[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018146567A - Surface quality detection method - Google Patents

Surface quality detection method Download PDF

Info

Publication number
JP2018146567A
JP2018146567A JP2018007654A JP2018007654A JP2018146567A JP 2018146567 A JP2018146567 A JP 2018146567A JP 2018007654 A JP2018007654 A JP 2018007654A JP 2018007654 A JP2018007654 A JP 2018007654A JP 2018146567 A JP2018146567 A JP 2018146567A
Authority
JP
Japan
Prior art keywords
light
wavelength range
steel sheet
luminance
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018007654A
Other languages
Japanese (ja)
Other versions
JP7039299B2 (en
Inventor
信治 安武
Nobuharu Yasutake
信治 安武
健之 飯島
Takeyuki Iijima
健之 飯島
正宜 小林
Masayoshi Kobayashi
正宜 小林
昌広 乾
Masahiro Inui
昌広 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of JP2018146567A publication Critical patent/JP2018146567A/en
Application granted granted Critical
Publication of JP7039299B2 publication Critical patent/JP7039299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface quality detection method capable of accurately determining surface quality of a hot rolled steel sheet surface after acid cleaning.SOLUTION: The surface quality detection method for detecting surface quality of a hot rolled steel sheet surface after acid cleaning includes the steps of irradiating the hot rolled steel sheet surface with light which is not signal-wavelength light, receiving reflectance from the hot rolled steel sheet surface and determining surface quality on the basis of the reflectance obtained in the light receiving step. In the determination step, the ratio between brightness in a first wavelength range, of the reflectance, and brightness in a second wavelength range different from the first wavelength range is calculated.SELECTED DRAWING: Figure 2

Description

本発明は、表面性状検査方法に関する。   The present invention relates to a surface property inspection method.

例えばSiを含有する高強度鋼等を熱延(熱間圧延)処理して鋼板を製造する際、外面に酸化物からなる黒皮状のスケールが形成されると共に、このスケールの内側の地鉄表層の結晶粒界が酸化されることにより粒界酸化物が形成される場合がある。このような粒界酸化物は、高強度冷延鋼板の最終製品に存在していると化成処理性を悪化させる原因となることが知られている。   For example, when manufacturing steel sheets by hot rolling (hot rolling) processing of high-strength steel containing Si, a black skin-like scale made of oxide is formed on the outer surface, and the iron inside the scale A grain boundary oxide may be formed by oxidizing the crystal grain boundary of the surface layer. It is known that such a grain boundary oxide causes deterioration of chemical conversion properties when present in the final product of a high-strength cold-rolled steel sheet.

熱延鋼板のスケール及び粒界酸化層(周囲に粒界酸化物が形成された結晶粒の層であって、酸化物が析出した粒状物を含み得る)は、酸洗により除去することができる。そこで、スケール及び粒界酸化層の厚さに応じて酸洗の時間を決定することで、スケール及び粒界酸化物の除去を確実にする方法が提案されている(特開2013−237924号公報参照)。   The scale and grain boundary oxide layer of a hot-rolled steel sheet (a crystal grain layer around which a grain boundary oxide is formed, which may include a granular material on which an oxide is precipitated) can be removed by pickling. . Therefore, a method for ensuring removal of the scale and the grain boundary oxide by determining the pickling time according to the thickness of the scale and the grain boundary oxide layer has been proposed (Japanese Patent Laid-Open No. 2013-237924). reference).

このように、熱延鋼板から粒界酸化層を除去する方法については公知であるが、鋼板の製造ラインにおいて、粒界酸化物の残留の有無を確認する方法については、有効な手段が提案されていない。   Thus, although a method for removing the grain boundary oxide layer from the hot-rolled steel sheet is known, an effective means has been proposed for a method for confirming the presence or absence of residual grain boundary oxide in the steel sheet production line. Not.

特開2013−237924号公報JP 2013-237924 A

上記不都合に鑑みて、本発明は、酸洗後の熱延鋼板表面の表面性状を正確に判定できる表面性状検査方法を提供することを課題とする。   In view of the above inconveniences, an object of the present invention is to provide a surface texture inspection method capable of accurately determining the surface texture of the surface of a hot-rolled steel sheet after pickling.

上記課題を解決するためになされた発明は、酸洗後の熱延鋼板に対する表面性状の検査方法であって、上記鋼板表面に単波長でない光を照射する工程と、上記鋼板表面からの反射光を受光する工程と、上記受光工程で得られた反射光に基づき表面性状を判定する工程とを備え、上記判定工程で、上記反射光のうち第1波長範囲の輝度の上記第1波長範囲とは異なる第2波長範囲の輝度に対する比率を算出することを特徴とする。   The invention made in order to solve the above-mentioned problems is a method for inspecting the surface properties of a hot-rolled steel sheet after pickling, the step of irradiating the steel sheet surface with light having a single wavelength, and the reflected light from the steel sheet surface. And determining the surface properties based on the reflected light obtained in the light receiving step, and in the determining step, the first wavelength range of the reflected light in the first wavelength range and the first wavelength range Is characterized by calculating a ratio of luminance in different second wavelength ranges.

鋼板表面に単波長でない光を照射した場合の反射光のスペクトル(波長毎の輝度のプロファイル)は、鋼板の表面性状に応じて変化する。このため、当該表面性状検査方法では、反射光のうち第1波長範囲の輝度の上記第1波長範囲とは異なる第2波長範囲の輝度に対する比率を算出することで、反射光のスペクトルの変化を数値化し、鋼板の表面性状を比較的容易且つ正確に判定することができる。   The spectrum of reflected light (luminance profile for each wavelength) when the surface of the steel sheet is irradiated with light that is not a single wavelength varies depending on the surface properties of the steel sheet. For this reason, in the surface texture inspection method, by calculating the ratio of the luminance of the first wavelength range to the luminance of the second wavelength range different from the first wavelength range in the reflected light, the change in the spectrum of the reflected light is calculated. It is possible to digitize and determine the surface properties of the steel sheet relatively easily and accurately.

本発明に係る表面性状検査方法において、上記第1波長範囲及び第2波長範囲の上限が1200nm以下であることが好ましい。このように、上記第1波長範囲及び第2波長範囲の上限が1200nm以下であることによって、鋼板の温度が高い場合に鋼板の熱放射光の影響を受けずに鋼板の表面性状をより正確に判定することができる。   In the surface texture inspection method according to the present invention, it is preferable that the upper limit of the first wavelength range and the second wavelength range is 1200 nm or less. Thus, when the upper limit of the first wavelength range and the second wavelength range is 1200 nm or less, when the temperature of the steel plate is high, the surface properties of the steel plate can be more accurately determined without being affected by the thermal radiation of the steel plate. Can be determined.

本発明に係る表面性状検査方法において、上記第1波長範囲が赤色光波長域内又は青色光波長域内であってもよい。このように、上記第1波長範囲が鋼板表面の粒界酸化物の有無によって反射光の輝度が比較的大きく変化する赤色光波長域内又は青色光波長域内であることによって、酸洗による粒界酸化物の除去をより正確に判定することができる。   In the surface texture inspection method according to the present invention, the first wavelength range may be in a red light wavelength region or a blue light wavelength region. As described above, the first wavelength range is within the red light wavelength range or the blue light wavelength range where the brightness of the reflected light changes relatively greatly depending on the presence or absence of the grain boundary oxide on the steel sheet surface. The removal of an object can be determined more accurately.

本発明に係る表面性状検査方法において、上記第2波長範囲が赤色光波長、緑色光波長及び青色光波長を含んでもよい。このように、上記第2波長範囲が赤色光波長、緑色光波長及び青色光波長を含むことによって、波長範囲の輝度の値が比較的安定するので、鋼板の表面性状を比較的正確に判定することができる。   In the surface property inspection method according to the present invention, the second wavelength range may include a red light wavelength, a green light wavelength, and a blue light wavelength. As described above, since the second wavelength range includes the red light wavelength, the green light wavelength, and the blue light wavelength, the luminance value in the wavelength range is relatively stable, so that the surface property of the steel sheet is determined relatively accurately. be able to.

