参照しつつ説明する。第三実施形態の例は、第二実施形態に対して、設備の操業状況によらず循環液管理装置10を適用する上で好適な構成例を示すものである。そのため、以下、第二実施形態と相違する構成とそれに伴う作用効果を説明し、第二実施形態に対応する構成には同一の符号を付すとともにその説明を適宜省略する。
[Third embodiment]
Next, a third embodiment will be described with reference to FIG. The example of a 3rd embodiment shows the example of composition suitable when applying circulating fluid management device 10 to the 2nd embodiment irrespective of the operation situation of facilities. Therefore, the configuration different from that of the second embodiment and the operation effect associated therewith will be described below. The configuration corresponding to the second embodiment is denoted by the same reference numeral and the description thereof is omitted as appropriate.

第三実施形態では、第一ポンプ5に替えて、第一のポンプ5Aおよび第三のポンプ5Bを設けた点が第二実施形態と相違する。第一のポンプ5Aは、吐出側管路11が第一貯留槽3に直接接続されている。そして、第三のポンプ5Bは、揚液側管路12が第一貯留槽3に接続されるとともに、吐出側管路13が分級機20のサイクロン部に接続されている。   The third embodiment is different from the second embodiment in that a first pump 5A and a third pump 5B are provided in place of the first pump 5. In the first pump 5 </ b> A, the discharge side pipe 11 is directly connected to the first storage tank 3. In the third pump 5 </ b> B, the pumping side pipe 12 is connected to the first storage tank 3, and the discharge side pipe 13 is connected to the cyclone portion of the classifier 20.

第三実施形態によれば、循環液管理装置10は、循環回路1での切削油の循環状況によらずに、単独で、第一貯留槽3に貯留されている切削油に対して不活化処理を行うことができる。そのため、上述した第一ないし第二実施形態の作用効果に加え、設備2が稼働していない場合であっても、第一貯留槽3に貯留されている切削油の不活化処理がいつでも行える。したがって、例えば工場が夏季休業や冬季休業等の長期休業中であっても、液相に混入した微生物に対して効率的に紫外線を照射できるので、微生物の不活化率を向上させる上で好適である。ここで放熱性向上の観点から、循環液管理装置10は第1貯留槽3内に配置される事も好ましい。   According to the third embodiment, the circulating fluid management device 10 is inactivated independently of the cutting oil stored in the first storage tank 3 regardless of the cutting oil circulation state in the circulation circuit 1. Processing can be performed. Therefore, in addition to the effects of the first to second embodiments described above, the inactivation process of the cutting oil stored in the first storage tank 3 can be performed at any time even when the facility 2 is not operating. Therefore, for example, even if the factory is closed for a long time such as summer holidays and winter holidays, it is possible to efficiently irradiate the microorganisms mixed in the liquid phase with ultraviolet rays, which is suitable for improving the inactivation rate of the microorganisms. is there. Here, from the viewpoint of improving heat dissipation, the circulating fluid management device 10 is also preferably disposed in the first storage tank 3.

[第四実施形態]
次に、第四実施形態について図4を参照しつつ説明する。第四実施形態の例は、第一実施形態に対して、循環液管理装置10の分級機および紫外線照射器を複数台装備する例である。第四実施形態では、二台の分級機および紫外線照射器を並列接続した例を示す。なお、第一実施形態に対応する構成には同一または対応する符号を付すとともにその説明を適宜省略する。
[Fourth embodiment]
Next, a fourth embodiment will be described with reference to FIG. The example of the fourth embodiment is an example in which a plurality of classifiers and ultraviolet irradiators of the circulating fluid management device 10 are installed in the first embodiment. The fourth embodiment shows an example in which two classifiers and an ultraviolet irradiator are connected in parallel. Note that components corresponding to those in the first embodiment are denoted by the same or corresponding reference numerals, and description thereof is omitted as appropriate.

