JP2018157187A - Wiring board and wiring board manufacturing method - Google Patents
Wiring board and wiring board manufacturing method Download PDFInfo
- Publication number
- JP2018157187A JP2018157187A JP2017221012A JP2017221012A JP2018157187A JP 2018157187 A JP2018157187 A JP 2018157187A JP 2017221012 A JP2017221012 A JP 2017221012A JP 2017221012 A JP2017221012 A JP 2017221012A JP 2018157187 A JP2018157187 A JP 2018157187A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- insulating layer
- wiring board
- wiring
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
本開示は、配線基板および配線基板の製造方法に関する。 The present disclosure relates to a wiring board and a manufacturing method of the wiring board.
電子部品の小型化、薄型化および高密度化を実現するために、集積回路を含む半導体素子やRF(Radio Frequency)素子など含む高周波素子を垂直に積層した三次元実装技術が広く用いられている。この技術においては、貫通電極が用いられる。これにより、半導体素子やRF素子が基板両面において電気的に接続される。一方、電子部品の小型化および電子部品が搭載された基板の薄型化が進むにつれ、電子部品を製造する時の基板の固定が困難になる。そこで、特許文献1には、接着材を介して基板を支持体に仮固定する技術が開示されている。 In order to reduce the size, thickness and density of electronic components, a three-dimensional mounting technique in which high-frequency elements such as semiconductor elements including integrated circuits and RF (Radio Frequency) elements are vertically stacked is widely used. . In this technique, a through electrode is used. Thereby, the semiconductor element and the RF element are electrically connected on both sides of the substrate. On the other hand, as electronic components are miniaturized and substrates on which electronic components are mounted are thinner, it is difficult to fix the substrates when manufacturing electronic components. Therefore, Patent Document 1 discloses a technique for temporarily fixing a substrate to a support via an adhesive.
しかしながら、工程終了後に支持体を基板から剥離するときに、熱により軟化し、粘性を有する接着材を用いた場合、基板に接着材の残渣が付着する場合がある。残渣は、配線−配線間の導通特性に影響を与える恐れがある。または、接着材の性質によっては、工程中に支持体が基板から剥がれてしまう場合がある。 However, when the support is peeled from the substrate after completion of the process, when an adhesive material that is softened by heat and has viscosity is used, an adhesive residue may adhere to the substrate. The residue may affect the conduction characteristics between the wirings. Alternatively, depending on the nature of the adhesive, the support may be peeled off from the substrate during the process.
または、絶縁層の硬化熱処理後に接着材を剥離する場合、硬化処理よりも高温の熱処理が必要となる。このため、絶縁層が熱により劣化する。なお、熱により劣化するとは、絶縁層(例えば有機樹脂)中の化学結合が切断され、または絶縁層が変質することをいう。絶縁層が劣化することにより、絶縁層の電気特性(例えば絶縁耐性)が低下する恐れがある。 Alternatively, when the adhesive is peeled off after the heat treatment for the insulating layer, a heat treatment at a higher temperature than the curing treatment is required. For this reason, an insulating layer deteriorates with a heat | fever. Note that deterioration due to heat means that a chemical bond in an insulating layer (for example, an organic resin) is broken or the insulating layer is altered. When the insulating layer is deteriorated, the electrical characteristics (for example, insulation resistance) of the insulating layer may be reduced.
このような課題に鑑み、本開示の実施形態における目的の一つは、電気特性を落とすことなく板厚の薄い基板で製造した配線基板を提供することにある。 In view of such a problem, one of the objects in the embodiment of the present disclosure is to provide a wiring board manufactured using a thin board without deteriorating electrical characteristics.
本開示の一実施形態によると、第1面および第1面と反対側の第2面を有し、第1面と第2面とを貫通する貫通孔および貫通孔に貫通電極が設けられた基板の第2面に接着材を介して保護部材を貼り合わせ、基板の第1面上に絶縁層を形成し、絶縁層に貫通電極を露出させる開孔部を形成し、絶縁層上に貫通電極と接触するように配線を形成し、第1熱処理により基板と保護部材とを剥離し、第1熱処理よりも高温の第2熱処理により絶縁層を硬化させる配線基板の製造方法が提供される。 According to an embodiment of the present disclosure, the first surface and the second surface opposite to the first surface have a through hole penetrating the first surface and the second surface, and the through electrode is provided in the through hole. A protective member is bonded to the second surface of the substrate with an adhesive, an insulating layer is formed on the first surface of the substrate, an opening is formed in the insulating layer to expose the through electrode, and the insulating layer is penetrated. There is provided a method for manufacturing a wiring board in which a wiring is formed so as to be in contact with an electrode, the substrate and the protective member are peeled off by a first heat treatment, and the insulating layer is hardened by a second heat treatment higher than the first heat treatment.
上記配線基板の製造方法において、接着材は、熱膨張材を含み、第1熱処理により、基板から保護部材を剥離させてもよい。 In the method for manufacturing a wiring substrate, the adhesive may include a thermal expansion material, and the protective member may be peeled off from the substrate by a first heat treatment.
上記配線基板の製造方法において、第1熱処理の温度は150℃以上200℃以下であって、第2熱処理の温度は200℃以上300℃以下であってもよい。 In the method for manufacturing a wiring board, the temperature of the first heat treatment may be 150 ° C. or more and 200 ° C. or less, and the temperature of the second heat treatment may be 200 ° C. or more and 300 ° C. or less.
上記配線基板の製造方法において、基板の厚さは、100μm以上500μm以下であって、貫通孔の直径が100μm以下であってもよい。 In the above method for manufacturing a wiring substrate, the thickness of the substrate may be not less than 100 μm and not more than 500 μm, and the diameter of the through hole may be not more than 100 μm.
上記配線基板の製造方法において、基板はガラス基板であってもよい。 In the method for manufacturing a wiring board, the substrate may be a glass substrate.
上記配線基板の製造方法において、基板の第1面と、他の保護部材とを、他の接着材を介して接着し、基板の第2面上に他の配線および他の絶縁層の少なくともいずれかを形成してもよい。 In the method for manufacturing a wiring board, the first surface of the substrate and another protective member are bonded via another adhesive, and at least one of the other wiring and the other insulating layer on the second surface of the substrate. You may form.
