JP2018153772A - Sludge blanket type coagulating sedimentation apparatus and method of operating sludge blanket type coagulating sedimentation apparatus - Google Patents
Sludge blanket type coagulating sedimentation apparatus and method of operating sludge blanket type coagulating sedimentation apparatus Download PDFInfo
- Publication number
- JP2018153772A JP2018153772A JP2017054119A JP2017054119A JP2018153772A JP 2018153772 A JP2018153772 A JP 2018153772A JP 2017054119 A JP2017054119 A JP 2017054119A JP 2017054119 A JP2017054119 A JP 2017054119A JP 2018153772 A JP2018153772 A JP 2018153772A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- sludge blanket
- adsorbent
- raw water
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 169
- 238000004062 sedimentation Methods 0.000 title claims abstract description 104
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000001112 coagulating effect Effects 0.000 title claims description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 164
- 239000003463 adsorbent Substances 0.000 claims abstract description 83
- 238000005345 coagulation Methods 0.000 claims abstract description 59
- 230000015271 coagulation Effects 0.000 claims abstract description 59
- 238000002347 injection Methods 0.000 claims abstract description 49
- 239000007924 injection Substances 0.000 claims abstract description 49
- 239000000126 substance Substances 0.000 claims abstract description 18
- 238000001556 precipitation Methods 0.000 claims abstract description 14
- 238000005192 partition Methods 0.000 claims abstract description 13
- 238000003860 storage Methods 0.000 claims abstract description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 50
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 230000002776 aggregation Effects 0.000 claims description 10
- 238000004220 aggregation Methods 0.000 claims description 7
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 5
- 229910021536 Zeolite Inorganic materials 0.000 claims description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 5
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 5
- 239000003456 ion exchange resin Substances 0.000 claims description 5
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 239000010457 zeolite Substances 0.000 claims description 5
- 239000000701 coagulant Substances 0.000 claims description 4
- 238000005054 agglomeration Methods 0.000 claims 3
- 238000010586 diagram Methods 0.000 abstract description 4
- 238000005189 flocculation Methods 0.000 abstract description 4
- 230000016615 flocculation Effects 0.000 abstract description 4
- 239000000243 solution Substances 0.000 abstract 1
- 230000010349 pulsation Effects 0.000 description 35
- 238000003756 stirring Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 8
- LFYXNXGVLGKVCJ-FBIMIBRVSA-N 2-methylisoborneol Chemical compound C1C[C@@]2(C)[C@](C)(O)C[C@@H]1C2(C)C LFYXNXGVLGKVCJ-FBIMIBRVSA-N 0.000 description 6
- LFYXNXGVLGKVCJ-UHFFFAOYSA-N 2-methylisoborneol Natural products C1CC2(C)C(C)(O)CC1C2(C)C LFYXNXGVLGKVCJ-UHFFFAOYSA-N 0.000 description 6
- DTGKSKDOIYIVQL-UHFFFAOYSA-N dl-isoborneol Natural products C1CC2(C)C(O)CC1C2(C)C DTGKSKDOIYIVQL-UHFFFAOYSA-N 0.000 description 6
- 230000000630 rising effect Effects 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 244000144992 flock Species 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000008394 flocculating agent Substances 0.000 description 2
- 239000003621 irrigation water Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011020 pilot scale process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
- Water Treatment By Sorption (AREA)
Abstract
【課題】従来型のスラッジブランケット型凝集沈澱装置と比較して、吸着材の注入の効率化が可能となり、運転管理費が削減される、スラッジブランケット型凝集沈澱装置およびその運転方法を提供する。【解決手段】原水へ凝集剤および吸着材を添加し、懸濁物質を凝集してフロックを形成し、フロックを含んでなるスラッジブランケット層34に原水を通過させて処理水を得るスラッジブランケット型凝集沈澱装置1であって、上端が水面下に位置する仕切り板18により、フロックの凝集および沈澱用の凝集沈澱室14とフロックの貯留、濃縮および排出用の濃縮室16とに仕切ってなる槽10と、凝集沈澱室14においてスラッジブランケット層34の汚泥濃度を測定する汚泥濃度測定装置60と、を備え、汚泥濃度測定装置60により測定された汚泥濃度の値に基づいて、原水への吸着材の注入率を制御する、スラッジブランケット型凝集沈澱装置1である。【選択図】図1PROBLEM TO BE SOLVED: To provide a sludge blanket type coagulation sedimentation device and an operation method thereof, which can improve the efficiency of injection of an adsorbent and reduce an operation management cost as compared with a conventional sludge blanket type coagulation sedimentation device. SOLUTION: A flocculant and an adsorbent are added to raw water to aggregate suspended substances to form flocs, and sludge blanket type coagulation to obtain treated water by passing raw water through a sludge blanket layer 34 containing flocs. A tank 10 of the sedimentation device 1, which is divided into a coagulation sedimentation chamber 14 for flocculation and precipitation and a concentration chamber 16 for storage, concentration and discharge of flocs by a partition plate 18 whose upper end is located below the water surface. A sludge concentration measuring device 60 for measuring the sludge concentration of the sludge blanket layer 34 in the coagulation sedimentation chamber 14, and an adsorbent to raw water based on the sludge concentration value measured by the sludge concentration measuring device 60. A sludge blanket type coagulation sedimentation device 1 that controls the injection rate. [Selection diagram] Fig. 1
Description
本発明は、上水、用水、各種排水等の処理に用いられるスラッジブランケット型凝集沈澱装置およびスラッジブランケット型凝集沈澱装置の運転方法に関する。 The present invention relates to a sludge blanket type coagulating sedimentation apparatus and a method for operating the sludge blanket type coagulating sedimentation apparatus used for the treatment of clean water, irrigation water, various waste waters and the like.
河川水、湖沼水等の原水より懸濁物質を除去する場合、原水に凝集剤を添加し、懸濁物質を凝集させてフロックを形成し、このフロックを沈降分離により水中から除去して処理水(除濁水)を得ることは、凝集沈澱法としてよく知られた方法であり、この方法を実施するための凝集沈澱装置は多種多様のものが実用化されている。 When removing suspended substances from raw water such as river water and lake water, flocculants are added to the raw water, the suspended substances are aggregated to form flocs, and the flocs are removed from the water by sedimentation and treated water. Obtaining (turbidity water) is a well-known method as the coagulation precipitation method, and a wide variety of coagulation precipitation apparatuses for carrying out this method have been put into practical use.
このような凝集沈澱装置のうち、フロック形成過程と沈降分離過程を同一の槽に組み込んだ高速凝集沈澱装置は、その設置面積の有利性により広く用いられている。その高速凝集沈澱装置の一種としてスラッジブランケット型凝集沈澱装置がある(例えば、特許文献1参照)。 Among such coagulating sedimentation apparatuses, a high speed coagulating sedimentation apparatus in which a flock formation process and a sedimentation separation process are incorporated in the same tank is widely used due to the advantage of its installation area. There is a sludge blanket type coagulating sedimentation apparatus as one kind of the high speed coagulating sedimentation apparatus (for example, refer to Patent Document 1).