本発明に係る表面性状検査方法において、上記第1波長範囲及び第2波長範囲の一方が赤色光波長域内であり、上記第1波長範囲及び第2波長範囲の他方が青色光波長域内であってもよい。このように、上記第1波長範囲及び第2波長範囲が、粒界酸化物の減少に伴って比較的大きく変化する青色光波長範囲と、青色光波長範囲とは逆の変化を示す赤色光波長範囲とであることによって、鋼板表面の粒界酸化物の除去を感度よく検出することができる。   In the surface property inspection method according to the present invention, one of the first wavelength range and the second wavelength range is in the red light wavelength range, and the other of the first wavelength range and the second wavelength range is in the blue light wavelength range. Also good. As described above, the blue wavelength range in which the first wavelength range and the second wavelength range change relatively greatly as the grain boundary oxide decreases, and the red wavelength in which the blue wavelength range is opposite to the blue wavelength range. By being within the range, the removal of the grain boundary oxide on the steel sheet surface can be detected with high sensitivity.

本発明に係る表面性状検査方法において、上記受光工程で、正反射光を受光しない位置で乱反射光を受光してもよい。このように、乱反射光を受光することによって、鋼板の表面性状をさらに感度よく検出することができる。   In the surface texture inspection method according to the present invention, in the light receiving step, irregularly reflected light may be received at a position where regular reflected light is not received. Thus, by receiving irregularly reflected light, the surface properties of the steel sheet can be detected with higher sensitivity.

本発明に係る表面性状検査方法において、上記受光工程で、上記照射工程における上記鋼板表面への光の入射角及び上記受光工程における上記鋼板表面からの反射光の反射角の少なくとも一方が異なる2つの反射光を受光し、上記判定工程で、上記2つの反射光からそれぞれ算出される2つの上記輝度の比率の演算値によって表面性状を判定してもよい。   In the surface property inspection method according to the present invention, in the light receiving step, at least one of an incident angle of light to the steel plate surface in the irradiation step and a reflection angle of reflected light from the steel plate surface in the light receiving step is different. The reflected light may be received, and in the determination step, the surface property may be determined based on the calculated value of the ratio of the two luminances calculated from the two reflected lights.

本発明の別の発明は、酸洗後の熱延鋼板の表面性状を検査する装置であって、上記鋼板表面に単波長でない光を照射する光源と、上記鋼板表面からの反射光を受光する受光器と、上記受光器で受光した反射光に基づき表面性状を判定する演算装置とを備え、上記演算装置が、上記反射光のうち第1波長範囲の輝度の上記第1波長範囲とは異なる第2波長範囲の輝度に対する比率を算出することを特徴とする表面性状検査装置である。   Another invention of the present invention is an apparatus for inspecting the surface properties of a hot-rolled steel sheet after pickling, and receives a light source that irradiates light that is not a single wavelength on the surface of the steel sheet and reflected light from the surface of the steel sheet. A light receiver and an arithmetic device that determines surface properties based on the reflected light received by the light receiver, wherein the arithmetic device is different from the first wavelength range of the first wavelength range of the reflected light. The surface texture inspection apparatus is characterized in that a ratio with respect to luminance in the second wavelength range is calculated.

当該表面性状検査装置は、上記第1波長範囲の輝度の上記第2波長範囲の輝度に対する比率を算出する上記表面性状検査方法を行うことができるので、鋼板の表面性状を比較的正確に判定することができる。   Since the surface texture inspection apparatus can perform the surface texture inspection method for calculating the ratio of the luminance of the first wavelength range to the luminance of the second wavelength range, the surface texture of the steel sheet is determined relatively accurately. be able to.

以上のように、本発明の表面性状検査方法は、酸洗後の熱延鋼板表面の表面性状を正確に判定することができる。   As described above, the surface texture inspection method of the present invention can accurately determine the surface texture on the surface of a hot-rolled steel sheet after pickling.

本発明の一実施形態に係る表面性状検査方法に用いる検査装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the inspection apparatus used for the surface property inspection method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る表面性状検査方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the surface property inspection method which concerns on one Embodiment of this invention. 本発明の図1とは異なる実施形態に係る表面性状検査方法に用いる検査装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the inspection apparatus used for the surface property inspection method which concerns on embodiment different from FIG. 1 of this invention. 本発明の試験に用いた光源の輝度プロファイルである。It is a brightness | luminance profile of the light source used for the test of this invention. 本発明の試験により得られた異なる波長範囲の輝度比率と酸洗時間との関係を示すグラフである。It is a graph which shows the relationship between the luminance ratio of a different wavelength range and the pickling time which were obtained by the test of this invention. 本発明の試験により得られた別の輝度比率と酸洗時間との関係を示すグラフである。It is a graph which shows the relationship between another luminance ratio obtained by the test of this invention, and pickling time. 本発明の別の試験により得られた光源の入射角が異なる場合の輝度比率と酸洗時間との関係を示すグラフである。It is a graph which shows the relationship between the luminance ratio and pickling time in case the incident angle of the light source obtained by another test of this invention differs. 図7の2つ入射角度の輝度の比率の比と酸洗時間との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the ratio of the brightness | luminance of two incident angles of FIG. 7, and pickling time. 実際の鋼板製造ラインにおける2つ入射角度の輝度の比率の比の変化を示すグラフである。It is a graph which shows the change of the ratio of the ratio of the brightness | luminance of two incident angles in an actual steel plate manufacturing line.

以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

[第一実施形態]
図1に、本発明の一実施形態に係る表面性状検査方法に用いられる表面性状検査装置の構成を示す。当該表面性状検査方法は、酸洗後の熱延鋼板Sの表面性状を検査する方法である。
[First embodiment]
FIG. 1 shows a configuration of a surface texture inspection apparatus used in a surface texture inspection method according to an embodiment of the present invention. The surface property inspection method is a method for inspecting the surface property of the hot-rolled steel sheet S after pickling.

<熱延鋼板>
当該表面性状検査方法によって検査される熱延鋼板Sとしては、特に限定されるものではないが、酸洗により表面の粒界酸化物が除去されるSi(ケイ素)含有高強度鋼板等が想定される。そのようなSi含有高強度鋼板の具体例としては、Siを1.0質量%以上かつMn(マンガン)を1.5質量%以上含有するSi高Mn含有鋼等が挙げられる。
<Hot rolled steel sheet>
The hot-rolled steel sheet S to be inspected by the surface property inspection method is not particularly limited, but a Si (silicon) -containing high-strength steel sheet from which surface grain boundary oxides are removed by pickling is assumed. The Specific examples of such a Si-containing high-strength steel sheet include Si-high Mn-containing steel containing 1.0% by mass or more of Si and 1.5% by mass or more of Mn (manganese).

このような熱延鋼板Sは、長尺帯状に形成され、複数の搬送ローラーによって長手方向に連続搬送され、水槽内を通過することによってこの水槽に貯留される酸性液に浸漬されることで、表面の粒界酸化物が除去されることが想定される。   Such a hot-rolled steel sheet S is formed in a long band shape, continuously conveyed in the longitudinal direction by a plurality of conveying rollers, and immersed in an acidic liquid stored in this water tank by passing through the water tank, It is assumed that the surface grain boundary oxide is removed.

当該表面性状検査方法は、熱延鋼板Sの表面に単波長でない光を照射する光源1と、光源1から照射された光の熱延鋼板Sの表面での反射光を受光して波長毎の輝度の分布を取得する受光器2と、受光器2が取得した輝度分布に基づいて熱延鋼板Sの表面性状を判定する演算装置3とを備える表面性状検査装置を用いて行うことができる。   The surface property inspection method includes a light source 1 that irradiates the surface of the hot-rolled steel sheet S with light that is not a single wavelength, and a reflected light of the light irradiated from the light source 1 on the surface of the hot-rolled steel sheet S. It can be performed using a surface property inspection device including a light receiver 2 that acquires a luminance distribution and a calculation device 3 that determines the surface property of the hot-rolled steel sheet S based on the luminance distribution acquired by the light receiver 2.

<光源>
光源1としては、単波長でない光を照射できるものであればよいが、白色光を照射できるものが好ましい。
<Light source>
The light source 1 may be any light source that can irradiate light that is not a single wavelength, but is preferably one that can irradiate white light.

このような光源1としては、例えば白色LED、蛍光ランプ、ハロゲンランプ、キセノンランプ等を用いることができる。   As such a light source 1, white LED, a fluorescent lamp, a halogen lamp, a xenon lamp etc. can be used, for example.

また、光源1は、エネルギー効率を向上すると共に受光器に正反射光が入射しないようにすることが容易となるよう、例えばレンズ等を含み、光を一点乃至狭い範囲内に照射できる光学系を備えることが好ましい。   The light source 1 includes an optical system that includes, for example, a lens and can irradiate light within a single point or a narrow range so as to improve energy efficiency and make it easy to prevent regular reflection light from entering the light receiver. It is preferable to provide.