上記配線基板の製造方法において、さらに、基板の第2面上に第2絶縁層を形成し、第2絶縁層に貫通電極を露出させる第2開孔部を形成し、第1熱処理よりも高温の第2熱処理により、絶縁層および第2絶縁層を硬化させ、絶縁層上にレジスト膜を所定の形状となるように形成し、基板の第1面側の貫通電極および絶縁層上に第1配線を形成し、レジストを用いて、基板の第2面側の貫通電極および第2絶縁層上に第2配線を形成してもよい。 In the method for manufacturing a wiring board, a second insulating layer is further formed on the second surface of the substrate, a second opening is formed in the second insulating layer to expose the through electrode, and the temperature is higher than that of the first heat treatment. By the second heat treatment, the insulating layer and the second insulating layer are cured, a resist film is formed on the insulating layer so as to have a predetermined shape, and the first electrode is formed on the through electrode and the insulating layer on the first surface side of the substrate. A wiring may be formed, and the second wiring may be formed on the through electrode and the second insulating layer on the second surface side of the substrate using a resist.
上記配線基板の製造方法において、第2絶縁層に他の接着材を介して他の保護部材を貼り合わせ、第1配線を形成した後、他の第1熱処理により基板と他の保護部材とを剥離してもよい。 In the above method for manufacturing a wiring board, another protective member is bonded to the second insulating layer via another adhesive to form the first wiring, and then the substrate and the other protective member are bonded by another first heat treatment. It may be peeled off.
上記配線基板の製造方法において、絶縁層の膜厚および第2絶縁層の膜厚は、3μm以上30μm以下であってもよい。 In the method for manufacturing a wiring board, the film thickness of the insulating layer and the film thickness of the second insulating layer may be not less than 3 μm and not more than 30 μm.
上記配線基板の製造方法において、絶縁層の上面から第1配線の上面までの距離は、絶縁層の上面からレジスト膜の上面までの距離よりも小さくてもよい。 In the above method for manufacturing a wiring substrate, the distance from the upper surface of the insulating layer to the upper surface of the first wiring may be smaller than the distance from the upper surface of the insulating layer to the upper surface of the resist film.
上記配線基板の製造方法において、レジスト膜の膜厚は、5μm以上30μm以下であってもよい。 In the method for manufacturing a wiring board, the thickness of the resist film may be not less than 5 μm and not more than 30 μm.
本開示の一実施形態によると、第1面および第1面と反対側の第2面を有し、第1面と第2面とを貫通する貫通孔および貫通孔に貫通電極が設けられた基板と、第1面および第2面の少なくともいずれかの面上に設けられた1以上の配線および1以上の絶縁層とを含み、基板の厚さは、100μm以上500μm以下であって、貫通孔の直径が100μm以下である、配線基板が提供される。 According to an embodiment of the present disclosure, the first surface and the second surface opposite to the first surface have a through hole penetrating the first surface and the second surface, and the through electrode is provided in the through hole. Including a substrate and one or more wirings and one or more insulating layers provided on at least one of the first surface and the second surface, and the thickness of the substrate is not less than 100 μm and not more than 500 μm. A wiring board having a hole diameter of 100 μm or less is provided.
上記配線基板において、基板はガラス基板であってもよい。 In the wiring board, the substrate may be a glass substrate.
上記配線基板において、1以上の絶縁層の膜厚は、3μm以上20μm以下であってもよい。 In the wiring board, the film thickness of the one or more insulating layers may be 3 μm or more and 20 μm or less.
上記配線基板において、第1面および第2面の少なくともいずれかに熱膨張材を含み、所定の温度以上の熱により剥離力が低下する接着材と、接着材と接触する保護部材と、を有してもよい。 The wiring board includes an adhesive that includes a thermal expansion material on at least one of the first surface and the second surface, the peel strength of which is reduced by heat of a predetermined temperature or more, and a protective member that contacts the adhesive. May be.
本開示の一実施形態によると、上記配線基板と、上記配線基板と電気的に接続される集積回路と、を含む、半導体装置が提供される。 According to an embodiment of the present disclosure, a semiconductor device including the wiring board and an integrated circuit electrically connected to the wiring board is provided.
本開示の一実施形態によると、電気特性を落とすことなく板厚の薄い基板で製造した配線基板を安定して提供することができる。 According to an embodiment of the present disclosure, it is possible to stably provide a wiring board manufactured using a thin board without degrading electrical characteristics.
以下、本開示の各実施形態に係る配線基板等について、図面を参照しながら詳細に説明する。なお、以下に示す各実施形態は本開示の実施形態の一例であって、本開示はこれらの実施形態に限定して解釈されるものではない。なお、本実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号(数字の後にxxx−1、xxx−2等を付しただけの符号)を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なったり、構成の一部が図面から省略されたりする場合がある。 Hereinafter, a wiring board and the like according to each embodiment of the present disclosure will be described in detail with reference to the drawings. In addition, each embodiment shown below is an example of embodiment of this indication, Comprising: This indication is limited to these embodiment and is not interpreted. Note that in the drawings referred to in this embodiment, the same portion or a portion having a similar function is denoted by the same reference symbol or a similar reference symbol (a reference number simply including xxx-1, xxx-2, etc. after a number). However, the repeated description may be omitted. In addition, the dimensional ratio in the drawing may be different from the actual ratio for convenience of explanation, or a part of the configuration may be omitted from the drawing.
