[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018151381A - Particulate count detector - Google Patents

Particulate count detector Download PDF

Info

Publication number
JP2018151381A
JP2018151381A JP2018020934A JP2018020934A JP2018151381A JP 2018151381 A JP2018151381 A JP 2018151381A JP 2018020934 A JP2018020934 A JP 2018020934A JP 2018020934 A JP2018020934 A JP 2018020934A JP 2018151381 A JP2018151381 A JP 2018151381A
Authority
JP
Japan
Prior art keywords
electrode
fine particles
charge
electric field
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2018020934A
Other languages
Japanese (ja)
Inventor
京一 菅野
Kyoichi Sugano
京一 菅野
和幸 水野
Kazuyuki Mizuno
和幸 水野
英正 奥村
Hidemasa Okumura
英正 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JP2018151381A publication Critical patent/JP2018151381A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely detect a particulate count even when a voltage applied between an electric field generation electrode and a collection electrode is low.SOLUTION: A particulate count detector 10 comprises a charge generation element 20, a collection device 50, a count measuring device 56, and a gas discharge part 60. The charge generation element 20 adds charge 18 to particulates 16 in a gas to generate charged particulates P. The collection device 50 is applied with a voltage Vp between the electric field generation electrode 52 and collection electrode 54 to collect the charged particulates P at the collection electrode 54. The count measuring device 56 detects the number of charged particulates P, having been collected at the collection electrode 54, based upon a current varying with the number of the charged particulates P. The gas discharge part 60 is provided downstream from the collection electrode 54. Charged particulates P having been accumulated in a charge storage part 66 push charged particulates, which are not collected at the collection electrode 54, back toward the collection electrode with Coulomb repulsive force.SELECTED DRAWING: Figure 1

Description

本発明は、微粒子数検出器に関する。   The present invention relates to a particle number detector.

微粒子数検出器としては、電荷発生素子でコロナ放電によりイオンを発生させ、そのイオンにより被測定ガス中の微粒子を帯電し、帯電した微粒子を捕集電極で捕集し、捕集された微粒子の電荷の量に基づいて微粒子の個数を測定するものが知られている(例えば特許文献1参照)。   As the particle number detector, ions are generated by a corona discharge in a charge generation element, the particles in the gas to be measured are charged by the ions, the charged particles are collected by a collecting electrode, and the collected particles are collected. One that measures the number of fine particles based on the amount of charge is known (see, for example, Patent Document 1).

国際公開第2015/146456号パンフレットInternational Publication No. 2015/146456 Pamphlet

しかしながら、特許文献1では、捕集電極にかかる電界強度が低いと、捕集電極で捕集しきれない帯電微粒子が発生して通気管の外へ排出されてしまうため、微粒子数の検出精度が低下するという問題があった。この問題を回避するためには、捕集電極にかかる電界強度を高くする必要があった。   However, in Patent Document 1, when the electric field strength applied to the collecting electrode is low, charged fine particles that cannot be collected by the collecting electrode are generated and discharged out of the vent pipe. There was a problem of lowering. In order to avoid this problem, it was necessary to increase the electric field strength applied to the collecting electrode.

本発明はこのような課題を解決するためになされたものであり、捕集電極にかかる電界強度が低くても微粒子数を精度よく検出することを主目的とする。   The present invention has been made to solve such a problem, and has as its main object to accurately detect the number of fine particles even when the electric field strength applied to the collecting electrode is low.

本発明の微粒子数検出器は、
通気管内に導入されたガス中の微粒子に電荷を付加して帯電微粒子にする電荷発生部と、
前記電荷発生部よりも前記ガスの流れの下流側に電界を発生させ、前記電界に配置された捕集電極で前記帯電微粒子を捕集する帯電微粒子捕集部と、
前記捕集電極に捕集された前記帯電微粒子の数に応じて変化する物理量に基づいて、前記帯電微粒子の数を検出する個数検出部と、
前記捕集電極よりも前記ガスの流れの下流側に設けられたガス排出部と、
を備え、
前記ガス排出部は、前記捕集電極で捕集されなかった前記帯電微粒子を蓄積する電荷蓄積部を有し、前記電荷蓄積部に蓄積された前記帯電微粒子は、前記捕集電極で捕集されなかった前記帯電微粒子をクーロン斥力により前記捕集電極側に押し戻す、
ものである。
The particle number detector of the present invention is
A charge generating unit that adds charged charges to the fine particles in the gas introduced into the vent pipe to form charged fine particles;
A charged particulate collection unit that generates an electric field downstream of the gas flow from the charge generation unit and collects the charged particulates by a collection electrode disposed in the electric field;
A number detection unit that detects the number of the charged fine particles based on a physical quantity that varies according to the number of the charged fine particles collected by the collection electrode;
A gas discharge part provided on the downstream side of the gas flow from the collecting electrode;
With
The gas discharge unit includes a charge accumulation unit that accumulates the charged fine particles not collected by the collection electrode, and the charged fine particles accumulated in the charge accumulation unit are collected by the collection electrode. The charged fine particles that did not exist are pushed back to the collecting electrode side by Coulomb repulsion,
Is.

この微粒子数検出器では、電荷発生部で発生した電荷を通気管内に導入されたガス中の微粒子に付加して帯電微粒子にする。帯電微粒子は、電荷発生部よりもガス流れの下流側に設けられた捕集電極に捕集される。そして、捕集電極に捕集された帯電微粒子の数に応じて変化する物理量に基づいてガス中の微粒子の数を検出する。ここで、捕集電極よりもガスの流れの下流側に設けられたガス排出部には、捕集電極で捕集されなかった帯電微粒子を蓄積する電荷蓄積部が設けられている。電荷蓄積部に蓄積された帯電微粒子は、捕集電極で捕集されなかった帯電微粒子をクーロン斥力により捕集電極側に押し戻す。そのため、捕集電極が配置された電界の強度が低くて捕集電極で捕集されずにガス排出部へ流れる帯電微粒子が発生したとしても、それらは電荷蓄積部に蓄積された帯電微粒子によって捕集電極側に押し戻され、最終的には捕集電極に捕集される。したがって、捕集装置にかかる電界の強度が低くても微粒子数を精度よく検出することができる。   In this fine particle number detector, the charge generated in the charge generation unit is added to the fine particles in the gas introduced into the vent tube to form charged fine particles. The charged fine particles are collected by a collection electrode provided on the downstream side of the gas flow with respect to the charge generation unit. Then, the number of fine particles in the gas is detected based on a physical quantity that changes according to the number of charged fine particles collected by the collecting electrode. Here, the gas discharge part provided in the downstream of the gas flow rather than the collection electrode is provided with the charge storage part which accumulate | stores the charged fine particle which was not collected by the collection electrode. The charged fine particles accumulated in the charge accumulation unit push the charged fine particles not collected by the collection electrode back to the collection electrode side by Coulomb repulsion. For this reason, even if charged fine particles that flow to the gas discharge part without being collected by the collecting electrode are generated because the electric field strength where the collecting electrode is disposed is low, they are captured by the charged fine particles accumulated in the charge accumulating part. It is pushed back to the collector electrode side and finally collected by the collector electrode. Therefore, even if the intensity of the electric field applied to the collection device is low, the number of fine particles can be detected with high accuracy.