スラッジブランケット型凝集沈澱装置の一例として、脈動型のスラッジブランケット型凝集沈澱装置がある。脈動型のスラッジブランケット型凝集沈澱装置は、例えば、凝集剤を添加した原水を真空塔に流入させ、真空ポンプ等により真空塔内を真空、脱真空と繰り返すことにより、真空塔内の水位を上下させて原水に脈動を与える。次いで脈動を与えた原水を原水分配管より、上端が水面下に位置する仕切り板によってフロックの凝集および沈澱用の凝集沈澱室とフロックの貯留、濃縮および排出用の濃縮室とに仕切ってなる槽内に流入し、原水中の懸濁物質を脈動あるいは阻流板への衝突により凝集させ、フロックを形成させながら上昇させ、スラッジブランケット層を通過させて凝集液中のフロックを接触捕捉して、懸濁物質を除去した処理水を、トラフを介して得るものである。フロック形成を促進する目的で、真空塔の手前に急速撹拌槽を設置する場合もある。 As an example of the sludge blanket type coagulation precipitation apparatus, there is a pulsation type sludge blanket type coagulation precipitation apparatus. The pulsation type sludge blanket type coagulating sedimentation apparatus, for example, allows raw water added with a flocculant to flow into a vacuum tower, and repeatedly repeats vacuum and de-vacuum with a vacuum pump or the like to raise or lower the water level in the vacuum tower. Let the raw water pulsate. Next, the pulsating raw water is separated from the raw water pipe by a partition plate whose upper end is located below the surface of the water into a floc aggregation and sedimentation aggregation chamber and a floc storage, concentration and discharge concentration chamber. Inflow into the water, aggregate the suspended matter in the raw water by pulsation or collision with the baffle, raise it while forming a flock, pass through the sludge blanket layer and capture the floc in the aggregated liquid, Treated water from which suspended substances have been removed is obtained through a trough. In order to promote flock formation, a rapid stirring tank may be installed in front of the vacuum tower.
スラッジブランケット型の凝集沈澱装置で通水を行う場合、原水に高濃度で色度成分、TOC、臭気物質等が含まれている場合、通常、凝集沈澱装置の手前で粉末活性炭等の吸着材を注入し、これらの除去を行うことが一般的である。吸着材の注入率は、本来、平衡吸着試験等を実施して求めることが望ましいが、試験には時間を要するため、実際の処理場では、平衡吸着試験で求められる必要量より過剰の吸着材を注入して処理を行う場合が多い。また、吸着材の注入を始めると、原水中の色度成分、TOC、臭気物質等が所定の値に戻るまで、吸着材の注入を続ける場合がほとんどである。このように吸着材の注入を行うと、常に吸着材の注入量が必要量より多くなってしまうので、吸着材コストの増大、さらにそれによって発生する汚泥の処分費等の増加の問題が生じる。 When water is passed through a sludge blanket type coagulating sedimentation device, if the raw water contains a high concentration of chromaticity components, TOC, odorous substances, etc., an adsorbent such as powdered activated carbon is usually used before the coagulating sedimentation device. It is common to inject and remove these. The injection rate of the adsorbent is desirably determined by conducting an equilibrium adsorption test or the like. However, since the test takes time, in an actual treatment plant, the amount of adsorbent in excess of the required amount required for the equilibrium adsorption test. In many cases, the treatment is carried out by injecting. Moreover, when the injection of the adsorbent is started, the injection of the adsorbent is mostly continued until the chromaticity component, TOC, odorous substance, etc. in the raw water return to predetermined values. If the adsorbent is injected in this way, the adsorbent injection amount always exceeds the required amount, which causes an increase in adsorbent cost and an increase in disposal costs of sludge generated thereby.
本発明の目的は、従来型のスラッジブランケット型凝集沈澱装置と比較して、吸着材の注入の効率化が可能となり、運転管理費が削減される、スラッジブランケット型凝集沈澱装置およびその運転方法を提供することにある。 An object of the present invention is to provide a sludge blanket type coagulating sedimentation apparatus and an operation method thereof, which can increase the efficiency of adsorbing material injection and reduce the operation management cost as compared with a conventional sludge blanket type coagulating sedimentation apparatus. It is to provide.
本発明は、原水へ凝集剤および吸着材を添加し、懸濁物質を凝集してフロックを形成し、前記フロックを含んでなるスラッジブランケット層に前記原水を通過させて処理水を得るスラッジブランケット型凝集沈澱装置であって、上端が水面下に位置する仕切り板により、フロックの凝集および沈澱用の凝集沈澱室とフロックの貯留、濃縮および排出用の濃縮室とに仕切ってなる槽と、前記凝集沈澱室において前記スラッジブランケット層の汚泥濃度を測定する汚泥濃度測定装置と、を備え、前記汚泥濃度測定装置により測定された汚泥濃度の値に基づいて、前記原水への前記吸着材の注入率を制御する、スラッジブランケット型凝集沈澱装置である。 The present invention is a sludge blanket type in which a flocculant and an adsorbent are added to raw water, suspended substances are aggregated to form a floc, and the raw water is passed through a sludge blanket layer containing the floc to obtain treated water. A flocculation / precipitation apparatus, wherein a partition plate whose upper end is located below the water surface is divided into a flocculation / precipitation flocculation / precipitation chamber and a floc storage / concentration / discharge concentrating chamber; A sludge concentration measuring device for measuring the sludge concentration of the sludge blanket layer in the sedimentation chamber, and based on the sludge concentration value measured by the sludge concentration measuring device, the injection rate of the adsorbent into the raw water It is a sludge blanket type coagulating sedimentation apparatus to be controlled.
前記スラッジブランケット型凝集沈澱装置において、前記スラッジブランケット層中の前記吸着材の抑留量を、前記吸着材の注入時の汚泥濃度の値と、前記吸着材の注入前の汚泥濃度の値との差分として求め、前記抑留量の増減を確認しながら前記注入率を制御することが好ましい。 In the sludge blanket type coagulation sedimentation apparatus, the amount of detention of the adsorbent in the sludge blanket layer is the difference between the sludge concentration value when the adsorbent is injected and the sludge concentration value before the adsorbent is injected. It is preferable to control the injection rate while confirming the increase and decrease of the detention amount.
前記スラッジブランケット型凝集沈澱装置において、前記スラッジブランケット層中の前記吸着材の抑留量を、前記吸着材の注入時の汚泥濃度の値と、前記原水の濁度、前記原水への前記凝集剤の注入率、および前記原水の通水LVから算出される前記スラッジブランケット層のブランケット濃度の値との差分として求め、前記抑留量の増減を確認しながら前記注入率を制御することが好ましい。 In the sludge blanket type coagulation sedimentation apparatus, the amount of detention of the adsorbent in the sludge blanket layer, the sludge concentration value at the time of injection of the adsorbent, the turbidity of the raw water, the coagulant of the flocculant into the raw water It is preferable to obtain the difference between the injection rate and the blanket concentration value of the sludge blanket layer calculated from the raw water flow LV, and to control the injection rate while confirming the increase or decrease of the detention amount.
前記スラッジブランケット型凝集沈澱装置において、前記吸着材が、粉末活性炭、微粉末活性炭、ゼオライト、活性アルミナ、粉末イオン交換樹脂、シリカ系吸着材、および高分子系吸着材のうちの少なくとも1つであることが好ましい。 In the sludge blanket type coagulation sedimentation apparatus, the adsorbent is at least one of powdered activated carbon, finely powdered activated carbon, zeolite, activated alumina, powder ion exchange resin, silica-based adsorbent, and polymer-based adsorbent. It is preferable.
また、本発明は、原水へ凝集剤および吸着材を添加し、懸濁物質を凝集してフロックを形成し、前記フロックを含んでなるスラッジブランケット層に前記原水を通過させて処理水を得るスラッジブランケット型凝集沈澱装置の運転方法であって、前記スラッジブランケット型凝集沈澱装置は、上端が水面下に位置する仕切り板により、フロックの凝集および沈澱用の凝集沈澱室とフロックの貯留、濃縮および排出用の濃縮室とに仕切ってなる槽を備え、前記凝集沈澱室において測定した前記スラッジブランケット層の汚泥濃度の値に基づいて、原水への吸着材の注入率を制御する、スラッジブランケット型凝集沈澱装置の運転方法である。 In addition, the present invention adds a flocculant and an adsorbent to raw water, aggregates suspended substances to form flocs, and passes the raw water through a sludge blanket layer containing the flocs to obtain treated water. A method for operating a blanket type coagulating sedimentation apparatus, wherein the sludge blanket type coagulating sedimentation apparatus comprises a partition plate whose upper end is located below the surface of the water, and storage, concentration and discharge of the coagulation sedimentation chamber and floc for floc aggregation and sedimentation. A sludge blanket type coagulating sedimentation system, which controls the injection rate of adsorbent into raw water based on the sludge blanket layer sludge concentration value measured in the coagulation sedimentation chamber. It is the operation method of an apparatus.