<第1実施形態>
(1−1.配線基板の構成)
図1に配線基板100の断面図を示す。図1に示すように、配線基板100は、基板110、貫通孔115、貫通電極120、絶縁層130、配線140、絶縁層150、バンプ電極160、絶縁層230、配線240、絶縁層250およびバンプ電極260を含む。
<First Embodiment>
(1-1. Configuration of wiring board)
FIG. 1 shows a cross-sectional view of the
基板110は、第1面110Aおよび第1面110Aの反対側の第2面110Bを有する。また、基板110には、貫通孔115が設けられる。なお、上面から見たときの貫通孔115は円形状を有してもよい。このときの貫通孔115の直径は、30μm以上200μm未満の範囲で適宜設定される。
The
基板110には、高抵抗な材料が用いられる。この例では、基板110には無アルカリガラス基板が用いられる。
A high resistance material is used for the
基板110の板厚は、100μm以上500μm以下の範囲で適宜設定される。例えば、基板110の板厚として300μmが用いられる。なお、基板110の貫通孔115の直径は、100μm以下であることが望ましい。
The thickness of the
貫通電極120は、シード層125とともに貫通孔115の側壁部、基板110の第1面110Aおよび第2面110Bに配置される。貫通電極120には、低抵抗の材料が用いられる。この例では、シード層125および貫通電極120には、銅(Cu)が用いられる。なお、貫通電極120は、銅に限定されず、金(Au)、銀(Ag)、ニッケル(Ni)または錫(Sn)を含む材料が用いられてもよい。なお、貫通孔115の空隙部には、樹脂117が設けられてもよい。なお、貫通電極120の一部(電極121)は、貫通孔115の側壁には配置されずに基板110上(第1面または第2面)にのみ配置されてもよい。
The through
絶縁層130は、基板110の第1面110Aおよび貫通電極120上に設けられる。絶縁層130は、貫通電極120上に開孔部131を有する。この例では、絶縁層130には、ポリイミド樹脂が用いられる。なお、絶縁層130には、酸化シリコン膜、窒化シリコン膜などの無機絶縁材料、アクリル樹脂、エポキシ樹脂などの有機絶縁材料が用いられてもよい。
The insulating
配線140は、絶縁層130の上面および開孔部131に設けられる。また、配線140の一部は、貫通電極120と接触する。配線140には、貫通電極120と同様の材料が用いられる。
The
絶縁層150は、絶縁層130および配線140上に設けられる。絶縁層150には、絶縁層130と同じ材料が用いられる。
The insulating
バンプ電極160は、開孔部155および配線140上に設けられる。バンプ電極160と、配線140とは、電気的に接続される。この例では、バンプ電極160には、ニッケル(Ni)、パラジウム(Pd)および金(Au)の積層膜が用いられる。なお、バンプ電極160には、銅(Cu)、銀(Ag)または錫(Sn)その他の金属材料が用いられてもよい。
The
絶縁層230は、基板110の第2面110Bおよび貫通電極120上に設けられる。絶縁層230は、貫通電極120上に開孔部231を有する。この例では、絶縁層230には、絶縁層130と同様の材料が用いられてもよい。
The insulating
配線240は、絶縁層230の上面および開孔部231に設けられる。また、配線240の一部は、貫通電極120と接触する。配線240には、貫通電極120と同様の材料が用いられてもよい。
The
絶縁層250は、絶縁層230および配線240上に設けられる。絶縁層250には、絶縁層230と同じ材料が用いられてもよい。
The insulating
バンプ電極260は、開孔部255および配線240上に設けられる。バンプ電極260と、配線240とは、電気的に接続される。バンプ電極260には、バンプ電極160と同様の材料が用いられてもよい。
The
(1−2.配線基板の製造方法)
次に、図1に示した配線基板100の製造方法を図2乃至図11を用いて説明する。
(1-2. Manufacturing method of wiring board)
Next, a method for manufacturing the
まず、図2に示すように、第1面110Aおよび第1面110Aの反対側の第2面110Bを有し、貫通孔115および貫通電極120が設けられた基板110を用いる。この例では、基板110には、無アルカリガラス基板が用いられる。
First, as shown in FIG. 2, a
貫通孔115は、この例では基板110に対してレーザー照射法(レーザーアブレーション法と呼ぶことができる)を用いることにより形成される。レーザーには、エキシマレーザー、ネオジウム:ヤグレーザー(Nd:YAG)レーザー、フェムト秒レーザー等が用いられる。エキシマレーザーを用いる場合、紫外領域の光が照射される。例えば、エキシマレーザーにおいて塩化キセノンを用いる場合、波長が308nmの光が照射される。なお、レーザーによる照射径は、20μm以上250μm未満としてもよい。貫通孔115の直径は、30μm以上200μm未満の範囲で適宜変えることができる。上記方法を用いることにより、上面から見たときに貫通孔115は円形状を有する。
In this example, the through
なお、貫通孔115の形成は、レーザー照射法に限定されず、反応性イオンエッチング法、深掘り反応性イオンエッチング法などのドライエッチング法や、ウェットエッチング法を用いてもよいし、レーザー照射法とウェットエッチング法を組み合わせて用いてもよい。例えば、無アルカリガラス基板をウェットエッチングする場合、フッ酸が用いられる。
The formation of the through
貫通電極120は、電解めっき法または無電解めっき法により形成されてもよい。この例では、まず基板110の第1面110A、第2面110Bおよび貫通孔115にシード層125を形成する。シード層125は、スパッタリング法により形成される。シード層125には、銅(Cu)が含まれる。なお、シード層125には、銅(Cu)以外の材料として、ニッケル(Ni)や金(Au)が用いられてもよい。次に、シード層125上にレジスト膜を形成する。レジスト膜には、塗布形成したものを用いてもよいし、ドライフィルムレジストを用いてもよい。レジスト膜は、フォトリソグラフィ法により、所定の形状に加工される。次に、露出したシード層125上に貫通電極120を形成する。貫通電極120として、電解めっき法により銅(Cu)膜が形成される。なお、このときの銅膜にはコンフォーマルめっきがなされる。次に、レジスト膜を除去し、レジスト膜下に設けられていたシード層125を除去する。シード層125はウェットエッチング法により除去される。
The through
次に、図3に示すように、基板110の第2面110Bに接着材310を介して、保護部材320を貼り合わせる。貼り合わせる温度は、この例では室温である。接着材310としては、温度が高くなると接着力が低下するものを用いる。例えば、接着材310に熱膨張材311が含まれるものを適用する。熱膨張材311は、所定の温度以上の熱が加えられると、発泡し、膨張する機能を有する。接着材310は熱膨張材311が膨張することで基板110との接触面積が低下するので、結果として接着力が低下する。保護部材320は、基板110を保護する機能を有する。この例では、保護部材320には基板110と同じ厚さの無アルカリガラス基板が用いられる。なお、保護部材320は、無アルカリガラス基板に限定されず、ステンレス(SUS)基板、シリコン基板、サファイア基板または有機樹脂基板が用いられてもよい。また、保護部材の厚さは必要とする強度及び工程の装置制約等により適宜選択すればよい。