なお、本明細書において、「電荷」とは、正電荷や負電荷のほかイオンを含むものとする。「微粒子の数を検出する」とは、微粒子の数を測定する場合のほか、微粒子の数が所定の数値範囲に入るか否か(例えば所定のしきい値を超えるか否か)を判定する場合も含むものとする。「物理量」とは、帯電微粒子の数(電荷量)に基づいて変化するパラメータであればよく、例えば電流などが挙げられる。   In this specification, “charge” includes ions in addition to positive charges and negative charges. “Detecting the number of fine particles” determines whether or not the number of fine particles falls within a predetermined numerical range (for example, whether or not a predetermined threshold value is exceeded) in addition to measuring the number of fine particles. Including cases. The “physical quantity” may be a parameter that changes based on the number of charged fine particles (charge quantity), and examples thereof include current.

本発明の微粒子数検出器において、前記ガス排出部は前記捕集電極が設けられた部分よりもガス流路面積の小さいガス通過穴を有し、前記電荷蓄積部は前記ガス通過穴の内壁に設けられていてもよい。こうすれば、電荷蓄積部の静電容量が高まり、電荷蓄積部に蓄積される帯電微粒子の量が多くなるため、捕集電極で捕集されなかった帯電微粒子を捕集電極側に一層押し戻しやすくなる。この場合、前記ガス排出部は、前記通気管の軸方向と交差する方向に設けられた絶縁性の支持板を有し、前記支持板は、前記捕集電極との間で電界を発生させるロッド状の電界発生電極が貫通しており、前記ガス通過穴は、前記支持板を貫通するように設けられていてもよい。こうすれば、ガス通過穴が設けられた支持板は電界発生電極を支持する役割も果たすため、電界発生電極を別途支持する部材を設ける必要がなく、構造が簡易になる。また、前記通気管は、断面が円形であり、前記支持板は、円板であり中心に前記電界発生電極が貫通しており、前記ガス通過穴は、前記支持板と同心の円周上に等間隔となるように複数設けられていてもよい。こうすれば、ガスの流れ場が通気管の中心軸に対して回転対称になるため、拡散して一様な流れ場を形成するまでの距離を短縮することができ、その結果、装置をコンパクト化できる。   In the particle number detector of the present invention, the gas discharge part has a gas passage hole having a smaller gas flow path area than the part provided with the collecting electrode, and the charge storage part is formed on the inner wall of the gas passage hole. It may be provided. This increases the electrostatic capacity of the charge storage unit and increases the amount of charged fine particles stored in the charge storage unit, making it easier to push charged fine particles that have not been collected by the collection electrode back to the collection electrode side. Become. In this case, the gas discharge part has an insulating support plate provided in a direction intersecting the axial direction of the vent pipe, and the support plate is a rod that generates an electric field with the collecting electrode. The gas field generation electrode may penetrate and the said gas passage hole may be provided so that the said support plate may be penetrated. In this case, the support plate provided with the gas passage hole also plays a role of supporting the electric field generating electrode, so that it is not necessary to separately provide a member for supporting the electric field generating electrode, and the structure is simplified. The vent pipe has a circular cross section, the support plate is a disc, and the electric field generating electrode passes through the center, and the gas passage hole is on a circumference concentric with the support plate. A plurality may be provided at equal intervals. In this way, since the gas flow field is rotationally symmetric with respect to the central axis of the vent pipe, the distance to diffuse and form a uniform flow field can be shortened, resulting in a compact device. Can be

本発明の微粒子数検出器において、前記電荷蓄積部は、誘電分極した誘電体を含んでいてもよい。誘電分極した誘電体の表面には正又は負の電荷が現れる。そのため、その電荷の極性とは逆の極性を持つ帯電微粒子が誘電体の表面に引き付けられる。この場合、帯電微粒子捕集部の電界を利用して誘電体を誘電分極させてもよい。こうすれば、誘電分極させるための電界を生成する装置を別途設ける必要がない。また、電荷蓄積部は、絶縁性のベース部材の表面に前記ベース部材よりも比誘電率の高い被覆部材を備えた構造としてもよい。被覆部材はベース部材よりも比誘電率が高いため、より多くの帯電微粒子を蓄積することができる。そのため、ガス排出部へ流れてきた帯電微粒子を捕集電極側へ押し戻しやすくなる。   In the fine particle number detector of the present invention, the charge storage section may include a dielectric material that is dielectrically polarized. A positive or negative charge appears on the surface of the dielectric material. Therefore, charged fine particles having a polarity opposite to the polarity of the charge are attracted to the surface of the dielectric. In this case, the dielectric may be dielectrically polarized using the electric field of the charged particulate collection unit. In this way, it is not necessary to separately provide a device for generating an electric field for dielectric polarization. In addition, the charge storage portion may have a structure in which a covering member having a higher dielectric constant than that of the base member is provided on the surface of the insulating base member. Since the covering member has a relative dielectric constant higher than that of the base member, more charged fine particles can be accumulated. Therefore, it becomes easy to push back the charged fine particles flowing to the gas discharge part to the collecting electrode side.

本発明の微粒子数検出器において、前記電荷蓄積部は、一方の電極板がグランドに接続されたコンデンサの他方の電極板を利用したものであってもよい。このようにしても、電荷蓄積部に帯電微粒子を蓄積することができる。   In the particle number detector of the present invention, the charge storage unit may use the other electrode plate of a capacitor in which one electrode plate is connected to the ground. Even in this case, charged fine particles can be stored in the charge storage section.

本発明の微粒子数検出器は、特に限定するものではないが、例えば、大気環境調査、屋内環境調査、汚染調査、自動車などの燃焼粒子計測、粒子生成環境監視、粒子合成環境監視等で用いられる。   Although the particle number detector of the present invention is not particularly limited, it is used in, for example, atmospheric environment investigation, indoor environment investigation, pollution investigation, combustion particle measurement of automobiles, particle generation environment monitoring, particle synthesis environment monitoring, etc. .

微粒子数検出器10の概略構成を表す断面図。FIG. 3 is a cross-sectional view illustrating a schematic configuration of the particle number detector 10. 図1のA−A断面図。AA sectional drawing of FIG. 電荷蓄積部66の周辺の断面図(図1の円内の拡大図)。Sectional drawing of the periphery of the charge storage part 66 (enlarged view in the circle of FIG. 1). 電荷蓄積部166の周辺の断面図。FIG. 6 is a cross-sectional view of the periphery of the charge storage unit 166. 電荷蓄積部266の周辺の断面図。FIG. 6 is a cross-sectional view of the periphery of a charge storage unit 266. 電荷蓄積部366の周辺の断面図。FIG. 6 is a cross-sectional view of the periphery of a charge storage unit 366. 電荷蓄積部466の周辺の断面図。FIG. 6 is a cross-sectional view of the periphery of a charge storage unit 466. 電荷発生素子120の説明図。FIG. 6 is an explanatory diagram of the charge generation element 120. ガス通気穴164の説明図。Explanatory drawing of the gas ventilation hole 164. FIG.