前記スラッジブランケット型凝集沈澱装置の運転方法において、前記スラッジブランケット層中の前記吸着材の抑留量を、前記吸着材の注入時の汚泥濃度の値と、前記吸着材の注入前の汚泥濃度の値との差分として求め、前記抑留量の増減を確認しながら前記注入率を制御することが好ましい。 In the operation method of the sludge blanket type coagulation sedimentation apparatus, the amount of detention of the adsorbent in the sludge blanket layer, the sludge concentration value when the adsorbent is injected, and the sludge concentration value before the adsorbent injection It is preferable to control the injection rate while checking the increase / decrease in the amount of detention.
前記スラッジブランケット型凝集沈澱装置の運転方法において、前記スラッジブランケット層中の前記吸着材の抑留量を、前記吸着材の注入時の汚泥濃度の値と、前記原水の濁度、前記原水への前記凝集剤の注入率、および前記原水の通水LVから算出される前記スラッジブランケット層のブランケット濃度の値との差分として求め、前記抑留量の増減を確認しながら前記注入率を制御することが好ましい。 In the operation method of the sludge blanket type coagulation sedimentation apparatus, the detention amount of the adsorbent in the sludge blanket layer, the sludge concentration value when the adsorbent is injected, the turbidity of the raw water, and the raw water It is preferable to obtain the difference between the flocculant injection rate and the blanket concentration value of the sludge blanket layer calculated from the raw water flow LV, and control the injection rate while confirming the increase / decrease in the detention amount. .
前記スラッジブランケット型凝集沈澱装置の運転方法において、前記吸着材が、粉末活性炭、微粉末活性炭、ゼオライト、活性アルミナ、粉末イオン交換樹脂、シリカ系吸着材、および高分子系吸着材のうちの少なくとも1つであることが好ましい。 In the operation method of the sludge blanket type coagulation sedimentation apparatus, the adsorbent is at least one of powdered activated carbon, finely powdered activated carbon, zeolite, activated alumina, powder ion exchange resin, silica-based adsorbent, and polymer-based adsorbent. It is preferable that
本発明によれば、従来型のスラッジブランケット型凝集沈澱装置と比較して、吸着材の注入の効率化が可能となり、運転管理費が削減される。 According to the present invention, as compared with a conventional sludge blanket type coagulating sedimentation apparatus, it is possible to increase the efficiency of the adsorbent injection and to reduce the operation management cost.
本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.
本発明の実施形態に係るスラッジブランケット型凝集沈澱装置の一例の概略を図1に示し、その構成について説明する。スラッジブランケット型の凝集沈澱装置1は、上端が水面下に位置する仕切り板18により、フロックの凝集および沈澱用の凝集沈澱室14とフロックの貯留、濃縮および排出用の濃縮室16とに仕切ってなる槽10を備える。凝集沈澱装置1は、槽10内の原水に脈動を与える脈動発生手段として脈動発生装置12を備えてもよい。脈動発生装置12は、真空塔として塔20と、塔20の頂部に真空発生手段として真空ポンプ46と、脱真空手段としてバキュームブレーカ48とを備える。凝集沈澱装置1の前段に、撹拌翼を有する急速撹拌槽50を備えてもよい。 The outline of an example of the sludge blanket type coagulation sedimentation apparatus which concerns on embodiment of this invention is shown in FIG. 1, and the structure is demonstrated. The sludge blanket type coagulation sedimentation apparatus 1 is divided into a coagulation sedimentation chamber 14 for floc aggregation and precipitation and a concentration chamber 16 for floc storage, concentration and discharge by a partition plate 18 whose upper end is located below the water surface. The tank 10 is provided. The coagulating sedimentation apparatus 1 may include a pulsation generator 12 as pulsation generating means for pulsating the raw water in the tank 10. The pulsation generator 12 includes a tower 20 as a vacuum tower, a vacuum pump 46 as a vacuum generating means at the top of the tower 20, and a vacuum breaker 48 as a vacuum removing means. You may provide the rapid stirring tank 50 which has a stirring blade in the front | former stage of the coagulation sedimentation apparatus 1. FIG.
図1の凝集沈澱装置1において、急速撹拌槽50の出口と、脈動発生装置12の塔20の入口とは、原水導入管22により接続されている。槽10の凝集沈澱室14の底部の汚泥出口には、汚泥排出管24が接続され、濃縮室16の汚泥出口には、汚泥排出管26が接続され、槽10の上部の水面部には、少なくとも1つの処理水排出管28が設けられている。塔20には水位測定手段として水位計44が設置されている。凝集沈澱室14の中央下方部には少なくとも1つの原水分配管30が横設され、原水分配管30は塔20の下部と給水ダクト32により連通されている。原水分配管30の下部には原水を流出するためのスリットまたは孔からなる少なくとも1つの流出口が下向きに1列以上設けられている。例えば、複数の流出口が原水分配管30の真下方向に対して30°程度の各斜め方向に、原水分配管30の長軸方向に沿って2列設けられ、一方の列の流出口の間のピッチの略半分の位置に、他方の列の流出口が配置されるようになっている。原水分配管30の上方はスラッジブランケット層34が形成されるスラッジブランケットゾーン、阻流板42の下方は撹拌ゾーン36となっている。原水分配管30の上方には、縦断面形状が例えばV字状である少なくとも1つの阻流板42が設置されている。この位置に阻流板42を設置することにより、槽内に流入された原水が撹拌され、フロックが形成されやすくなる効果がある。スラッジブランケット層34の上方には、沈降面積を増加させるための傾斜装置40が設置されてもよい。槽10には、凝集沈澱室14においてスラッジブランケット層34の汚泥濃度を測定する汚泥濃度測定装置60が設置されている。 In the coagulation sedimentation apparatus 1 of FIG. 1, the outlet of the rapid stirring tank 50 and the inlet of the tower 20 of the pulsation generator 12 are connected by a raw water introduction pipe 22. A sludge discharge pipe 24 is connected to the sludge outlet at the bottom of the coagulation sedimentation chamber 14 of the tank 10, a sludge discharge pipe 26 is connected to the sludge outlet of the concentration chamber 16, and the water surface at the top of the tank 10 is At least one treated water discharge pipe 28 is provided. A water level gauge 44 is installed in the tower 20 as a water level measuring means. At least one raw water pipe 30 is installed in the lower part of the center of the coagulation sedimentation chamber 14, and the raw water pipe 30 communicates with the lower part of the tower 20 by a water supply duct 32. In the lower part of the raw water pipe 30, at least one outflow port composed of a slit or a hole for flowing out the raw water is provided in one or more rows downward. For example, a plurality of outlets are provided in two rows along the major axis direction of the raw moisture pipe 30 in each oblique direction of about 30 ° with respect to the direction directly below the raw moisture pipe 30, and between the outlets of one row The outlets of the other row are arranged at approximately half the pitch of the other row. A sludge blanket zone where the sludge blanket layer 34 is formed is above the raw moisture pipe 30, and a stirring zone 36 is below the baffle plate 42. Above the raw moisture pipe 30, at least one baffle plate 42 having a vertical cross-sectional shape of, for example, a V shape is installed. By installing the baffle plate 42 at this position, there is an effect that the raw water flowing into the tank is stirred and flocs are easily formed. A tilting device 40 may be installed above the sludge blanket layer 34 to increase the sedimentation area. The tank 10 is provided with a sludge concentration measuring device 60 for measuring the sludge concentration of the sludge blanket layer 34 in the coagulation sedimentation chamber 14.
仕切り板18によって仕切られた凝集沈澱室14は、フロックの凝集および沈澱を行うものであり、濃縮室16は、スラッジブランケット層34より仕切り板18を越流してきたフロックを貯留、濃縮するものである。 The coagulation sedimentation chamber 14 partitioned by the partition plate 18 is used for coagulation and precipitation of flocs, and the concentration chamber 16 is used for storing and concentrating flocs that have flowed over the partition plate 18 from the sludge blanket layer 34. is there.