<受光器>
受光器2としては、例えばCCDイメージセンサー、CMOSイメージセンサー等を用いることができる。
<Receiver>
For example, a CCD image sensor or a CMOS image sensor can be used as the light receiver 2.

受光器2は、正反射光を受光しない位置に配設され、熱延鋼板Sの表面での乱反射光を受光することが好ましい。なお、「正反射光」とは、熱延鋼板Sの表面が平面である場合の反射光を意味し、熱延鋼板Sの表面の微細な凹凸により不規則に反射した光は乱反射光と解する。   It is preferable that the light receiver 2 is disposed at a position where it does not receive regular reflection light and receives irregular reflection light on the surface of the hot-rolled steel sheet S. Note that “regularly reflected light” means reflected light when the surface of the hot-rolled steel sheet S is flat, and the light irregularly reflected by the fine irregularities on the surface of the hot-rolled steel sheet S is regarded as irregularly reflected light. To do.

<演算装置>
演算装置3としては、例えばマイクロプロセッサーを有するコンピューター、専用に設計された演算回路を有するIC等を用いることができる。
<Calculation device>
As the arithmetic unit 3, for example, a computer having a microprocessor, an IC having a dedicated arithmetic circuit, or the like can be used.

図1の装置を用いて行われる当該表面性状検査方法は、図2に示すように、熱延鋼板Sの表面に光源1によって単波長でない光を照射する工程<ステップS1:照射工程>と、受光器2で熱延鋼板Sの表面からの反射光を受光する工程<ステップS2:受光工程>と、演算装置3により、受光工程で得られた反射光のスペクトル(波長毎の輝度の分布)に基づき、熱延鋼板Sの表面性状を判定する工程<ステップS3:判定工程>とを備える。   The surface property inspection method performed using the apparatus of FIG. 1, as shown in FIG. 2, a step of irradiating the surface of the hot-rolled steel sheet S with light that is not a single wavelength by the light source 1 <step S1: irradiation step> A process of receiving reflected light from the surface of the hot-rolled steel sheet S with the light receiver 2 <Step S2: light receiving process> and a spectrum of reflected light obtained in the light receiving process by the arithmetic device 3 (distribution of luminance for each wavelength) The step <Step S3: determination step> for determining the surface properties of the hot-rolled steel sheet S is provided.

<照射工程>
ステップS1の照射工程では、光源1から熱延鋼板Sの表面に光を照射する。光源1から熱延鋼板Sに照射される光の入射角度(光源1の光軸と熱延鋼板Sの法線との角度)は、入射光の強度を大きくして反射光の輝度を大きくできるよう小さいことが好ましい。具体的には、光源1から熱延鋼板Sに照射される光の入射角度の上限としては、60°が好ましく、45°がより好ましい。光源1から熱延鋼板Sに照射される光の入射角度が上記上限を超える場合、反射光の強度が小さくなることで検出精度が不十分となるおそれがある。
<Irradiation process>
In the irradiation process of step S1, light is irradiated from the light source 1 to the surface of the hot-rolled steel sheet S. The incident angle of light irradiated from the light source 1 to the hot-rolled steel sheet S (the angle between the optical axis of the light source 1 and the normal line of the hot-rolled steel sheet S) can increase the intensity of incident light and increase the brightness of reflected light. Such a small size is preferable. Specifically, the upper limit of the incident angle of light irradiated from the light source 1 to the hot-rolled steel sheet S is preferably 60 °, and more preferably 45 °. When the incident angle of the light irradiated from the light source 1 to the hot-rolled steel sheet S exceeds the above upper limit, the detection accuracy may be insufficient because the intensity of the reflected light is reduced.

<受光工程>
ステップS2の受光工程では、光源1から熱延鋼板Sの表面に照射した光の反射光を受光器2によって受光し、反射光の輝度分布を測定する。
<Light receiving process>
In the light receiving step of step S2, reflected light of light irradiated from the light source 1 onto the surface of the hot-rolled steel sheet S is received by the light receiver 2, and the luminance distribution of the reflected light is measured.

受光器2による反射光の受光位置としては、光源1から熱延鋼板Sの表面に照射した光の正反射光が入射しない位置とすることが好ましい。これにより、熱延鋼板Sの表面における乱反射の特性をより詳細に把握することができるので、熱延鋼板Sの表面性状をより正確に検出することができる。   The light receiving position of the reflected light by the light receiver 2 is preferably a position where the regular reflected light of the light irradiated from the light source 1 onto the surface of the hot-rolled steel sheet S does not enter. Thereby, since the characteristic of the irregular reflection in the surface of the hot-rolled steel sheet S can be grasped in detail, the surface property of the hot-rolled steel sheet S can be detected more accurately.

<判定工程>
ステップS3の判定工程では、ステップS2の受光工程で取得した反射光の輝度プロファイルから、反射光のうち第1波長範囲の輝度と、第1波長範囲とは異なる第2波長範囲の輝度とを算出し、第1波長範囲の輝度の第2波長範囲の輝度に対する比率を算出して判定の指標とする。つまり、判定工程では、上記比率を閾値と比較して熱延鋼板Sの表面性状の良否を判定する。換言すると、本発明の実施形態に係る表面性状検査方法は、反射光の色の変化により表面性状の良否を判定する。
<Judgment process>
In the determination step of step S3, the luminance of the first wavelength range and the luminance of the second wavelength range different from the first wavelength range are calculated from the reflected light luminance profile acquired in the light receiving step of step S2. Then, the ratio of the luminance in the first wavelength range to the luminance in the second wavelength range is calculated and used as a determination index. That is, in the determination step, the quality of the surface property of the hot-rolled steel sheet S is determined by comparing the ratio with a threshold value. In other words, the surface texture inspection method according to the embodiment of the present invention determines the quality of the surface texture based on a change in the color of the reflected light.

(第1波長範囲)
上記第1波長範囲としては、反射光の輝度プロファイルにおいて、熱延鋼板Sの表面性状による変化が相対的に大きい波長範囲、例えば粒界酸化物の有無によって乱反射光の輝度プロファイルにおける面積割合が大きく変化する波長範囲を選択することが好ましい。また、第1波長範囲としては、熱延鋼板Sの熱輻射による誤差を防止するために、上限が1200nm以下であることが好ましく、1000nm以下であることがより好ましい。
(First wavelength range)
As the first wavelength range, in the reflected light luminance profile, the wavelength range in which the change due to the surface properties of the hot-rolled steel sheet S is relatively large, for example, the area ratio in the diffusely reflected light luminance profile is large depending on the presence or absence of grain boundary oxides. It is preferred to select a wavelength range that varies. Moreover, as for the 1st wavelength range, in order to prevent the error by the heat radiation of the hot-rolled steel sheet S, it is preferable that an upper limit is 1200 nm or less, and it is more preferable that it is 1000 nm or less.

具体的には、第1波長範囲は、赤色光波長領域内(580nm以上800nm以下の領域内が好ましく、590nm以上700nm以下の領域内がより好ましい)又は青色光波長領域内(400nm以上500nm以下の領域内が好ましく、430nm以上460nm以下の領域内がより好ましい)の波長範囲とすることが好ましい。なお、赤色光波長領域内の反射光と青色光波長領域内の反射光とは、粒界酸化物の残存量に対して逆の変化をする。   Specifically, the first wavelength range is in the red light wavelength region (in the region from 580 nm to 800 nm, preferably in the region from 590 nm to 700 nm) or in the blue light wavelength region (from 400 nm to 500 nm). The wavelength range is preferably within the region, more preferably within the region of 430 nm to 460 nm. In addition, the reflected light in the red light wavelength region and the reflected light in the blue light wavelength region have opposite changes with respect to the remaining amount of the grain boundary oxide.