本発明の好適な実施形態を図面を参照しながら以下に説明する。図1は微粒子数検出器10の概略構成を表す断面図、図2は図1のA−A断面図、図3は図1の円内の拡大図である。   Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic configuration of the particle number detector 10, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is an enlarged view in a circle in FIG.

微粒子数検出器10は、ガス(例えば自動車の排ガス)に含まれる微粒子の数を検出するものである。この微粒子数検出器10は、通気管12内のガスの流れ方向に沿って、電荷発生素子20、余剰電荷除去装置40、捕集装置50及びガス排出部60を備えている。また、捕集装置50は、個数測定装置56を備えている。   The fine particle number detector 10 detects the number of fine particles contained in gas (for example, automobile exhaust gas). The particle number detector 10 includes a charge generation element 20, a surplus charge removing device 40, a collecting device 50, and a gas discharging unit 60 along the gas flow direction in the vent pipe 12. Further, the collection device 50 includes a number measuring device 56.

通気管12は、ガスの流れ方向に沿って延びる断面円形のパイプ状の部材であり、電気絶縁性のセラミック部分12a,12c,12eと導電性の金属部分12b,12d,12fとが存在する。ガスは、通気管12の一端(図1の左端)から通気管12内に導入された後、通気管12内を通過してガス排出部60(図1の右端)を経て外部へ排出される。なお、通気管12の下流側端部をなす金属部分12f及びその金属部分12fと同軸同径の排気パイプ70の外側には、金属製で段差付きのアウタパイプ14が配置されている。   The vent pipe 12 is a pipe-like member having a circular cross section extending along the gas flow direction, and includes electrically insulating ceramic portions 12a, 12c, and 12e and conductive metal portions 12b, 12d, and 12f. The gas is introduced into the vent pipe 12 from one end of the vent pipe 12 (left end in FIG. 1), then passes through the vent pipe 12 and is discharged to the outside through the gas exhaust section 60 (right end in FIG. 1). . An outer pipe 14 made of metal and having a step is disposed outside the metal portion 12f forming the downstream end portion of the vent pipe 12 and the exhaust pipe 70 having the same diameter as the metal portion 12f.

電荷発生素子20は、通気管12のガス入口側に設けられている。電荷発生素子20は、先端の尖った針状電極22と、針状電極22の先端に対向して設置された対向電極24と、針状電極22と対向電極24との間に電圧を印加する放電用電源26とを有している。針状電極22の先端以外の部分は、通気管12のうちセラミック部分12aによって取り囲まれている。対向電極24は、通気管12のうち金属部分12bと一体化されている。針状電極22と対向電極24との間に所定の電圧が印加されると、両電極22,24の間にコロナ放電が発生する。このコロナ放電中をガスが通過することにより、ガス中の微粒子16に電荷18(例えば正電荷)が付加される。なお、電荷18が付加された微粒子16を帯電微粒子Pと称する。なお、針状電極22は、平らな形状にして通気管12の内面に印刷することにより形成してもよい。   The charge generation element 20 is provided on the gas inlet side of the vent pipe 12. The charge generation element 20 applies a voltage between the needle-like electrode 22 having a sharp tip, the counter electrode 24 disposed to face the tip of the needle-like electrode 22, and the needle-like electrode 22 and the counter electrode 24. And a discharge power source 26. A portion other than the tip of the needle electrode 22 is surrounded by a ceramic portion 12 a of the vent pipe 12. The counter electrode 24 is integrated with the metal portion 12 b of the vent pipe 12. When a predetermined voltage is applied between the needle electrode 22 and the counter electrode 24, corona discharge is generated between the electrodes 22 and 24. As the gas passes through the corona discharge, a charge 18 (for example, a positive charge) is added to the fine particles 16 in the gas. The fine particles 16 to which the charge 18 is added are referred to as charged fine particles P. The needle-like electrode 22 may be formed by printing it on the inner surface of the vent pipe 12 in a flat shape.

余剰電荷除去装置40は、微粒子16に付加されなかった電荷18を除去する装置であり、電荷発生素子20と捕集装置50との間に設けられている。余剰電荷除去装置40は、通気管12の中心軸上に配置されたロッド状の電界発生電極42と、電界発生電極42を取り囲む除去電極44とを備えている。除去電極44は、通気管12の金属部分12dである。除去電極44と対向電極24との間にはセラミック部分12cが存在しているため両者は電気的に絶縁されている。電界発生電極42と除去電極44との間には、後述する捕集装置50の電界発生電極52と捕集電極54との間に印加される電圧よりも1桁以上小さい電圧Viが印加される。これにより、余剰電荷除去装置40の電界発生電極42と除去電極44との間には弱い電界が発生する。したがって、電荷発生素子20で発生した電荷18のうち、微粒子16に付加されなかった余剰の電荷18は、この弱い電界によって除去電極44に引き寄せられる。これによって除去電極44に接続された電流計46には余剰の電荷18の量に応じた電流Iiが流れる。なお、電流Iiは余剰電荷量を調べるときには測定するが、微粒子数の検出には特に必要ではない。   The surplus charge removing device 40 is a device that removes the charge 18 that has not been added to the fine particles 16, and is provided between the charge generating element 20 and the collecting device 50. The surplus charge removing device 40 includes a rod-shaped electric field generating electrode 42 disposed on the central axis of the vent pipe 12 and a removing electrode 44 surrounding the electric field generating electrode 42. The removal electrode 44 is the metal portion 12 d of the vent pipe 12. Since the ceramic portion 12c exists between the removal electrode 44 and the counter electrode 24, both are electrically insulated. Between the electric field generating electrode 42 and the removal electrode 44, a voltage Vi that is one digit or more smaller than the voltage applied between the electric field generating electrode 52 and the collecting electrode 54 of the collecting device 50 described later is applied. . As a result, a weak electric field is generated between the electric field generating electrode 42 and the removal electrode 44 of the surplus charge removing device 40. Therefore, of the charges 18 generated by the charge generation element 20, the surplus charges 18 that have not been added to the fine particles 16 are attracted to the removal electrode 44 by this weak electric field. As a result, a current Ii corresponding to the amount of surplus charge 18 flows through the ammeter 46 connected to the removal electrode 44. The current Ii is measured when the surplus charge amount is examined, but is not particularly necessary for detecting the number of fine particles.

