[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018162953A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2018162953A
JP2018162953A JP2017061654A JP2017061654A JP2018162953A JP 2018162953 A JP2018162953 A JP 2018162953A JP 2017061654 A JP2017061654 A JP 2017061654A JP 2017061654 A JP2017061654 A JP 2017061654A JP 2018162953 A JP2018162953 A JP 2018162953A
Authority
JP
Japan
Prior art keywords
heat transfer
hole heat
heat exchanger
transfer tube
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017061654A
Other languages
Japanese (ja)
Inventor
立慈 川端
Tatsuji Kawabata
立慈 川端
長谷川 寛
Hiroshi Hasegawa
寛 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017061654A priority Critical patent/JP2018162953A/en
Publication of JP2018162953A publication Critical patent/JP2018162953A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger that can inhibit a porous heat transfer pipe from being curved even when a length in a flow direction of a refrigerant flow passage of the porous heat transfer pipe is long.SOLUTION: A heat exchanger includes: a pair of header pipes 11a, 11b; and a plurality of porous heat transfer pipes 15 having a plurality of refrigerant flow passages 16. The heat transfer pipes 15 are connected in parallel with each other along an axial direction (x direction) of the header pipes 11a, 11b and provided with an auxiliary member 20 extending along an arrangement direction (z direction) of the refrigerant flow passages 16 between the porous heat transfer pipe 15 and the porous heat transfer pipe 15 adjacent to that.SELECTED DRAWING: Figure 1

Description

本発明は、熱交換器に係り、特に、一対のヘッダーパイプと、複数の冷媒流路をもつ複数の多穴伝熱管と、で構成され、複数の多穴伝熱管の間を流れる空気と、多穴伝熱管の中を流れる冷媒とで熱交換を行う熱交換器に関するものである。   The present invention relates to a heat exchanger, in particular, a pair of header pipes and a plurality of multi-hole heat transfer tubes having a plurality of refrigerant flow paths, and air flowing between the plurality of multi-hole heat transfer tubes, The present invention relates to a heat exchanger that exchanges heat with a refrigerant flowing in a multi-hole heat transfer tube.

従来から、一対のヘッダーパイプと、複数の冷媒流路をもつ複数の多穴伝熱管と、で構成され、複数の多穴伝熱管の間を流れる空気と、多穴伝熱管の中を流れる冷媒とで熱交換を行う熱交換器が知られている。
この種の熱交換器としては、例えば、空気と多穴伝熱管との熱交換を促進する伝熱フィンを設けていないものが開示されている(例えば、特許文献1参照)。
図8は、特許文献1に記載された従来の熱交換器を示す構成図である。図8に示すように、熱交換器100は、一対のヘッダーパイプ101と、複数の冷媒流路をもつ複数の多穴伝熱管102と、から構成され、多穴伝熱管102の冷媒流路の流れ方向が鉛直方向となるように配置している。
これにより、熱交換器100が蒸発器として機能する場合に、多穴伝熱管102内を流れる冷媒の蒸発温度が低くなることで、多穴伝熱管102の表面に空気中の水分が付着し発生した結露水を、スムーズに落下させ、結露水の排水性を向上させることができる。
Conventionally, it is composed of a pair of header pipes and a plurality of multi-hole heat transfer tubes having a plurality of refrigerant flow paths, and the air flowing between the plurality of multi-hole heat transfer tubes and the refrigerant flowing in the multi-hole heat transfer tubes Heat exchangers that perform heat exchange are known.
As this type of heat exchanger, for example, a heat exchanger that does not have heat transfer fins that promote heat exchange between air and the multihole heat transfer tube is disclosed (for example, see Patent Document 1).
FIG. 8 is a configuration diagram showing a conventional heat exchanger described in Patent Document 1. As shown in FIG. As shown in FIG. 8, the heat exchanger 100 includes a pair of header pipes 101 and a plurality of multi-hole heat transfer tubes 102 having a plurality of refrigerant flow paths. It arrange | positions so that a flow direction may turn into a perpendicular direction.
As a result, when the heat exchanger 100 functions as an evaporator, the evaporation temperature of the refrigerant flowing in the multi-hole heat transfer tube 102 is lowered, so that moisture in the air adheres to the surface of the multi-hole heat transfer tube 102 and is generated. It is possible to drop the condensed water smoothly and improve the drainage of the condensed water.

WO2015/005352号WO2015 / 005352

しかしながら、前記従来の技術では、熱交換器を大型の空気調和装置などに適用した場合、熱交換器のサイズが大きくなり、多穴伝熱管の冷媒流路の流れ方向長さが長くなる。そのため、多穴伝熱管と多穴伝熱管との間に伝熱フィンを設けていないため、多穴伝熱管を保持することができず、多穴伝熱管が湾曲し易くなるという問題があった。
本発明は、前記した点に鑑みてなされたものであり、多穴伝熱管の冷媒流路の流れ方向の長さが長い場合であっても、多穴伝熱管の湾曲を抑制することのできる熱交換器を提供することを目的とする。
However, in the conventional technique, when the heat exchanger is applied to a large-size air conditioner or the like, the size of the heat exchanger increases, and the flow direction length of the refrigerant flow path of the multi-hole heat transfer tube increases. Therefore, since the heat transfer fin is not provided between the multi-hole heat transfer tube and the multi-hole heat transfer tube, the multi-hole heat transfer tube cannot be held, and the multi-hole heat transfer tube is likely to be bent. .
The present invention has been made in view of the above-described points, and even when the length of the flow direction of the refrigerant flow path of the multi-hole heat transfer tube is long, the bending of the multi-hole heat transfer tube can be suppressed. An object is to provide a heat exchanger.

前記従来の課題を解決するために、本発明の熱交換器は、一対のヘッダーパイプと、複数の冷媒流路を有する複数の多穴伝熱管とを備え、前記複数の多穴伝熱管が、前記ヘッダーパイプの軸方向に沿って、互いに平行に接続された熱交換器において、前記多穴伝熱管と、これと隣り合う前記多穴伝熱管との間に、前記冷媒流路の配列方向に沿って延在する補助部材を設けたことを特徴とする。
これにより、重力の影響、熱交換器の組立て誤差あるいは冷媒流路を流れる冷媒温度差による膨張量の相違により、多穴伝熱管が変形した場合であっても、隣り合う多穴伝熱管同士が接触することを抑制することができる。
In order to solve the conventional problem, the heat exchanger of the present invention includes a pair of header pipes and a plurality of multi-hole heat transfer tubes having a plurality of refrigerant flow paths, and the plurality of multi-hole heat transfer tubes includes: In the heat exchangers connected in parallel to each other along the axial direction of the header pipe, between the multi-hole heat transfer tube and the adjacent multi-hole heat transfer tube, in the arrangement direction of the refrigerant flow path An auxiliary member extending along the line is provided.
As a result, even if the multi-hole heat transfer tubes are deformed due to the influence of gravity, the assembly error of the heat exchanger, or the difference in the expansion amount due to the temperature difference of the refrigerant flowing through the refrigerant flow path, the adjacent multi-hole heat transfer tubes are Contact can be suppressed.

本発明の熱交換器によれば、重力の影響、熱交換器の組立て誤差あるいは冷媒流路を流れる冷媒温度差による膨張量の相違により、多穴伝熱管が変形した場合であっても、隣り合う多穴伝熱管同士が接触することを抑制することができる。
その結果、隣り合う多穴伝熱管同士の間隔を均一に保持することができ、隣り合う多穴伝熱管同士の間隔が狭くなることで発生する汚れやほこりによる目詰まりを抑制することができ、通風抵抗の増大を抑制することで、風量の低下を防止することができ、熱交換器の熱交換性能を向上させることができる。
According to the heat exchanger of the present invention, even if the multi-hole heat transfer tube is deformed due to the influence of gravity, the assembly error of the heat exchanger, or the difference in expansion due to the temperature difference of the refrigerant flowing in the refrigerant flow path, It can suppress that the matching multi-hole heat exchanger tube contacts.
As a result, the interval between adjacent multi-hole heat transfer tubes can be uniformly maintained, and clogging due to dirt and dust generated by the interval between adjacent multi-hole heat transfer tubes being narrowed can be suppressed, By suppressing the increase in ventilation resistance, it is possible to prevent a decrease in the air volume and improve the heat exchange performance of the heat exchanger.