(第2波長範囲)
上記第2波長範囲としては、上記第1波長範囲とは熱延鋼板Sの表面性状による輝度の変化率が異なる範囲とされる。これにより、判定工程で算出する第1波長範囲の輝度の第2波長範囲の輝度に対する比率は、例えば熱延鋼板Sの傾斜等による反射光全体の輝度の変化を補償し、熱延鋼板Sによる反射光の色の変化を表す数値となる。なお、この第2波長範囲も、上記第1波長範囲と同様に、熱延鋼板Sの熱輻射による誤差を防止するために、上限が1200nm以下であることが好ましく、1000nm以下であることがより好ましい。
(Second wavelength range)
As said 2nd wavelength range, it is set as the range from which the change rate of the brightness | luminance by the surface property of the hot-rolled steel sheet S differs from the said 1st wavelength range. Thereby, the ratio with respect to the brightness | luminance of the 2nd wavelength range of the brightness | luminance of the 1st wavelength range calculated at a determination process compensates the change of the brightness | luminance of the reflected light whole by the inclination of the hot-rolled steel sheet S, for example, This is a numerical value representing a change in the color of the reflected light. In the second wavelength range, the upper limit is preferably 1200 nm or less and more preferably 1000 nm or less in order to prevent an error due to heat radiation of the hot-rolled steel sheet S, similarly to the first wavelength range. preferable.

具体的には、第2波長範囲は、第1波長範囲が赤色光波長領域内である場合には青色光波長領域内とし、第1波長範囲が青色光波長領域内である場合には赤色光波長領域内とすることができる。このように、第1波長範囲及び第2波長範囲の一方を赤色光波長領域内とし、第1波長範囲及び第2波長範囲の他方を青色光波長領域内とすることによって、第1波長範囲の輝度の第2波長範囲の輝度に対する比率の変化率をより大きくすることができるので、熱延鋼板Sの表面性状変化をより高感度に検出することができる。   Specifically, the second wavelength range is the blue light wavelength region when the first wavelength range is within the red light wavelength region, and the red light when the first wavelength range is within the blue light wavelength region. It can be in the wavelength region. Thus, by setting one of the first wavelength range and the second wavelength range within the red light wavelength region and the other of the first wavelength range and the second wavelength range within the blue light wavelength region, Since the rate of change of the ratio of the luminance to the luminance in the second wavelength range can be increased, the surface property change of the hot-rolled steel sheet S can be detected with higher sensitivity.

また、第2波長範囲は、赤色光波長、緑色光波長及び青色光波長を含む範囲としてもよい。このように、第2波長範囲が赤色光波長、緑色光波長及び青色光波長を含むことによって、例えば熱延鋼板Sの傾斜等、熱延鋼板Sの表面性状以外の要因による反射光全体の輝度変化をより精度よく補償することができるので、測定条件によっては、熱延鋼板Sの表面性状をより適切に判定することができる。   The second wavelength range may be a range including a red light wavelength, a green light wavelength, and a blue light wavelength. Thus, since the second wavelength range includes the red light wavelength, the green light wavelength, and the blue light wavelength, the brightness of the entire reflected light due to factors other than the surface properties of the hot-rolled steel sheet S, such as the inclination of the hot-rolled steel sheet S, for example. Since the change can be compensated more accurately, the surface properties of the hot-rolled steel sheet S can be more appropriately determined depending on the measurement conditions.

[第二実施形態]
図3に、本発明の別の実施形態に係る表面性状検査方法に用いられる表面性状検査装置の構成を示す。図3の表面性状検査装置は、図1の表面性状検査装置と同様に、酸洗後の熱延鋼板Sの表面性状を検査するために用いられる。
[Second Embodiment]
FIG. 3 shows the configuration of a surface texture inspection apparatus used in a surface texture inspection method according to another embodiment of the present invention. The surface texture inspection apparatus of FIG. 3 is used for inspecting the surface texture of the hot-rolled steel sheet S after pickling, similarly to the surface texture inspection apparatus of FIG.

当該表面性状検査装置は、熱延鋼板Sの表面に単波長でない光を照射する光源1と、光源1から照射された光の熱延鋼板Sの表面での反射光を受光して波長毎の輝度の分布を取得する第1受光器2a及び第2受光器2bと、これらの受光器2a,2bにより取得した2つの輝度分布に基づいて熱延鋼板Sの表面性状を判定する演算装置3aとを備える。   The surface texture inspection apparatus receives light reflected from the surface of the hot-rolled steel sheet S by the light source 1 that irradiates the surface of the hot-rolled steel sheet S with light that is not a single wavelength, and receives light reflected from the surface of the hot-rolled steel sheet S for each wavelength. A first light receiver 2a and a second light receiver 2b that acquire a luminance distribution, and an arithmetic device 3a that determines the surface properties of the hot-rolled steel sheet S based on the two luminance distributions acquired by the light receivers 2a and 2b. Is provided.

図3の表面性状検査装置における光源1、受光器2a,2b及び演算装置3aの構成は、以下説明する点を除いて、図1の表面性状検査装置における光源1、受光器2及び演算装置3の構成と同様とすることができる。このため、図3の表面性状検査装置について、図1の表面性状検査装置と重複する説明は省略する。   The configurations of the light source 1, the light receivers 2a and 2b, and the arithmetic device 3a in the surface texture inspection apparatus in FIG. 3 are the same as those in the surface texture inspection apparatus in FIG. It can be made to be the same as that of the configuration. For this reason, the description which overlaps with the surface property inspection apparatus of FIG. 1 is abbreviate | omitted about the surface property inspection apparatus of FIG.

<受光器>
第1受光器2a及び第2受光器2bは、光源1から照射された光の熱延鋼板Sの表面での乱反射光を受光する。第1受光器2aと第2受光器2bとは、受光する反射光の反射角が互いに異なっている。具体的には、熱延鋼板Sの表面に対する光源1の光軸の交点から見た熱延鋼板Sの表面を基準とする第1受光器2aの仰角と第2受光器2bの仰角とが異なっている。
<Receiver>
The first light receiver 2 a and the second light receiver 2 b receive the irregularly reflected light on the surface of the hot-rolled steel sheet S of the light emitted from the light source 1. The first light receiver 2a and the second light receiver 2b have different reflection angles of the received reflected light. Specifically, the elevation angle of the first light receiver 2a with respect to the surface of the hot rolled steel sheet S viewed from the intersection of the optical axes of the light sources 1 with respect to the surface of the hot rolled steel sheet S is different from the elevation angle of the second light receiver 2b. ing.

第1受光器2aと第2受光器2bとの反射角の差の下限としては、15°が好ましく、20°がより好ましい。一方、第1受光器2aと第2受光器2bとの反射角の差の上限としては、45°が好ましく、40°がより好ましい。第1受光器2aと第2受光器2bとの反射角の差が上記下限に満たない場合、第1受光器2aが受光する反射光の輝度分布と第2受光器2bが受光する反射光の輝度分布との差が小さくなることで表面性状の判定精度を十分に向上できないおそれがある。逆に、第1受光器2aと第2受光器2bとの反射角の差が上記上限を超える場合、第1受光器2a及び第2受光器2bのいずれか一方が受光する反射光の輝度が小さくなることで表面性状の判定精度を十分に向上できないおそれがある。   The lower limit of the difference in reflection angle between the first light receiver 2a and the second light receiver 2b is preferably 15 °, and more preferably 20 °. On the other hand, the upper limit of the difference in reflection angle between the first light receiver 2a and the second light receiver 2b is preferably 45 °, more preferably 40 °. When the difference in reflection angle between the first light receiver 2a and the second light receiver 2b is less than the lower limit, the luminance distribution of the reflected light received by the first light receiver 2a and the reflected light received by the second light receiver 2b. If the difference from the luminance distribution is small, there is a possibility that the determination accuracy of the surface property cannot be sufficiently improved. Conversely, when the difference in reflection angle between the first light receiver 2a and the second light receiver 2b exceeds the upper limit, the brightness of the reflected light received by either the first light receiver 2a or the second light receiver 2b is There is a possibility that the accuracy of determining the surface property cannot be sufficiently improved by being small.

<演算装置>
演算装置3aは、先ず、第1受光器2aが受光した反射光の輝度プロファイル及び第2受光器2bが受光した反射光の輝度プロファイルのそれぞれから、第1波長範囲の輝度と、第1波長範囲とは異なる第2波長範囲の輝度とを算出して第1波長範囲の輝度の第2波長範囲の輝度に対する比率を算出する。次に、演算装置3aは、第1受光器2aの輝度プロファイルから算出された上記輝度の比率と第2受光器2bの輝度プロファイルから算出された上記輝度の比率とを用いた演算を行って粒界酸化物の除去率に対して単調増加又は単調減少する演算値を導出し、この演算値を熱延鋼板Sの表面の粒界酸化物の除去率の指標として熱延鋼板Sの表面性状を判定する。
<Calculation device>
The arithmetic device 3a first calculates the luminance in the first wavelength range and the first wavelength range from the luminance profile of the reflected light received by the first light receiver 2a and the luminance profile of the reflected light received by the second light receiver 2b. And calculating the ratio of the luminance in the first wavelength range to the luminance in the second wavelength range. Next, the arithmetic device 3a performs an operation using the luminance ratio calculated from the luminance profile of the first light receiver 2a and the luminance ratio calculated from the luminance profile of the second light receiver 2b to perform the grain calculation. A calculated value that monotonously increases or decreases monotonously with respect to the removal rate of the field oxide is derived, and this calculated value is used as an index of the removal rate of the grain boundary oxide on the surface of the hot rolled steel sheet S to determine the surface properties of the hot rolled steel sheet S. judge.