捕集装置50は、帯電微粒子Pを捕集する装置である。捕集装置50は、通気管12の中心軸上に配置されたロッド状の電界発生電極52と、電界発生電極52の周囲を取り囲む捕集電極54とを備えている。捕集電極54は、通気管12の金属部分12fである。捕集電極54と除去電極44との間にはセラミック部分12eが存在しているため両者は電気的に絶縁されている。電界発生電極52と捕集電極54との間に図示しない電界発生用電源の電圧Vpが印加されると、電界発生電極52と捕集電極54との間に電界が発生する。通気管12のうち捕集装置50が設けられている部分に流れてきた帯電微粒子Pは、この電界によって捕集電極54に引き寄せられて捕集電極54上に捕集される。捕集電極54は、個数測定装置56に接続されている。   The collection device 50 is a device that collects the charged fine particles P. The collecting device 50 includes a rod-shaped electric field generating electrode 52 disposed on the central axis of the vent pipe 12 and a collecting electrode 54 surrounding the electric field generating electrode 52. The collecting electrode 54 is the metal portion 12 f of the vent pipe 12. Since the ceramic portion 12e exists between the collection electrode 54 and the removal electrode 44, both are electrically insulated. When a voltage Vp of an electric field generating power source (not shown) is applied between the electric field generating electrode 52 and the collecting electrode 54, an electric field is generated between the electric field generating electrode 52 and the collecting electrode 54. The charged fine particles P that have flown into the portion of the ventilation pipe 12 where the collection device 50 is provided are attracted to the collection electrode 54 by this electric field and collected on the collection electrode 54. The collecting electrode 54 is connected to the number measuring device 56.

個数測定装置56は、捕集電極54に捕集された帯電微粒子Pの電荷量に基づいて微粒子16の個数を測定する装置である。個数測定装置56と捕集電極54との間には、捕集電極54側からコンデンサ55aと抵抗器55bとスイッチ55c(例えば半導体スイッチ)とが直列に接続されている。このスイッチ55cがオンされると、捕集電極54に捕集された帯電微粒子Pの電荷18に基づく電流が、コンデンサ55aと抵抗器55bからなる直列回路を介して過渡応答として個数測定装置56に伝達される。個数測定装置56は、電流計を用いて電流値を測定し、その電流値に基づいて微粒子16の個数を演算する。   The number measuring device 56 is a device that measures the number of the fine particles 16 based on the charge amount of the charged fine particles P collected by the collecting electrode 54. Between the number measuring device 56 and the collecting electrode 54, a capacitor 55a, a resistor 55b, and a switch 55c (for example, a semiconductor switch) are connected in series from the collecting electrode 54 side. When the switch 55c is turned on, a current based on the electric charge 18 of the charged fine particles P collected by the collecting electrode 54 is passed to the number measuring device 56 as a transient response through a series circuit including a capacitor 55a and a resistor 55b. Communicated. The number measuring device 56 measures an electric current value using an ammeter, and calculates the number of fine particles 16 based on the electric current value.

ガス排出部60は、捕集電極54の下流側に設けられセラミック製の支持板62と、支持板62に設けられたガス通過穴64と、帯電微粒子Pを蓄積可能な電荷蓄積部66とを備えている。支持板62は、円板状であり、アウタパイプ14の内側に、ガスの流れ方向と直交するように配置されている。アウタパイプ14は接地されており、捕集電極54を静電遮蔽してノイズを抑制する効果を持つ。この支持板62の中心には、捕集装置50の電界発生電極52が貫通している。また、支持板62には、捕集電極54(通気管12の金属部分12f)の下流側端部が非貫通状態で差し込まれている。図2に示すように、支持板62のうち電界発生電極52と捕集電極54との間には、ガスの流れる方向から見た形状がリング状のガス通過穴64が設けられている。電荷蓄積部66は、ガス通過穴64の内壁であり、セラミックつまり誘電体で構成されている。そのため、電界発生電極52と捕集電極54との間に電圧Vpが印加されると、電界発生電極52と捕集電極54との間に電界が発生して、電荷蓄積部66であるガス通過穴64の内壁の誘電体は誘電分極した状態となる。なお、捕集電極54が支持板62に差し込まれていなくても、電界発生電極52とアウタパイプ14との間に発生する電界によって誘電分極が生じる。なお、支持板62の比誘電率は、特に限定するものではないが、7以上が好ましく、9以上がより好ましい。   The gas discharge unit 60 includes a ceramic support plate 62 provided on the downstream side of the collecting electrode 54, a gas passage hole 64 provided in the support plate 62, and a charge storage unit 66 capable of storing charged fine particles P. I have. The support plate 62 has a disk shape, and is disposed inside the outer pipe 14 so as to be orthogonal to the gas flow direction. The outer pipe 14 is grounded and has an effect of suppressing noise by electrostatically shielding the collecting electrode 54. The electric field generating electrode 52 of the collection device 50 passes through the center of the support plate 62. Further, the downstream end of the collecting electrode 54 (the metal portion 12f of the vent pipe 12) is inserted into the support plate 62 in a non-penetrating state. As shown in FIG. 2, a ring-shaped gas passage hole 64 is provided between the electric field generating electrode 52 and the collecting electrode 54 in the support plate 62 as viewed from the direction of gas flow. The charge storage section 66 is an inner wall of the gas passage hole 64 and is made of ceramic, that is, a dielectric. Therefore, when the voltage Vp is applied between the electric field generating electrode 52 and the collecting electrode 54, an electric field is generated between the electric field generating electrode 52 and the collecting electrode 54, and the gas passing through the charge accumulation unit 66 is passed. The dielectric on the inner wall of the hole 64 is dielectrically polarized. Even if the collecting electrode 54 is not inserted into the support plate 62, dielectric polarization occurs due to the electric field generated between the electric field generating electrode 52 and the outer pipe 14. The relative dielectric constant of the support plate 62 is not particularly limited, but is preferably 7 or more, and more preferably 9 or more.

また、ガス通過穴64は、捕集電極54が設けられた部分よりもガス流路面積の小さくなっている。つまり、ガス通過穴64をガス流れの方向に垂直になるように切断したときの断面積は、支持板62よりもガス流れの上流側のガス通路を同様に切断したときの断面積よりも小さくなっている。図2に示すリング状のガス通過穴64の内径d1と外径d2との比d2/d1は、電荷蓄積部66に蓄積される電荷量に影響を与えるパラメータである。このd2/d1が小さいほど、直径d2の円形状のガス通過穴に比べて電荷蓄積部66の静電容量が高まり、蓄積される電荷量を高めることができるため好ましい。例えば、d2/d1が2以下であれば、直径d2の円形状のガス通過穴に比べて蓄積される電荷量を2倍程度に高めることができる。また、外径d2と内径d1との差Δd(=d2−d1)は流路幅に相当するが、流路幅が一定の場合には内径d1が大きいほどd2/d1が小さくなるため好ましい。   Further, the gas passage hole 64 has a smaller gas flow path area than the portion where the collecting electrode 54 is provided. That is, the cross-sectional area when the gas passage hole 64 is cut so as to be perpendicular to the gas flow direction is smaller than the cross-sectional area when the gas passage on the upstream side of the gas flow with respect to the support plate 62 is similarly cut. It has become. The ratio d2 / d1 between the inner diameter d1 and the outer diameter d2 of the ring-shaped gas passage hole 64 shown in FIG. 2 is a parameter that affects the amount of charge stored in the charge storage section 66. The smaller d2 / d1, the higher the capacitance of the charge accumulating portion 66 and the greater the amount of accumulated charge compared to a circular gas passage hole having a diameter d2, which is preferable. For example, if d2 / d1 is 2 or less, the amount of accumulated charges can be increased by a factor of about 2 compared to a circular gas passage hole having a diameter d2. Further, the difference Δd (= d2−d1) between the outer diameter d2 and the inner diameter d1 corresponds to the channel width. However, when the channel width is constant, the larger the inner diameter d1, the smaller d2 / d1 is preferable.