本発明の第1実施形態における熱交換器を示す斜視図。The perspective view which shows the heat exchanger in 1st Embodiment of this invention. 図1のx−z平面における熱交換器を示す断面図。Sectional drawing which shows the heat exchanger in the xz plane of FIG. 第1実施形態の熱交換器搭載時の室外機を示す斜視図。The perspective view which shows the outdoor unit at the time of heat exchanger mounting of 1st Embodiment. 本発明の第1実施形態の変形例における熱交換器を示す斜視図。The perspective view which shows the heat exchanger in the modification of 1st Embodiment of this invention. 図4の正面図。The front view of FIG. 第1実施形態の変形例における補助部材を示す斜視図。The perspective view which shows the auxiliary member in the modification of 1st Embodiment. 図6の枠線部分の拡大図。The enlarged view of the frame part of FIG. 従来の熱交換器を示す断面図。Sectional drawing which shows the conventional heat exchanger.

第1の発明は、一対のヘッダーパイプと、複数の冷媒流路を有する複数の多穴伝熱管とを備え、前記複数の多穴伝熱管が、前記ヘッダーパイプの軸方向に沿って、互いに平行に接続された熱交換器において、前記多穴伝熱管と、これと隣り合う前記多穴伝熱管との間に、前記冷媒流路の配列方向に沿って延在する補助部材を設けた。
これによれば、多穴伝熱管と、これと隣り合う多穴伝熱管との間に、冷媒流路の配列方向に沿って延在する補助部材を設けたので、重力の影響、熱交換器の組立て誤差あるいは冷媒流路を流れる冷媒温度差による膨張量の相違により、多穴伝熱管が変形した場合であっても、隣り合う多穴伝熱管同士が接触することを抑制することができる。
その結果、隣り合う多穴伝熱管同士の間隔を均一に保持することができ、隣り合う多穴伝熱管同士の間隔が狭くなることで発生する汚れやほこりによる目詰まりを抑制することができ、通風抵抗の増大を抑制することで、風量の低下を防止することができ、熱交換器の熱交換性能を向上させることができる。
The first invention includes a pair of header pipes and a plurality of multi-hole heat transfer tubes having a plurality of refrigerant flow paths, and the plurality of multi-hole heat transfer tubes are parallel to each other along the axial direction of the header pipe. In the heat exchanger connected to, an auxiliary member extending along the arrangement direction of the refrigerant flow path is provided between the multi-hole heat transfer tube and the multi-hole heat transfer tube adjacent thereto.
According to this, since the auxiliary member extending along the arrangement direction of the refrigerant flow path is provided between the multi-hole heat transfer tube and the multi-hole heat transfer tube adjacent thereto, the influence of gravity, the heat exchanger Even if the multi-hole heat transfer tubes are deformed due to the difference in the expansion amount due to the assembly error or the temperature difference of the refrigerant flowing in the refrigerant flow path, it is possible to suppress the adjacent multi-hole heat transfer tubes from contacting each other.
As a result, the interval between adjacent multi-hole heat transfer tubes can be uniformly maintained, and clogging due to dirt and dust generated by the interval between adjacent multi-hole heat transfer tubes being narrowed can be suppressed, By suppressing the increase in ventilation resistance, it is possible to prevent a decrease in the air volume and improve the heat exchange performance of the heat exchanger.

また、局所熱伝達率が高い多穴伝熱管の前縁部は、補助部材により覆われないので、熱交換面積の減少を抑制することができ、熱交換器の熱交換性能をさらに向上させることができる。
また、熱交換器が蒸発器として機能する場合においては、多穴伝熱管の前縁部で結露水が発生するが、隣り合う多穴伝熱管の間隙が狭くなることを抑制することができるので、結露水が多穴伝熱管の間で各多穴伝熱管の両表面に接触してしまうことを抑制することができる。その結果、結露水による通風抵抗の増大、風量の低下を防止することができ、熱交換器の熱交換性能をさらに向上させることができる。
Moreover, since the front edge part of the multi-hole heat exchanger tube with a high local heat transfer rate is not covered with an auxiliary member, the reduction of a heat exchange area can be suppressed and the heat exchange performance of a heat exchanger can be further improved. Can do.
In addition, in the case where the heat exchanger functions as an evaporator, condensed water is generated at the front edge of the multi-hole heat transfer tube, but it is possible to suppress the gap between adjacent multi-hole heat transfer tubes from being narrowed. And it can suppress that dew condensation water contacts the both surfaces of each multi-hole heat exchanger tube between multi-hole heat exchanger tubes. As a result, it is possible to prevent an increase in ventilation resistance and a decrease in the air volume due to condensed water, and to further improve the heat exchange performance of the heat exchanger.

第2の発明は、前記補助部材は、前記多穴伝熱管の表面に接触するとともに、前記多穴伝熱管の空気の流れ方向下流側が連結されている。
これによれば、冷媒流路の配列方向に沿った多穴伝熱管の表面と、多穴伝熱管の後縁部側の3方向で、多穴伝熱管が保持されることになり、重力の影響、熱交換器の組立て誤差あるいは冷媒流路を流れる冷媒温度差による膨張量の相違により、多穴伝熱管が変形した場合であっても、多穴伝熱管の湾曲を抑制することができる。
また、局所熱伝達率が高い多穴伝熱管の前縁部は、補助部材により覆われないので、熱交換面積の減少を抑制することができ、熱交換器の熱交換性能をさらに向上させることができる。
In the second invention, the auxiliary member is in contact with the surface of the multi-hole heat transfer tube, and is connected to the downstream side in the air flow direction of the multi-hole heat transfer tube.
According to this, the multi-hole heat transfer tube is held in the three directions on the surface of the multi-hole heat transfer tube along the arrangement direction of the refrigerant flow path and the rear edge portion side of the multi-hole heat transfer tube. Even if the multi-hole heat transfer tube is deformed due to an influence, an assembly error of the heat exchanger or a difference in expansion amount due to a difference in temperature of the refrigerant flowing through the refrigerant flow path, it is possible to suppress the bending of the multi-hole heat transfer tube.
Moreover, since the front edge part of the multi-hole heat exchanger tube with a high local heat transfer rate is not covered with an auxiliary member, the reduction of a heat exchange area can be suppressed and the heat exchange performance of a heat exchanger can be further improved. Can do.

第3の発明は、前記補助部材は、前記多穴伝熱管の冷媒流路の流れ方向略中央部に設けられている。
これによれば、熱交換器の上端部から補助部材までの冷媒流路の流れ方向の長さと、熱交換器の下端部から補助部材までの冷媒流路の流れ方向の長さとがともに最も短くなり、熱交換器の上端部から補助部材までの多穴伝熱管と、熱交換器の下端部から補助部材までの多穴伝熱管の湾曲を最小限に抑えることができる。
また、隣り合う多穴伝熱管の間隔の狭小化が最小限になり、間隔が狭くなることで発生する目詰まり、通風抵抗の増大がさらに抑制され、風量の低下を防止でき、熱交換器の熱交換性能をさらに向上させることができる。
In a third aspect of the invention, the auxiliary member is provided at a substantially central portion in the flow direction of the refrigerant flow path of the multi-hole heat transfer tube.
According to this, the length in the flow direction of the refrigerant flow path from the upper end portion of the heat exchanger to the auxiliary member and the length in the flow direction of the refrigerant flow path from the lower end portion of the heat exchanger to the auxiliary member are both the shortest. Thus, the bending of the multi-hole heat transfer tube from the upper end portion of the heat exchanger to the auxiliary member and the multi-hole heat transfer tube from the lower end portion of the heat exchanger to the auxiliary member can be minimized.
In addition, the narrowing of the interval between adjacent multi-hole heat transfer tubes is minimized, clogging caused by narrowing the interval and increase in ventilation resistance are further suppressed, and the reduction in air volume can be prevented. The heat exchange performance can be further improved.