脈動発生装置12は、凝集沈澱室14に設けられた少なくとも1つの流出口を有する原水分配管30と下方で接続され、原水を貯留する塔20を有し、塔20内の原水の落水および水位上昇を繰り返すことにより、流出口から原水が流出される際の脈動により凝集沈澱室14内の原水を撹拌するものである。 The pulsation generator 12 is connected to a raw water pipe 30 having at least one outlet provided in the coagulation sedimentation chamber 14 at the lower side, and has a tower 20 for storing raw water. By repeating the ascent, the raw water in the coagulation sedimentation chamber 14 is agitated by the pulsation when the raw water flows out from the outlet.
本実施形態に係るスラッジブランケット型凝集沈澱装置の運転方法およびスラッジブランケット型凝集沈澱装置1の動作について説明する。 The operation method of the sludge blanket type coagulating sedimentation apparatus according to this embodiment and the operation of the sludge blanket type coagulating sedimentation apparatus 1 will be described.
凝集沈澱装置1の前段に急速撹拌槽50を設ける場合は、急速撹拌槽50において懸濁物質を含む原水にポリ塩化アルミニウム(PAC)等の無機凝集剤等の凝集剤と、吸着材とが添加されて、急速撹拌が行われた後、原水は原水導入管22を通して塔20に送液される。凝集剤および吸着材は、原水導入管22において原水に添加されてもよい。真空ポンプ46の駆動およびバキュームブレーカ48の開閉によって、塔20内の真空と脱真空とを繰り返すことにより、塔20内の原水の落水および水位上昇が繰り返されて、水位が上下されて原水に脈動が与えられる(脈動発生工程)。脈動が与えられた原水は、給水ダクト32、原水分配管30を通して流出口から凝集沈澱室14の撹拌ゾーン36に下方向に流出される。この原水分配管30の流出口から原水が流出される際の脈動により凝集沈澱室14の水は撹拌を受け、原水中の懸濁物質は凝集しフロックが形成される。凝集沈澱室14のスラッジブランケットゾーンには、フロック群が高濃度に懸濁平衡されて、スラッジブランケット層34が形成されている。スラッジブランケット層34は次第に高さを増してくるが、仕切り板18は、スラッジブランケット層34の上面高さを規定するものであり、すなわち、スラッジブランケット層34の上面高さは、仕切り板18の高さによって決定される。原水はこのスラッジブランケット層34内を上向流で通過する際、下部で形成されたフロックがスラッジブランケット層34中の既存のフロックと接触、吸合することにより、フロックが除去された除濁水が傾斜装置40を上向流で通過して、処理水として少なくとも1つの処理水排出管28から排出される。 When the rapid stirring tank 50 is provided in the preceding stage of the coagulating sedimentation apparatus 1, a flocculant such as an inorganic flocculant such as polyaluminum chloride (PAC) and an adsorbent are added to the raw water containing suspended substances in the rapid stirring tank 50. Then, after rapid stirring, the raw water is sent to the tower 20 through the raw water introduction pipe 22. The flocculant and the adsorbent may be added to the raw water in the raw water introduction pipe 22. By repeating the vacuum and de-vacuum in the tower 20 by driving the vacuum pump 46 and opening and closing the vacuum breaker 48, the raw water in the tower 20 is repeatedly dropped and the water level is raised, the water level is raised and lowered, and the raw water is pulsated. Is given (pulsation generating step). The pulsated raw water flows out downward from the outlet through the water supply duct 32 and the raw water pipe 30 to the stirring zone 36 of the coagulation sedimentation chamber 14. Due to the pulsation when raw water flows out from the outlet of the raw water pipe 30, the water in the coagulation sedimentation chamber 14 is agitated, and suspended substances in the raw water aggregate to form flocs. In the sludge blanket zone of the coagulation sedimentation chamber 14, the floc group is suspended and balanced at a high concentration to form a sludge blanket layer 34. Although the sludge blanket layer 34 gradually increases in height, the partition plate 18 defines the top surface height of the sludge blanket layer 34, that is, the top surface height of the sludge blanket layer 34 is Determined by height. When the raw water passes through the sludge blanket layer 34 in an upward flow, the floc formed at the lower part comes into contact with and absorbs the existing floc in the sludge blanket layer 34, so that the turbid water from which the floc has been removed becomes It passes through the tilting device 40 in an upward flow and is discharged from the at least one treated water discharge pipe 28 as treated water.
仕切り板18によって仕切られた濃縮室16内および濃縮室16の上部は上昇流がほとんど起こらないので、スラッジブランケット層34の上面の余剰のフロックは仕切り板18の上端を越流して濃縮室16内に貯留、濃縮され、スラッジブランケット層34の高さはほぼ一定に保たれる。余剰の濃縮されたフロックは、汚泥として汚泥排出管26を通して適切な間隔で、例えば定期的に系外に排出される。凝集沈澱室14の底部にフロックが堆積した場合には、汚泥として汚泥排出管24を通して適切な間隔で、例えば定期的に系外に排出されてもよい。 Since almost no upward flow occurs in the concentration chamber 16 and the upper portion of the concentration chamber 16 partitioned by the partition plate 18, excess floc on the upper surface of the sludge blanket layer 34 flows over the upper end of the partition plate 18 and enters the concentration chamber 16. Therefore, the height of the sludge blanket layer 34 is kept almost constant. Excess concentrated floc is discharged as sludge through the sludge discharge pipe 26 at an appropriate interval, for example, periodically. When floc accumulates at the bottom of the coagulation sedimentation chamber 14, it may be discharged out of the system as a sludge through the sludge discharge pipe 24, for example, at regular intervals.
本実施形態に係るスラッジブランケット型凝集沈澱装置の運転方法および凝集沈澱装置では、槽10の凝集沈澱室14においてスラッジブランケット層34の汚泥濃度を測定する汚泥濃度測定装置60を設置し、汚泥濃度測定装置60により測定された汚泥濃度の値に基づいて、原水への吸着材の注入率を制御する。汚泥濃度測定装置60により測定された汚泥濃度の値をモニタリングしながら、汚泥濃度の値に基づいて吸着材の注入率を制御することにより、従来型のスラッジブランケット型凝集沈澱装置と比較して、吸着材の注入の効率化が可能となり、運転管理費が大幅に削減される。また、原水への吸着材の注入の自動化が可能となる。 In the operation method of the sludge blanket type coagulation sedimentation apparatus and the coagulation sedimentation apparatus according to the present embodiment, a sludge concentration measuring device 60 for measuring the sludge concentration of the sludge blanket layer 34 is installed in the coagulation sedimentation chamber 14 of the tank 10 to measure the sludge concentration. Based on the value of the sludge concentration measured by the device 60, the injection rate of the adsorbent into the raw water is controlled. While monitoring the sludge concentration value measured by the sludge concentration measuring device 60, by controlling the injection rate of the adsorbent based on the sludge concentration value, compared with the conventional sludge blanket type coagulating sedimentation device, Adsorption material injection can be made more efficient and operation management costs can be greatly reduced. In addition, the injection of the adsorbent into the raw water can be automated.
スラッジブランケット型凝集沈澱装置においては、吸着材の注入時にそれらが吸着能を充分に残した状態で既存のスラッジブランケット層34中に抑留されるため、同じ処理水質を求める場合、平衡吸着試験で求められる必要量より少ない吸着材の注入率で、同等の処理効果を得ることができる。また、同量の吸着材を注入した場合は、処理水質は向上する。スラッジブランケット層34中に吸着材が抑留されている間はそれらが吸着能を持つため、吸着材の注入を行わなくても色度成分、TOC、臭気物質等の除去が可能となる。すなわち吸着材の抑留量をモニタリングしながら、吸着材の注入率を制御することにより、従来法と比較して、吸着材の注入の無駄を大幅に削減することが可能となる。 In the sludge blanket type coagulation sedimentation apparatus, when adsorbents are injected, they are retained in the existing sludge blanket layer 34 with sufficient adsorbing capacity. Therefore, when obtaining the same treated water quality, it is obtained by an equilibrium adsorption test. An equivalent treatment effect can be obtained with an adsorbent injection rate less than the required amount. In addition, when the same amount of adsorbent is injected, the quality of the treated water is improved. Since the adsorbents are retained in the sludge blanket layer 34, they have adsorbability, so that it is possible to remove chromaticity components, TOC, odorous substances and the like without injecting the adsorbent. That is, by controlling the injection rate of the adsorbent while monitoring the amount of retention of the adsorbent, it is possible to significantly reduce the waste of injection of the adsorbent compared to the conventional method.