次に、微粒子数検出器10の使用例について説明する。自動車の排ガスに含まれる微粒子を計測する場合、エンジンの排気管内に微粒子数検出器10を取り付ける。このとき、排ガスが微粒子数検出器10の入口(図1の左端)から通気管12内に導入され、出口(図1の右端)から排出されるように微粒子数検出器10を取り付ける。自動車の排ガスに含まれる微粒子16は、電荷発生素子20を通過する際に電荷18が付加されて帯電微粒子Pになる。帯電微粒子Pは、電界が弱く除去電極44の長さが短い余剰電荷除去装置40をそのまま通過して捕集装置50に至る。また、電荷発生素子20で発生した電荷18のうち微粒子16に付加されなかった余剰の電荷18は、電界が弱くても余剰電荷除去装置40の除去電極44に引き寄せられ、GNDに捨てられる。これにより、微粒子16に付加されなかった余剰な電荷18は捕集装置50にほとんど到達することがない。帯電微粒子Pは、捕集装置50に至ると、捕集電極54に引き寄せられて捕集される。捕集電極54に付着された帯電微粒子Pの電荷18に基づく電流が、コンデンサ55aと抵抗器55bからなる直列回路を介して過渡応答として個数測定装置56に伝達される。   Next, a usage example of the particle number detector 10 will be described. When measuring particulates contained in the exhaust gas of an automobile, the particulate number detector 10 is attached in the exhaust pipe of the engine. At this time, the particle number detector 10 is attached so that the exhaust gas is introduced into the vent pipe 12 from the inlet (left end in FIG. 1) of the particle number detector 10 and discharged from the outlet (right end in FIG. 1). The fine particles 16 contained in the exhaust gas of the automobile are charged with the charges 18 when passing through the charge generating element 20 to become charged fine particles P. The charged fine particles P pass through the surplus charge removing device 40 whose electric field is weak and the length of the removing electrode 44 is short, and reaches the collecting device 50. Further, of the electric charges 18 generated by the electric charge generating element 20, the excessive electric charges 18 that have not been added to the fine particles 16 are attracted to the removal electrode 44 of the excessive electric charge removing device 40 even if the electric field is weak, and are discarded to the GND. Thereby, surplus charges 18 that have not been added to the fine particles 16 hardly reach the collection device 50. When the charged fine particles P reach the collection device 50, they are attracted to the collection electrode 54 and collected. A current based on the charge 18 of the charged fine particles P attached to the collecting electrode 54 is transmitted to the number measuring device 56 as a transient response through a series circuit including a capacitor 55a and a resistor 55b.

電流Iと電荷量qの関係は、I=dq/(dt)、q=∫Idtである。したがって、個数測定装置56は、スイッチ55cがオンされている期間(スイッチオン期間)にわたって電流値を積分(累算)して電流値の積分値(蓄積電荷量)を求める。スイッチオン期間の経過後に、蓄積電荷量を素電荷で除算して電荷の総数(捕集電荷数)を求め、その捕集電荷数を1つの微粒子16に付加する電荷の数の平均値で除算することで、一定時間(例えば5〜15秒)にわたって捕集電極54に付着していた微粒子16の個数を求めることができる。そして、個数測定装置56は、一定時間における微粒子16の個数を算出する演算を、所定期間(例えば1〜5分)にわたって繰り返し行って積算することで、所定期間にわたって捕集電極54に付着した微粒子16の個数を算出することができる。また、コンデンサ55aと抵抗器55bによる過渡応答を利用することで、小さな電流でも測定することが可能となり、微粒子16の個数を高精度に検出することができる。pA(ピコアンペア)レベルやnA(ナノアンペア)レベルの微小な電流であれば、例えば抵抗値の大きい抵抗器55bを使用して時定数を大きくすることで、微小な電流の測定が可能となる。   The relationship between the current I and the charge amount q is I = dq / (dt), q = ∫Idt. Accordingly, the number measuring device 56 integrates (accumulates) the current value over a period during which the switch 55c is on (switch-on period) to obtain an integrated value (accumulated charge amount) of the current value. After the switch-on period, the accumulated charge amount is divided by the elementary charge to obtain the total number of charges (collected charge number), and the collected charge number is divided by the average value of the number of charges added to one fine particle 16. By doing so, the number of the fine particles 16 attached to the collecting electrode 54 over a certain time (for example, 5 to 15 seconds) can be obtained. The number measuring device 56 repeats and accumulates calculations for calculating the number of the fine particles 16 in a predetermined time over a predetermined period (for example, 1 to 5 minutes), so that the fine particles attached to the collecting electrode 54 over the predetermined period. The number of 16 can be calculated. Further, by using the transient response by the capacitor 55a and the resistor 55b, it becomes possible to measure even with a small current, and the number of particles 16 can be detected with high accuracy. For a minute current at a pA (picoampere) level or an nA (nanoampere) level, for example, a minute current can be measured by increasing the time constant using the resistor 55b having a large resistance value.