第4の発明は、前記一対のヘッダーパイプは水平方向に延在するように設置され、前記多穴伝熱管は鉛直方向に延在するように設置されている。
これによれば、重力の影響による多穴伝熱管の湾曲がなくなるため、隣り合う多穴伝熱管同士が接触することを抑制することができる。
また、熱交換器が蒸発器として機能する場合において、多穴伝熱管の前縁部で発生した結露水を速やかに落下させることができ、結露水の排水性を向上させることができる。
さらに、多穴伝熱管に発生した結露水は、鉛直下方向に落下して補助部材に溜まり、空気の流れにより多穴伝熱管の後縁部側まで速やかに押し流されるため、結露水による熱抵抗が減少し、熱交換性能をさらに向上させることができる。
In a fourth aspect of the invention, the pair of header pipes are installed so as to extend in the horizontal direction, and the multi-hole heat transfer tube is installed so as to extend in the vertical direction.
According to this, since the curvature of the multi-hole heat transfer tube due to the influence of gravity is eliminated, it is possible to suppress the adjacent multi-hole heat transfer tubes from contacting each other.
Further, when the heat exchanger functions as an evaporator, the condensed water generated at the front edge of the multi-hole heat transfer tube can be quickly dropped, and the drainage of the condensed water can be improved.
Furthermore, the condensed water generated in the multi-hole heat transfer tube falls vertically downward and accumulates in the auxiliary member, and is quickly pushed away to the rear edge of the multi-hole heat transfer tube by the air flow. And the heat exchange performance can be further improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって、本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(第1実施形態)
図1は、本発明の第1実施形態における熱交換器を示す斜視図である。図2は、図1のx-z平面における熱交換器の断面図である。
図1に示すように、熱交換器10は、一対のヘッダーパイプ11a,11bと、複数の多穴伝熱管15と、補助部材20とを備えている。
各ヘッダーパイプ11a,11bは、所定間隔をもって略平行に、かつ、略水平方向(x方向)に設置されている。複数の多穴伝熱管15は、それぞれ鉛直方向(y方向)に延在するように設置されている。
(First embodiment)
FIG. 1 is a perspective view showing a heat exchanger in the first embodiment of the present invention. FIG. 2 is a cross-sectional view of the heat exchanger in the xz plane of FIG.
As shown in FIG. 1, the heat exchanger 10 includes a pair of header pipes 11 a and 11 b, a plurality of multi-hole heat transfer tubes 15, and an auxiliary member 20.
Each header pipe 11a, 11b is installed in a substantially horizontal direction (x direction) with a predetermined interval. The plurality of multi-hole heat transfer tubes 15 are installed so as to extend in the vertical direction (y direction), respectively.

ヘッダーパイプ11a,11bは、例えば、アルミニウムなどの金属材料を押出成型することにより、略円筒状に形成されている。
また、一方のヘッダーパイプ11aの一端部には、冷媒配管12aが接続されており、他方のヘッダーパイプ11bの一端部には、冷媒配管12bが接続されている。これら各冷媒配管12a,12bは、冷媒の流入口または流出口として機能するように構成されている。
The header pipes 11a and 11b are formed in a substantially cylindrical shape by extruding a metal material such as aluminum, for example.
The refrigerant pipe 12a is connected to one end of one header pipe 11a, and the refrigerant pipe 12b is connected to one end of the other header pipe 11b. Each of the refrigerant pipes 12a and 12b is configured to function as a refrigerant inlet or outlet.

また、図2に示すように、多穴伝熱管15は、例えば、アルミニウムなどの金属材料を押出成型することにより板状に形成されている。多穴伝熱管15の内部には、多穴伝熱管15の長手方向に沿って貫通する複数の冷媒流路16が並列に形成されている。
各多穴伝熱管15は、その側面が互いに対向するように配置されており、各多穴伝熱管15は、各ヘッダーパイプ11a,11bの軸方向に沿って、互いに平行に配置されており、各多穴伝熱管15の冷媒流路16は、各ヘッダーパイプ11a,11bの内部に連通されている。
Moreover, as shown in FIG. 2, the multi-hole heat exchanger tube 15 is formed in plate shape by extruding metal materials, such as aluminum, for example. Inside the multi-hole heat transfer tube 15, a plurality of refrigerant flow paths 16 penetrating along the longitudinal direction of the multi-hole heat transfer tube 15 are formed in parallel.
The multi-hole heat transfer tubes 15 are arranged so that the side surfaces thereof face each other, and the multi-hole heat transfer tubes 15 are arranged in parallel to each other along the axial direction of the header pipes 11a and 11b. The refrigerant flow path 16 of each multi-hole heat transfer tube 15 is communicated with the inside of each header pipe 11a, 11b.

そして、一方の冷媒配管12aから一方のヘッダーパイプ11aの内部に流入した冷媒は、各多穴伝熱管15の各冷媒流路16を介して鉛直下方向(−y方向)に流れ、他方のヘッダーパイプ11bの内部に送られる。多穴伝熱管15の各冷媒流路16を冷媒が流れる際に、各多穴伝熱管15の間を+z方向に流れる空気と熱交換を行う。そして、他方のヘッダーパイプ11bに送られた冷媒は、他方の冷媒配管12bから流出される。
なお、冷媒としては、例えば、R410A、R32およびR32を含む混合冷媒などが用いられる。
Then, the refrigerant that has flowed into the one header pipe 11a from one refrigerant pipe 12a flows in the vertically downward direction (−y direction) through each refrigerant flow path 16 of each multi-hole heat transfer tube 15, and the other header. It is sent to the inside of the pipe 11b. When the refrigerant flows through each refrigerant flow path 16 of the multi-hole heat transfer tube 15, heat exchange is performed with air flowing in the + z direction between the multi-hole heat transfer tubes 15. Then, the refrigerant sent to the other header pipe 11b flows out from the other refrigerant pipe 12b.
In addition, as a refrigerant | coolant, the mixed refrigerant | coolant containing R410A, R32, and R32 etc. are used, for example.

また、図2に示すように、補助部材20は、多穴伝熱管15とこれに隣り合う多穴伝熱管15との間に位置し、多穴伝熱管15の冷媒流路の配列方向に延在する複数の間隙保持部21と、間隙保持部21と略直交する方向に延在し、各間隙保持部21の多穴伝熱管15の空気の流れ方向下流側(後縁側)を連結する連結部22とから構成されている。補助部材20は、例えば、多穴伝熱管15と同様に、アルミニウムなどの金属材料により形成されている。
本実施形態においては、補助部材20の間隙保持部21は、冷媒流路16の配列方向に沿った多穴伝熱管15の表面と接触しており、連結部22は、多穴伝熱管15の空気の流れ方向下流側(後縁側)から突出する櫛形状に形成されている。すなわち、多穴伝熱管15の空気の流れ方向上流側には、補助部材20は設けられていない。
As shown in FIG. 2, the auxiliary member 20 is located between the multi-hole heat transfer tube 15 and the multi-hole heat transfer tube 15 adjacent to the multi-hole heat transfer tube 15 and extends in the arrangement direction of the refrigerant flow paths of the multi-hole heat transfer tube 15. A plurality of existing gap holding portions 21 and a connection extending in a direction substantially orthogonal to the gap holding portions 21 and connecting the downstream side (rear edge side) of the air flow direction of the multi-hole heat transfer tube 15 of each gap holding portion 21. Part 22. The auxiliary member 20 is formed of a metal material such as aluminum, for example, similarly to the multi-hole heat transfer tube 15.
In the present embodiment, the gap holding portion 21 of the auxiliary member 20 is in contact with the surface of the multi-hole heat transfer tube 15 along the arrangement direction of the refrigerant flow path 16, and the connecting portion 22 is connected to the multi-hole heat transfer tube 15. It is formed in a comb shape protruding from the downstream side (rear edge side) in the air flow direction. That is, the auxiliary member 20 is not provided on the upstream side of the multi-hole heat transfer tube 15 in the air flow direction.