図4に示すように、第四実施形態では、二台の分級機20A、20Bおよび二台の紫外線照射器30A、30Bを有する。第一ポンプ5は、吐出側管路が二分岐しており、各管路が二台の分級機20A、20Bのサイクロン部にそれぞれ接続されている。また、二台の紫外線照射器30A、30Bは、各分級機20A、20Bの第一送液路41の途中部分にそれぞれ付設されている。そして、各分級機20A、20Bそれぞれの第一送液路41は、各紫外線照射器30A、30Bよりも下流側で合流され、また、各分級機20A、20Bそれぞれの第二送液路42も下流側で合流されて環流部40を構成しており、循環回路1中に切削油が戻されるようになっている。
第四実施形態によれば、上述した第一実施形態の作用効果に加え、複数台の分級機および紫外線照射器を並列接続したので、台数の増加に応じて、不活化処理能力を増やすことができる。
As shown in FIG. 4, in the fourth embodiment, there are two classifiers 20A and 20B and two ultraviolet irradiators 30A and 30B. As for the 1st pump 5, the discharge side pipe line has branched into two, and each pipe line is connected to the cyclone part of two classifiers 20A and 20B, respectively. Further, the two ultraviolet irradiators 30A and 30B are attached to the middle portions of the first liquid supply passages 41 of the classifiers 20A and 20B, respectively. And each 1st liquid supply path 41 of each classifier 20A, 20B is merged downstream from each ultraviolet irradiation device 30A, 30B, and also each 2nd liquid supply path 42 of each classifier 20A, 20B is also. The recirculation portion 40 is formed by joining at the downstream side, and the cutting oil is returned into the circulation circuit 1.
According to the fourth embodiment, in addition to the effects of the first embodiment described above, a plurality of classifiers and ultraviolet irradiators are connected in parallel, so that the inactivation processing capacity can be increased as the number increases. it can.

[第五実施形態]
次に、第五実施形態について図5を参照しつつ説明する。第五実施形態の例は、第四実施形態に対して、複数台装備する分級機および紫外線照射器を直列接続した例である。なお、第四実施形態に対応する構成には同一または対応する符号を付すとともにその説明を適宜省略する。
[Fifth embodiment]
Next, a fifth embodiment will be described with reference to FIG. The example of the fifth embodiment is an example in which a plurality of classifiers and ultraviolet irradiators are connected in series to the fourth embodiment. The components corresponding to the fourth embodiment are denoted by the same or corresponding reference numerals, and the description thereof is omitted as appropriate.

図5に示すように、第五実施形態では、二台の分級機20A、20Bおよび二台の紫外線照射器30A、30Bを直列に接続している。第五実施形態では、二台のポンプ5A,5Bを備え、第一のポンプ5Aは、吐出側管路が第一分級機20Aのサイクロン部に接続されている。また、第二のポンプ5Bは、第一分級機20Aからの第二送液路42の途中に介装されている。   As shown in FIG. 5, in the fifth embodiment, two classifiers 20A and 20B and two ultraviolet irradiators 30A and 30B are connected in series. In the fifth embodiment, two pumps 5A and 5B are provided, and the first pump 5A has a discharge side pipe connected to the cyclone portion of the first classifier 20A. The second pump 5B is interposed in the middle of the second liquid supply path 42 from the first classifier 20A.

さらに、第一のポンプ5Aの第二送液路42は、第二のポンプ5Bのサイクロン部に接続されている。そして、第一の紫外線照射器30Aは、第一分級機20Aの第一送液路41に付設され、また、第二の紫外線照射器30Bは、第二分級機20Bの第一送液路41に付設されている。そして、各分級機20A、20Bそれぞれの第一送液路41は、各紫外線照射器30A、30Bよりも下流側で合流され、第二分級機20Bの第二送液路42と第一送液路41とにより環流部40を構成しており、循環回路1中に切削油が戻されるようになっている。   Furthermore, the 2nd liquid supply path 42 of the 1st pump 5A is connected to the cyclone part of the 2nd pump 5B. The first ultraviolet irradiator 30A is attached to the first liquid delivery path 41 of the first classifier 20A, and the second ultraviolet irradiator 30B is the first liquid delivery path 41 of the second classifier 20B. Is attached. And each 1st liquid supply path 41 of each classifier 20A, 20B joins downstream from each ultraviolet irradiation device 30A, 30B, and the 2nd liquid supply path 42 of the 2nd classifier 20B and 1st liquid supply. The circulation part 40 is constituted by the path 41, and the cutting oil is returned into the circulation circuit 1.