Next, as illustrated in FIG. 3, the
次に、図4に示すように、基板110の第1面110Aおよび貫通電極120上に絶縁層130を形成する。絶縁層130は、印刷法、塗布法、またはディッピング法を用いて形成される。この例では、絶縁層130には、スピンコーティング法に設けられたポリイミド樹脂が用いられる。なお、絶縁層130には、ポリイミド樹脂に限定されず、アクリル、エポキシ、ベンゾシクロブテン(BCB)などの有機樹脂を用いてもよい。また、絶縁層130には、有機樹脂の他、シリカを含む有機無機ハイブリッド樹脂を用いてもよいし、プラズマCVD法により形成された酸化シリコン、窒化シリコン等の無機膜が用いられてもよい。また、絶縁層130には、開孔部131がフォトリソグラフィ法などにより形成される。なお、絶縁層130の形成時に絶縁層130中の溶媒を除去するために熱処理を行ってもよい。
Next, as illustrated in FIG. 4, the insulating
次に、図5に示すように、第1熱処理133を行う。第1熱処理133により、熱膨張材311が膨張し、発泡する。このとき、基板110と接着材310との接触面積が低下する。これにより、基板110と接着材310との接着力が低下するため、保護部材320が剥離される。なお、接着材310は基板110の近傍で多く発泡してもよい。これにより、接着材310の残渣が基板110の表面に付着することが防止される。
Next, as shown in FIG. 5, a
次に、図6に示すように、第2熱処理135を行う。第2熱処理135により、絶縁層130中の残留溶媒成分及び残存する開始材が除去される、または絶縁層130において化学結合が起こり、絶縁層130は硬化される。
Next, as shown in FIG. 6, a
図7は、各工程における到達温度を示したグラフ330である。グラフ330において、T1−T2間は、保護部材320を貼り合わせる工程に相当し、到達温度はTemp320である。T3−T4間は、絶縁層130を形成する工程に相当し、到達温度はTemp130である。T5−T6間は、第1熱処理133により保護部材320を剥離する工程に相当し、到達温度はTemp133である。T7−T8間は、第2熱処理により絶縁層130を硬化させる工程に相当し、到達温度はTemp135である。図7に示すように、到達温度は工程を経るごとに高くなり、Temp135は、Temp133よりも高温である。この例では、Temp130は、室温以上150℃未満である。また、Temp133は、150℃以上200℃以下である。また、Temp135は、200℃以上300℃以下である。上記の温度設定とすることにより、保護部材320は、到達温度がTemp133未満の工程であれば、保護部材320は剥離することなく、基板110は保護される。これにより、基板110は、工程中に割れることが抑えられる。または、基板110は反りが抑えられ、製造装置における吸着異常やアライメント異常が防止される。
FIG. 7 is a
また、Temp133の方が、Temp135よりも低いことにより、絶縁層130の熱による劣化が抑えられる。つまり、配線基板100の電気特性(例えば絶縁耐性)の低下を抑えることができる。
In addition, since
次に、図8に示すように、基板110の第2面110Bに接着材310−1を介して保護部材320−1を貼り合わせ、配線140、絶縁層150および開孔部155を形成する。配線140、絶縁層150および開孔部155を形成後、保護部材320−1は、第1熱処理133と同様の熱処理を行うことにより剥離される。保護部材320の剥離後、第2熱処理135と同様の熱処理を行うことにより、絶縁層150は硬化される。
Next, as illustrated in FIG. 8, the protective member 320-1 is bonded to the
次に、図9に示すように、開孔部155にバンプ電極160を形成する。バンプ電極160には、例えば無電解めっき法により形成されたニッケル、パラジウムおよび金の積層膜が用いられる。なお、バンプ電極160を形成する際にも保護部材320が設けられてもよい。
Next, as shown in FIG. 9, the
次に、図10に示すように、絶縁層130、配線140および絶縁層150が形成された基板110の第1面110A側に熱膨張材311−2を含む接着材310−2を介して保護部材320−2を貼り合わせる。
Next, as shown in FIG. 10, protection is performed via an adhesive 310-2 including a thermal expansion material 311-2 on the
次に、図11に示すように、基板110の第2面110Bおよび貫通電極120上に絶縁層230を形成する。また、貫通電極120上に開孔部231を形成する。なお、このとき基板110の第1面110Aは、接着材310−2および保護部材320−2に保護されているので、絶縁層130、配線140および絶縁層150が設けられていても、基板110の第1面にキズまたはカケが入ることが抑えられる。また、保護部材320により、基板110の第1面110A側が汚れることも抑えられる。絶縁層230を形成後、保護部材320は、適宜第1熱処理133と同様の熱処理が行われ、剥離される。また、保護部材320を剥離した後、適宜第2熱処理135と同様の熱処理が行われ、絶縁層230は硬化する。
Next, as illustrated in FIG. 11, the insulating
配線240は、配線140と同様に形成される。また、絶縁層250および開孔部255は、絶縁層150および開孔部155と同様に形成される。バンプ電極260は、バンプ電極160と同様に形成される。なお、上記処理において、保護部材320は基板110の第1面110Aに適宜貼り合わされることにより、基板110は保護される。
The
以上により、配線基板100は製造される。上記製造方法を用いることにより、薄い板厚の基板110として特に強度の低いガラス基板が用いられても、工程中に基板110の割れまたは反りが抑えられる。また、基板110の板厚が薄くなることにより、貫通孔115の直径をさらに小さくすることができる。これにより、さらに小型・薄型の配線基板を製造することができる。小型・薄型の配線基板が用いられることで、電子部品のさらなる小型化が実現される。また、上記製造方法の場合、接着材310が熱膨張し、発泡する。これにより、基板110と、保護部材320とが剥離する。このとき、熱により軟化し、粘性を有する接着材のように基板に接着材310の残渣が付着することが防止される。そのため、配線−配線間の短絡不良、導通不良などの電気特性不良も抑えられる。また、上記製造方法を用いることにより、板厚の薄い基板でも形成された膜の応力による影響が緩和され、工程時の基板の反りを抑えることができる。したがって、製造装置における基板の吸着異常またはアライメント異常も抑えることができる。
The
<第2実施形態>
次に、配線基板100の異なる製造方法について図12乃至図17を用いて説明する。なお、第1実施形態において示した構造、材料および方法については、その説明を援用する。
Second Embodiment
Next, a different manufacturing method of the
まず、第1面110Aおよび第1面110Aの反対側の第2面110Bを有し、貫通孔115および貫通電極120が設けられた基板110を用いる。次に、基板110の第2面110Bに接着材310−3を介して保護部材320−3を貼り合わせる。次に、基板110の第1面110Aおよび貫通電極120上に絶縁層130を形成する。また、絶縁層130に開孔部131をフォトリソグラフィ法により形成する。次に、第1熱処理133−1を行う(図12参照)。第1熱処理133−1により、保護部材320−3が剥離される。