本実施形態においては、補助部材20は、多穴伝熱管15の冷媒の流れ方向(y方向)の略中央部に設けられている。
そして、以上のように構成された熱交換器10においては、冷媒流路16の配列方向に沿った多穴伝熱管15の両表面と、多穴伝熱管15の後縁部側の3方向で、多穴伝熱管15が保持されることになる。
この場合に、補助部材20は、各多穴伝熱管15に対して、間隙保持部21をはめ込むことで固定するようにしてもよいし、例えば、ろう付け等により固定するようにしてもよい。
In the present embodiment, the auxiliary member 20 is provided at a substantially central portion in the refrigerant flow direction (y direction) of the multi-hole heat transfer tube 15.
And in the heat exchanger 10 comprised as mentioned above, in the both directions of the multi-hole heat exchanger tube 15 along the arrangement direction of the refrigerant | coolant flow path 16, and the three edge directions of the rear edge part side of the multi-hole heat exchanger tube 15 The multi-hole heat transfer tube 15 is held.
In this case, the auxiliary member 20 may be fixed to each multi-hole heat transfer tube 15 by fitting the gap holding portion 21 or may be fixed by brazing, for example.

次に、補助部材20の設置位置について説明する。
図1および図2に示すように、多穴伝熱管15の冷媒流路16のy方向の長さをL(mm)、隣り合う各多穴伝熱管15の間隔をS(mm)とする。
多穴伝熱管15は、製造上、Lが長くなることで湾曲が発生しやすく、Lに対して最大0.2%(L×0.2%)の湾曲が発生する。湾曲した多穴伝熱管15を用いて熱交換器10を組立てると、隣り合う多穴伝熱管15の間隔の狭小化がより顕著になる。
Next, the installation position of the auxiliary member 20 will be described.
As shown in FIGS. 1 and 2, the length of the refrigerant flow path 16 of the multi-hole heat transfer tube 15 in the y direction is L (mm), and the interval between the adjacent multi-hole heat transfer tubes 15 is S (mm).
The multi-hole heat transfer tube 15 is prone to bend due to its length becoming longer in manufacturing, and a maximum of 0.2% (L × 0.2%) bend with respect to L occurs. When the heat exchanger 10 is assembled using the curved multi-hole heat transfer tube 15, the interval between adjacent multi-hole heat transfer tubes 15 becomes more conspicuous.

そのため、隣り合う各多穴伝熱管15の間隔Sを1mmとした場合、多穴伝熱管15が1mm湾曲していると、隣り合う多穴伝熱管15に接触してしまう。1mmの湾曲が発生するのは、L=1÷0.2%=500mmであることから、隣り合う多穴伝熱管15に接触しない1mm未満の湾曲に抑えるためには、500mm毎に補助部材20を設けるようにすればよい。
これにより、多穴伝熱管15の製造上で発生する湾曲の影響が抑制され、熱交換器10として組立てた場合の、隣り合う多穴伝熱管15の間隔の狭小化を最小限に抑えることができる。
なお、本実施形態においては、補助部材20を多穴伝熱管15の冷媒流路16の流れ方向(y方向)の1箇所のみに設けているが、2箇所以上に設けてもよい。
Therefore, when the interval S between adjacent multi-hole heat transfer tubes 15 is 1 mm, if the multi-hole heat transfer tubes 15 are curved by 1 mm, the adjacent multi-hole heat transfer tubes 15 come into contact with each other. Since the curvature of 1 mm occurs when L = 1 / 0.2% = 500 mm, in order to suppress the curvature of less than 1 mm that does not contact the adjacent multi-hole heat transfer tube 15, the auxiliary member 20 is provided every 500 mm. May be provided.
Thereby, the influence of the curvature which generate | occur | produces on manufacture of the multi-hole heat exchanger tube 15 is suppressed, and when the assembly as the heat exchanger 10 is assembled, narrowing of the space | interval of the adjacent multi-hole heat exchanger tube 15 can be suppressed to the minimum. it can.
In addition, in this embodiment, although the auxiliary member 20 is provided only in one place of the flow direction (y direction) of the refrigerant flow path 16 of the multihole heat exchanger tube 15, you may provide in two or more places.

また、大型空調システムなどに用いられる熱交換器10の場合、熱交換器10のサイズが大きくなり、ヘッダーパイプ11a,11bの軸方向(x方向)長さが長くなる。このようにヘッダーパイプの長さが長くなると、ヘッダーパイプ11a,11bから各多穴伝熱管15に流れる冷媒の流量が不均一になりやすい。
各多穴伝熱管15に流れる冷媒の流量が不均一になると、各多穴伝熱管15の温度にばらつきが発生する。そのため、最も低い温度の多穴伝熱管15において発生する熱膨張による変化量ΔL1と、最も高い温度の多穴伝熱管15において発生する熱膨張による変化量ΔL2が異なることになる。
Moreover, in the case of the heat exchanger 10 used for a large sized air conditioning system etc., the size of the heat exchanger 10 becomes large and the axial direction (x direction) length of header pipe 11a, 11b becomes long. As described above, when the length of the header pipe is increased, the flow rate of the refrigerant flowing from the header pipes 11a and 11b to the multi-hole heat transfer tubes 15 tends to be uneven.
When the flow rate of the refrigerant flowing through each multi-hole heat transfer tube 15 becomes uneven, the temperature of each multi-hole heat transfer tube 15 varies. Therefore, the amount of change ΔL1 due to thermal expansion generated in the multi-hole heat transfer tube 15 at the lowest temperature is different from the amount of change ΔL2 due to thermal expansion generated in the multi-hole heat transfer tube 15 at the highest temperature.

例えば、最も低い温度の多穴伝熱管15と、最も高い温度の多穴伝熱管15との温度差をΔT、多穴伝熱管15の材料の線膨張率をαとすると、熱膨張による伸びの差は、ΔL2−ΔL1=α・L・ΔTにより求めることができる。
ここで、最も低い温度の多穴伝熱管15と、最も高い温度の多穴伝熱管15との温度差ΔTが5K、Lが500mm、多穴伝熱管15の材質をアルミ(線膨張率α:23×10−6/K)とした場合、熱膨張による伸びの差ΔL2−ΔL1は、0.0575mmとなる。
For example, if the temperature difference between the multi-hole heat transfer tube 15 having the lowest temperature and the multi-hole heat transfer tube 15 having the highest temperature is ΔT and the linear expansion coefficient of the material of the multi-hole heat transfer tube 15 is α, The difference can be obtained by ΔL2−ΔL1 = α · L · ΔT.
Here, the temperature difference ΔT between the multi-hole heat transfer tube 15 having the lowest temperature and the multi-hole heat transfer tube 15 having the highest temperature is 5K, L is 500 mm, and the material of the multi-hole heat transfer tube 15 is aluminum (linear expansion coefficient α: 23 × 10 −6 / K), the difference ΔL2−ΔL1 in elongation due to thermal expansion is 0.0575 mm.