ここで、電界発生電極52と捕集電極54との間に印加する電圧Vpが高い場合、捕集装置50に発生する電界の強度が高いため、捕集装置50を通過する帯電微粒子Pはほぼ全量が捕集電極54に捕集される。一方、電圧Vpが低い場合(例えば上述した高い電圧に比べて1桁小さい場合)、捕集装置50に発生する電界の強度が低いため、捕集装置50を通過する帯電微粒子Pの一部が捕集電極4に捕集されずにガス排出部60のガス通過穴64に至ることがある。このとき、ガス通過穴64の内壁(つまり電荷蓄積部66)を構成する誘電体は、電界発生電極52と捕集電極54との間に発生している電界によって誘電分極した状態となる。初期状態(帯電微粒子Pが蓄積されていない状態)の電荷蓄積部66を帯電微粒子Pが通過する場合、その帯電微粒子Pは誘電分極した誘電体によって電荷蓄積部66に引き寄せられて蓄積される。しかし、帯電微粒子Pが蓄積されたあとの電荷蓄積部66を新たな帯電微粒子Pが通過する場合、電荷蓄積部66に蓄積された帯電微粒子Pはその新たな帯電微粒子Pをクーロン斥力により捕集電極54側に押し戻す。このときの様子を図3の点線矢印で示す。押し戻された帯電微粒子Pは最終的に捕集電極54に捕集される。したがって、電圧Vpが低い場合であっても、捕集電極54に捕集されずに通気管12の外へ排出されてしまう帯電微粒子Pの数を抑制することができる。   Here, when the voltage Vp applied between the electric field generating electrode 52 and the collecting electrode 54 is high, since the intensity of the electric field generated in the collecting device 50 is high, the charged fine particles P that pass through the collecting device 50 are almost all. The whole amount is collected by the collecting electrode 54. On the other hand, when the voltage Vp is low (for example, when it is one digit smaller than the above-described high voltage), since the intensity of the electric field generated in the collection device 50 is low, a part of the charged fine particles P passing through the collection device 50 In some cases, the gas is not collected by the collection electrode 4 and reaches the gas passage hole 64 of the gas discharge unit 60. At this time, the dielectric constituting the inner wall of the gas passage hole 64 (that is, the charge storage portion 66) is in a state of being dielectrically polarized by the electric field generated between the electric field generating electrode 52 and the collecting electrode 54. When the charged fine particles P pass through the charge storage portion 66 in the initial state (the state where the charged fine particles P are not stored), the charged fine particles P are attracted to and stored in the charge storage portion 66 by a dielectrically polarized dielectric. However, when a new charged fine particle P passes through the charge accumulation unit 66 after the charged fine particle P is accumulated, the charged fine particle P accumulated in the charge accumulation unit 66 collects the new charged fine particle P by Coulomb repulsion. Push back to the electrode 54 side. The situation at this time is indicated by a dotted arrow in FIG. The charged fine particles P pushed back are finally collected by the collecting electrode 54. Therefore, even when the voltage Vp is low, the number of charged fine particles P that are not collected by the collecting electrode 54 and discharged to the outside of the vent pipe 12 can be suppressed.

なお、捕集電極54のうち通気管12の内部空間に露出している部分が、実質的に帯電微粒子Pを捕集する部分になる。   A portion of the collection electrode 54 exposed to the internal space of the vent pipe 12 is a portion that substantially collects the charged fine particles P.

以上詳述した微粒子数検出器10では、個数測定装置56は、捕集装置50の電界が高い場合はもちろんのこと低くても、微粒子数を精度よく検出することができる。   In the fine particle number detector 10 described in detail above, the number measuring device 56 can accurately detect the fine particle number even when the electric field of the collecting device 50 is high as well as low.

また、ガス排出部60は捕集電極54が設けられた部分よりもガス流路面積の小さいガス通過穴64を有し、電荷蓄積部66はガス通過穴64の内壁に設けられている。これにより、電荷蓄積部66の静電容量が高まり、電荷蓄積部66に蓄積される帯電微粒子Pの量が多くなるため、捕集電極54で捕集されなかった帯電微粒子Pを捕集電極側に一層押し戻しやすくなる。   Further, the gas discharge part 60 has a gas passage hole 64 having a gas passage area smaller than the part where the collecting electrode 54 is provided, and the charge storage part 66 is provided on the inner wall of the gas passage hole 64. As a result, the electrostatic capacity of the charge accumulating unit 66 increases, and the amount of charged fine particles P accumulated in the charge accumulating unit 66 increases, so that the charged fine particles P that have not been collected by the collecting electrode 54 are collected on the collecting electrode side. It becomes easier to push back.

更に、電荷蓄積部66は誘電分極した誘電体であり表面に正又は負の電荷が現れるため、その電荷の極性とは逆の極性を持つ帯電微粒子Pを誘電体の表面に引き付けて蓄積することができる。   Further, since the charge accumulating portion 66 is a dielectrically polarized dielectric and positive or negative charges appear on the surface, the charged fine particles P having a polarity opposite to the polarity of the charges are attracted and accumulated on the surface of the dielectric. Can do.

更にまた、捕集装置50に発生させた電界を利用して電荷蓄積部66を構成する誘電体を誘電分極させているため、誘電分極させるための電界を生成する装置を別途設ける必要がない。   Furthermore, since the dielectric constituting the charge storage section 66 is dielectrically polarized using the electric field generated in the collection device 50, there is no need to separately provide a device for generating an electric field for dielectric polarization.

そしてまた、支持板62は電界発生電極52を支持する役割を果たすため、電界発生電極52を別途支持する部材を設ける必要がなく、構造が簡易になる。   In addition, since the support plate 62 plays a role of supporting the electric field generating electrode 52, it is not necessary to provide a member for separately supporting the electric field generating electrode 52, and the structure is simplified.

なお、本発明は上述した第1実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   The present invention is not limited to the above-described first embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態では、支持板62に設けたガス通過穴64の内壁をそのまま電荷蓄積部66としたが、図4〜図6に示す電荷蓄積部166、266,366を採用してもよい。図4では、ガス通過穴64の内壁を、支持板62よりも比誘電率の高い被覆部材163で被覆し、その被覆部材163の表面を電荷蓄積部166としている。図5では、支持板62のガス上流側の端面のうちガス通過穴64の周辺部分62aを、支持板62よりも比誘電率の高い被覆部材263で被覆し、その被覆部材263の表面を電荷蓄積部266としている。図6では、ガス通過穴64の内壁及びガス通過穴64の周辺部分62aを、支持板62よりも比誘電率の高い被覆部材363で被覆し、その被覆部材363の表面を電荷蓄積部366としている。図4〜図6に示す電荷蓄積部166,266,366は、被覆部材163,263,363の比誘電率が支持板62(ベース部材)よりも高いため、上述した実施形態よりも多くの帯電微粒子Pを蓄積することができる。そのため、ガス排出部60へ流れてきた帯電微粒子Pを捕集電極側へ押し戻しやすくなる。なお、主なセラミックの比誘電率を下記表1に示す。   For example, in the above-described embodiment, the inner wall of the gas passage hole 64 provided in the support plate 62 is used as it is as the charge accumulation unit 66, but the charge accumulation units 166, 266, and 366 shown in FIGS. Good. In FIG. 4, the inner wall of the gas passage hole 64 is covered with a covering member 163 having a relative dielectric constant higher than that of the support plate 62, and the surface of the covering member 163 is used as the charge storage portion 166. In FIG. 5, the peripheral portion 62 a of the gas passage hole 64 in the end surface on the gas upstream side of the support plate 62 is covered with a covering member 263 having a higher relative dielectric constant than the support plate 62, and the surface of the covering member 263 is charged. The storage unit 266 is used. In FIG. 6, the inner wall of the gas passage hole 64 and the peripheral portion 62 a of the gas passage hole 64 are covered with a covering member 363 having a relative dielectric constant higher than that of the support plate 62, and the surface of the covering member 363 is used as the charge storage portion 366. Yes. The charge storage units 166, 266, and 366 shown in FIGS. 4 to 6 have more charge than the above-described embodiment because the relative dielectric constant of the covering members 163, 263, and 363 is higher than that of the support plate 62 (base member). Fine particles P can be accumulated. Therefore, it becomes easy to push back the charged fine particles P that have flowed to the gas discharge unit 60 toward the collecting electrode. The relative dielectric constant of main ceramics is shown in Table 1 below.