第五実施形態によれば、上述した第一実施形態の作用効果に加え、複数台の分級機および紫外線照射器を直列接続したので、台数の増加に応じて、よりきめ細かい不活化処理を実行する上で好適である。例えば、処理対象のねらい目となる微生物の種類が複数あって、それらの比重が異なる場合であっても、ねらい目となる微生物の比重に応じた分級を行ってそれぞれの比重に適した段階的な分級を行える。
第五実施形態の例であれば、一段目の第一分級機20Aと第一の紫外線照射器30Aとによって、最も比重の大きな第一の処理対象となる微生物の濃縮液を不活化処理し、さらに、二段目の第二分級機20Bと第二の紫外線照射器30Bとによって、第一の処理対象よりも小さい比重の第二の処理対象となる微生物の濃縮液を不活化処理する等の処理を実行できる。
According to the fifth embodiment, in addition to the effects of the first embodiment described above, since a plurality of classifiers and ultraviolet irradiators are connected in series, a finer inactivation process is executed as the number increases. Preferred above. For example, even if there are multiple types of target microorganisms to be treated and their specific gravity is different, classification according to the specific gravity of the target microorganisms is performed and stepwise suitable for each specific gravity. Can be classified easily.
In the case of the fifth embodiment, the first stage classifier 20A and the first ultraviolet irradiator 30A are used to inactivate the concentrated liquid of the microorganism having the largest specific gravity, Further, the second stage classifier 20B and the second ultraviolet irradiator 30B inactivate the concentrated liquid of the microorganism that is the second processing target having a specific gravity smaller than that of the first processing target. Processing can be executed.

[第六実施形態]
次に、第六実施形態について図6を参照しつつ説明する。第六実施形態の例は、第一実施形態に対して、複数台の分級機を直列接続した例である。第六実施形態では、二台の分級機20A、20Bを直列接続し、最終段の分級機20Bの第一送液路41に一台の紫外線照射器30を設けた例を示す。なお、第一実施形態に対応する構成には同一または対応する符号を付すとともにその説明を適宜省略する。
[Sixth embodiment]
Next, a sixth embodiment will be described with reference to FIG. The example of the sixth embodiment is an example in which a plurality of classifiers are connected in series to the first embodiment. In the sixth embodiment, an example is shown in which two classifiers 20A and 20B are connected in series, and one ultraviolet irradiator 30 is provided in the first liquid supply path 41 of the final classifier 20B. Note that components corresponding to those in the first embodiment are denoted by the same or corresponding reference numerals, and description thereof is omitted as appropriate.

図6に示すように、第六実施形態では、第一ポンプ5の吐出側管路が第一分級機20Aのサイクロン部に接続され、さらに、第一分級機20Aのアンダーフロー管路43が第二分級機20Bのサイクロン部に接続されている。二台の分級機20A、20Bのオーバーフロー管路は合流して第二送液路42とされている。そして、第二分級機20Bのアンダーフロー管路が第一送液路41とされ、この第一送液路41の途中部分に一台の紫外線照射器30が設けられている。   As shown in FIG. 6, in the sixth embodiment, the discharge side pipe line of the first pump 5 is connected to the cyclone portion of the first classifier 20A, and the underflow pipe line 43 of the first classifier 20A is the first one. It is connected to the cyclone section of the two classifier 20B. The overflow pipes of the two classifiers 20A and 20B merge to form a second liquid feeding path 42. The underflow line of the second classifier 20 </ b> B serves as the first liquid supply path 41, and one ultraviolet irradiator 30 is provided in the middle of the first liquid supply path 41.

第六実施形態によれば、上述した第一実施形態の作用効果に加え、複数台の分級機を直列接続し、最終段の分級機20Bの第一送液路41に一台の紫外線照射器30を設けたので、分級機の台数の増加に応じて、微生物を含む濃縮液の濃縮度をより向上させることができる。そのため、液相に混入した微生物に対して高いエネルギー効率で効率的に紫外線を照射する上で好適である。   According to the sixth embodiment, in addition to the effects of the first embodiment described above, a plurality of classifiers are connected in series, and one ultraviolet irradiator is provided in the first liquid supply path 41 of the final classifier 20B. Since 30 is provided, the concentration of the concentrated liquid containing microorganisms can be further improved as the number of classifiers increases. Therefore, it is suitable for efficiently irradiating the microorganisms mixed in the liquid phase with high energy efficiency.