一対のヘッダーパイプ11a,11bは固定状態であるため、最も高い温度の多穴伝熱管15は、最も低い温度の多穴伝熱管15より、冷媒流路16の流れ方向(y方向)に0.0575mm伸びることなく、ヘッダーパイプ11a,11bの軸方向(x方向)に2.8mm湾曲することになる(楕円の円周の式から算出)。
Sを1mmとした場合には、最も高い温度の多穴伝熱管15の湾曲により、隣り合う多穴伝熱管15に接触してしまうことになる。
そのため、Lが500mmの場合に、2.8mmの湾曲が生じることから、隣り合う多穴伝熱管15に接触しない1mm未満の湾曲に抑えるためには、多穴伝熱管15の冷媒流路16の流れ方向(y方向)に、最長でも175mm間隔毎に補助部材20を設けるようにすればよい。これにより、複数の多穴伝熱管15に流れる冷媒の流量が不均一となった場合でも、熱膨張による多穴伝熱管15の湾曲を抑制することができる。
Since the pair of header pipes 11a and 11b are in a fixed state, the multi-hole heat transfer tube 15 having the highest temperature is 0. 0 in the flow direction (y direction) of the refrigerant flow path 16 from the multi-hole heat transfer tube 15 having the lowest temperature. Without extending by 0575 mm, the header pipes 11a and 11b are curved in the axial direction (x direction) by 2.8 mm (calculated from the elliptical circumference).
When S is 1 mm, the multi-hole heat transfer tube 15 having the highest temperature is brought into contact with the adjacent multi-hole heat transfer tube 15 due to the curvature.
Therefore, when L is 500 mm, a curvature of 2.8 mm is generated. Therefore, in order to suppress the curvature of less than 1 mm that does not contact the adjacent multi-hole heat transfer tube 15, The auxiliary members 20 may be provided at intervals of 175 mm at the longest in the flow direction (y direction). Thereby, even when the flow volume of the refrigerant | coolant which flows into the several multi-hole heat exchanger tube 15 becomes non-uniform | heterogenous, the curvature of the multi-hole heat exchanger tube 15 by thermal expansion can be suppressed.

次に、本実施形態の作用について、本実施形態の熱交換器10を空気調和装置の室外機20に利用した場合を例に説明する。
図3は、熱交換器10を適用した室外機を示す斜視図である。
図3に示すように、室外機30は、箱型の筐体31を備えており、筐体31は、天板32と底板33とを備えている。天板32の周縁部には、鉛直下方に折曲された上部枠34が形成されており、底板33の周縁部には、鉛直上方に折曲された下部枠35が形成されている。天板32と底板33との間には空間が形成され、この空間部分に熱交換器10が設置される。
そして、室外機30の内部に設置された送風ファン(図示せず)を回転駆動することにより、室外機30の外部空気を熱交換器10の多穴伝熱管15の間から吸い込むことで、多穴伝熱管15の冷媒流路を流れる冷媒と外部空気との熱交換を行うものである。
Next, the operation of the present embodiment will be described by taking as an example the case where the heat exchanger 10 of the present embodiment is used for the outdoor unit 20 of the air conditioner.
FIG. 3 is a perspective view showing an outdoor unit to which the heat exchanger 10 is applied.
As shown in FIG. 3, the outdoor unit 30 includes a box-shaped housing 31, and the housing 31 includes a top plate 32 and a bottom plate 33. An upper frame 34 that is bent vertically downward is formed at the peripheral edge of the top plate 32, and a lower frame 35 that is bent vertically upward is formed at the peripheral edge of the bottom plate 33. A space is formed between the top plate 32 and the bottom plate 33, and the heat exchanger 10 is installed in this space portion.
Then, by rotating and driving a blower fan (not shown) installed inside the outdoor unit 30, the outside air of the outdoor unit 30 is sucked from between the multi-hole heat transfer tubes 15 of the heat exchanger 10. Heat exchange between the refrigerant flowing through the refrigerant flow path of the hole heat transfer tube 15 and the external air is performed.

まず、冷房運転を行う場合は、熱交換器10は凝縮器として機能する。
室外機30の圧縮機(図示せず)から送られるガス冷媒は、ガス側の冷媒配管12aから、ガス側のヘッダーパイプ11aの内部に流入される。このガス冷媒は、ガス側のヘッダーパイプ11aの内部を通り、複数の多穴伝熱管15の冷媒流路16に流入され、鉛直下方向(−y方向)に流れ、多穴伝熱管15において、空気と熱交換をすることで放熱して凝縮される。凝縮した冷媒は、液側のヘッダーパイプ11bに流入し、液側のヘッダーパイプ11bの内部を通り、液側の冷媒配管12bから室内機に向けて流出される。
First, when performing a cooling operation, the heat exchanger 10 functions as a condenser.
The gas refrigerant sent from the compressor (not shown) of the outdoor unit 30 flows into the gas side header pipe 11a from the gas side refrigerant pipe 12a. This gas refrigerant passes through the inside of the gas-side header pipe 11a, flows into the refrigerant flow path 16 of the plurality of multi-hole heat transfer tubes 15, flows in the vertically downward direction (−y direction), and in the multi-hole heat transfer tubes 15, It is condensed by releasing heat by exchanging heat with air. The condensed refrigerant flows into the liquid-side header pipe 11b, passes through the liquid-side header pipe 11b, and flows out from the liquid-side refrigerant pipe 12b toward the indoor unit.

次に、暖房運転を行う場合は、熱交換器10は蒸発器として機能する。
室内機から送られる液冷媒は、冷房運転の場合とは逆に、液側の冷媒配管12bから、液側のヘッダーパイプ11bの内部に流入される。この液冷媒は、液側のヘッダーパイプ11bの内部を通り、複数の多穴伝熱管15の冷媒流路16に流入され、鉛直上方向(+y方向)に流れ、多穴伝熱管15において、空気と熱交換をすることで吸熱して蒸発される。蒸発した冷媒は、ガス側のヘッダーパイプ11aに流入し、ガス側のヘッダーパイプ11aの内部を通り、ガス側の冷媒配管12aから圧縮機に向けて流出される。
Next, when performing heating operation, the heat exchanger 10 functions as an evaporator.
In contrast to the cooling operation, the liquid refrigerant sent from the indoor unit flows into the liquid side header pipe 11b from the liquid side refrigerant pipe 12b. This liquid refrigerant passes through the inside of the header pipe 11b on the liquid side, flows into the refrigerant flow path 16 of the plurality of multi-hole heat transfer tubes 15, flows in the vertical upward direction (+ y direction), and in the multi-hole heat transfer tubes 15, Heat is absorbed and evaporated by heat exchange. The evaporated refrigerant flows into the gas-side header pipe 11a, passes through the gas-side header pipe 11a, and flows out from the gas-side refrigerant pipe 12a toward the compressor.

熱交換器10が蒸発器として機能する場合、多穴伝熱管15の冷媒流路16を低温の冷媒が流れ、空気と熱交換が行われることになり、特に局所熱伝達率の高い多穴伝熱管15の前縁部では、空気中の水分が付着し結露水が発生する。発生した結露水は、鉛直下方向(−y方向)に自重により落下しながら、空気の流れにより多穴伝熱管15の後縁部に流れていく。   When the heat exchanger 10 functions as an evaporator, a low-temperature refrigerant flows through the refrigerant flow path 16 of the multi-hole heat transfer tube 15 to exchange heat with air, and the multi-hole transfer having a particularly high local heat transfer coefficient. At the front edge of the heat tube 15, moisture in the air adheres to generate dew condensation water. The generated condensed water flows to the rear edge of the multi-hole heat transfer tube 15 by the flow of air while dropping due to its own weight in the vertically downward direction (−y direction).