Figure 2018151381
Figure 2018151381

あるいは、図7に示す電荷蓄積部466を採用してもよい。図7では、支持板62に設けたガス通過穴64の内壁に金属電極463を設け、外部コンデンサ464の片方の電極板をこの金属電極463に接続し、もう片方の電極板をグランド(GND)に接続している。この場合、金属電極463の表面が電荷蓄積部466になる。この電荷蓄積部466も、上述した実施形態と同様に帯電微粒子Pを蓄積することができ、蓄積された帯電微粒子Pは新たな帯電微粒子Pをクーロン斥力により捕集電極54側に押し戻す。したがって、上述した実施形態と同様の効果が得られる。   Or you may employ | adopt the electric charge storage part 466 shown in FIG. In FIG. 7, a metal electrode 463 is provided on the inner wall of the gas passage hole 64 provided in the support plate 62, one electrode plate of the external capacitor 464 is connected to the metal electrode 463, and the other electrode plate is grounded (GND). Connected to. In this case, the surface of the metal electrode 463 becomes the charge storage portion 466. The charge accumulating unit 466 can also accumulate charged fine particles P as in the above-described embodiment, and the accumulated charged fine particles P push the new charged fine particles P back to the collecting electrode 54 side by Coulomb repulsion. Therefore, the same effect as the above-described embodiment can be obtained.

上述した実施形態では、電荷発生素子20として、針状電極22と対向電極24とを用いたが、特にこれに限定されない。例えば、図8に示すように、通気管12の内面に露出する放電電極122と、その放電電極122と対向し通気管12の内壁に埋設された誘導電極124とを用いてもよい。この場合、両電極122,124に挟まれた通気管12の内壁が誘電体層として機能する。放電電極122は、外周に複数の突起を備えていることが好ましい。このような放電電極122と誘導電極124との間に電圧を印加しても気中放電によって電荷が発生する。   In the above-described embodiment, the acicular electrode 22 and the counter electrode 24 are used as the charge generation element 20, but the present invention is not particularly limited thereto. For example, as shown in FIG. 8, a discharge electrode 122 exposed on the inner surface of the vent pipe 12 and an induction electrode 124 that is opposed to the discharge electrode 122 and embedded in the inner wall of the vent pipe 12 may be used. In this case, the inner wall of the vent pipe 12 sandwiched between the electrodes 122 and 124 functions as a dielectric layer. The discharge electrode 122 preferably has a plurality of protrusions on the outer periphery. Even if a voltage is applied between the discharge electrode 122 and the induction electrode 124, electric charges are generated by air discharge.

上述した実施形態では、ガス通過穴64は図2に示すようにリング状の穴としたが、特にリング状に限定されるものではなく、例えば矩形状の穴であってもよい。また、図1のA−A断面図は図2ではなく図9となるようにしてもよい。図9では、支持板62のうち電界発生電極52と捕集電極54との間に複数の小径のガス通過穴164が設けられている。電界蓄積部166は、ガス通過穴164の内壁部分となる。このようにしても、上述した実施形態と同様の効果が得られる。複数のガス通過穴164は同一円周上に等間隔となるように設けることが好ましい。こうすれば、ガスの流れ場が通気管12の中心軸に対して回転対称になるため、拡散して一様な流れ場を形成するまでの距離を短縮することができ、その結果、装置をコンパクト化できる。なお、図9にはガス通過穴164を6個設けた例を示したが、ガス通過穴164の個数は2個以上であればいくつでもよい。   In the embodiment described above, the gas passage hole 64 is a ring-shaped hole as shown in FIG. 2, but is not particularly limited to the ring shape, and may be a rectangular hole, for example. Further, the AA sectional view of FIG. 1 may be FIG. 9 instead of FIG. In FIG. 9, a plurality of small-diameter gas passage holes 164 are provided between the electric field generating electrode 52 and the collecting electrode 54 in the support plate 62. The electric field storage unit 166 serves as an inner wall portion of the gas passage hole 164. Even if it does in this way, the effect similar to embodiment mentioned above is acquired. The plurality of gas passage holes 164 are preferably provided at equal intervals on the same circumference. In this way, since the gas flow field is rotationally symmetric with respect to the central axis of the vent pipe 12, the distance until diffusion and formation of a uniform flow field can be shortened. Can be made compact. Although FIG. 9 shows an example in which six gas passage holes 164 are provided, the number of gas passage holes 164 may be any number as long as it is two or more.

上述した実施形態では、余剰電荷除去装置40を設けたが、余剰電荷除去装置40を設けなくてもよい。   In the embodiment described above, the surplus charge removing device 40 is provided, but the surplus charge removing device 40 may not be provided.

上述した実施形態では、正に帯電した帯電微粒子Pの個数を測定する場合について説明したが、負に帯電した帯電微粒子Pの個数を測定するようにしてもよい。   In the embodiment described above, the case of measuring the number of positively charged fine particles P has been described, but the number of negatively charged fine particles P may be measured.

10 微粒子数検出器、12 通気管、12a,12c,12e セラミック部分、12b,12d,12f 金属部分、14 アウタパイプ、16 微粒子、18 電荷、20 電荷発生素子、22 針状電極、24 対向電極、26 放電用電源、40 余剰電荷除去装置、42 電界発生電極、44 除去電極、46 電流計、50 捕集装置、52 電界発生電極、54 捕集電極、55a コンデンサ、55b 抵抗器、55c スイッチ、56 個数測定装置、60 ガス排出部、62 支持板、62a 周辺部分、64,164 ガス通過穴、66,166,266,366,466 電荷蓄積部、70 排気パイプ、120 電荷発生素子、122 放電電極、124 誘導電極、163,263,363 被覆部材、463 金属電極、464 外部コンデンサ、P 帯電微粒子。 10 Particle number detector, 12 Vent pipe, 12a, 12c, 12e Ceramic portion, 12b, 12d, 12f Metal portion, 14 Outer pipe, 16 Particle, 18 Charge, 20 Charge generating element, 22 Needle electrode, 24 Counter electrode, 26 Power source for discharge, 40 Surplus charge removal device, 42 Electric field generation electrode, 44 Removal electrode, 46 Ammeter, 50 Collection device, 52 Electric field generation electrode, 54 Collection electrode, 55a Capacitor, 55b Resistor, 55c Switch, 56 Measuring device, 60 gas discharge part, 62 support plate, 62a peripheral part, 64,164 gas passage hole, 66,166,266,366,466 charge storage part, 70 exhaust pipe, 120 charge generation element, 122 discharge electrode, 124 Induction electrode, 163, 263, 363 Cover member, 463 Metal electrode, 464 Part capacitor, P charged fine particles.