[第七実施形態]
次に、第七実施形態について図7を参照しつつ説明する。第七実施形態の例は、第一実施形態に対し、処理対象となる「濃縮液」が逆の構成例である。ここで、上述したように、本明細書で「濃縮液」とは、処理対象の微生物が分級の結果、より多く在する側の液を意味する。つまり、液に対して処理対象となる微生物の比重が重い場合には、遠心分離の外周側が濃縮液であり、他方、液に対して処理対象となる微生物の比重が軽い場合には、遠心分離の内周側が濃縮液である。
[Seventh embodiment]
Next, a seventh embodiment will be described with reference to FIG. The example of the seventh embodiment is a configuration example in which the “concentrated liquid” to be processed is opposite to the first embodiment. Here, as described above, the “concentrated liquid” in this specification means a liquid on the side where more microorganisms to be treated exist as a result of classification. That is, when the specific gravity of the microorganism to be processed is heavy with respect to the liquid, the outer peripheral side of the centrifugation is the concentrated liquid, while when the specific gravity of the microorganism to be processed with respect to the liquid is light, the centrifugal separation is performed. The inner peripheral side is a concentrate.

よって、第七実施形態では、分級機20のサイクロン部で分級され、オーバーフロー管路に導かれる比重が軽い液が「濃縮液」となるため、オーバーフロー管路側が第一送液路41とされ、他方のアンダーフロー管路側が第二送液路42とされている。そして、第一送液路41に紫外線照射器30が設けられ、不活化処理が行われる。   Therefore, in the seventh embodiment, the liquid that is classified in the cyclone portion of the classifier 20 and that has a low specific gravity led to the overflow pipe is “concentrated liquid”, and therefore, the overflow pipe side is the first liquid feed path 41. The other underflow pipe side is a second liquid feeding path 42. And the ultraviolet irradiation device 30 is provided in the 1st liquid supply path 41, and an inactivation process is performed.

以上説明したように、本発明の各実施形態によれば、切削油を濃縮液にしてから深紫外線を照射できるので、透過性の低い切削油であっても深紫外線が微生物に届き、切削油中の微生物を確実に不活化できる。よって、透過性の低い切削油であっても不活化率を向上させることができる。
そして、環流部により、非濃縮液および不活化処理後の濃縮液を循環回路中に戻すので、設備で循環使用される液の総量を可及的に維持しつつ、液の紫外線透過率が低い場合であっても、液相に混入した微生物に対して効率的に紫外線を照射でき、微生物の不活化率を向上させることができる。
As described above, according to the embodiments of the present invention, since the cutting oil can be irradiated with deep ultraviolet rays after being concentrated, the deep ultraviolet rays reach the microorganisms even if the cutting oil has low permeability. It is possible to reliably inactivate microorganisms inside. Therefore, even if it is a cutting oil with low permeability, an inactivation rate can be improved.
And since the non-concentrated liquid and the concentrated liquid after the inactivation treatment are returned to the circulation circuit by the circulating portion, the ultraviolet ray transmittance of the liquid is low while maintaining the total amount of liquid circulated in the facility as much as possible. Even in this case, the microorganisms mixed in the liquid phase can be efficiently irradiated with ultraviolet rays, and the inactivation rate of the microorganisms can be improved.

なお、本発明に係る循環液管理装置は、上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しなければ種々の変形が可能である。例えば、上記各実施形態の構成を相互に組合せることができる。
例えば、上記各実施形態では、使用に伴って微生物が繁殖する液として、水溶性切削油を例とし、また、そのような液を循環させる循環回路を備える設備として、機械加工工場の工作機械設備を例に説明したが、これに限定されない。つまり、本発明に係る循環液管理装置および循環液の管理方法は、使用に伴って微生物が繁殖する液を循環させる循環回路を備える設備であれば、種々のものに適用できる。例えば、設備が、植物工場の植物栽培設備であり、液は、植物栽培設備で植物を栽培するために用いられる栄養水であっても、本発明に係る循環液管理装置および循環液の管理方法を好適に採用することができる。
また、例えば、設備がプールであり、液は、プールの水であっても、本発明に係る循環液管理装置および循環液の管理方法を好適に採用することができる。また、例えば、設備が車の塗装工場であり、液は、塗装液の乾燥に用いる空気を加湿するための水であっても、本発明に係る循環液管理装置および循環液の管理方法を好適に採用することができる。この場合、加湿用の水に地下水を使用する際に発生する藻の繁殖を抑制する事が可能となる。
The circulating fluid management device according to the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, the configurations of the above embodiments can be combined with each other.
For example, in each of the above-described embodiments, a water-soluble cutting oil is used as an example of a liquid in which microorganisms propagate with use, and a machine tool facility in a machining factory is provided as a facility having a circulation circuit for circulating such liquid. However, the present invention is not limited to this. That is, the circulating fluid management apparatus and the circulating fluid management method according to the present invention can be applied to various equipments provided with a circulation circuit that circulates a fluid in which microorganisms propagate with use. For example, even if the facility is a plant cultivation facility in a plant factory, and the liquid is nutrient water used for growing plants in the plant cultivation facility, the circulating fluid management apparatus and the circulating fluid management method according to the present invention Can be suitably employed.
Further, for example, even when the facility is a pool and the liquid is pool water, the circulating fluid management device and the circulating fluid management method according to the present invention can be suitably employed. Further, for example, even if the facility is a car painting factory and the liquid is water for humidifying the air used for drying the coating liquid, the circulating fluid management apparatus and the circulating fluid management method according to the present invention are suitable. Can be adopted. In this case, it is possible to suppress the growth of algae generated when groundwater is used for humidifying water.