スラッジブランケット層34中の吸着材の抑留量は、汚泥濃度測定装置60により求めることができる。具体的には、原水の水質(例えば、濁度等)の変動が少ない場合、例えば、原水の濁度の変動が15%未満の場合には、スラッジブランケット層34中の吸着材の抑留量を、吸着材の注入時の汚泥濃度測定装置60から導かれる汚泥濃度の値と、吸着材の注入前の汚泥濃度測定装置60から導かれる汚泥濃度の値との差分として求め、吸着材の抑留量の値の増減を確認しながら吸着材の注入率を制御すればよい。 The amount of detention of the adsorbent in the sludge blanket layer 34 can be determined by the sludge concentration measuring device 60. Specifically, when the fluctuation of the raw water quality (for example, turbidity) is small, for example, when the fluctuation of the turbidity of the raw water is less than 15%, the detention amount of the adsorbent in the sludge blanket layer 34 is reduced. The amount of detention of the adsorbent is obtained as a difference between the sludge concentration value derived from the sludge concentration measuring device 60 when the adsorbent is injected and the sludge concentration value derived from the sludge concentration measuring device 60 before the adsorbent is injected. What is necessary is just to control the injection | pouring rate of adsorbent, confirming the increase / decrease in the value of.
原水の水質(例えば、濁度等)の変動が多い場合、例えば、原水の濁度の変動が15%以上の場合には、スラッジブランケット層34中の吸着材の抑留量を、吸着材の注入時の汚泥濃度測定装置60から導かれる汚泥濃度の値と、原水の濁度、原水への凝集剤の注入率、および原水の通水LVから算出されるスラッジブランケット層34のブランケット濃度の値との差分として求め、吸着材の抑留量の値の増減を確認しながら吸着材の注入率を制御すればよい。このように、原水の水質(例えば、濁度等)の変動があっても対応することができる。 If the raw water quality (for example, turbidity) varies greatly, for example, if the turbidity variation of the raw water is 15% or more, the amount of adsorbent retained in the sludge blanket layer 34 is injected into the adsorbent. Value of the sludge concentration derived from the sludge concentration measuring device 60 at the time, the turbidity of the raw water, the injection rate of the flocculant into the raw water, and the blanket concentration value of the sludge blanket layer 34 calculated from the raw water flow LV And the adsorbent injection rate may be controlled while confirming the increase / decrease of the adsorbent detention amount. Thus, even if there is a change in the quality of raw water (for example, turbidity), it can be dealt with.
汚泥濃度測定装置60は、スラッジブランケット層34中の汚泥濃度を測定することができるものであればよく、特に制限はない。汚泥濃度測定装置60としては、例えば、近赤外光散乱光式、透過光式、超音波式、マイクロ波式等の汚泥濃度計を用いればよい。 The sludge concentration measuring device 60 is not particularly limited as long as it can measure the sludge concentration in the sludge blanket layer 34. As the sludge concentration measuring apparatus 60, for example, a near-infrared light scattering light type, transmitted light type, ultrasonic type, microwave type sludge concentration meter, etc. may be used.
吸着材は、色度成分、TOC、臭気物質等のうち少なくとも1つを吸着することができるものであればよく、特に制限はない。吸着材は、例えば、粉末活性炭、微粉末活性炭、ゼオライト、活性アルミナ、粉末イオン交換樹脂、シリカ系吸着材、および高分子系吸着材のうちの少なくとも1つである。 The adsorbent is not particularly limited as long as it can adsorb at least one of chromaticity components, TOC, odorous substances, and the like. The adsorbent is, for example, at least one of powdered activated carbon, finely powdered activated carbon, zeolite, activated alumina, powder ion exchange resin, silica-based adsorbent, and polymer-based adsorbent.
凝集剤としては、ポリ塩化アルミニウム(PAC)、塩化第二鉄等の無機系凝集剤等が挙げられる。 Examples of the flocculant include inorganic flocculants such as polyaluminum chloride (PAC) and ferric chloride.
本実施形態に係るスラッジブランケット型凝集沈澱装置の運転方法およびスラッジブランケット型凝集沈澱装置において処理対象となる原水は、例えば、上水、用水、河川水、湖沼水、各種排水等である。 The operation method of the sludge blanket type coagulating sedimentation apparatus according to the present embodiment and the raw water to be treated in the sludge blanket type coagulating sedimentation apparatus are, for example, clean water, irrigation water, river water, lake water, various waste waters, and the like.
処理対象となる原水の濁度は、例えば、1度〜5000度の範囲であり、本実施形態に係るスラッジブランケット型凝集沈澱装置の運転方法およびスラッジブランケット型凝集沈澱装置によって、処理水の濁度を例えば1度未満に低減することができる。 The turbidity of the raw water to be treated is, for example, in the range of 1 to 5000 degrees, and the turbidity of the treated water is determined by the operation method of the sludge blanket type coagulating sedimentation apparatus and the sludge blanket type coagulating sedimentation apparatus according to this embodiment. Can be reduced to less than 1 degree, for example.
処理対象となる原水の色度成分の含有量は、例えば、0.5〜50度の範囲であり、TOCは、例えば、0.3〜30mg/Lの範囲であり、臭気物質の含有量は、例えば、1〜1000ng/Lの範囲である。本実施形態に係るスラッジブランケット型凝集沈澱装置の運転方法およびスラッジブランケット型凝集沈澱装置によって、処理水の色度成分の含有量を例えば0.5度以下に低減することができ、処理水のTOCを例えば0.3mg/L以下に低減することができ、処理水の臭気物質の含有量を例えば1ng/L以下に低減することができる。 The content of the chromaticity component of the raw water to be treated is, for example, in the range of 0.5 to 50 degrees, the TOC is, for example, in the range of 0.3 to 30 mg / L, and the content of the odorous substance is For example, it is the range of 1-1000 ng / L. By the operation method of the sludge blanket type coagulating sedimentation apparatus and the sludge blanket type coagulating sedimentation apparatus according to the present embodiment, the content of the chromaticity component of the treated water can be reduced to, for example, 0.5 degrees or less, and the TOC of the treated water Can be reduced to 0.3 mg / L or less, for example, and the content of odorous substances in treated water can be reduced to 1 ng / L or less, for example.
脈動の強度は例えば、下記の式で算出される脈動G値(s−1)により決定すればよい。 The intensity of pulsation may be determined by, for example, the pulsation G value (s −1 ) calculated by the following equation.
脈動G値には、例えば、塔20で発生する脈動における落水時間、上昇時間、落水幅等を変更することにより調整することができる。例えば、真空ポンプの出力を上げ、脈動における上昇時間を短くすることにより、脈動G値を容易に高めることができる。また、落水水位を高くすること、または、バキュームブレーカ48の開度を上げることによって落水時間を短くすることにより、脈動G値を容易に高めることができる。例えば、脈動G値(s−1)を2(s−1)以上50(s−1)以下の範囲として、原水に脈動を与えればよい。なお、脈動G値をどのくらい高くすればよいかについては、原水の温度と処理水の温度との差や、原水濁度の上昇率、目的とする処理水水質等、装置の運転条件に基づいて実験や試運転等により決定することができる。 The pulsation G value can be adjusted, for example, by changing the falling time, rising time, falling width and the like in the pulsation generated in the tower 20. For example, the pulsation G value can be easily increased by increasing the output of the vacuum pump and shortening the rising time in pulsation. Further, the pulsation G value can be easily increased by increasing the falling water level or shortening the falling time by increasing the opening of the vacuum breaker 48. For example, the pulsation G value (s −1 ) may be set to a range of 2 (s −1 ) or more and 50 (s −1 ) or less to give pulsation to the raw water. It should be noted that how high the pulsation G value should be based on the operating conditions of the device, such as the difference between the temperature of the raw water and the temperature of the treated water, the increase rate of the raw water turbidity, the target treated water quality It can be determined by experiment or trial operation.