上記2つの輝度の比率を用いて粒界酸化物の除去率に対して単調増加又は単調減少する演算としては、特に限定されず、例えば加算、減算、乗算、除算のいずれも使用可能である。また、第1受光器2a及び第2受光器2bの輝度のゲインを調整するために、算出される輝度の比率に計数を掛け合わせたり、例えば指数、対数等を算出してもよい。   The operation for monotonously increasing or monotonically decreasing the grain boundary oxide removal rate using the ratio of the two luminances is not particularly limited, and for example, any of addition, subtraction, multiplication, and division can be used. Further, in order to adjust the luminance gain of the first light receiver 2a and the second light receiver 2b, the ratio of the calculated luminance may be multiplied by a count, or for example, an exponent, a logarithm, or the like may be calculated.

このように、図3の表面性状検査装置を用いて行われる表面性状検査方法は、熱延鋼板Sの表面に光源1によって単波長でない光を照射する工程と、受光器2a,2bで熱延鋼板Sの表面からの反射光を受光する工程と、演算装置3aにより、受光工程で得られた2つの反射光のスペクトルに基づき、熱延鋼板Sの表面性状を判定する工程とを備え、上記受光工程で熱延鋼板Sの表面からの反射光の反射角が異なる2つの反射光を受光し、上記判定工程で、第1受光器2aが受光した反射光から算出される第1波長範囲の輝度と第2波長範囲の輝度との比率と第2受光器2bが受光した反射光から算出される第1波長範囲の輝度と第2波長範囲の輝度との比率との演算値によって熱延鋼板Sの表面性状を判定する。   As described above, the surface texture inspection method performed using the surface texture inspection apparatus of FIG. 3 includes a step of irradiating the surface of the hot-rolled steel sheet S with light having a single wavelength by the light source 1, and hot rolling with the light receivers 2a and 2b. Receiving the reflected light from the surface of the steel sheet S, and determining the surface properties of the hot-rolled steel sheet S based on the spectrum of the two reflected lights obtained in the light receiving process by the arithmetic device 3a, Two reflected lights having different reflection angles of the reflected light from the surface of the hot-rolled steel sheet S are received in the light receiving step, and the first wavelength range calculated from the reflected light received by the first light receiver 2a in the determination step. The hot-rolled steel sheet is calculated by calculating the ratio between the luminance and the luminance in the second wavelength range and the ratio between the luminance in the first wavelength range and the luminance in the second wavelength range calculated from the reflected light received by the second light receiver 2b. The surface property of S is determined.

このように、2つの比率の演算を行うことで、粒界酸化物の除去率をより正確に反映した演算値を得ることができるので、この演算値を判定の指標とすることで、継続的に監視しなくても熱延鋼板Sの表面性状を正確に判定することができる。   In this way, by performing the calculation of the two ratios, it is possible to obtain a calculated value that more accurately reflects the removal rate of the grain boundary oxide. Therefore, by using this calculated value as an index for determination, Even without monitoring, the surface properties of the hot-rolled steel sheet S can be accurately determined.

[その他の実施形態]
上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other Embodiments]
The said embodiment does not limit the structure of this invention. Therefore, in the above-described embodiment, the components of each part of the above-described embodiment can be omitted, replaced, or added based on the description and common general knowledge of the present specification, and they are all interpreted as belonging to the scope of the present invention. Should.

本発明に係る表面性状検査方法において、第1波長範囲及び第2波長範囲は、それぞれ連続した波長範囲でなくてもよい。つまり、第1波長範囲及び第2波長範囲は、それぞれ連続しない複数の波長範囲を含んでいてもよい。また、第2波長範囲の輝度に対する第1波長範囲の輝度の比に加えてさらに別の1以上の波長範囲の輝度との比を指標に加えてもよい。   In the surface texture inspection method according to the present invention, the first wavelength range and the second wavelength range may not be continuous wavelength ranges. That is, the first wavelength range and the second wavelength range may include a plurality of wavelength ranges that are not continuous. In addition to the ratio of the luminance in the first wavelength range to the luminance in the second wavelength range, a ratio with the luminance in one or more other wavelength ranges may be added to the index.

本発明に係る表面性状検査方法において、受光器に替えて、第2波長範囲の輝度を計測できる受光素子と第1波長範囲の輝度を計測できる受光素子とを組み合わせて用いてもよい。このような特定の波長範囲の輝度を計測できる受光素子としては、例えば単波長又は狭波長のフィルターを有するフォトダイオード等を用いることができる。   In the surface property inspection method according to the present invention, instead of the light receiver, a light receiving element that can measure the luminance in the second wavelength range and a light receiving element that can measure the luminance in the first wavelength range may be used in combination. As the light receiving element capable of measuring the luminance in such a specific wavelength range, for example, a photodiode having a single wavelength or narrow wavelength filter can be used.

本発明に係る表面性状検査方法において、受光工程で正反射光を受光してもよい。この場合、鋼板表面の粒界酸化物の除去に伴う反射光の輝度プロファイルの変化は、上述の乱反射光の輝度プロファイルの変化とは概ね逆になる。   In the surface texture inspection method according to the present invention, regular reflection light may be received in the light receiving step. In this case, the change in the brightness profile of the reflected light accompanying the removal of the grain boundary oxide on the surface of the steel sheet is generally opposite to the change in the brightness profile of the irregular reflection light described above.

本発明に係る表面性状検査方法において、第1受光器と第2受光器とが、異なる光源から異なる入射角で照射される光の鋼板表面における反射光を受光してもよい。例えば、光源と受光器が一体となった2つのセンサを鋼板の搬送方向に間隔を空けて配置し、時間をずらして2つの反射光の輝度プロファイルを取得してもよい。   In the surface property inspection method according to the present invention, the first light receiver and the second light receiver may receive reflected light on the steel plate surface of light irradiated at different incident angles from different light sources. For example, two sensors in which a light source and a light receiver are integrated may be arranged at intervals in the conveyance direction of the steel sheet, and the brightness profiles of the two reflected lights may be acquired at different times.

本発明に係る表面性状検査方法において、判定工程は、演算装置を用いずに手計算で行ってもよい。   In the surface texture inspection method according to the present invention, the determination step may be performed manually without using an arithmetic device.

以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。   EXAMPLES Hereinafter, although this invention is explained in full detail based on an Example, this invention is not interpreted limitedly based on description of this Example.

<試験1>
酸洗時間が30秒、50秒、70秒、90秒、110秒、130秒、150秒、170秒、200秒と異なる熱延鋼板に、光源から白色光を照射し、その反射光を受光器で受光して反射光の輝度分布を取得した。
<Test 1>
Hot-rolled steel sheets with different pickling times of 30 seconds, 50 seconds, 70 seconds, 90 seconds, 110 seconds, 130 seconds, 150 seconds, 170 seconds, and 200 seconds are irradiated with white light from the light source, and the reflected light is received. The brightness distribution of the reflected light was obtained by receiving the light with the instrument.

熱延鋼板としては、Siを2.0質量%含有する高強度鋼を熱延後660℃で巻き取ったものを使用した。   As the hot-rolled steel sheet, a high-strength steel containing 2.0% by mass of Si and rolled up at 660 ° C. after hot rolling was used.

上記光源としては、白色LEDを有し、点状に集光して照射するLEDライトを使用した。また、上記受光器としては、オーシャンオプティクス社の分光器「USB2000+」を使用した。なお、この分光器を用いて測定した上記LEDライトの輝度プロファイルは、図4に示すようなものであった。尚、図4における輝度は、そのピーク値で除して正規化したものである。   As the light source, an LED light having a white LED and condensing and irradiating in a dot shape was used. Further, a spectroscope “USB2000 +” manufactured by Ocean Optics was used as the light receiver. The brightness profile of the LED light measured using this spectroscope was as shown in FIG. Note that the luminance in FIG. 4 is normalized by dividing by the peak value.