また、例えば循環液管理装置の分級機や紫外線照射器を多段に設ける場合(上述した第四、第五実施形態等)には、直列接続のみ、並列接続のみに限らず、直列接続と並列接続とを適宜に組み合わせることができる。また、「濃縮液」とする対象も、遠心分離の外周側と内周側とを適宜の組み合わせにしてもよく、オーバーフロー管路側とアンダーフロー管路側との組合せから構成可能である。   In addition, for example, when the circulating fluid management device classifiers and ultraviolet irradiators are provided in multiple stages (the fourth and fifth embodiments described above), not only serial connection but also parallel connection, serial connection and parallel connection are not limited. Can be combined as appropriate. Further, the object to be “concentrated liquid” may be an appropriate combination of the outer peripheral side and the inner peripheral side of the centrifugal separation, and can be constituted by a combination of the overflow line side and the underflow line side.

例えば一段目の循環液管理装置においては、液よりも比重が重い微生物を含む液を濃縮液として第一送液路に導入して不活化処理し、次いで、二段目の循環液管理装置において、液より比重が軽い微生物を含む液を濃縮液として第一送液路に導入して不活化処理を行うように構成できる。   For example, in the first-stage circulating fluid management device, a liquid containing microorganisms having a heavier specific gravity than the liquid is introduced into the first liquid supply path as a concentrate and inactivated, and then in the second-stage circulating fluid management device. The liquid containing a microorganism having a lighter specific gravity than the liquid can be introduced into the first liquid feeding path as a concentrated liquid to perform inactivation treatment.

1 循環回路
2 設備
3 第一貯留槽(貯留槽)
4 第二貯留槽(貯留槽)
5 第一ポンプ(ポンプ)
6 第二ポンプ
7 一次側管路
8 二次側管路
9 廃棄物槽
10 循環液管理装置
20 分級機(分級部)
30 紫外線照射器(不活化処理部)
31 深紫外LED
40 環流部
41 第一送液路
42 第二送液路
1 Circulating circuit 2 Equipment 3 First storage tank (storage tank)
4 Second storage tank (storage tank)
5 First pump (pump)
6 Second pump 7 Primary side pipe 8 Secondary side pipe 9 Waste tank 10 Circulating fluid management device 20 Classifier (classification section)
30 UV irradiator (deactivation processing part)
31 Deep UV LED
40 Recirculation part 41 1st liquid supply path 42 2nd liquid supply path

Claims (11)