脈動G値=(落水G値×落水時間+上昇G値×上昇時間)÷(落水時間+上昇時間)
G=√{(A・v3)/(2ν・V)}
A:噴出面積(流出口面積)(m2)
v:噴出流速(m/s)
ν:動粘性係数(原水)(m2/s)
V:混和部(阻流板42より下部)容量(m3)
Pulsation G value = (falling water G value × falling time + rising G value × rising time) ÷ (falling time + rising time)
G = √ {(A · v 3 ) / (2ν · V)}
A: Ejection area (outlet area) (m 2 )
v: Jet velocity (m / s)
ν: Kinematic viscosity coefficient (raw water) (m 2 / s)
V: mixing part (below the baffle plate 42) capacity (m 3 )
脈動発生手段としては、原水に脈動を付与することができるものであればよく、特に制限はない。脈動発生手段としては、図1に示す真空ポンプを用いる方式の他に、図2に示す凝集沈澱装置3のようにサイフォンを用いる方式、図3に示す凝集沈澱装置5のように回転弁58を用いる方式のものであってもよい。 The pulsation generating means is not particularly limited as long as it can impart pulsation to the raw water. As the pulsation generating means, in addition to the system using the vacuum pump shown in FIG. 1, a system using a siphon as in the coagulation sedimentation apparatus 3 shown in FIG. 2, and a rotary valve 58 as in the coagulation sedimentation apparatus 5 shown in FIG. The system used may be used.
図2に示す凝集沈澱装置3では、塔20の頂部にサイフォンを備えるサイフォン装置52が設置され、原水導入管54はサイフォン装置52に接続されている。凝集剤および吸着材が添加された原水は、原水導入管54を通してサイフォン装置52に送液される。サイフォン装置52においてサイフォンの作用によって、サイフォン装置52内の水位が上下されて原水に脈動が与えられる(脈動発生工程)。脈動が与えられた原水は、給水ダクト32、原水分配管30を通して流出口から凝集沈澱室14の撹拌ゾーン36に下方向に流出される。この場合、ダンパー弁56の開度を変えることによって、脈動強度を変えることができる。 In the coagulation sedimentation apparatus 3 shown in FIG. 2, a siphon device 52 including a siphon is installed at the top of the tower 20, and the raw water introduction pipe 54 is connected to the siphon device 52. The raw water to which the flocculant and the adsorbent are added is sent to the siphon device 52 through the raw water introduction pipe 54. In the siphon device 52, the water level in the siphon device 52 is raised and lowered by the action of the siphon to give pulsation to the raw water (pulsation generating step). The pulsated raw water flows out downward from the outlet through the water supply duct 32 and the raw water pipe 30 to the stirring zone 36 of the coagulation sedimentation chamber 14. In this case, the pulsation intensity can be changed by changing the opening degree of the damper valve 56.
図3に示す凝集沈澱装置5では、原水導入管22の途中に回転弁58が接続されている。凝集剤および吸着材が添加された原水は、原水導入管22を通して塔20に送液される。回転弁58の作用によって、塔20内の水位が上下されて原水に脈動が与えられる(脈動発生工程)。脈動が与えられた原水は、給水ダクト32、原水分配管30を通して流出口から凝集沈澱室14の撹拌ゾーン36に下方向に流出される。この場合、回転弁58の回転速度を変えることによって、脈動強度を変えることができる。 In the coagulating sedimentation apparatus 5 shown in FIG. 3, a rotary valve 58 is connected in the middle of the raw water introduction pipe 22. The raw water to which the flocculant and the adsorbent are added is sent to the tower 20 through the raw water introduction pipe 22. By the action of the rotary valve 58, the water level in the tower 20 is raised and lowered to give pulsation to the raw water (pulsation generating step). The pulsated raw water flows out downward from the outlet through the water supply duct 32 and the raw water pipe 30 to the stirring zone 36 of the coagulation sedimentation chamber 14. In this case, the pulsation intensity can be changed by changing the rotation speed of the rotary valve 58.
これらのうち、脈動発生手段としては、脈動の制御がしやすい、装置高さを抑えることができる等の点で、真空ポンプを用いる方式が好ましい。 Among these, as the pulsation generating means, a method using a vacuum pump is preferable in that the pulsation can be easily controlled and the height of the apparatus can be suppressed.
本実施形態に係るスラッジブランケット型凝集沈澱装置として、脈動発生装置を備える凝集沈澱装置を例として説明したが、これらに限定されるものではなく、スラッジブランケット型の凝集沈澱装置であれば本実施形態に係るスラッジブランケット型凝集沈澱装置の運転方法が適用される。 As the sludge blanket type coagulating sedimentation apparatus according to the present embodiment, the coagulating sedimentation apparatus including the pulsation generating device has been described as an example. However, the present invention is not limited thereto, and any sludge blanket type coagulating sedimentation apparatus may be used. The operation method of the sludge blanket type coagulating sedimentation apparatus is applied.
以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.
<実施例および比較例>
図4に示すパイロットスケールの実験装置を用い、No.1系に汚泥濃度測定装置を設置し、吸着材として粉末活性炭の注入の自動制御を行った(実施例)。No.2系では、あらかじめ平衡吸着試験によって求めた粉末活性炭の必要量を常時注入した(比較例)。パイロット実験装置の仕様、原水条件は以下の通りである。
<Examples and Comparative Examples>
Using the pilot scale experimental apparatus shown in FIG. A sludge concentration measuring device was installed in system 1, and automatic control of injection of powdered activated carbon was performed as an adsorbent (Example). No. In system 2, the required amount of powdered activated carbon previously determined by an equilibrium adsorption test was constantly injected (comparative example). The specifications of the pilot experiment equipment and raw water conditions are as follows.
[装置仕様]
高速凝集沈澱槽 :800mm×900mm×4000mm
凝集沈澱槽滞留時間 :96min
通水流量 :1.8m3/h
通水LV :3m/h
濃縮室高さ :1000mm
[Device specifications]
High-speed coagulation sedimentation tank: 800mm x 900mm x 4000mm
Coagulation sedimentation tank residence time: 96 min
Water flow rate: 1.8m 3 / h
Water flow LV: 3m / h
Concentration chamber height: 1000 mm
[原水条件]
原水:河川水
凝集剤:ポリ塩化アルミニウム(PAC)
凝集剤添加量(注入率):25mg/L
凝集pH:7
原水濁度:5度
原水水温:15℃
2−MIB濃度:5ng/L(原水に標準物質としてかび臭物質である2−メチルイソボルネオール(2−MIB)を添加)
[Raw water conditions]
Raw water: River water Flocculant: Polyaluminum chloride (PAC)
Coagulant addition amount (injection rate): 25 mg / L
Aggregation pH: 7
Raw water turbidity: 5 degrees Raw water temperature: 15 ° C
2-MIB concentration: 5 ng / L (addition of 2-methylisoborneol (2-MIB), a musty odor substance, as a standard substance to raw water)
[粉末活性炭注入制御]
No.1系:粉末活性炭の抑留量を汚泥濃度測定装置(東亜DKK製、SSD−1620型)によりモニタリングした。原水の濁度、原水への凝集剤の注入率、通水LVの変動はないので、原水の初期の汚泥濃度480mg/Lを、粉末活性炭の注入前の汚泥濃度とした。粉末活性炭の抑留量が最大となったら、粉末活性炭の注入を停止した。粉末活性炭の抑留量が最大値の60%となった時点で、粉末活性炭の注入を再開した。粉末活性炭の注入率は10mg/Lとした。
No.2系:粉末活性炭の注入率を常時20mg/Lとした。
[Powdered activated carbon injection control]
No. System 1: The amount of detained activated carbon was monitored by a sludge concentration measuring device (Toa DKK, SSD-1620 type). Since there were no fluctuations in the turbidity of raw water, the rate of flocculant injected into the raw water, and the water flow LV, the initial sludge concentration of 480 mg / L of raw water was taken as the sludge concentration before injection of powdered activated carbon. When the amount of retention of powdered activated carbon reached the maximum, injection of powdered activated carbon was stopped. When the retention amount of the powdered activated carbon reached 60% of the maximum value, the injection of the powdered activated carbon was resumed. The injection rate of the powdered activated carbon was 10 mg / L.