光源は、その光軸が熱延鋼板の法線に対して15°傾斜し、熱延鋼板表面からの光軸方向距離が500mmとなるよう配置した。また、受光器は、光源の光軸から同じ方向にさらに1.5°大きく傾斜した仮想線上で、熱延鋼板表面からの仮想線方向距離が50mmとなる位置に配置した。   The light source was arranged so that its optical axis was inclined by 15 ° with respect to the normal line of the hot-rolled steel sheet and the distance in the optical axis direction from the surface of the hot-rolled steel sheet was 500 mm. The light receiver was arranged at a position where the distance in the imaginary line direction from the surface of the hot-rolled steel sheet was 50 mm on the imaginary line inclined further by 1.5 ° in the same direction from the optical axis of the light source.

得られた各熱延鋼板の反射光の輝度プロファイルについて、それぞれ、波長435.46nm以上450.22nm以下の青色範囲の輝度、波長522.02nm以上536.42nm以下の緑色範囲の輝度、及び波長597.94nm以上611.99nm以下の赤色範囲の輝度を算出し、それぞれ青色範囲、緑色範囲及び赤色範囲の合計輝度で除することによって正規化した値を導出した。つまり、青色範囲、緑色範囲又は赤色範囲を第1波長範囲とし、上記青色範囲、緑色範囲及び赤色範囲を足し合わせた範囲を第2波長範囲とした場合の第1波長範囲の輝度の第2波長範囲の輝度に対する比率をそれぞれ算出した。この比率を表1にまとめて示すと共に、図5にグラフにプロットしたものを図示する。   About the brightness | luminance profile of the reflected light of each obtained hot-rolled steel plate, the brightness | luminance of the blue range of wavelength 435.46 nm or more and 450.22 nm or less, the brightness | luminance of the green range of wavelength 522.02 nm or more and 536.42 nm or less, respectively, and wavelength 597 The normalized value was derived by calculating the luminance of the red range of .94 nm to 611.999 nm and dividing by the total luminance of the blue range, green range and red range, respectively. That is, the second wavelength of the luminance in the first wavelength range when the blue range, the green range, or the red range is the first wavelength range, and the range obtained by adding the blue range, the green range, and the red range is the second wavelength range. The ratio of the range to the luminance was calculated respectively. The ratios are shown together in Table 1 and plotted in a graph in FIG.

Figure 2018146567
Figure 2018146567

図5に示すように、青色範囲又は赤色範囲を第1波長範囲とし、青色範囲、緑色範囲及び赤色範囲を足し合わせた範囲を第2波長範囲とした場合、第1波長範囲の輝度の第2波長範囲の輝度に対する比率と酸洗時間との間に相関関係が確認された。   As shown in FIG. 5, when the blue range or the red range is the first wavelength range, and the range obtained by adding the blue range, the green range, and the red range is the second wavelength range, the second luminance of the first wavelength range is obtained. A correlation was confirmed between the ratio of the wavelength range to the luminance and the pickling time.

また、酸洗後の熱延鋼板の表面を走査型電子顕微鏡により観察し、粒界酸化層の除去の程度を確認した。酸洗時間が30秒及び50秒の熱延鋼板は、粒界酸化層が殆ど除去されず、粒界酸化層の上にスケールが残存していた。また、酸洗時間が70秒及び90秒の熱延鋼板は、粒界酸化層が部分的に除去されていたが、粒界酸化物が残存していた。酸洗時間が110秒以上の熱延鋼板は、粒界酸化物が略全て除去されていた。   Further, the surface of the hot rolled steel sheet after pickling was observed with a scanning electron microscope, and the degree of removal of the grain boundary oxide layer was confirmed. In the hot-rolled steel sheets with pickling times of 30 seconds and 50 seconds, the grain boundary oxide layer was hardly removed, and the scale remained on the grain boundary oxide layer. Further, in the hot rolled steel sheet with pickling times of 70 seconds and 90 seconds, the grain boundary oxide layer was partially removed, but the grain boundary oxide remained. In the hot-rolled steel sheet having a pickling time of 110 seconds or more, almost all of the grain boundary oxide was removed.

この結果から、青色範囲を第1波長範囲とし、青色範囲、緑色範囲及び赤色範囲を足し合わせた範囲を第2波長範囲とした場合、第1波長範囲の輝度の第2波長範囲の輝度に対する比率が0.336以上であれば、熱延鋼板の表面性状が粒界酸化層が十分に除去された良好なものであると判断することができる。   From this result, when the blue range is the first wavelength range and the range obtained by adding the blue range, the green range, and the red range is the second wavelength range, the ratio of the luminance in the first wavelength range to the luminance in the second wavelength range If it is 0.336 or more, it can be judged that the surface texture of the hot-rolled steel sheet is good with the grain boundary oxide layer sufficiently removed.

また、赤色範囲を第1波長範囲とし、青色範囲、緑色範囲及び赤色範囲を足し合わせた範囲を第2波長範囲とした場合には、第1波長範囲の輝度の第2波長範囲の輝度に対する比率が0.334以下であれば、熱延鋼板の表面性状が粒界酸化層が十分に除去された良好なものであると判断することができる。   In addition, when the red range is the first wavelength range, and the range obtained by adding the blue range, the green range, and the red range is the second wavelength range, the ratio of the luminance in the first wavelength range to the luminance in the second wavelength range If it is 0.334 or less, it can be judged that the surface texture of the hot-rolled steel sheet is good with the grain boundary oxide layer sufficiently removed.

また、表1の結果において、青色範囲を第1波長範囲とし、赤色範囲を第2波長範囲とした場合の第1波長範囲の輝度の第2波長範囲の輝度に対する比率と酸洗時間との関係を図6に示す。この場合、第1波長範囲の輝度の第2波長範囲の輝度に対する比率が1.00以上であれば、熱延鋼板の表面性状が粒界酸化層が十分に除去された良好なものであると判断することができる。   In the results of Table 1, the relationship between the ratio of the luminance in the first wavelength range to the luminance in the second wavelength range and the pickling time when the blue range is the first wavelength range and the red range is the second wavelength range. Is shown in FIG. In this case, if the ratio of the luminance in the first wavelength range to the luminance in the second wavelength range is 1.00 or more, the surface property of the hot-rolled steel sheet is good with the grain boundary oxide layer sufficiently removed. Judgment can be made.

<試験2>
続いて、上記試験1と同じ熱延鋼板について、鋼板表面の法線方向に対する光源及び受光器の角度を変えて、青色範囲を第1波長範囲とし、青色範囲、緑色範囲及び赤色範囲を足し合わせた範囲を第2波長範囲として、第1波長範囲の輝度の第2波長範囲の輝度に対する比率を算出した。具体的には、光源と受光器との相対角度を1.5°に保持したまま、光源の光軸の鋼板表面の法線に対する傾斜角度(入射角)を75°、60°、45°及び15°として、第1波長範囲の輝度の第2波長範囲の輝度に対する比率をそれぞれ算出した。この結果を表2及び図7に示す。なお、光源の傾斜角度を15°とした場合は、上記試験1の青色範囲と同じデータである。
<Test 2>
Subsequently, for the same hot-rolled steel sheet as in Test 1, the angle of the light source and the light receiver with respect to the normal direction of the steel sheet surface is changed, the blue range is set as the first wavelength range, and the blue range, the green range, and the red range are added. The ratio of the luminance in the first wavelength range to the luminance in the second wavelength range was calculated with the range as the second wavelength range. Specifically, while maintaining the relative angle between the light source and the light receiver at 1.5 °, the inclination angle (incident angle) of the optical axis of the light source with respect to the normal of the steel plate surface is 75 °, 60 °, 45 °, and The ratio of the luminance in the first wavelength range to the luminance in the second wavelength range was calculated as 15 °. The results are shown in Table 2 and FIG. In addition, when the inclination angle of the light source is set to 15 °, the same data as the blue range of the test 1 is obtained.