使用に伴って微生物が繁殖する液を循環させる循環回路を備える設備に用いられる循環液管理装置であって、
前記循環回路を循環する前記液中の微生物を遠心分離により濃縮した濃縮液と該濃縮液を前記液から除いた非濃縮液とに分ける分級部と、
前記分級部で分級された濃縮液に紫外線を照射して当該濃縮液中の微生物を不活化処理する不活化処理部と、
前記非濃縮液および前記不活化処理後の濃縮液を前記循環回路中に戻す環流部と、
を備えることを特徴とする循環液管理装置。
A circulating fluid management device used in equipment equipped with a circulation circuit that circulates a fluid in which microorganisms propagate with use,
A classifying unit that divides a concentrated liquid obtained by centrifuging microorganisms in the liquid circulating through the circulation circuit into a non-concentrated liquid obtained by removing the concentrated liquid from the liquid;
An inactivation treatment unit that inactivates microorganisms in the concentrate by irradiating the concentrated solution classified by the classification unit with ultraviolet rays;
A reflux section for returning the non-concentrated liquid and the inactivated concentrated liquid into the circulation circuit;
A circulating fluid management device comprising:
前記循環回路は、前記設備で用いられる液を貯留する貯留槽を備え、
前記分級部は、前記貯留槽から導入された液を遠心分離する分級機を有し、
前記環流部は、前記分級機で分級された前記濃縮液を前記貯留槽に送液する第一送液路と、前記分級機で分級された前記非濃縮液を前記貯留槽に送液する第二送液路とを有し、
前記不活化処理部は、前記第一送液路の途中部分に設けられて前記濃縮液中の微生物を深紫外線の照射により不活化処理する紫外線照射器を有する請求項1に記載の循環液管理装置。
The circulation circuit includes a storage tank for storing a liquid used in the facility,
The classifying unit has a classifier that centrifuges the liquid introduced from the storage tank,
The recirculation unit is configured to supply a first liquid supply path for supplying the concentrated liquid classified by the classifier to the storage tank, and a first liquid supply path for supplying the non-concentrated liquid classified by the classifier to the storage tank. Having two liquid feeding paths,
The circulating fluid management according to claim 1, wherein the inactivation processing unit includes an ultraviolet irradiator that is provided in an intermediate portion of the first liquid supply path and inactivates microorganisms in the concentrate by irradiation with deep ultraviolet rays. apparatus.
前記循環回路は、前記設備で用いられる液を前記設備の上流側で貯留する第一貯留槽と、前記設備と、前記設備で用いられた液を前記設備の下流側で貯留する第二貯留槽と、をこの順に循環させるものであり、
前記分級機は、前記第二貯留槽から導入された液を遠心分離するように設けられ、
前記第一送液路は、前記分級機で分級された前記濃縮液を前記第一貯留槽に送液するように配管され、前記第二送液路は、前記分級機で分級された前記非濃縮液を前記第一貯留槽に送液するように配管され、
前記紫外線照射器は、前記濃縮液中の微生物を深紫外線の照射により不活化処理するように前記第一送液路の途中部分に設けられている請求項2に記載の循環液管理装置。
The circulation circuit includes a first storage tank that stores the liquid used in the equipment on the upstream side of the equipment, the second storage tank that stores the liquid used in the equipment and the equipment on the downstream side of the equipment. And circulate in this order,
The classifier is provided to centrifuge the liquid introduced from the second storage tank,
The first liquid feeding path is piped so as to feed the concentrated liquid classified by the classifier to the first storage tank, and the second liquid feeding path is the non-classified by the classifier. Piped to send the concentrate to the first reservoir,
The circulating fluid management device according to claim 2, wherein the ultraviolet irradiator is provided in an intermediate portion of the first liquid feeding path so as to inactivate microorganisms in the concentrated liquid by irradiation with deep ultraviolet rays.
前記循環回路は、前記設備で用いられる液を前記設備の上流側で貯留する第一貯留槽と、前記設備と、前記設備で用いられた液を前記設備の下流側で貯留する第二貯留槽と、をこの順に循環させるものであり、
前記分級機は、前記第一貯留槽から導入された液を遠心分離するように設けられ、
前記第一送液路は、前記分級機で分級された前記濃縮液を前記第一貯留槽に戻すように配管され、前記第二送液路は、前記分級機で分級された前記非濃縮液を前記第一貯留槽に戻すように配管され、
前記紫外線照射器は、前記濃縮液中の微生物を深紫外線の照射により不活化処理するように前記第一送液路の途中部分に設けられている請求項2に記載の循環液管理装置。
The circulation circuit includes a first storage tank that stores the liquid used in the equipment on the upstream side of the equipment, the second storage tank that stores the liquid used in the equipment and the equipment on the downstream side of the equipment. And circulate in this order,