First, a
次に、図13に示すように、絶縁層130が形成された基板110の第1面110Aに接着材310−4を介して保護部材320−4を貼り合わせる。
Next, as illustrated in FIG. 13, the protective member 320-4 is bonded to the
次に、図14に示すように、基板の第2面110Bに絶縁層230および開孔部231を形成する。絶縁層230および開孔部231を形成後、第1熱処理133−2を行うことにより、保護部材320−4を剥離する。
Next, as shown in FIG. 14, an insulating
次に、図15に示すように、第2熱処理135−1を行う。第2熱処理135−1により、絶縁層130および絶縁層230を同時に硬化させる。
Next, as shown in FIG. 15, the second heat treatment 135-1 is performed. The insulating
次に、図16に示すように、基板110の第2面110Bに熱膨張材311−5を含む接着材310−5を介して保護部材320−5を貼り合わせる。保護部材320−5を貼り合わせた後、絶縁層130および貫通電極120上に配線140を形成する。次に、第1熱処理133−3を行う。第1熱処理133−3により、保護部材320−5が剥離される。
Next, as illustrated in FIG. 16, the protective member 320-5 is bonded to the
次に、図17に示すように、基板110の第1面110Aに熱膨張材311−6を含む接着材310−6を介して保護部材320−6を貼り合わせる。保護部材320−6を貼り合わせた後、配線240を形成する。次に、第1熱処理133−4を行う。第1熱処理133−4により、保護部材320−6が剥離される。
Next, as illustrated in FIG. 17, the protective member 320-6 is bonded to the
続いて、絶縁層150、絶縁層250、バンプ電極160およびバンプ電極260を順次形成する。なお、絶縁層150および絶縁層250には、同時に第2熱処理135(図示なし)が行われる。
Subsequently, the insulating
上記製造方法を用いることにより、板厚の薄い基板110を用いた場合にも工程中の基板110の割れを防止しながら、配線基板100を製造することができる。また、絶縁層130、絶縁層150、絶縁層230および絶縁層250を硬化させるために必要な工程時間が他の工程よりも長い場合においても、上記製造方法を用いることにより、硬化時間を半分に短縮することができる。
By using the above manufacturing method, the
<第3実施形態>
次に、第1実施形態および第2実施形態とは異なる配線基板100の製造方法について図18乃至図24を用いて説明する。なお、第1実施形態および第2実施形態において示した構造、材料および方法については、その説明を援用する。
<Third Embodiment>
Next, a method for manufacturing the
まず、第1面110Aおよび第1面110Aの反対側の第2面110Bを有し、貫通孔115および貫通電極120が設けられた基板110を用いる。次に、基板110の第2面110Bに熱膨張材311−7を含む接着材310−7を介して保護部材320−7を貼り合わせる。
First, a
次に、基板110の第1面110Aおよび貫通電極120上に絶縁層130を形成する。このとき、絶縁層130の膜厚は、3μm以上30μm以下、より好ましくは10μm以上20μm以下とすることが望ましい。また、絶縁層130に開孔部131を形成する。開孔部131は、フォトリソグラフィ法により形成されてもよい。このとき、開孔部131の直径は、5μm以上20μm以下としてもよい。次に、第1熱処理133と同様の第1熱処理133−5を行う(図18参照)。第1熱処理133−5により、保護部材320−7が剥離される。
Next, the insulating
次に、図19に示すように、基板110の第2面110Bに絶縁層230および開孔部231を形成する。なお、基板110の第1面110A側には保護部材320が設けられなくてもよい。上述したように、絶縁層130の膜厚が大きく、剛性を有する。そのため、絶縁層130は保護部材320の代わりとして機能することができる。
Next, as illustrated in FIG. 19, the insulating
次に、図20に示すように、第2熱処理135−2を行う。第2熱処理135−2により、絶縁層130および絶縁層230は同時に硬化される。
Next, as shown in FIG. 20, the second heat treatment 135-2 is performed. The insulating
なお、上記において絶縁層130および絶縁層230は第2熱処理135−2により同時に硬化される例を示したが、第2熱処理135−2は絶縁層130および絶縁層230に対して別々に行われてもよい。この場合、絶縁層130に対して第1熱処理133−5および第2熱処理135−2が連続して行われてもよい。これにより、絶縁層130の強度または剛性を高めることができる。
Note that although the example in which the insulating
次に、図21に示すように、基板110の第2面110Bに熱膨張材311−8を含む接着材310−8を介して保護部材320−8を貼り合わせる。保護部材320−8を貼り合わせた後、絶縁層130および貫通電極120上に配線140を形成する。
Next, as illustrated in FIG. 21, the protective member 320-8 is bonded to the
配線140は、セミアディティブ法により形成される。まず、図21に示すように絶縁層130および貫通電極120上にシード層141を形成する。次に、図22に示すようにレジスト膜139を形成し、フォトリソグラフィ法により所定の形状に加工する。次に、図23に示すように露出したシード層141上に配線140を形成する。なお、このとき、絶縁層130の上面130Aから配線140の上面140Aまでの距離L140は、絶縁層130の上面130Aからレジスト膜139の上面139Aまでの距離L139よりも小さい(配線140の上面がレジスト膜139の上面よりも引っ込んでいるという場合がある)ことが望ましい。具体的には、距離L139(シード層141の膜厚を含むレジスト膜139の膜厚をいう。なお、シード層141の膜厚はレジスト膜139の膜厚に比べて非常に薄いため、レジスト膜139のみの膜厚としてもよい)は5μm以上30μm以下、好ましくは10μm以上20μm以下であることが望ましい。また、距離L140(シード層141を含む配線140の膜厚という場合がある)は3μm以上8μm以下であることが望ましい。
The
配線140を形成した後、第1熱処理133−6を行う。第1熱処理133−6により、保護部材320−8が剥離される。
After the
次に、図24に示すように、基板110の第2面110B側の貫通電極120および絶縁層230上に配線240を形成する。このとき、基板110の第1面110A側に保護部材320が設けられなくてもよい。上述したように、レジスト膜139の膜厚が大きい。これにより、レジスト膜139が剛性を有する。そのため、保護部材320の代わりとしてレジスト膜139を用いてもよい。レジスト膜139は、第1熱処理133−6により硬化しているため、製造装置と接触してもレジスト膜139の一部が付着するなどの心配がない。また、上述したように配線140の上面がレジスト膜139の上面よりも引っ込んでいる。これにより、配線140が製造装置と接触することが防止される。したがって、保護部材320を用いない場合において配線140の断線が防止される。