このとき、各ヘッダーパイプ11a,11b、熱交換器10の上部および下部は、上部枠34および下部枠35により覆われる。しかしながら、熱交換器10の上端部や熱交換器10の下端部とは異なり、熱交換器10の中央部では、熱交換器10の上部や下部と比較して、空気の流れが速いため、熱伝達率が高く、結露水が発生しやすい部分に、補助部材20が位置することになる。これにより、結露水は、補助部材20に速やかに落下し、結露水を排出しやすくなることから、通風抵抗の増大を抑制することができ、風量の低下を防止できるため、熱交換器10の熱交換性能をさらに向上することができる。   At this time, the upper and lower portions of the header pipes 11 a and 11 b and the heat exchanger 10 are covered with the upper frame 34 and the lower frame 35. However, unlike the upper end portion of the heat exchanger 10 and the lower end portion of the heat exchanger 10, the central portion of the heat exchanger 10 has a faster air flow than the upper and lower portions of the heat exchanger 10, The auxiliary member 20 is located in a portion where the heat transfer rate is high and condensed water is likely to be generated. As a result, the condensed water quickly drops onto the auxiliary member 20 and easily discharges the condensed water. Therefore, an increase in ventilation resistance can be suppressed and a decrease in the air volume can be prevented. The heat exchange performance can be further improved.

以上述べたように、本実施形態においては、一対のヘッダーパイプ11a,11bと、複数の冷媒流路16を有する複数の多穴伝熱管15とを備え、複数の多穴伝熱管15が、ヘッダーパイプ11a,11bの軸方向(x方向)に沿って互いに平行に接続され、多穴伝熱管15と、これと隣り合う多穴伝熱管15との間に、冷媒流路16の配列方向(z方向)に沿って延在する補助部材20を設けた。
これにより、多穴伝熱管15と、これと隣り合う多穴伝熱管15との間に、冷媒流路16の配列方向(z方向)に沿って延在する補助部材20を設けたので、重力の影響、熱交換器10の組立て誤差あるいは冷媒流路16を流れる冷媒温度差による膨張量の相違により、多穴伝熱管15が変形した場合であっても、隣り合う多穴伝熱管15同士が接触することを抑制することができる。
その結果、隣り合う多穴伝熱管15同士の間隔を均一に保持することができ、隣り合う多穴伝熱管15同士の間隔が狭くなることで発生する汚れやほこりによる目詰まりを抑制することができ、通風抵抗の増大を抑制することで、風量の低下を防止することができ、熱交換器10の熱交換性能を向上させることができる。
また、局所熱伝達率が高い多穴伝熱管15の前縁部は、補助部材20により覆われないので、熱交換面積の減少を抑制することができ、熱交換器10の熱交換性能をさらに向上させることができる。
As described above, in the present embodiment, a pair of header pipes 11a and 11b and a plurality of multi-hole heat transfer tubes 15 having a plurality of refrigerant flow paths 16 are provided, and the plurality of multi-hole heat transfer tubes 15 are provided as headers. The pipes 11a and 11b are connected in parallel to each other along the axial direction (x direction), and between the multi-hole heat transfer tube 15 and the multi-hole heat transfer tube 15 adjacent to the multi-hole heat transfer tube 15, the arrangement direction (z The auxiliary member 20 extending along the direction) is provided.
Thereby, since the auxiliary member 20 extended along the arrangement direction (z direction) of the refrigerant | coolant flow path 16 was provided between the multi-hole heat exchanger tube 15 and the multi-hole heat exchanger tube 15 adjacent to this, gravity is provided. Even if the multi-hole heat transfer tubes 15 are deformed due to the influence of the above, the difference in expansion due to the assembly error of the heat exchanger 10 or the temperature difference of the refrigerant flowing in the refrigerant flow path 16, the adjacent multi-hole heat transfer tubes 15 are Contact can be suppressed.
As a result, the interval between adjacent multi-hole heat transfer tubes 15 can be kept uniform, and clogging due to dirt and dust generated by the interval between adjacent multi-hole heat transfer tubes 15 being narrowed can be suppressed. In addition, by suppressing an increase in ventilation resistance, it is possible to prevent a decrease in the air volume, and to improve the heat exchange performance of the heat exchanger 10.
Moreover, since the front edge part of the multi-hole heat exchanger tube 15 with a high local heat transfer rate is not covered with the auxiliary member 20, the reduction | decrease of a heat exchange area can be suppressed, and the heat exchange performance of the heat exchanger 10 is further improved. Can be improved.

また、熱交換器10が蒸発器として機能する場合においては、多穴伝熱管15の前縁部で結露水が発生するが、隣り合う多穴伝熱管15の間隙が狭くなることを抑制することができるので、結露水が多穴伝熱管15の間で各多穴伝熱管15の両表面に接触してしまうことを抑制することができる。その結果、結露水による通風抵抗の増大、風量の低下を防止することができ、熱交換器10の熱交換性能をさらに向上させることができる。
さらに、多穴伝熱管15に発生した結露水は、鉛直下方向(−y方向)に落下して補助部材20に溜まり、空気の流れにより多穴伝熱管15の後縁部側まで速やかに押し流されるため、結露水による熱抵抗が減少し、熱交換性能をさらに向上させることができる。
Further, in the case where the heat exchanger 10 functions as an evaporator, condensed water is generated at the front edge portion of the multi-hole heat transfer tube 15, but it is possible to suppress the gap between adjacent multi-hole heat transfer tubes 15 from becoming narrow. Therefore, it is possible to prevent the condensed water from coming into contact with both surfaces of each multi-hole heat transfer tube 15 between the multi-hole heat transfer tubes 15. As a result, it is possible to prevent an increase in ventilation resistance and a decrease in the air volume due to condensed water, and the heat exchange performance of the heat exchanger 10 can be further improved.
Further, the dew condensation water generated in the multi-hole heat transfer tube 15 falls in the vertically downward direction (−y direction) and accumulates in the auxiliary member 20, and is quickly pushed away to the rear edge side of the multi-hole heat transfer tube 15 by the air flow. Therefore, the heat resistance due to condensed water is reduced, and the heat exchange performance can be further improved.

また、本実施形態においては、補助部材20は、多穴伝熱管15の表面に接触するとともに、多穴伝熱管15の空気の流れ方向下流側が連結されている。
これにより、冷媒流路16の配列方向に沿った多穴伝熱管15の表面と、多穴伝熱管15の後縁部側の3方向で、多穴伝熱管15が保持されることになり、重力の影響、熱交換器10の組立て誤差あるいは冷媒流路16を流れる冷媒温度差による膨張量の相違により、多穴伝熱管15が変形した場合であっても、多穴伝熱管15の湾曲を抑制することができる。
In the present embodiment, the auxiliary member 20 contacts the surface of the multi-hole heat transfer tube 15 and is connected to the downstream side of the multi-hole heat transfer tube 15 in the air flow direction.
Thereby, the multi-hole heat transfer tube 15 is held in the three directions on the surface of the multi-hole heat transfer tube 15 along the arrangement direction of the refrigerant flow path 16 and the rear edge portion side of the multi-hole heat transfer tube 15, Even if the multi-hole heat transfer tube 15 is deformed due to an influence of gravity, an assembly error of the heat exchanger 10 or a difference in expansion due to a temperature difference of the refrigerant flowing through the refrigerant flow path 16, the multi-hole heat transfer tube 15 is bent. Can be suppressed.