The classifier is provided to centrifuge the liquid introduced from the first storage tank,
The first liquid feeding path is piped so as to return the concentrated liquid classified by the classifier to the first storage tank, and the second liquid feeding path is the non-concentrated liquid classified by the classifier. Is piped back to the first storage tank,
The circulating fluid management device according to claim 2, wherein the ultraviolet irradiator is provided in an intermediate portion of the first liquid feeding path so as to inactivate microorganisms in the concentrated liquid by irradiation with deep ultraviolet rays.
前記紫外線照射器は、深紫外LEDを用いてUV−Cを照射する請求項2〜4のいずれか一項に記載の循環液管理装置。   The circulating fluid management device according to any one of claims 2 to 4, wherein the ultraviolet irradiator irradiates UV-C using a deep ultraviolet LED. 前記設備は、機械加工工場の工作機械設備であり、
前記液は、前記工作機械設備で用いられる切削油である請求項2〜5のいずれか一項に記載の循環液管理装置。
The facility is a machine tool facility of a machining factory,
The circulating fluid management device according to any one of claims 2 to 5, wherein the fluid is a cutting oil used in the machine tool facility.
前記設備は、植物工場の植物栽培設備であり、
前記液は、前記植物栽培設備で植物を栽培するために用いられる栄養水である請求項2〜5のいずれか一項に記載の循環液管理装置。
The facility is a plant cultivation facility of a plant factory,
The circulating fluid management device according to any one of claims 2 to 5, wherein the liquid is nutrient water used for cultivating a plant in the plant cultivation facility.
前記分級機は、複数台が並列に設けられ、各分級機の第一送液路の途中部分に、前記紫外線照射器がそれぞれ付設されている請求項2〜7のいずれか一項に記載の循環液管理装置。   The said classifier is provided with two or more units | sets in parallel, The said ultraviolet irradiation device is each attached to the middle part of the 1st liquid supply path of each classifier, Each of the classifiers as described in any one of Claims 2-7. Circulating fluid management device. 前記分級機は、複数台が直列に設けられ、各分級機の第一送液路の途中部分に、前記紫外線照射器がそれぞれ付設されている請求項2〜7のいずれか一項に記載の循環液管理装置。   The classifier is provided with a plurality of units in series, and the ultraviolet irradiator is attached to the middle part of the first liquid feeding path of each classifier, respectively. Circulating fluid management device. 前記分級機は、複数台が直列または並列に設けられ、最終段に配置された分級機の第一送液路の途中部分に、前記紫外線照射器が付設されている請求項2〜7のいずれか一項に記載の循環液管理装置。   A plurality of the classifiers are provided in series or in parallel, and the ultraviolet irradiator is attached to an intermediate portion of the first liquid supply path of the classifier disposed in the final stage. The circulating fluid management device according to claim 1. 設備で循環されて使用されその使用に伴って微生物が繁殖する液を管理する方法であって、
前記液を、微生物を含む濃縮液と該濃縮液を前記液から除いた非濃縮液とに遠心分離により分級する分級工程と、
前記分級工程で分級された濃縮液にのみ深紫外線を照射して当該濃縮液中の微生物を不活化処理する不活化処理工程と、
前記非濃縮液と前記不活化処理後の濃縮液とを前記液中に戻す環流工程と、
を含むことを特徴とする循環液の管理方法。
A method of managing a liquid that is circulated and used in equipment and in which microorganisms propagate along with the use,
A step of classifying the liquid by centrifugation into a concentrated liquid containing microorganisms and a non-concentrated liquid obtained by removing the concentrated liquid from the liquid;
An inactivation treatment step of inactivating microorganisms in the concentrate by irradiating deep ultraviolet rays only to the concentrate classified in the classification step;
A reflux step for returning the non-concentrated liquid and the concentrated liquid after the inactivation treatment to the liquid;
A method for managing circulating fluid, comprising:
JP2017072021A 2017-03-31 2017-03-31 Circulation liquid control device and method of controlling circulation liquid Pending JP2018171321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017072021A JP2018171321A (en) 2017-03-31 2017-03-31 Circulation liquid control device and method of controlling circulation liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017072021A JP2018171321A (en) 2017-03-31 2017-03-31 Circulation liquid control device and method of controlling circulation liquid