Claims (8)

通気管内に導入されたガス中の微粒子に電荷を付加して帯電微粒子にする電荷発生部と、
前記電荷発生部よりも前記ガスの流れの下流側に電界を発生させ、前記電界に配置された捕集電極で前記帯電微粒子を捕集する帯電微粒子捕集部と、
前記捕集電極に捕集された前記帯電微粒子の数に応じて変化する物理量に基づいて、前記帯電微粒子の数を検出する個数検出部と、
前記捕集電極よりも前記ガスの流れの下流側に設けられたガス排出部と、
を備え、
前記ガス排出部は、前記捕集電極で捕集されなかった前記帯電微粒子を蓄積する電荷蓄積部を有し、前記電荷蓄積部に蓄積された前記帯電微粒子は、前記捕集電極で捕集されなかった前記帯電微粒子をクーロン斥力により前記捕集電極側に押し戻す、
微粒子数検出器。
A charge generating unit that adds charged charges to the fine particles in the gas introduced into the vent pipe to form charged fine particles;
A charged particulate collection unit that generates an electric field downstream of the gas flow from the charge generation unit and collects the charged particulates by a collection electrode disposed in the electric field;
A number detection unit that detects the number of the charged fine particles based on a physical quantity that varies according to the number of the charged fine particles collected by the collection electrode;
A gas discharge part provided on the downstream side of the gas flow from the collecting electrode;
With
The gas discharge unit includes a charge accumulation unit that accumulates the charged fine particles not collected by the collection electrode, and the charged fine particles accumulated in the charge accumulation unit are collected by the collection electrode. The charged fine particles that did not exist are pushed back to the collecting electrode side by Coulomb repulsion,
Particle number detector.
前記ガス排出部は、前記捕集電極が設けられた部分よりもガス流路面積の小さいガス通過穴を有し、前記電荷蓄積部は、前記ガス通過穴の内壁に設けられている、
請求項1に記載の微粒子数検出器。
The gas discharge part has a gas passage hole having a smaller gas flow path area than the part where the collecting electrode is provided, and the charge storage part is provided on the inner wall of the gas passage hole.
The fine particle number detector according to claim 1.
前記ガス排出部は、前記通気管の軸方向と交差する方向に設けられた絶縁性の支持板を有し、前記支持板は、前記捕集電極との間で電界を発生させるロッド状の電界発生電極が貫通しており、前記ガス通過穴は、前記支持板を貫通するように設けられている、
請求項2に記載の微粒子数検出器。
The gas discharge portion has an insulating support plate provided in a direction intersecting the axial direction of the vent pipe, and the support plate generates a rod-shaped electric field that generates an electric field with the collecting electrode. The generation electrode is penetrated, and the gas passage hole is provided so as to penetrate the support plate.
The fine particle number detector according to claim 2.
前記通気管は、断面が円形であり、
前記支持板は、円板であって中心に前記電界発生電極が貫通しており、
前記ガス通過穴は、前記支持板と同心の円周上に等間隔となるように複数設けられている、
請求項3に記載の微粒子数検出器。
The vent pipe has a circular cross section,
The support plate is a disc and the electric field generating electrode passes through the center,
A plurality of the gas passage holes are provided at equal intervals on a circumference concentric with the support plate,
The fine particle number detector according to claim 3.
前記電荷蓄積部は、誘電分極した誘電体を含む、
請求項1〜4のいずれか1項に記載の微粒子数検出器。
The charge storage unit includes a dielectric material having a dielectric polarization,
The particle number detector according to any one of claims 1 to 4.
前記電荷蓄積部は、前記帯電微粒子捕集部の前記電界を利用して前記誘電体を誘電分極させたものである、
請求項5に記載の微粒子数検出器。
The charge accumulating part is obtained by dielectric polarization of the dielectric using the electric field of the charged particulate collection part.
The fine particle number detector according to claim 5.
前記電荷蓄積部は、絶縁性のベース部材の表面に前記ベース部材よりも比誘電率の高い被覆部材を備えた構造である、
請求項5又は6に記載の微粒子数検出器。
The charge storage portion has a structure in which a covering member having a higher dielectric constant than that of the base member is provided on the surface of the insulating base member.
The particle number detector according to claim 5 or 6.
前記電荷蓄積部は、一方の電極板がグランドに接続されたコンデンサの他方の電極板を利用したものである、
請求項1〜4のいずれか1項に記載の微粒子数検出器。
The charge storage unit utilizes the other electrode plate of the capacitor in which one electrode plate is connected to the ground.
The particle number detector according to any one of claims 1 to 4.
JP2018020934A 2017-03-10 2018-02-08 Particulate count detector Abandoned JP2018151381A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017045633 2017-03-10
JP2017045633 2017-03-10

Publications (1)

Publication Number Publication Date
JP2018151381A true JP2018151381A (en) 2018-09-27

Family

ID=63681597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018020934A Abandoned JP2018151381A (en) 2017-03-10 2018-02-08 Particulate count detector

Country Status (1)

Country Link
JP (1) JP2018151381A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793892A (en) * 2019-10-28 2020-02-14 清华大学 Unipolar aerosol charger using electrostatic dissipation material to generate gradient electric field

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793892A (en) * 2019-10-28 2020-02-14 清华大学 Unipolar aerosol charger using electrostatic dissipation material to generate gradient electric field
CN110793892B (en) * 2019-10-28 2020-09-22 清华大学 Unipolar aerosol charger using electrostatic dissipation material to generate gradient electric field

Similar Documents

Publication Publication Date Title
US10488316B2 (en) Fine-particle number measurement device and fine-particle number measurement method
JP2007514923A (en) Method and sensor device for measuring particle emission from combustion engine exhaust gas
KR20160086890A (en) Soot sensor system
JPWO2013175548A1 (en) Particle number measuring instrument
US20190285534A1 (en) Particulate detector
Mizuno et al. Basic performance of an electrostatically augmented filter consisting of a packed ferroelectric pellet layer
JP2014084862A (en) Particulate substance sensor unit
JPWO2018139345A1 (en) Particle count detector
JP2018151381A (en) Particulate count detector
JPWO2018012421A1 (en) Particle number detector
JP6858135B2 (en) Particle sensor and detection method
US20190072520A1 (en) Electric-charge generating element and particle counter
WO2018139346A1 (en) Device for detecting number of fine particles
WO2018163704A1 (en) Microparticle number detector
WO2018212156A1 (en) Fine particle count detector
JP2019163976A (en) Fine particle detector
WO2019239588A1 (en) Fine particle number detector
JP6420525B1 (en) Fine particle detection element and fine particle detector
KR102524709B1 (en) Particle Sensor with Planar Exposed Corona Discharge Electrodes
JP2017227517A (en) Fine particles number detector
Hyun et al. Design and performance evaluation of a PN1 sensor for real-time measurement of indoor aerosol size distribution
JP2006281135A (en) Dust collector
WO2020090438A1 (en) Microparticle detector
WO2020036092A1 (en) Fine particle detector
WO2020137418A1 (en) Fine particle detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201019

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20210106