Next, as illustrated in FIG. 24, the
配線240は、配線140と同様にセミアディティブ法により形成されてもよい。このとき、シード層241およびレジスト膜239が用いられる。配線240を形成した後、レジスト膜139およびレジスト膜239は、アッシング処理または薬液処理により除去される。また、シード層141のうち配線140が形成されていない部分およびシード層241のうち配線240が形成されていない部分は、エッチング法により除去される。
The
続いて、絶縁層150、絶縁層250、バンプ電極160およびバンプ電極260を順次形成する。なお、絶縁層150を形成する場合には、絶縁層130の場合と同様に基板110の第2面110B側に保護部材320を設けてもよい。また、絶縁層250を形成する場合、絶縁層230の場合と同様に、基板110の第1面110A側に保護部材320を設けなくてもよい。絶縁層、配線を積層する場合にも同様に形成すればよい。
Subsequently, the insulating
上記製造方法において、基板110の第1面110A側には保護部材320を貼り合わせずに配線基板100を製造することができる。これにより、基板110の割れ、欠けまたは反りなどの配線基板の製造工程における不良を低減しつつ、保護部材320を貼り合わせる工程および剥離する工程を削減することができる。したがって、本実施形態を用いることにより、安定した製造工程および高い生産性を有しつつ、電気特性を落とすことなく板厚の薄い基板を用いた配線基板の製造方法を提供することができる。
In the above manufacturing method, the
なお、本実施形態において、配線140を形成する場合に、基板110の第2面110B側に保護部材320−8が形成される例を示したが、これに限定されない。保護部材320−8は、必ずしも設ける必要はない。このとき、絶縁層230の膜厚は、3μm以上30μm以下、より好ましくは10μm以上20μm以下とすることが望ましい。これにより、保護部材320−8が設けられなくても、絶縁層230の膜厚が大きいことにより、絶縁層230が保護部材320の代わりとして機能する。したがって、安定した製造工程および高い生産性を有する配線基板の製造方法を提供することができる。
In the present embodiment, when the
<第4実施形態>
本実施形態では、第1実施形態〜第3実施形態で説明した配線基板100を含んだ半導体装置500について説明する。
<Fourth embodiment>
In the present embodiment, a
図25は、半導体装置500の断面図である。図25において、半導体装置500は、RF素子600、トランジスタを含むチップ化された半導体素子610、配線基板100およびパッケージ基板800を有する。半導体素子610は、中央演算処理装置(CPU:Central Processing Unit)または記憶装置としての機能を有する。配線基板100は、インターポーザとしての機能を有する。RF素子600および半導体素子610と、配線基板100とは、バンプ電極650などを用いて接続される。なお、バンプ電極650には、バンプ電極160が用いられてもよい。また、RF素子600と、半導体素子610との間はモールド樹脂によって封止されていてもよい。また、配線基板100と、パッケージ基板800とは、錫(Sn)、銀(Ag)などを含むバンプ電極750などを用いて接続される。バンプ電極750には、バンプ電極260が用いられてもよい。また、配線基板100と、パッケージ基板800との間隙には、アンダーフィル樹脂が充填されることにより封止されてもよい。半導体装置500は、ノイズ消去用途に用いてもよいし、信号フィルタに用いてもよい。
FIG. 25 is a cross-sectional view of the
<第5実施形態>
本実施形態では、第4実施形態において説明した半導体装置500を電気機器に適用した例について説明する。
<Fifth Embodiment>
In this embodiment, an example in which the
図26は、電気機器を説明する図である。配線基板100を含んだ半導体装置500は、例えば、携帯端末(携帯電話、スマートフォンおよびノート型パーソナルコンピュータ、ゲーム機器等)、情報処理装置(デスクトップ型パーソナルコンピュータ、サーバ、カーナビゲーション等)、家庭用電気機器(電子レンジ、エアコン、洗濯機、冷蔵庫)、自動車等、様々な電気機器に搭載される。図26(A)はスマートフォン4000である。図26(B)は携帯用ゲーム機5000である。図26(C)は、ノート型パーソナルコンピュータ6000である。
FIG. 26 is a diagram illustrating an electrical device. The
これらの電気機器において、RF素子600、半導体素子610を含んだ半導体装置500は、ノイズフィルタ、信号フィルタの他、アプリケーションプログラムを実行して各種機能を実現するCPU等で構成される制御部などの機能を有することができる。
In these electrical devices, the
(変形例1)
なお、本開示の第1実施形態〜第3実施形態では、基板110に無アルカリガラス基板が用いられる例を示したが、これに限定されない。基板110は、石英ガラス基板、ソーダガラス基板、ホウ珪酸ガラス基板、サファイア基板、シリコン基板、炭化シリコン基板、アルミナ(Al2O3)基板、窒化アルミニウム(AlN)基板、ジルコニア(ZrO2)基板、アクリルまたはポリカーボネートなどを含む樹脂基板、またはこれらの基板が積層されたものが用いられてもよい。例えば、基板110としてシリコン基板を用いた場合、ウェットエッチング法により貫通孔115を形成する際に、アルカリ溶液または硝酸およびフッ酸が用いられる。なお、シリコン基板は、ガラス基板よりも割れにくいが、板厚が極度に薄くなった場合(例えば板厚100μm以下)、本開示の製造方法を用いることにより、配線基板を製造することができる。
(Modification 1)
In the first to third embodiments of the present disclosure, an example in which an alkali-free glass substrate is used as the
(変形例2)
また、本開示の第1実施形態では、基板110の第1面110Aおよび第2面110Bに配線および絶縁層が設けられる例を説明したが、これに限定されない。例えば、図27に示す配線基板100−1のように、第1面110Aおよび第2面110Bのいずれかに配線および絶縁層が設けられてもよい。基板110の片側にのみ配線および絶縁層が形成され、応力の集中が大きくなる場合に本開示の第1実施形態の製造方法を用いることにより、基板の反りを抑えることができる。
(Modification 2)
In the first embodiment of the present disclosure, the example in which the wiring and the insulating layer are provided on the
(変形例3)
また、本開示の第1実施形態では、貫通孔115が設けられている例を示したが、これに限定されない。例えば、図28に示す配線基板100−2のように穴部116が設けられてもよい。
(Modification 3)
Moreover, in 1st Embodiment of this indication, although the example in which the through-
(変形例4)