また、本実施形態においては、補助部材20は、多穴伝熱管15の冷媒流路の流れ方向略中央部に設けられている。
これにより、熱交換器10の上端部から補助部材20までの冷媒流路16の流れ方向の長さ(y方向)と、熱交換器10の下端部から補助部材20までの冷媒流路16の流れ方向の長さ(y方向)が、ともに最も短くなり、熱交換器10の上端部から補助部材20までの多穴伝熱管15と、熱交換器10の下端部から補助部材20までの多穴伝熱管15の湾曲を最小限に抑えることができる。
また、隣り合う多穴伝熱管15の間隔の狭小化が最小限になり、間隔が狭くなることで発生する目詰まり、通風抵抗の増大がさらに抑制され、風量の低下を防止でき、熱交換器10の熱交換性能をさらに向上させることができる。
Further, in the present embodiment, the auxiliary member 20 is provided at a substantially central portion in the flow direction of the refrigerant flow path of the multi-hole heat transfer tube 15.
Thereby, the length of the refrigerant flow path 16 from the upper end of the heat exchanger 10 to the auxiliary member 20 in the flow direction (y direction) and the refrigerant flow path 16 from the lower end of the heat exchanger 10 to the auxiliary member 20 Both the lengths in the flow direction (y direction) are the shortest, the multi-hole heat transfer tube 15 from the upper end of the heat exchanger 10 to the auxiliary member 20, and the many from the lower end of the heat exchanger 10 to the auxiliary member 20. The curvature of the hole heat transfer tube 15 can be minimized.
Further, the narrowing of the interval between the adjacent multi-hole heat transfer tubes 15 is minimized, the clogging generated by the interval being narrowed, the increase in the ventilation resistance is further suppressed, the decrease in the air volume can be prevented, and the heat exchanger The heat exchange performance of 10 can be further improved.

また、本実施形態においては、補助部材20は、多穴伝熱管15の空気の流れ方向下流側が低くなるように傾斜して設けられている。
これにより、熱交換器10が蒸発器として機能する場合においては、多穴伝熱管15の前縁部で結露水が発生するが、補助部材20を多穴伝熱管15の空気の流れ方向下流側が低くなるように傾斜して設けているので、補助部材20に落下した結露水を効率よく多穴伝熱管15の後縁部側に送ることができる。
In the present embodiment, the auxiliary member 20 is provided so as to be inclined so that the downstream side in the air flow direction of the multi-hole heat transfer tube 15 is lowered.
Thereby, in the case where the heat exchanger 10 functions as an evaporator, condensed water is generated at the front edge portion of the multi-hole heat transfer tube 15, but the auxiliary member 20 is located downstream of the multi-hole heat transfer tube 15 in the air flow direction. Since it is provided so as to be lowered, the condensed water dropped on the auxiliary member 20 can be efficiently sent to the rear edge portion side of the multi-hole heat transfer tube 15.

また、本実施形態においては、一対のヘッダーパイプ11a,11bは水平方向に延在するように設置され、多穴伝熱管15は鉛直方向に延在するように設置されている。
これにより、熱交換器10が蒸発器として機能する場合において、多穴伝熱管15の前縁部で発生した結露水を速やかに落下させることができ、結露水の排水性を向上させることができる。
In the present embodiment, the pair of header pipes 11a and 11b are installed so as to extend in the horizontal direction, and the multi-hole heat transfer tube 15 is installed so as to extend in the vertical direction.
Thereby, when the heat exchanger 10 functions as an evaporator, the condensed water generated at the front edge portion of the multi-hole heat transfer tube 15 can be quickly dropped, and the drainage of the condensed water can be improved. .

なお、本発明は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、種々変更が可能である。
例えば、前記実施形態においては、補助部材20が、水平(x-z平面と平行)となるように配置しているが、空気の流れ方向下流側(+z方向)に向かって低くなるように傾斜して配置するようにしてもよい。
これにより、補助部材20に溜まった結露水がより速やかに排水し易くなるため、通風抵抗の増大を抑制でき、風量の低下を防止できるため、熱交換器10性能をさらに向上できる。
In addition, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the meaning of this invention.
For example, in the above-described embodiment, the auxiliary member 20 is disposed so as to be horizontal (parallel to the xz plane), but is inclined so as to become lower toward the downstream side in the air flow direction (+ z direction). May be arranged.
Thereby, since the dew condensation water collected on the auxiliary member 20 can be easily drained more quickly, an increase in ventilation resistance can be suppressed, and a decrease in the air volume can be prevented, so that the performance of the heat exchanger 10 can be further improved.

前記実施形態においては、補助部材20の間隙保持部21の前端部を多穴伝熱管15の前縁部まで延在させているが、冷媒流路16の配列方向(z方向)の中間位置から、多穴伝熱管15の前縁部までの間であれば、間隙保持部21の前端部は、いずれの位置にあってもよい。
これにより、多穴伝熱管15の保持を確保したまま、補助部材20で多穴伝熱管15を覆う部分を減少させることができるため、熱交換面積を確保することができ、熱交換性能をさらに向上することができる。
In the embodiment, the front end portion of the gap holding portion 21 of the auxiliary member 20 extends to the front edge portion of the multi-hole heat transfer tube 15, but from the intermediate position in the arrangement direction (z direction) of the refrigerant flow paths 16. As long as it is between the front edge portion of the multi-hole heat transfer tube 15, the front end portion of the gap holding portion 21 may be in any position.
Thereby, since the part which covers the multi-hole heat exchanger tube 15 with the auxiliary member 20 can be reduced while ensuring the holding of the multi-hole heat exchanger tube 15, the heat exchange area can be ensured, and the heat exchange performance can be further increased. Can be improved.

また、前記実施形態においては、補助部材20の表面が平坦でなくてもよい。
図4は、第1実施形態の変形例における熱交換器10を示す斜視図である。図5は、図4の正面図である。図6は、第1実施形態の変形例における補助部材20を示す斜視図である。図7は、図6の枠線部分の拡大図である。なお、図4から図7に示す第1実施形態と同一部分には同一符号を付してその説明を省略する。
Moreover, in the said embodiment, the surface of the auxiliary member 20 does not need to be flat.
FIG. 4 is a perspective view showing the heat exchanger 10 in a modification of the first embodiment. FIG. 5 is a front view of FIG. FIG. 6 is a perspective view showing the auxiliary member 20 in a modification of the first embodiment. FIG. 7 is an enlarged view of the frame portion in FIG. In addition, the same code | symbol is attached | subjected to the same part as 1st Embodiment shown in FIGS. 4-7, and the description is abbreviate | omitted.

図4から図7に示すように、補助部材20の間隙保持部21の上面には、空気の流れ方向(z方向)に延在する溝23が形成されている。この溝23は、断面形状V字状に形成されている。
これにより、熱交換器10が蒸発器として機能する場合においては、多穴伝熱管15の前縁部で結露水が発生するが、この結露水は、溝23に溜められ、空気の流れにより、多穴伝熱管15の後縁部に送られるので、より速やかに結露水を排出しやすくなり、多穴伝熱管15の表面に触れる結露水が減少するため、結露水による熱抵抗が減少し、熱交換器10の熱交換性能をさらに向上させることができる。
また、溝23を形成することで、補助部材20の付近において+z方向に流れる空気の流路を確保することができ、補助部材20を設けたことによる通風抵抗の増大を抑制して風量の低下を防止することができ、熱交換性能をさらに向上させることができる。
なお、図4から図7に示す補助部材20においては、断面形状V字状の溝23を形成するように構成したが、本発明はこれに限定されない。例えば、断面形状U字状、断面形状W字状の他、傾斜面として形成するようにしてもよい。
As shown in FIGS. 4 to 7, a groove 23 extending in the air flow direction (z direction) is formed on the upper surface of the gap holding portion 21 of the auxiliary member 20. The groove 23 is formed in a V-shaped cross section.
Thereby, in the case where the heat exchanger 10 functions as an evaporator, dew condensation water is generated at the front edge of the multi-hole heat transfer tube 15, but this dew condensation water is accumulated in the groove 23, and due to the flow of air, Since it is sent to the rear edge of the multi-hole heat transfer tube 15, it becomes easier to discharge condensed water more quickly, and since the condensed water that touches the surface of the multi-hole heat transfer tube 15 decreases, the thermal resistance due to the condensed water decreases, The heat exchange performance of the heat exchanger 10 can be further improved.
In addition, by forming the groove 23, a flow path of air flowing in the + z direction in the vicinity of the auxiliary member 20 can be secured, and an increase in ventilation resistance due to the provision of the auxiliary member 20 is suppressed, thereby reducing the air volume Can be prevented, and the heat exchange performance can be further improved.
Although the auxiliary member 20 shown in FIGS. 4 to 7 is configured to form the groove 23 having a V-shaped cross section, the present invention is not limited to this. For example, you may make it form as an inclined surface other than cross-sectional shape U shape and cross-sectional shape W shape.