Publications (1)

Publication Number Publication Date
JP2018171321A true JP2018171321A (en) 2018-11-08

Family

ID=64107965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017072021A Pending JP2018171321A (en) 2017-03-31 2017-03-31 Circulation liquid control device and method of controlling circulation liquid

Country Status (1)

Country Link
JP (1) JP2018171321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7543179B2 (en) 2021-03-09 2024-09-02 東亜建設工業株式会社 Method and system for recovering plastic pieces

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04226851A (en) * 1990-08-28 1992-08-17 Furuno Electric Co Ltd Malodor removing device for water soluble cutting oil
JP2002051651A (en) * 2000-08-10 2002-02-19 Fuji Electric Co Ltd Water culture method and apparatus therefor
WO2004006969A1 (en) * 2002-07-11 2004-01-22 Sumitomo Electric Industries, Ltd. Porous semiconductor and process for producing the same
JP2005324110A (en) * 2004-05-13 2005-11-24 Matsushita Environment Airconditioning Eng Co Ltd Sewage treatment apparatus
JP2009154135A (en) * 2007-12-27 2009-07-16 Toshiba Corp Water treatment system
JP2012521896A (en) * 2009-03-25 2012-09-20 アプライド マテリアルズ インコーポレイテッド Point-of-use recycling system for CMP slurry
JP2013010104A (en) * 2004-11-17 2013-01-17 Ashland Licensing & Intellectual Property Llc Device and method for treating cooling fluid utilized in tire manufacturing
JP2013507244A (en) * 2009-10-16 2013-03-04 ウーシー ブライトスカイ エレクトロニック カンパニー リミテッド Ballast water treatment system
CN105084622A (en) * 2015-08-20 2015-11-25 深圳市天得一环境科技有限公司 Water-soluble cutting fluid cyclic recovery plant and recovery technique
JP2016158623A (en) * 2015-06-10 2016-09-05 株式会社タムロン Plant cultivation device, and plant factory

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04226851A (en) * 1990-08-28 1992-08-17 Furuno Electric Co Ltd Malodor removing device for water soluble cutting oil
JP2002051651A (en) * 2000-08-10 2002-02-19 Fuji Electric Co Ltd Water culture method and apparatus therefor
WO2004006969A1 (en) * 2002-07-11 2004-01-22 Sumitomo Electric Industries, Ltd. Porous semiconductor and process for producing the same
JP2005324110A (en) * 2004-05-13 2005-11-24 Matsushita Environment Airconditioning Eng Co Ltd Sewage treatment apparatus
JP2013010104A (en) * 2004-11-17 2013-01-17 Ashland Licensing & Intellectual Property Llc Device and method for treating cooling fluid utilized in tire manufacturing
JP2009154135A (en) * 2007-12-27 2009-07-16 Toshiba Corp Water treatment system
JP2012521896A (en) * 2009-03-25 2012-09-20 アプライド マテリアルズ インコーポレイテッド Point-of-use recycling system for CMP slurry
JP2013507244A (en) * 2009-10-16 2013-03-04 ウーシー ブライトスカイ エレクトロニック カンパニー リミテッド Ballast water treatment system
JP2016158623A (en) * 2015-06-10 2016-09-05 株式会社タムロン Plant cultivation device, and plant factory
CN105084622A (en) * 2015-08-20 2015-11-25 深圳市天得一环境科技有限公司 Water-soluble cutting fluid cyclic recovery plant and recovery technique

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7543179B2 (en) 2021-03-09 2024-09-02 東亜建設工業株式会社 Method and system for recovering plastic pieces

Similar Documents

Publication Publication Date Title
US6083387A (en) Apparatus for the disinfection of fluids
JP6722253B2 (en) Method and system for providing ultrapure water
US20170360069A1 (en) Method and device for treating foods and/or containers by means of a process liquid
US10724314B1 (en) Method and apparatus for collection, treatment, and recycling of oilfield drilling fluids and wastewater
JP2010000433A (en) Apparatus for producing refined water and method for sterilizing the same
JP2018171321A (en) Circulation liquid control device and method of controlling circulation liquid
JP5049901B2 (en) UV irradiation water treatment equipment
CN101671084B (en) Liquid processor
KR101797212B1 (en) Waste nutrient solution recycling system
WO2016100997A1 (en) Method and device for treating foods and/or containers by means of a process liquid
CN111592162B (en) Water treatment ultrafiltration membrane component
CN105174424B (en) Trade effluent plasma pretreatment system and trade effluent preprocess method
CN211734066U (en) Sewage treatment box convenient to built-up connection
KR101642379B1 (en) System and Method for treating drinking water using multi-source water
CN111138013A (en) Circulating water blowdown advanced treatment unit
KR20210043122A (en) Non-degradable Waste Water Treatment Apparatus
JP2001112363A (en) Nutritious liquid-recycling type cultivation system and method for treating the nutritious liquid
Mounaouer et al. Bacteriological quality of effluent submitted consecutively to a macrofiltration and ultraviolet light systems in the Tunisian conditions
KR101801068B1 (en) Cleaning system for cooling water of cooling tower
KR101807921B1 (en) Immersed water treatment apparatus
JP3871272B2 (en) Sewage treatment facility and sewage treatment method
KR102467012B1 (en) Sterilization and purification apparatus for water treatment system
KR101462396B1 (en) Oil Separating and Oil Purification
KR20000016953U (en) Cleaning system for cooling water of cooling tower
WO2024100630A1 (en) An effluent treatment apparatus and system thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220301