また、本開示の第1実施形態では、貫通電極120が貫通孔115の側壁部に形成される例を説明したが、これに限定されない。例えば、図29に示す配線基板100−3のように、貫通電極120が貫通孔115に充填して設けられてもよい。貫通電極120を形成する際には、適宜化学機械研磨(CMP:Chemical Mechanical Polishing)法が用いられてもよい。
(Modification 4)
Moreover, although 1st Embodiment of this indication demonstrated the example in which the
(変形例5)
また、本開示の第1実施形態〜第3実施形態では、基板110の一面につき、それぞれ配線2層、絶縁層2層が配置される例を説明したが、これに限定されない。例えば、配線を3層以上、絶縁層を3層以上としてもよい。配線は配線140と同様に形成すればよい。また、絶縁層は、絶縁層150と同様に形成すればよい。
(Modification 5)
In the first to third embodiments of the present disclosure, the example in which two wiring layers and two insulating layers are disposed on one surface of the
また、配線および絶縁層の層数は、基板110の第1面110Aと第2面110Bとで異なってもよい。例えば、図30に示すように、配線基板100−4には、第1面110A側に絶縁層170および配線180がさらに設けられる。この場合、配線基板100−4は、第1面110A側には配線および絶縁層が3層設けられ、第2面110B側には配線および絶縁層が2層設けられる構成としてもよい。
In addition, the number of wiring and insulating layers may be different between the
100・・・配線基板、110・・・基板、110A・・・第1面、110B・・・第2面、115・・・貫通孔、116・・・穴部、117・・・樹脂、120・・・貫通電極、125・・・シード層、130・・・絶縁層、131・・・開孔部、133・・・熱処理、135・・・熱処理、140・・・配線、150・・・絶縁層、155・・・開孔部、160・・・バンプ電極、170・・・絶縁層、180・・・配線、230・・・絶縁層、231・・・開孔部、240・・・配線、250・・・絶縁層、260・・・バンプ電極、310・・・接着材、311・・・熱膨張材、320・・・保護部材、500・・・半導体装置、600・・・RF素子、610・・・半導体素子、650・・・バンプ電極、750・・・バンプ電極、800・・・パッケージ基板、4000・・・スマートフォン、5000・・・携帯用ゲーム機、6000・・・ノート型パーソナルコンピュータ
DESCRIPTION OF
Claims (16)
前記基板の第1面上に絶縁層を形成し、
前記絶縁層に前記貫通電極を露出させる開孔部を形成し、
前記絶縁層上に前記貫通電極と接触するように配線を形成し、
第1熱処理により前記基板と前記保護部材とを剥離し、
前記第1熱処理よりも高温の第2熱処理により、前記絶縁層を硬化させる
配線基板の製造方法。 The second surface of the substrate having a first surface and a second surface opposite to the first surface, a through-hole penetrating the first surface and the second surface, and a through-electrode provided in the through-hole. A protective member is bonded to the surface via an adhesive,
Forming an insulating layer on the first surface of the substrate;
Forming an opening to expose the through electrode in the insulating layer;
Forming a wiring on the insulating layer so as to be in contact with the through electrode;
The substrate and the protective member are separated by a first heat treatment,
A method for manufacturing a wiring board, wherein the insulating layer is cured by a second heat treatment at a higher temperature than the first heat treatment.
前記第1熱処理により前記基板から前記保護部材を剥離させる、
請求項1記載の配線基板の製造方法。 The adhesive includes a thermal expansion material,
Peeling off the protective member from the substrate by the first heat treatment;
The manufacturing method of the wiring board of Claim 1.
請求項1または2に記載の配線基板の製造方法。 The temperature of the first heat treatment is 150 ° C. or more and 200 ° C. or less, and the temperature of the second heat treatment is 200 ° C. or more and 300 ° C. or less.
The manufacturing method of the wiring board of Claim 1 or 2.
前記貫通孔の直径が100μm以下である、
請求項1乃至3のいずれか一に記載の配線基板の製造方法。 The thickness of the substrate is not less than 100 μm and not more than 500 μm,
The diameter of the through hole is 100 μm or less,
The manufacturing method of the wiring board as described in any one of Claims 1 thru | or 3.
請求項1乃至4のいずれか一に記載の配線基板の製造方法。 The substrate is a glass substrate;
The manufacturing method of the wiring board as described in any one of Claims 1 thru | or 4.
前記基板の前記第2面上に他の配線および他の絶縁層の少なくともいずれかを形成する、
請求項1乃至5のいずれか一に記載の配線基板の製造方法。 Adhering the first surface of the substrate and another protective member via another adhesive,
Forming at least one of another wiring and another insulating layer on the second surface of the substrate;
The manufacturing method of the wiring board as described in any one of Claims 1 thru | or 5.
前記第2絶縁層に前記貫通電極を露出させる第2開孔部を形成し、
前記第1熱処理よりも高温の第2熱処理により、前記絶縁層および前記第2絶縁層を硬化させ、
前記絶縁層上にレジスト膜を所定の形状となるように形成し、
前記基板の前記第1面側の前記貫通電極および前記絶縁層上に第1配線を形成し、
前記レジスト膜を用いて、前記基板の前記第2面側の前記貫通電極および前記第2絶縁層上に第2配線を形成する、
請求項1乃至5のいずれか一に記載の配線基板の製造方法。 Forming a second insulating layer on the second surface of the substrate;
Forming a second opening for exposing the through electrode in the second insulating layer;
The insulating layer and the second insulating layer are cured by a second heat treatment higher than the first heat treatment,
A resist film is formed on the insulating layer to have a predetermined shape,
Forming a first wiring on the through electrode and the insulating layer on the first surface side of the substrate;
Forming a second wiring on the through electrode and the second insulating layer on the second surface side of the substrate using the resist film;
The manufacturing method of the wiring board as described in any one of Claims 1 thru | or 5.
前記第1配線を形成した後、他の第1熱処理により前記基板と前記他の保護部材とを剥離する、
請求項7に記載の配線基板の製造方法。 Bonding another protective member to the second insulating layer via another adhesive,
After forming the first wiring, the substrate and the other protective member are separated by another first heat treatment,
The manufacturing method of the wiring board of Claim 7.
請求項7または8に記載の配線基板の製造方法。 The thickness of the insulating layer and the thickness of the second insulating layer are 3 μm or more and 30 μm or less.
The manufacturing method of the wiring board of Claim 7 or 8.
請求項9に記載の配線基板の製造方法。 The distance from the upper surface of the insulating layer to the upper surface of the first wiring is smaller than the distance from the upper surface of the insulating layer to the upper surface of the resist film,
The manufacturing method of the wiring board of Claim 9.
請求項10に記載の配線基板の製造方法。 The film thickness of the resist film is 5 μm or more and 30 μm or less,
The manufacturing method of the wiring board of Claim 10.
前記第1面および前記第2面の少なくともいずれかの面上に設けられた1以上の配線および1以上の絶縁層と、
を含み、
前記基板の厚さは100μm以上500μm以下であって、
前記貫通孔の直径が100μm以下である、
配線基板。 A first surface and a second surface opposite to the first surface, a through-hole penetrating the first surface and the second surface, and a substrate provided with a through-electrode in the through-hole;
One or more wirings and one or more insulating layers provided on at least one of the first surface and the second surface;
Including
The thickness of the substrate is not less than 100 μm and not more than 500 μm,
The diameter of the through hole is 100 μm or less,
Wiring board.
請求項12に記載の配線基板。 The substrate is a glass substrate;
The wiring board according to claim 12.
請求項13に記載の配線基板。 The film thickness of the one or more insulating layers is 3 μm or more and 20 μm or less.
The wiring board according to claim 13.
熱膨張材を含み、所定の温度以上の熱により剥離力が低下する接着材と、
前記接着材と接触する保護部材と、を有する、
請求項12乃至14のいずれか一に記載の配線基板。 At least one of the first surface and the second surface,
An adhesive that includes a thermal expansion material, and whose peel strength is reduced by heat above a predetermined temperature;
A protective member in contact with the adhesive,
The wiring board according to claim 12.
半導体装置。 A wiring board according to any one of claims 12 to 15, and an integrated circuit electrically connected to the wiring board.
Semiconductor device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017050998 | 2017-03-16 | ||
JP2017050998 | 2017-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018157187A true JP2018157187A (en) | 2018-10-04 |
Family
ID=63717395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017221012A Pending JP2018157187A (en) | 2017-03-16 | 2017-11-16 | Wiring board and wiring board manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018157187A (en) |
-
2017
- 2017-11-16 JP JP2017221012A patent/JP2018157187A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI826965B (en) | Through-electrode substrate, manufacturing method thereof, and mounting substrate | |
TW201631729A (en) | Semiconductor structure and method of manufacturing the same | |
JP7276403B2 (en) | Penetration electrode substrate and mounting substrate | |
JP6151724B2 (en) | Manufacturing method of mounting structure | |
KR20150119246A (en) | Wiring board and mounting structure using same | |
TWI275149B (en) | Surface roughing method for embedded semiconductor chip structure | |
JP4609074B2 (en) | Wiring board and method of manufacturing wiring board | |
JP2018113392A (en) | Wiring board, multilayer wiring board, and method for manufacturing wiring board | |
JP2018107419A (en) | Through electrode substrate, mounting substrate including through electrode substrate, and manufacturing method of through electrode substrate | |
US8766101B2 (en) | Wiring substrate, method for manufacturing wiring substrate, and semiconductor package including wiring substrate | |
TW201937734A (en) | Semiconductor device and method for manufacturing same | |
JP2016072433A (en) | Through electrode substrate and method of manufacturing the same | |
JP6105316B2 (en) | Electronic equipment | |
JP2015070189A (en) | Interposer and manufacturing method therefor, and semiconductor device including interposer and manufacturing method therefor | |
JP2018157187A (en) | Wiring board and wiring board manufacturing method | |
JP7567899B2 (en) | Manufacturing method for electronic component mounting member | |
JP6855816B2 (en) | Through Silicon Via, Through Silicon Via Manufacturing Method and Semiconductor Equipment | |
JP6962052B2 (en) | Electronic component mounting board and its manufacturing method | |
US9917046B2 (en) | Manufacturing method of a circuit board having a glass film | |
JP2022065903A (en) | Wiring board and method for manufacturing wiring board | |
KR20160016095A (en) | Method for Manufacturing Glass Interposer | |
JP2019212653A (en) | Method for manufacturing wiring board | |
JP2019029451A (en) | Method of manufacturing semiconductor device manufacturing member | |
JP7230340B2 (en) | Wiring board and method for manufacturing wiring board | |
JP2021170652A (en) | Penetration electrode substrate and method for manufacturing the same |