また、前記実施形態においては、補助部材20の間隙保持部21の前端角部が略直角に形成されているが、例えば、間隙保持部21の前端角部を曲面状面取りあるいは平面状面取りをした形状に形成するようにしてもよい。
これにより、補助部材20で多穴伝熱管15を覆う部分を減少させることができるため、熱交換面積を確保でき、熱交換性能をさらに向上することができる。
また、間隙保持部21の前端角部に面取りを施すことにより、補助部材20を多穴伝熱管15と多穴伝熱管15との間に差し込む際に、差し込みやすくなり、熱交換器10の組立て時の手間を低減させることができる。
In the embodiment, the front end corner of the gap holding portion 21 of the auxiliary member 20 is formed at a substantially right angle. For example, the front end corner of the gap holding portion 21 is curved or flat chamfered. You may make it form in a shape.
Thereby, since the part which covers the multihole heat exchanger tube 15 with the auxiliary member 20 can be reduced, a heat exchange area can be ensured and heat exchange performance can further be improved.
Further, by chamfering the front end corner portion of the gap holding portion 21, when the auxiliary member 20 is inserted between the multi-hole heat transfer tube 15 and the multi-hole heat transfer tube 15, the heat exchanger 10 can be assembled. Time trouble can be reduced.

さらに、前記実施形態においては、補助部材20の間隙保持部21が各多穴伝熱管15の表面に接触するように配置しているが、補助部材20の間隙保持部21が各多穴伝熱管15同士が接触しない最低の間隔を確保できるのであれば、必ずしも多穴伝熱管15の表面に接触していなくてもよい。   Furthermore, in the said embodiment, although it arrange | positions so that the gap | interval holding | maintenance part 21 of the auxiliary member 20 may contact the surface of each multi-hole heat exchanger tube 15, the gap | interval holding | maintenance part 21 of the auxiliary member 20 is each multi-hole heat exchanger tube. If the minimum space | interval which 15 does not contact can be ensured, it does not necessarily need to contact the surface of the multi-hole heat exchanger tube 15. FIG.

本発明は、多穴伝熱管15利用の熱交換器10において、多穴伝熱管15の湾曲を抑制し、熱交換器10性能を向上できるもので、冷凍機、空気調和装置、給湯空調複合装置などの用途に適用できる。   The present invention can suppress the bending of the multi-hole heat transfer tube 15 and improve the performance of the heat exchanger 10 in the heat exchanger 10 using the multi-hole heat transfer tube 15. It can be applied to other uses.

10 熱交換器
11a,11b ヘッダーパイプ
12a,12b 冷媒配管
15 多穴伝熱管
16 冷媒流路
20 補助部材
21 間隙保持部
22 連結部
23 溝
30 室外機
31 筐体
32 天板
33 底板
DESCRIPTION OF SYMBOLS 10 Heat exchanger 11a, 11b Header pipe 12a, 12b Refrigerant piping 15 Multi-hole heat exchanger tube 16 Refrigerant flow path 20 Auxiliary member 21 Gap holding part 22 Connection part 23 Groove 30 Outdoor unit 31 Case 32 Top plate 33 Bottom plate

Claims (4)

一対のヘッダーパイプと、複数の冷媒流路を有する複数の多穴伝熱管とを備え、前記複数の多穴伝熱管が、前記ヘッダーパイプの軸方向に沿って、互いに平行に接続された熱交換器において、
前記多穴伝熱管と、これと隣り合う前記多穴伝熱管との間に、前記冷媒流路の配列方向に沿って延在する補助部材を設けたことを特徴とする熱交換器。
A heat exchange comprising a pair of header pipes and a plurality of multi-hole heat transfer tubes having a plurality of refrigerant flow paths, wherein the plurality of multi-hole heat transfer tubes are connected in parallel to each other along the axial direction of the header pipe In the vessel
A heat exchanger characterized in that an auxiliary member extending along the arrangement direction of the refrigerant flow path is provided between the multi-hole heat transfer tube and the multi-hole heat transfer tube adjacent thereto.
前記補助部材は、前記多穴伝熱管の表面に接触するとともに、前記多穴伝熱管の空気の流れ方向下流側が連結されていることを特徴とする請求項1に記載の熱交換器。   2. The heat exchanger according to claim 1, wherein the auxiliary member is in contact with a surface of the multi-hole heat transfer tube, and is connected to a downstream side in the air flow direction of the multi-hole heat transfer tube. 前記補助部材は、前記多穴伝熱管の冷媒流路の流れ方向略中央部に設けられていることを特徴とする請求項1または請求項2に記載の熱交換器。   The heat exchanger according to claim 1 or 2, wherein the auxiliary member is provided at a substantially central portion in a flow direction of the refrigerant flow path of the multi-hole heat transfer tube. 前記一対のヘッダーパイプは水平方向に延在するように設置され、前記多穴伝熱管は鉛直方向に延在するように設置されていることを特徴とする請求項1から請求項3のいずれか一項に記載の熱交換器。   The pair of header pipes are installed so as to extend in a horizontal direction, and the multi-hole heat transfer tubes are installed so as to extend in a vertical direction. The heat exchanger according to one item.
JP2017061654A 2017-03-27 2017-03-27 Heat exchanger Pending JP2018162953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017061654A JP2018162953A (en) 2017-03-27 2017-03-27 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017061654A JP2018162953A (en) 2017-03-27 2017-03-27 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2018162953A true JP2018162953A (en) 2018-10-18

Family

ID=63860882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017061654A Pending JP2018162953A (en) 2017-03-27 2017-03-27 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2018162953A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021245734A1 (en) 2020-06-01 2021-12-09 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
WO2021255781A1 (en) 2020-06-15 2021-12-23 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
WO2022097281A1 (en) 2020-11-06 2022-05-12 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus equipped with same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021245734A1 (en) 2020-06-01 2021-12-09 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
WO2021255781A1 (en) 2020-06-15 2021-12-23 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
WO2022097281A1 (en) 2020-11-06 2022-05-12 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus equipped with same

Similar Documents

Publication Publication Date Title
EP2857785B1 (en) Heat exchanger and air conditioner
EP3279598B1 (en) Heat exchanger and air conditioner
EP2930456B1 (en) Flat tube heat exchange apparatus, and outdoor unit for air conditioner provided with same
JP6223596B2 (en) Air conditioner indoor unit
JP5385588B2 (en) Air conditioner outdoor unit
JP2014142138A (en) Air conditioner
JP6576577B1 (en) Refrigerant distributor, heat exchanger, and air conditioner
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
JP2018162953A (en) Heat exchanger
JP6765528B2 (en) Heat exchanger, refrigeration cycle device and air conditioner
JP6318371B2 (en) Outdoor unit and refrigeration cycle apparatus using the same
JP2016138726A (en) Heat exchanger
JP6370399B2 (en) Air conditioner indoor unit
WO2020012549A1 (en) Heat exchanger, heat exchange device, heat exchanger unit, and refrigeration system
WO2016121119A1 (en) Heat exchanger and refrigeration cycle device
JP2019015432A (en) Heat exchanger and heat exchange unit
JP2020112274A (en) Heat exchanger
JP2008215737A (en) Fin tube type heat exchanger and refrigerating cycle
JP6379352B2 (en) Finned tube heat exchanger
JP2017133814A (en) Heat exchanger
JP2018071895A (en) Heat exchanger
US11346587B2 (en) Refrigeration heat exchangers with embedded fins
JP2016169901A (en) Fin tube heat exchanger
JP7006376B2 (en) Heat exchanger
WO2020012548A1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device