No. System 2: The injection rate of powdered activated carbon was always 20 mg / L.
実験結果を図5に示す。比較例のNo.2系では、粉末活性炭の注入開始直後(注入開始2時間後)から処理水の2−MIB濃度は検出下限値(0.5ng/L)未満となった。No.1系でも粉末活性炭の注入開始2時間後に処理水の2−MIB濃度が0.5ng/Lとなったが、問題となる値ではなく、それ以降は全て検出下限値未満となった。実施例(No.1系)の方法を用いることにより、処理水質は同等で、従来法の比較例(No.2系)と比較して、粉末活性炭の注入率は43%削減可能となった。 The experimental results are shown in FIG. Comparative Example No. In system 2, the 2-MIB concentration of the treated water was less than the detection lower limit (0.5 ng / L) immediately after the start of injection of powdered activated carbon (2 hours after the start of injection). No. Even in the case of system 1, the 2-MIB concentration of treated water became 0.5 ng / L 2 hours after the start of powdered activated carbon injection, but it was not a problem value, and thereafter it was below the lower limit of detection. By using the method of the example (No. 1 system), the quality of the treated water is equivalent, and compared with the comparative example (No. 2 system) of the conventional method, the injection rate of the powdered activated carbon can be reduced by 43%. .
このように、実施例の方法により、比較例と比較して、吸着材の注入の効率化が可能となり、運転管理費が削減された。 As described above, the method of the example made it possible to increase the efficiency of the adsorbent injection and reduce the operation management cost as compared with the comparative example.
1,3,5 凝集沈澱装置、10 槽、12 脈動発生装置、14 凝集沈澱室、16 濃縮室、18 仕切り板、20 真空塔、22,54 原水導入管、24,26 汚泥排出管、28 処理水排出管、30 原水分配管、32 給水ダクト、34 スラッジブランケット層、36 撹拌ゾーン、40 傾斜装置、42 阻流板、44 水位計、46 真空ポンプ、48 バキュームブレーカ、50 急速撹拌槽、52 サイフォン装置、56 ダンパー弁、58 回転弁、60 汚泥濃度測定装置。 1,3,5 Coagulation sedimentation device, 10 tanks, 12 pulsation generators, 14 Coagulation sedimentation chamber, 16 Concentration chamber, 18 Partition plate, 20 Vacuum tower, 22,54 Raw water introduction pipe, 24,26 Sludge discharge pipe, 28 treatment Water discharge pipe, 30 raw water piping, 32 water supply duct, 34 sludge blanket layer, 36 stirring zone, 40 tilting device, 42 baffle plate, 44 water level gauge, 46 vacuum pump, 48 vacuum breaker, 50 rapid stirring tank, 52 siphon Device, 56 damper valve, 58 rotary valve, 60 sludge concentration measuring device.
Claims (8)
上端が水面下に位置する仕切り板により、フロックの凝集および沈澱用の凝集沈澱室とフロックの貯留、濃縮および排出用の濃縮室とに仕切ってなる槽と、
前記凝集沈澱室において前記スラッジブランケット層の汚泥濃度を測定する汚泥濃度測定装置と、
を備え、
前記汚泥濃度測定装置により測定された汚泥濃度の値に基づいて、前記原水への前記吸着材の注入率を制御することを特徴とするスラッジブランケット型凝集沈澱装置。 In a sludge blanket type coagulating sedimentation apparatus, a flocculant and an adsorbent are added to raw water, the suspended substances are aggregated to form flocs, and the raw water is passed through a sludge blanket layer comprising the flocs to obtain treated water. There,
A partition plate whose upper end is located below the surface of the water, and is divided into an agglomeration sedimentation chamber for floc aggregation and sedimentation and an enrichment chamber for floc storage, concentration and discharge;
A sludge concentration measuring device for measuring the sludge concentration of the sludge blanket layer in the coagulation sedimentation chamber;
With
A sludge blanket type coagulating sedimentation apparatus, wherein an injection rate of the adsorbent into the raw water is controlled based on a sludge concentration value measured by the sludge concentration measuring apparatus.
前記スラッジブランケット層中の前記吸着材の抑留量を、前記吸着材の注入時の汚泥濃度の値と、前記吸着材の注入前の汚泥濃度の値との差分として求め、前記抑留量の増減を確認しながら前記注入率を制御することを特徴とするスラッジブランケット型凝集沈澱装置。 The sludge blanket type coagulation precipitation apparatus according to claim 1,
The amount of detention of the adsorbent in the sludge blanket layer is determined as the difference between the value of the sludge concentration when the adsorbent is injected and the value of the sludge concentration before the adsorbent is injected. A sludge blanket type coagulating sedimentation apparatus, wherein the injection rate is controlled while confirming.
前記スラッジブランケット層中の前記吸着材の抑留量を、前記吸着材の注入時の汚泥濃度の値と、前記原水の濁度、前記原水への前記凝集剤の注入率、および前記原水の通水LVから算出される前記スラッジブランケット層のブランケット濃度の値との差分として求め、前記抑留量の増減を確認しながら前記注入率を制御することを特徴とするスラッジブランケット型凝集沈澱装置。 The sludge blanket type coagulation precipitation apparatus according to claim 1,
The amount of detention of the adsorbent in the sludge blanket layer, the sludge concentration value when the adsorbent is injected, the turbidity of the raw water, the injection rate of the coagulant into the raw water, and the water flow of the raw water A sludge blanket type coagulating sedimentation apparatus, characterized in that it is obtained as a difference from the blanket concentration value of the sludge blanket layer calculated from LV, and the injection rate is controlled while confirming the increase / decrease in the amount of detention.
前記吸着材が、粉末活性炭、微粉末活性炭、ゼオライト、活性アルミナ、粉末イオン交換樹脂、シリカ系吸着材、および高分子系吸着材のうちの少なくとも1つであることを特徴とするスラッジブランケット型凝集沈澱装置。 The sludge blanket type coagulation sedimentation apparatus according to any one of claims 1 to 3,
Sludge blanket type agglomeration characterized in that the adsorbent is at least one of powdered activated carbon, finely powdered activated carbon, zeolite, activated alumina, powder ion exchange resin, silica-based adsorbent, and polymer-based adsorbent Precipitation equipment.
前記スラッジブランケット型凝集沈澱装置は、上端が水面下に位置する仕切り板により、フロックの凝集および沈澱用の凝集沈澱室とフロックの貯留、濃縮および排出用の濃縮室とに仕切ってなる槽を備え、
前記凝集沈澱室において測定した前記スラッジブランケット層の汚泥濃度の値に基づいて、原水への吸着材の注入率を制御することを特徴とするスラッジブランケット型凝集沈澱装置の運転方法。 A sludge blanket type coagulating sedimentation apparatus in which a flocculant and an adsorbent are added to raw water, a suspended substance is aggregated to form a floc, and the raw water is passed through a sludge blanket layer containing the floc to obtain treated water. Driving method,
The sludge blanket type coagulating sedimentation apparatus comprises a tank which is divided into a coagulation sedimentation chamber for floc aggregation and sedimentation and a concentration chamber for floc storage, concentration and discharge by a partition plate whose upper end is located below the water surface. ,
An operation method of a sludge blanket type coagulating sedimentation apparatus, wherein an injection rate of an adsorbent into raw water is controlled based on a value of sludge concentration of the sludge blanket layer measured in the coagulation sedimentation chamber.