Figure 2018146567
Figure 2018146567

入射角を15°とした場合は、第1波長範囲の輝度の第2波長範囲の輝度に対する比率が略単調増加している。このため、入射角を15°とした場合は、熱延鋼板の表面性状を比較的容易に判定できると考えられる。これに対して、入射角を大きくした場合には、スケールの除去により第1波長範囲の輝度の第2波長範囲の輝度に対する比率が減少し、続く粒界酸化物の除去により第1波長範囲の輝度の第2波長範囲の輝度に対する比率が再度上昇する傾向が見られる。しかしながら、実際の熱延鋼板の製造においては、スケールの除去は容易に判別できるため、本試験における酸洗時間70秒以上140秒以下の範囲での粒界酸化物の除去の程度を確認することができればよい。このため、入射角を小さくした場合にも、熱延鋼板の製造現場において表面性状を正しく判定できると考えられる。ただし、入射角を45°とした場合及び60°とした場合と比べて、入射角を75°とした場合には、誤差が大きくなっており、判定精度が低下するものと思われる。これは、入射角度を大きくしすぎると、受光器が受光する反射光の光量全体が低下することに起因すると考えられる。   When the incident angle is 15 °, the ratio of the luminance in the first wavelength range to the luminance in the second wavelength range increases substantially monotonically. For this reason, when the incident angle is 15 °, it is considered that the surface properties of the hot-rolled steel sheet can be determined relatively easily. On the other hand, when the incident angle is increased, the ratio of the luminance of the first wavelength range to the luminance of the second wavelength range is reduced by removing the scale, and the removal of the grain boundary oxide is followed by the removal of the first wavelength range. There is a tendency for the ratio of the luminance to the luminance in the second wavelength range to increase again. However, in the actual production of hot-rolled steel sheets, scale removal can be easily discriminated, so the degree of removal of grain boundary oxide in the range of 70 to 140 seconds in pickling time in this test should be confirmed. If you can. For this reason, even when the incident angle is reduced, it is considered that the surface property can be correctly determined at the production site of the hot-rolled steel sheet. However, when the incident angle is set to 75 ° as compared with the case where the incident angle is set to 45 ° and 60 °, the error is increased, and the determination accuracy seems to be lowered. This is considered to be due to the fact that if the incident angle is too large, the total amount of reflected light received by the light receiver is reduced.

図8に、入射角が45°の場合の第1波長範囲の輝度の第2波長範囲の輝度に対する比率を15°の場合の第1波長範囲の輝度の第2波長範囲の輝度に対する比率で除した演算値と酸洗時間との関係を示す。この図が示すように、入射角が異なる2つの比をさらに演算することで、酸洗時間に応じてより滑らかに単調減少する演算値が得られ、粒界酸化物の除去の程度をより正確に判定することができる。なお、具体的な数値の記載は省略するが、同じ2つの入射角における輝度の比率を、加算した場合、減算した場合、及び乗算した場合のいずれにおいても、酸洗時間に対する相関関係が大きい演算値が得られる。   In FIG. 8, the ratio of the luminance in the first wavelength range to the luminance in the second wavelength range when the incident angle is 45 ° is divided by the ratio of the luminance in the first wavelength range to the luminance in the second wavelength range when the incident angle is 15 °. The relationship between the calculated value and the pickling time is shown. As shown in this figure, by further calculating two ratios with different incident angles, a calculated value that decreases more smoothly and monotonically according to the pickling time is obtained, and the degree of removal of the grain boundary oxide is more accurately determined. Can be determined. In addition, although description of a specific numerical value is abbreviate | omitted, calculation with a large correlation with the pickling time in any of the case where the ratio of the luminance in the same two incident angles is added, subtracted, and multiplied A value is obtained.

実際の熱延鋼板製造ラインの酸洗設備の後に、入射角45°の光源及び反射角46.5°の受光器の組と入射角15°の光源及び反射角16.5°の受光器の組とを設置してそれぞれ反射光の輝度プロファイルを測定し、入射角が45°の場合の第1波長範囲の輝度の第2波長範囲の輝度に対する比率を15°の場合の第1波長範囲の輝度の第2波長範囲の輝度に対する比率で除した演算値を連続的に算出した。   After pickling equipment on the actual hot-rolled steel plate production line, a set of a light source with an incident angle of 45 ° and a receiver with a reflection angle of 46.5 °, a light source with an incident angle of 15 ° and a receiver with a reflection angle of 16.5 ° And sets the pair to measure the luminance profile of the reflected light, respectively, and the ratio of the luminance of the first wavelength range when the incident angle is 45 ° to the luminance of the second wavelength range of the first wavelength range when the incident angle is 45 °. The calculated value divided by the ratio of the luminance to the luminance in the second wavelength range was continuously calculated.

この結果を図9に示す。図中に示すように、計測期間の最後に目視検査により粒界酸化物の残留が確認されたが、このときの演算値が上昇していた。つまり、この演算値によって粒界酸化物の除去が適切になされているか否かを自動的に判定すること可能であることが確認された。   The result is shown in FIG. As shown in the figure, the residual grain boundary oxide was confirmed by visual inspection at the end of the measurement period, but the calculated value at this time increased. That is, it was confirmed that it is possible to automatically determine whether or not the grain boundary oxide is properly removed based on the calculated value.

本発明に係る表面性状検査方法は、熱延鋼板の粒界酸化物の除去を確認するために特に好適に利用することができる。   The surface texture inspection method according to the present invention can be particularly suitably used for confirming the removal of the grain boundary oxide of the hot-rolled steel sheet.

1 光源
2,2a,2b 受光器
3,3a 演算装置
S 熱延鋼板
DESCRIPTION OF SYMBOLS 1 Light source 2, 2a, 2b Light receiver 3, 3a Arithmetic device S Hot rolled steel plate

Claims (8)

酸洗後の熱延鋼板に対する表面性状の検査方法であって、
上記鋼板表面に単波長でない光を照射する工程と、
上記鋼板表面からの反射光を受光する工程と、
上記受光工程で得られた反射光に基づき表面性状を判定する工程と
を備え、
上記判定工程で、上記反射光のうち第1波長範囲の輝度の上記第1波長範囲とは異なる第2波長範囲の輝度に対する比率を算出することを特徴とする表面性状検査方法。
It is a surface property inspection method for hot-rolled steel sheets after pickling,
Irradiating the steel sheet surface with light that is not a single wavelength;
Receiving reflected light from the steel sheet surface;
And determining the surface properties based on the reflected light obtained in the light receiving step,
The surface property inspection method according to claim 1, wherein, in the determination step, a ratio of the luminance in the first wavelength range of the reflected light to the luminance in the second wavelength range different from the first wavelength range is calculated.
上記第1波長範囲及び第2波長範囲の上限が1200nm以下である請求項1に記載の表面性状検査方法。   The surface property inspection method according to claim 1, wherein an upper limit of the first wavelength range and the second wavelength range is 1200 nm or less. 上記第1波長範囲が赤色光波長域内又は青色光波長域内である請求項1又は請求項2に記載の表面性状検査方法。   The surface property inspection method according to claim 1 or 2, wherein the first wavelength range is in a red light wavelength range or a blue light wavelength range. 上記第2波長範囲が赤色光波長、緑色光波長及び青色光波長を含む請求項1、請求項2又は請求項3に記載の表面性状検査方法。   The surface property inspection method according to claim 1, wherein the second wavelength range includes a red light wavelength, a green light wavelength, and a blue light wavelength. 上記第1波長範囲及び第2波長範囲の一方が赤色光波長域内であり、上記第1波長範囲及び第2波長範囲の他方が青色光波長域内である請求項1又は請求項2に記載の表面性状検査方法。   3. The surface according to claim 1, wherein one of the first wavelength range and the second wavelength range is in a red light wavelength range, and the other of the first wavelength range and the second wavelength range is in a blue light wavelength range. Property inspection method. 上記受光工程で、正反射光を受光しない位置で乱反射光を受光する請求項1から請求項5のいずれか1項に記載の表面性状検査方法。   The surface property inspection method according to any one of claims 1 to 5, wherein in the light receiving step, irregularly reflected light is received at a position where regular reflected light is not received. 上記受光工程で、上記照射工程における上記鋼板表面への光の入射角及び上記受光工程における上記鋼板表面からの反射光の反射角の少なくとも一方が異なる2つの反射光を受光し、
上記判定工程で、上記2つの反射光からそれぞれ算出される2つの上記輝度の比率の演算値によって表面性状を判定する請求項1から請求項6のいずれか1項に記載の表面性状検査方法。
In the light receiving step, two reflected lights that are different in at least one of an incident angle of light on the steel plate surface in the irradiation step and a reflection angle of reflected light from the steel plate surface in the light receiving step are received,
The surface property inspection method according to any one of claims 1 to 6, wherein in the determination step, the surface property is determined based on a calculated value of a ratio of the two luminances calculated from the two reflected lights.
酸洗後の熱延鋼板の表面性状を検査する装置であって、
上記鋼板表面に単波長でない光を照射する光源と、
上記鋼板表面からの反射光を受光する受光器と、
上記受光器で受光した反射光に基づき表面性状を判定する演算装置と
を備え、
上記演算装置が、上記反射光のうち第1波長範囲の輝度の上記第1波長範囲とは異なる第2波長範囲の輝度に対する比率を算出することを特徴とする表面性状検査装置。
An apparatus for inspecting the surface properties of a hot-rolled steel sheet after pickling,
A light source that irradiates the surface of the steel sheet with light that is not a single wavelength;
A light receiver for receiving reflected light from the steel sheet surface;
An arithmetic unit that determines surface properties based on reflected light received by the light receiver, and
The said arithmetic unit calculates the ratio with respect to the brightness | luminance of the 2nd wavelength range different from the said 1st wavelength range of the brightness | luminance of a 1st wavelength range among the said reflected lights, The surface property inspection apparatus characterized by the above-mentioned.
JP2018007654A 2017-03-03 2018-01-19 Residual grain boundary oxide layer inspection method and residual grain boundary oxide layer inspection device Active JP7039299B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017040028 2017-03-03
JP2017040028 2017-03-03

Publications (2)

Publication Number Publication Date
JP2018146567A true JP2018146567A (en) 2018-09-20
JP7039299B2 JP7039299B2 (en) 2022-03-22

Family

ID=63592005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018007654A Active JP7039299B2 (en) 2017-03-03 2018-01-19 Residual grain boundary oxide layer inspection method and residual grain boundary oxide layer inspection device

Country Status (1)

Country Link
JP (1) JP7039299B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019210727A1 (en) * 2019-07-19 2021-01-21 Thyssenkrupp Steel Europe Ag Method for determining a cleaning state of a surface of a flat product and a flat product
KR20220026155A (en) * 2020-08-25 2022-03-04 현대제철 주식회사 System of estimating residual scale in rolled steel sheet
WO2022202198A1 (en) * 2021-03-25 2022-09-29 ジャパンマリンユナイテッド株式会社 Evaluation method and evaluation device for surface roughening of metal surface

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157044A (en) * 1986-12-22 1988-06-30 Osaka Titanium Seizo Kk Foreign matter inspection method for metal grain
JPH0682390A (en) * 1992-06-26 1994-03-22 Kawasaki Steel Corp Method and apparatus for inspecting surface defect
JPH06167576A (en) * 1992-11-30 1994-06-14 Kawasaki Steel Corp Detecting method for stuck interleaf paper and band plate processing line
JPH09185711A (en) * 1995-12-28 1997-07-15 Kobe Steel Ltd Shape recognizing method and its device
JP2007101359A (en) * 2005-10-04 2007-04-19 Nippon Steel Corp Flaw detector and flaw detection method
JP2007212431A (en) * 2006-01-11 2007-08-23 Hitachi High-Technologies Corp Optical testing device
JP2010266430A (en) * 2009-04-15 2010-11-25 Jfe Steel Corp Method and apparatus for inspecting defect of steel plate surface
JP2013237924A (en) * 2012-04-20 2013-11-28 Kobe Steel Ltd Method of manufacturing high-strength cold-rolled steel sheet with excellent chemical conversion treatment property
WO2015133287A1 (en) * 2014-03-07 2015-09-11 新日鐵住金株式会社 Surface texture indexing device, surface texture indexing method, and program
JP2016095160A (en) * 2014-11-12 2016-05-26 Jfeスチール株式会社 Surface defect detection method and surface defect detection device
JP2016156811A (en) * 2015-02-25 2016-09-01 株式会社神戸製鋼所 Intergranular oxidation detecting apparatus and intergranular oxidation detecting method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157044A (en) * 1986-12-22 1988-06-30 Osaka Titanium Seizo Kk Foreign matter inspection method for metal grain
JPH0682390A (en) * 1992-06-26 1994-03-22 Kawasaki Steel Corp Method and apparatus for inspecting surface defect
JPH06167576A (en) * 1992-11-30 1994-06-14 Kawasaki Steel Corp Detecting method for stuck interleaf paper and band plate processing line
JPH09185711A (en) * 1995-12-28 1997-07-15 Kobe Steel Ltd Shape recognizing method and its device
JP2007101359A (en) * 2005-10-04 2007-04-19 Nippon Steel Corp Flaw detector and flaw detection method
JP2007212431A (en) * 2006-01-11 2007-08-23 Hitachi High-Technologies Corp Optical testing device
JP2010266430A (en) * 2009-04-15 2010-11-25 Jfe Steel Corp Method and apparatus for inspecting defect of steel plate surface
JP2013237924A (en) * 2012-04-20 2013-11-28 Kobe Steel Ltd Method of manufacturing high-strength cold-rolled steel sheet with excellent chemical conversion treatment property
WO2015133287A1 (en) * 2014-03-07 2015-09-11 新日鐵住金株式会社 Surface texture indexing device, surface texture indexing method, and program
JP2016095160A (en) * 2014-11-12 2016-05-26 Jfeスチール株式会社 Surface defect detection method and surface defect detection device
JP2016156811A (en) * 2015-02-25 2016-09-01 株式会社神戸製鋼所 Intergranular oxidation detecting apparatus and intergranular oxidation detecting method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019210727A1 (en) * 2019-07-19 2021-01-21 Thyssenkrupp Steel Europe Ag Method for determining a cleaning state of a surface of a flat product and a flat product
KR20220026155A (en) * 2020-08-25 2022-03-04 현대제철 주식회사 System of estimating residual scale in rolled steel sheet
KR102407419B1 (en) 2020-08-25 2022-06-10 현대제철 주식회사 System of estimating residual scale in rolled steel sheet
WO2022202198A1 (en) * 2021-03-25 2022-09-29 ジャパンマリンユナイテッド株式会社 Evaluation method and evaluation device for surface roughening of metal surface
JP2022149261A (en) * 2021-03-25 2022-10-06 ジャパンマリンユナイテッド株式会社 Method and device for evaluating surface roughening treatment on metallic surface
JP7370355B2 (en) 2021-03-25 2023-10-27 ジャパンマリンユナイテッド株式会社 Evaluation method and device for roughening metal surfaces

Also Published As

Publication number Publication date
JP7039299B2 (en) 2022-03-22

Similar Documents

Publication Publication Date Title
KR101956488B1 (en) Apparatus for inspecting shape of metal body, and method for inspecting shape of metal body
US10267747B2 (en) Surface defect inspecting device and method for steel sheets
CN102667400B (en) Method of measuring flatness of plate and method of manufacturing steel plate using same
US7412088B2 (en) Inspection method, and inspection device, and manufacturing for display panel
JP7039299B2 (en) Residual grain boundary oxide layer inspection method and residual grain boundary oxide layer inspection device
US20180017503A1 (en) Surface defect inspecting device and method for hot-dip coated steel sheets
KR20170053707A (en) Metal body shape inspection device and metal body shape inspection method
US20150086105A1 (en) Persistent feature detection
US10290113B2 (en) Surface state monitoring apparatus for metallic body and surface state monitoring method for metallic body
TW201534897A (en) Sheet inspection device
JP5842373B2 (en) Surface defect detection method and surface defect detection apparatus
JP2008153119A (en) Battery inspection system, and battery inspection method
KR20180019734A (en) Surface defect detection apparatus and surface defect detection method
JP2015064301A (en) Surface defect inspection device and surface defect inspection method
JP2008145373A (en) Apparatus and method for inspecting surface defect on stainless steel plate
JP5347661B2 (en) Belt surface inspection apparatus, surface inspection method, and program
JP2012251983A (en) Wrap film wrinkle inspection method and device
EP4411317A1 (en) Sheet-like material unevenness measuring device, and sheet-like material unevenness measuring method
JP4023295B2 (en) Surface inspection method and surface inspection apparatus
JP2020148471A (en) Surface state determination method and surface state determination device
JP2023001540A (en) Inspection method and inspection equipment
JP2011089967A (en) Method for inspecting surface of mirror finished belt
JP2010230450A (en) Object surface inspection apparatus
JP7524717B2 (en) Inspection Equipment
JPH06288934A (en) Method for detecting edge defect of hot-rolled sheet steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220309

R150 Certificate of patent or registration of utility model

Ref document number: 7039299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150