前記スラッジブランケット層中の前記吸着材の抑留量を、前記吸着材の注入時の汚泥濃度の値と、前記吸着材の注入前の汚泥濃度の値との差分として求め、前記抑留量の増減を確認しながら前記注入率を制御することを特徴とするスラッジブランケット型凝集沈澱装置の運転方法。 An operation method of the sludge blanket type coagulation sedimentation apparatus according to claim 5,
The amount of detention of the adsorbent in the sludge blanket layer is determined as the difference between the value of the sludge concentration when the adsorbent is injected and the value of the sludge concentration before the adsorbent is injected. A method for operating a sludge blanket type coagulating sedimentation apparatus, wherein the injection rate is controlled while confirming.
前記スラッジブランケット層中の前記吸着材の抑留量を、前記吸着材の注入時の汚泥濃度の値と、前記原水の濁度、前記原水への前記凝集剤の注入率、および前記原水の通水LVから算出される前記スラッジブランケット層のブランケット濃度の値との差分として求め、前記抑留量の増減を確認しながら前記注入率を制御することを特徴とするスラッジブランケット型凝集沈澱装置の運転方法。 An operation method of the sludge blanket type coagulation sedimentation apparatus according to claim 5,
The amount of detention of the adsorbent in the sludge blanket layer, the sludge concentration value when the adsorbent is injected, the turbidity of the raw water, the injection rate of the coagulant into the raw water, and the water flow of the raw water A method for operating a sludge blanket type coagulating sedimentation apparatus, characterized in that it is obtained as a difference from a blanket concentration value of the sludge blanket layer calculated from LV, and the injection rate is controlled while confirming the increase or decrease of the amount of detention.
前記吸着材が、粉末活性炭、微粉末活性炭、ゼオライト、活性アルミナ、粉末イオン交換樹脂、シリカ系吸着材、および高分子系吸着材のうちの少なくとも1つであることを特徴とするスラッジブランケット型凝集沈澱装置の運転方法。 It is a driving | running method of the sludge blanket type | mold coagulation sedimentation apparatus of any one of Claims 5-7,
Sludge blanket type agglomeration characterized in that the adsorbent is at least one of powdered activated carbon, finely powdered activated carbon, zeolite, activated alumina, powder ion exchange resin, silica-based adsorbent, and polymer-based adsorbent How to operate the precipitation device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017054119A JP6823513B2 (en) | 2017-03-21 | 2017-03-21 | Operation method of sludge blanket type coagulation sedimentation device and sludge blanket type coagulation sedimentation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017054119A JP6823513B2 (en) | 2017-03-21 | 2017-03-21 | Operation method of sludge blanket type coagulation sedimentation device and sludge blanket type coagulation sedimentation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018153772A true JP2018153772A (en) | 2018-10-04 |
JP6823513B2 JP6823513B2 (en) | 2021-02-03 |
Family
ID=63715428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017054119A Active JP6823513B2 (en) | 2017-03-21 | 2017-03-21 | Operation method of sludge blanket type coagulation sedimentation device and sludge blanket type coagulation sedimentation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6823513B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110368720A (en) * | 2019-08-30 | 2019-10-25 | 北京北排装备产业有限公司 | A kind of level stream settler and its application method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53148151A (en) * | 1977-05-31 | 1978-12-23 | Kurita Water Ind Ltd | Coagulation-sedimentation device |
JPS5781891A (en) * | 1980-11-11 | 1982-05-22 | Ebara Infilco Co Ltd | High-degree treatment of organic waste water |
JPH02237604A (en) * | 1989-03-13 | 1990-09-20 | Ebara Infilco Co Ltd | Flocculating and settling device |
JPH06226011A (en) * | 1993-02-03 | 1994-08-16 | Hitachi Ltd | Flocculant injection control method in water treatment flocculation process and flocculant injection control device |
JPH08309109A (en) * | 1995-05-15 | 1996-11-26 | Hitachi Ltd | Chemical injection control device for water purification plant |
JPH08332351A (en) * | 1995-06-09 | 1996-12-17 | Takeda Chem Ind Ltd | Water treatment system and water treatment method |
JP2007117947A (en) * | 2005-10-31 | 2007-05-17 | Hitachi Ltd | Water purification equipment and operation method thereof |
US20120211426A1 (en) * | 2011-02-17 | 2012-08-23 | Oronzo Santoro | Method and system for treating a contaminated fluid |
JP2016043327A (en) * | 2014-08-25 | 2016-04-04 | 株式会社東芝 | Water treatment system, control device, and water treatment method |
-
2017
- 2017-03-21 JP JP2017054119A patent/JP6823513B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53148151A (en) * | 1977-05-31 | 1978-12-23 | Kurita Water Ind Ltd | Coagulation-sedimentation device |
JPS5781891A (en) * | 1980-11-11 | 1982-05-22 | Ebara Infilco Co Ltd | High-degree treatment of organic waste water |
JPH02237604A (en) * | 1989-03-13 | 1990-09-20 | Ebara Infilco Co Ltd | Flocculating and settling device |
JPH06226011A (en) * | 1993-02-03 | 1994-08-16 | Hitachi Ltd | Flocculant injection control method in water treatment flocculation process and flocculant injection control device |
JPH08309109A (en) * | 1995-05-15 | 1996-11-26 | Hitachi Ltd | Chemical injection control device for water purification plant |
JPH08332351A (en) * | 1995-06-09 | 1996-12-17 | Takeda Chem Ind Ltd | Water treatment system and water treatment method |
JP2007117947A (en) * | 2005-10-31 | 2007-05-17 | Hitachi Ltd | Water purification equipment and operation method thereof |
US20120211426A1 (en) * | 2011-02-17 | 2012-08-23 | Oronzo Santoro | Method and system for treating a contaminated fluid |
JP2016043327A (en) * | 2014-08-25 | 2016-04-04 | 株式会社東芝 | Water treatment system, control device, and water treatment method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110368720A (en) * | 2019-08-30 | 2019-10-25 | 北京北排装备产业有限公司 | A kind of level stream settler and its application method |
Also Published As
Publication number | Publication date |
---|---|
JP6823513B2 (en) | 2021-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2475457C2 (en) | Method and device for water treatment | |
US4282093A (en) | Apparatus for detecting coagulation effect | |
US5143625A (en) | Method and apparatus for clarifying liquid using a pulsating sludge bed and part of concentrated sludge | |
JP2006075750A (en) | Flocculation separation treatment device and flocculation separation treatment method | |
JP4202207B2 (en) | Coagulation separation device | |
JP2013078730A (en) | Method and apparatus for treatment of coagulation precipitation | |
KR100786776B1 (en) | Membrane filtration water treatment equipment | |
JP2019171309A5 (en) | ||
JP6139349B2 (en) | Water treatment system | |
KR100472947B1 (en) | One-type treatment system of a waste water and well water having a monitoring control skill | |
JP2015136648A (en) | Flocculation method | |
JP7614880B2 (en) | Flocculant injection control method and flocculant injection control device | |
JP6823513B2 (en) | Operation method of sludge blanket type coagulation sedimentation device and sludge blanket type coagulation sedimentation device | |
JP6173808B2 (en) | Setting method of coagulant injection rate | |
JP2018069209A (en) | Sludge blanket type flocculation and precipitation apparatus and operation method of sludge blanket type flocculation and precipitation apparatus | |
JP2002035503A (en) | Turbid water treatment apparatus | |
JP2022174886A (en) | Flocculant injection control method and flocculant injection control device | |
JP6752114B2 (en) | How to set up a sludge blanket type coagulation sedimentation device | |
Yagna Prasad | Sedimentation in water and used water purification | |
KR100814011B1 (en) | Water treatment equipment and method | |
JPWO2016006419A1 (en) | Aggregation method and apparatus | |
JP5210948B2 (en) | Chemical injection control method for water purification plant | |
JP7137419B2 (en) | Water treatment device and water treatment method | |
JP6752115B2 (en) | How to set up a sludge blanket type coagulation sedimentation device | |
RU2688619C1 (en) | Method and apparatus for treating water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201020 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210108 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6823513 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |