JP2018038935A - MOLYBDENUM ABSORBENT OF BAYERITE ALUMINA AND 99Mo/99mTc GENERATOR USING THE SAME - Google Patents
MOLYBDENUM ABSORBENT OF BAYERITE ALUMINA AND 99Mo/99mTc GENERATOR USING THE SAME Download PDFInfo
- Publication number
- JP2018038935A JP2018038935A JP2016172616A JP2016172616A JP2018038935A JP 2018038935 A JP2018038935 A JP 2018038935A JP 2016172616 A JP2016172616 A JP 2016172616A JP 2016172616 A JP2016172616 A JP 2016172616A JP 2018038935 A JP2018038935 A JP 2018038935A
- Authority
- JP
- Japan
- Prior art keywords
- alumina
- bayerite
- molybdenum
- generator
- adsorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 83
- 229910001680 bayerite Inorganic materials 0.000 title claims abstract description 44
- 229910052750 molybdenum Inorganic materials 0.000 title claims abstract description 29
- 239000011733 molybdenum Substances 0.000 title claims abstract description 29
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 230000002745 absorbent Effects 0.000 title abstract 3
- 239000002250 absorbent Substances 0.000 title abstract 3
- ZOKXTWBITQBERF-AKLPVKDBSA-N Molybdenum Mo-99 Chemical compound [99Mo] ZOKXTWBITQBERF-AKLPVKDBSA-N 0.000 title description 2
- 229950009740 molybdenum mo-99 Drugs 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000001179 sorption measurement Methods 0.000 claims description 30
- 239000003463 adsorbent Substances 0.000 claims description 16
- 239000013078 crystal Substances 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 238000010521 absorption reaction Methods 0.000 abstract 2
- 239000006096 absorbing agent Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 14
- 238000010828 elution Methods 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 10
- 238000010304 firing Methods 0.000 description 10
- 239000002504 physiological saline solution Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000004992 fission Effects 0.000 description 4
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000008213 purified water Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910001593 boehmite Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- JCCNYMKQOSZNPW-UHFFFAOYSA-N loratadine Chemical compound C1CN(C(=O)OCC)CCC1=C1C2=NC=CC=C2CCC2=CC(Cl)=CC=C21 JCCNYMKQOSZNPW-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- GKLVYJBZJHMRIY-OUBTZVSYSA-N Technetium-99 Chemical compound [99Tc] GKLVYJBZJHMRIY-OUBTZVSYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002751 molybdenum Chemical class 0.000 description 1
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 1
- 238000009206 nuclear medicine Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000002901 radioactive waste Substances 0.000 description 1
- 239000012217 radiopharmaceutical Substances 0.000 description 1
- 229940121896 radiopharmaceutical Drugs 0.000 description 1
- 230000002799 radiopharmaceutical effect Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000011684 sodium molybdate Substances 0.000 description 1
- 235000015393 sodium molybdate Nutrition 0.000 description 1
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
本発明は、現在99Mo/99mTcジェネレータに使用されている、χとγの混相を持つ現在使用されている医療用アルミナよりもMo吸着量が高く、一度吸着したMoを回収可能なバイヤライト系アルミナのモリブデン吸着剤及びそれを用いた99Mo/99mTcジェネレータに関するものである。 The present invention is a bayerite that has a higher Mo adsorption amount than the currently used medical alumina with a mixed phase of χ and γ, and is used for the 99 Mo / 99m Tc generator, and can collect Mo once adsorbed. The present invention relates to a molybdenum-based adsorbent for alumina and a 99 Mo / 99m Tc generator using the same.
現在、医療分野において、放射線やラジオアイソトープ(RI)は病気の診断(放射性診断薬)や治療(放射性治療薬)に欠かすことができないものとなっている。特にテクネチウム-99m(99mTc:半減期6.01時間)は放射性診断薬として核医学の分野で最も多く用いられている。すなわち99mTcは半減期が6.01時間と短く、しかも、γ線だけを放出するために、人体に投与したときの被ばく量が少なく、また、放射性同位元素を標識体として人体に投与し、その放射線を体外から測定して放射能の人体内での分布や動態を検査するために用いる唯一の放射性核種である。特に、99mTcは、対象とする臓器や病変組織に親和性が大きいこと、集積しやすいこと、多くの他の物質と結合して安定な標識体をつくることなど、特性に優れているという特長も有している。 Currently, in the medical field, radiation and radioisotopes (RI) are indispensable for diagnosis (radiodiagnostic drugs) and treatment (radiotherapy drugs) of diseases. In particular, technetium- 99m ( 99m Tc: half-life 6.01 hours) is most frequently used in the field of nuclear medicine as a radioactive diagnostic agent. In other words, 99m Tc has a short half-life of 6.01 hours, and because it emits only γ-rays, the exposure dose when administered to the human body is low, and the radioisotope is administered to the human body as a label, and its radiation It is the only radionuclide used to measure the distribution and dynamics of radioactivity in the human body by measuring In particular, 99m Tc has excellent characteristics such as high affinity for target organs and diseased tissues, easy accumulation, and stable labeling by binding to many other substances. Also have.
現在、上述の99mTc製剤は、親核種であるモリブデン-99(99Mo:半減期65.9時間)の崩壊により製造されているが、99mTcの唯一の原料である親核種の99Moの製造は、濃縮ウランを核分裂させる(n,f)法(核分裂法)により行われている。しかし、(n,f)法では、235Uの核分裂反応を利用しているため、各種の核分裂生成物から複雑な工程を経て99Moを取り出さねばならず、また多量の放射性廃棄物ができるという欠点がある。さらに、ウランを用いることからPuが生成されるため、核不拡散の観点からもその取扱いが困難であるため、現実的でなくなって来ている。 Currently, 99m Tc formulations described above, the parent nuclide molybdenum-99: has been produced by decay of (99 Mo half-life 65.9 hours), the production of 99 Mo of parent nuclide is the only raw material of 99m Tc is The (n, f) method (fission method) is used to fission enriched uranium. However, because the (n, f) method uses 235 U fission reaction, 99 Mo must be extracted from various fission products through complicated processes, and a large amount of radioactive waste can be produced. There are drawbacks. Further, since Pu is generated from the use of uranium, it is difficult to handle it from the viewpoint of nuclear non-proliferation.
そこで、98Moをターゲットとした(n,γ)法{98Mo(n,γ)99Moβ−→99mTc}による99Mo製造が検討されている。しかし、(n,γ)法では、98Moの天然存在比が24.1%と低く、得られるMoの比放射能が2Ci/g前後と低い。現在、この方法を用いた99Mo/99mTcジェネレータでは、アルミナのMo吸着材が有望視されているが、現在これに使用されているアルミナのMo吸着能は約10mg/gであり、ジェネレータとして必要な約500mCiの99Moを確保するためには、アルミナが約25g以上必要となる。また仮に98Moが100%濃縮されたモリブデンを用いてもアルミナは約5g以上必要となる。アルミナ重量を増やすと、それを充填するカラムのサイズが大きくなり、このカラムサイズに応じて放射線を遮蔽するための鉛遮蔽が厚くなることからジェネレータの重量が増え、取扱いが困難になるため実用的ではない。 Therefore, 99 Mo production by the (n, γ) method { 98 Mo (n, γ) 99 Mo β− → 99m Tc} targeting 98 Mo is being studied. However, in the (n, γ) method, the natural abundance ratio of 98 Mo is as low as 24.1%, and the specific activity of Mo obtained is as low as around 2 Ci / g. At present, in the 99 Mo / 99m Tc generator using this method, the Mo adsorption material of alumina is considered promising, but the Mo adsorption capacity of alumina currently used in this is about 10 mg / g, and as a generator In order to secure the necessary about 500 mCi of 99 Mo, about 25 g or more of alumina is required. Even if molybdenum containing 100% of 98 Mo is used, about 5 g or more of alumina is required. Increasing the alumina weight increases the size of the column that fills it, and the lead shield for shielding radiation increases with the column size, which increases the weight of the generator and makes it difficult to handle. is not.
なお、本発明のモリブデン吸着材に使用される各種アルミナの製造方法と関係が近い先行技術文献として、特許文献1と2がある。特許文献1には、マクロ細孔の容積が大きい活性アルミナ成形体を、焼成温度を所望の比表面積が得られる温度に任意に設定しながら、安価に得ることができる、活性アルミナ成形体の製造方法が開示されている。また、特許文献2には、細孔径の調整を容易に行うことのできる多孔性活性アルミナの製造方法を開示しており、詳細には、塩基性塩化アルミニウム水溶液をゲル化し、得られたゲル化物を、ゲル化物中に残留する水溶性有機化合物の熱分解温度以上の温度で焼成して活性アルミナを得る方法が開示されている。これらの特許文献1及び2は、アルミナの製造方法に関する特許であるが、吸着剤としての性能が明確でなく、具体的な使用方法なども明示されていない。 Patent Documents 1 and 2 are prior art documents that are closely related to the production methods of various aluminas used in the molybdenum adsorbent of the present invention. Patent Document 1 discloses that an activated alumina molded body having a large macropore volume can be obtained at low cost while arbitrarily setting the firing temperature to a temperature at which a desired specific surface area can be obtained. A method is disclosed. Further, Patent Document 2 discloses a method for producing porous activated alumina that can easily adjust the pore diameter, and in detail, a gelled product obtained by gelling a basic aluminum chloride aqueous solution. Is disclosed in which activated alumina is obtained by firing at a temperature equal to or higher than the thermal decomposition temperature of the water-soluble organic compound remaining in the gelled product. Although these patent documents 1 and 2 are patents relating to the production method of alumina, the performance as an adsorbent is not clear, and a specific method of use is not specified.
そこで、天然同位体もしくは98Mo濃縮Moから(n,γ)法を利用して、実用的なジェネレータを開発するために、Mo吸着能の高く、かつ経済的に使用できるアルミナ系Mo吸着剤が必要となっている。 In order to develop a practical generator from natural isotopes or 98 Mo-enriched Mo using the (n, γ) method, an alumina-based Mo adsorbent with high Mo adsorption capacity and economical use is available. It is necessary.
したがって、本発明の目的は、現在99Mo/99mTcジェネレータに使用されている、χとγの混相を持つ現在使用されている医療用アルミナよりもMo吸着量が高く、一度吸着したMoを回収可能なバイヤライト系アルミナのモリブデン吸着剤及びそれを用いた99Mo/99mTcジェネレータを提供することにある。 Therefore, the object of the present invention is to recover Mo once adsorbed Mo is higher than the medical alumina currently used for 99 Mo / 99m Tc generator, which has a mixed phase of χ and γ. It is an object of the present invention to provide a bayerite-based alumina molybdenum adsorbent and a 99 Mo / 99m Tc generator using the same.
本発明の一つの観点によれば、モリブデン吸着材は、モリブデン(Mo)の比表面積換算吸着量が、0.194 mg/m2から0.290 mg/m2の範囲にあるバイヤライト系アルミナから構成されている。 According to one aspect of the present invention, the molybdenum adsorbent is composed of bayerite-based alumina having a specific surface area equivalent of molybdenum (Mo) in the range of 0.194 mg / m 2 to 0.290 mg / m 2. Yes.
また、本発明の他の観点によれば、このモリブデン吸着材は、吸着したモリブデンを簡単な方法で回収できることから、天然同位体もしくは98Mo濃縮Moから(n,γ)法を利用して99mTcを得る99Mo/99mTcジェネレータとして特に有効である。 Further, according to another aspect of the present invention, this molybdenum adsorbent can recover adsorbed molybdenum by a simple method, so that it is possible to recover 99m from natural isotopes or 98 Mo-enriched Mo using the (n, γ) method. It is particularly effective as a 99 Mo / 99m Tc generator for obtaining Tc.
本発明になるアルミナ系Mo吸着剤は、天然同位体比のモリブデンから(n,γ)法により、実用的なジェネレータを安定して製造するための優れた99Mo/99mTcジェネレータ用Mo吸着剤であり、そのMo吸着剤の製造及び取扱いが容易であり、純度の高い99mTc溶液を得られる。さらに、99Mo/99mTcジェネレータを使用後、Moを吸着した吸着剤から容易にMoを回収可能であるため、高価な98Mo濃縮モリブデンも使用可能となり、99Mo/99mTcジェネレータの高性能化も容易である。 The alumina-based Mo adsorbent according to the present invention is an excellent 99 Mo / 99m Tc generator Mo adsorbent for stably producing a practical generator from molybdenum with a natural isotope ratio by the (n, γ) method. The Mo adsorbent is easy to manufacture and handle, and a 99m Tc solution with high purity can be obtained. Furthermore, after using the 99 Mo / 99m Tc generator, Mo can be easily recovered from the adsorbent that has adsorbed Mo, so expensive 98 Mo enriched molybdenum can also be used, improving the performance of the 99 Mo / 99m Tc generator. Is also easy.
初めに、本発明で使用するバイヤライト系アルミナの製造方法について説明する。
(1)アルミナの製造方法
First, a method for producing bayerite-based alumina used in the present invention will be described.
(1) Alumina production method
Mo吸着特性の向上を目指して、結晶構造、比表面積、細孔等を変更できる製造方法により、下記のバイヤライト系アルミナを製造した。 With the aim of improving Mo adsorption characteristics, the following bayerite-type alumina was produced by a production method capable of changing the crystal structure, specific surface area, pores, and the like.
アルミナ粒子(Versal B, 粉末状, UOP社製)(以下、「V-B」とも記す。)1.9 kg、アルミナゾル(アルミナゾル200, 日産化学工業株式会社製)0.1kgおよび水1kgを均一に混合し、真空押出成型機(DE-50, 本田鐵工株式会社製)により押出成型した。次に、成型体を大気雰囲気下で200℃、1時間乾燥後、粉砕機により粉砕を行い、篩(目開き:150-300μm)により分級した。その後、大気雰囲気下で、300℃〜1000℃(step.100℃)、1時間熱処理を行い、アルミナ粒子(V-B(300)、V-B(400)、…、V-B(1000))を得た。焼成温度300℃及び1000℃のアルミナの表面観察及びその3次元画像解析の結果を図1に示す。この結果、焼成温度による表面の凹凸は大きく変わらなかった。ここで、例えばV-B(300)において、V-BとはUOP社製のバイヤライト系アルミナの商品Versal Bであって、括弧内の数字300はV-Bの焼成温度を示している。
Alumina particles (Versal B, powder, manufactured by UOP) (hereinafter also referred to as “VB”) 1.9 kg, alumina sol (
また、焼成温度300℃、500℃及び800℃のバイヤライト系アルミナの走査型電子顕微鏡(以下、SEMという)による観察結果を図2に示す。この結果、表面の凹凸には変化が見られなかったものの、SEM観察では焼結温度に対するアルミナ粒子の粒子径が異なることが観察された。
2.アルミナの製造と特性評価
Moreover, the observation result by the scanning electron microscope (henceforth SEM) of the bayerite type | system | group alumina whose baking temperature is 300 degreeC, 500 degreeC, and 800 degreeC is shown in FIG. As a result, although the surface irregularities were not changed, it was observed by SEM observation that the particle diameter of the alumina particles differed with respect to the sintering temperature.
2. Production and characterization of alumina
バイヤライト系列のアルミナ(V-B系)について、各焼成温度のアルミナに対し、X線回折により結晶構造の変化を、BET法により比表面積を調べた。 With respect to alumina of the bayerite series (V-B system), the change in crystal structure was examined by X-ray diffraction and the specific surface area was examined by BET method with respect to alumina at each firing temperature.
結晶構造については、300〜400℃ではη-アルミナとベーマイトが混在しており、500〜800℃ではη-アルミナ、900〜1000℃ではθ-アルミナの構造を持つことが確認された。以上より、バイヤライト系アルミナは、
a) バイヤライト(Bayerite)→ η(Eta) → θ(Theta)
b) ベーマイト(Boehmite) → γ(Gamma) → δ(Delta)
と構造変化する系列が混在していると推定される。
As for the crystal structure, it was confirmed that η-alumina and boehmite were mixed at 300 to 400 ° C, η-alumina at 500 to 800 ° C, and θ-alumina at 900 to 1000 ° C. From the above, bayerite-based alumina is
a) Bayerite → η (Eta) → θ (Theta)
b) Boehmite → γ (Gamma) → δ (Delta)
It is presumed that there are a mixture of structurally changing sequences.
バイヤライト系アルミナの比表面積は、400℃で最大となり、400℃以上では焼成温度が高いほどBET比表面積が低下した。特に、500〜700℃では焼成温度に対するBET比表面積の低下率が大きく、700〜800℃では比表面積の低下率は小さかった。アルミナの表面観察の結果より、表面の凹凸には大きな差がないことから、細孔の影響があることが推定され、焼成温度による細孔の制御も可能である。
3.アルミナのMo吸着試験及びMo溶離試験
The specific surface area of bayerite-based alumina was maximum at 400 ° C, and the BET specific surface area decreased as the firing temperature increased above 400 ° C. In particular, the decrease rate of the BET specific surface area with respect to the firing temperature was large at 500 to 700 ° C., and the decrease rate of the specific surface area was small at 700 to 800 ° C. From the results of observation of the surface of alumina, there is no significant difference in surface irregularities, so it is estimated that there is an influence of pores, and the pores can be controlled by the firing temperature.
3. Mo adsorption test and Mo elution test of alumina
準備したバイヤライト系アルミナのMo吸着/Mo溶離試験方法を図4に模式的に示す。
(1)モリブデン(Mo)吸着試験
FIG. 4 schematically shows the Mo adsorption / Mo elution test method for the prepared bayerite-based alumina.
(1) Molybdenum (Mo) adsorption test
まず、Mo吸着/Mo溶離試験に用いるモリブデン酸ナトリウム溶液(Mo溶液)を調整した。天然同位体比を有する三酸化モリブデン(MoO3)粉末を、MoO3粉末質量に対して2.5倍の体積の6mol/L水酸化ナトリウム水溶液で溶解した後、精製水を加え10mg-Mo/mLになるように調整した。調整したMo溶液中のMo濃度は、誘導結合プラズマ質量分析計(以下、ICP-MS装置という)を用いて測定した。 First, a sodium molybdate solution (Mo solution) used for the Mo adsorption / Mo elution test was prepared. Molybdenum trioxide (MoO 3 ) powder having a natural isotope ratio is dissolved in 6 mol / L sodium hydroxide aqueous solution 2.5 times the volume of MoO 3 powder mass, and then purified water is added to make 10 mg-Mo / mL. It adjusted so that it might become. The Mo concentration in the adjusted Mo solution was measured using an inductively coupled plasma mass spectrometer (hereinafter referred to as an ICP-MS apparatus).
次に、Mo吸着試験として、調整したMo溶液中に1mol/Lの塩酸を適量加えpH4とし、各アルミナ試料を必要量だけ添加した50mLバイアル瓶へ分取した。各温度(室温、60℃及び90℃)で3時間静置させ、Moをアルミナ試料に吸着させた。なお、バイアル瓶は約30分ごとに撹拌した。また、60℃及び90℃の試験については、恒温槽内で行ったが、バイアル瓶にシートを張り蒸発を防いだ。 Next, as a Mo adsorption test, an appropriate amount of 1 mol / L hydrochloric acid was added to the prepared Mo solution to adjust the pH to 4, and each of the alumina samples was dispensed into a 50 mL vial with the required amount added. It was allowed to stand at each temperature (room temperature, 60 ° C. and 90 ° C.) for 3 hours, and Mo was adsorbed on the alumina sample. The vial was stirred about every 30 minutes. In addition, tests at 60 ° C. and 90 ° C. were performed in a thermostatic bath, but a sheet was placed on a vial to prevent evaporation.
3時間の静置後、未吸着のMoを回収するため、バイアル瓶内のMo溶液をマイクロピペットにより100mLメスフラスコへ分取した。Mo溶液を回収した後、アルミナ試料を洗浄するため、バイアル瓶に精製水を添加・撹拌し、その精製水を100mLメスフラスコに分取する操作を繰り返し行い、回収Mo溶液と精製水の総量を100mLとした。100mLメスフラスコに分取した溶液はICP-MS装置を用いてMo濃度を測定し、得られたMo濃度の測定結果から、バイヤライト系アルミナに吸着したMo量を算出した。 After standing for 3 hours, in order to recover unadsorbed Mo, the Mo solution in the vial was dispensed into a 100 mL volumetric flask using a micropipette. After collecting the Mo solution, in order to wash the alumina sample, add and agitate purified water to the vial and repeat the operation of separating the purified water into a 100 mL volumetric flask. 100 mL. The solution collected in the 100 mL volumetric flask was measured for Mo concentration using an ICP-MS apparatus, and the amount of Mo adsorbed on the bayerite-based alumina was calculated from the measurement result of the obtained Mo concentration.
バイヤライト系アルミナ試料について、吸着温度に対するMo吸着量の依存性を示す例を図5に示す。図5から、Mo吸着量は、吸着温度に関わらずほぼ一定であることがわかる。 FIG. 5 shows an example showing the dependency of the Mo adsorption amount on the adsorption temperature for the bayerite-based alumina sample. FIG. 5 shows that the Mo adsorption amount is substantially constant regardless of the adsorption temperature.
表1は、バイヤライト系アルミナの焼成温度に対する基本特性(すなわち結晶構造、BET比表面積)とMo吸着量の関係を示したものである。また、図6は、バイヤライト系アルミナの比表面積に対するMo吸着量の関係をグラフ化した図である。 Table 1 shows the relationship between the basic characteristics (that is, the crystal structure and BET specific surface area) of the bayerite-based alumina and the amount of Mo adsorption. FIG. 6 is a graph showing the relationship between the Mo adsorption amount and the specific surface area of bayerite-based alumina.
表1及び図6から、バイヤライト系アルミナ試料について、焼成温度の増加とともに比表面積は低下している。これに伴い、結晶構造の変化も知られるが、各系列における同じ結晶構造でも、比表面積の低下により、Mo吸着量も低下する傾向にあった。 From Table 1 and FIG. 6, the specific surface area of the bayerite-based alumina sample decreases as the firing temperature increases. Along with this, changes in the crystal structure are also known, but even with the same crystal structure in each series, the amount of Mo adsorption tended to decrease due to a decrease in specific surface area.
一方、Mo吸着量と比表面積の結果から、単位面積当たりのMo吸着量を求めた結果、結晶構造にもMo吸着量の影響があることが考えられた。 On the other hand, as a result of obtaining the Mo adsorption amount per unit area from the results of the Mo adsorption amount and the specific surface area, it was considered that the Mo adsorption amount is also influenced by the crystal structure.
アルミナは、結晶構造の違いにより表面の電子状態が異なり、アルミナ表面とMo酸イオンとの相互作用が異なる。「η」または「γ」あるいは「η+γ」の結晶構造を持つアルミナ表面にすることにより、Mo酸イオンとの相互作用が強くなり、単位面積当たりのMo吸着量を増大させることができる。
(2)モリブデン(Mo)溶離試験
Alumina has a different electronic state on the surface due to the difference in crystal structure, and the interaction between the alumina surface and Mo acid ions differs. By using an alumina surface having a crystal structure of “η”, “γ”, or “η + γ”, the interaction with Mo acid ions is strengthened, and the amount of Mo adsorption per unit area can be increased.
(2) Molybdenum (Mo) elution test
上記の吸着及び洗浄操作を行ったMoを吸着させたバイヤライト系アルミナ(焼結温度:300℃)を用いて、Mo溶離試験を行った。 A Mo elution test was performed using bayerite-based alumina (sintering temperature: 300 ° C.) on which Mo was adsorbed and washed.
まず、精製水中にバイヤライト系アルミナを導入し、マイクロピペットによりポリプロピレン製カラムにバイヤライト系アルミナを充填した(アルミナ充填カラム)。Mo溶離試験の前準備として、アルミナ充填カラムに溶離液に用いる0.9%生理食塩水50mLを通液した。これは、実際のミルキング方法に基づきアルミナ充填カラムの洗浄を行ったものであり、カラム充填までに生成した99mTc及び未吸着Moを除去しコンディショニングするための操作である。本操作により分取した生理食塩水は、ICP-MS装置を用いてMo濃度を測定し、バイヤライト系アルミナから溶離したMo量を算出した。Mo吸着試験で得られたMo吸着量から本操作で溶離したMo量を差し引くことにより、Mo溶離試験で用いたバイヤライト系アルミナの実際のMo吸着量として、Mo溶離率を算出することにした。 First, bayerite-based alumina was introduced into purified water, and a bayerite-based alumina was packed into a polypropylene column using a micropipette (alumina-filled column). As a preparation for the Mo elution test, 50 mL of 0.9% physiological saline used as an eluent was passed through an alumina packed column. This is a cleaning of an alumina packed column based on an actual milking method, and is an operation for removing and conditioning 99m Tc and unadsorbed Mo generated up to the column packing. The physiological saline collected by this operation was measured for Mo concentration using an ICP-MS apparatus, and the amount of Mo eluted from the bayerite-based alumina was calculated. By subtracting the Mo amount eluted in this operation from the Mo adsorption amount obtained in the Mo adsorption test, the Mo elution rate was calculated as the actual Mo adsorption amount of the bayerite-based alumina used in the Mo elution test. .
まず、約1日経過後、ミルキング操作として、アルミナ充填カラムに生理食塩水を5mL通液した。この操作は1日毎に合計2回行った。ミルキング操作後、採取した生理食塩水は、ICP-MS装置によりMo濃度を測定し、Mo溶離量を算出した。バイヤライト系アルミナのMo溶離試験の結果を表2に示す。 First, after about 1 day, 5 mL of physiological saline was passed through an alumina-filled column as a milking operation. This operation was performed twice a day. After the milking operation, the collected physiological saline was measured for the Mo concentration by an ICP-MS apparatus, and the Mo elution amount was calculated. Table 2 shows the results of Mo elution test of bayerite-based alumina.
この結果、生理食塩水5mL中のMo濃度は約50ppm以下であった。得られた溶離液の放射性医薬品基準(99Mo/99mTc:0.15μCi/mCi-99mTc)を満足させるためには、生理食塩水の通水速度、温度、アルミナ充填カラムの下段に精製カラムを追加するなどの条件を変更することにより、低減することが可能である。
4.モリブデン(Mo)回収試験
As a result, the Mo concentration in 5 mL of physiological saline was about 50 ppm or less. In order to satisfy the radiopharmaceutical standard ( 99 Mo / 99m Tc: 0.15 μCi / mCi- 99m Tc) of the obtained eluent, the purification column is placed at the bottom of the column filled with saline, the temperature, the flow rate of physiological saline. It can be reduced by changing conditions such as adding.
4). Molybdenum (Mo) recovery test
バイヤライト系アルミナに吸着したMoは、アルカリ溶液に接触させることにより、モリブデン酸陰イオンとして回収することができる。回収したモリブデン溶液は酸で処理することにより、モリブデン酸として固形分で回収できる。この方法は、(n,γ)法による99Mo製造では、比放射能を高めるために、高価な98Mo濃縮モリブデン原料を用いて、より高濃度の99mTc溶液を得るための、99Mo/99mTcジェネレータに有効である。 Mo adsorbed on the bayerite-based alumina can be recovered as a molybdate anion by contacting with an alkaline solution. The recovered molybdenum solution can be recovered in solids as molybdic acid by treating with an acid. This method, (n, gamma) in 99 Mo production by process, in order to increase the specific radioactivity using the expensive 98 Mo concentrated molybdenum starting material, to obtain a higher concentration of 99m Tc solution, 99 Mo / Valid for 99m Tc generator.
Moを50〜70mg/g吸着させたバイヤライト系アルミナを用いて、約5gを1M-NaOHのアルカリ溶液50mL中に投入し、バイヤライト系アルミナからのMoの回収試験を行った。 Using a bayerite-based alumina adsorbed with 50 to 70 mg / g of Mo, about 5 g was introduced into 50 mL of an alkaline solution of 1M-NaOH, and a recovery test of Mo from the bayerite-based alumina was performed.
バイヤライト系アルミナを入れた1M-NaOH溶液を90℃で4時間加熱した。放冷後、上澄液を取出した後、バイヤライト系アルミナをイオン交換水で洗浄し、得られた溶液中のMo濃度をICP分析により測定した。この操作により、バイヤライト系アルミナからのMo溶離率は99.5%以上であり、Moの回収が可能であることから、98Mo濃縮モリブデン原料の再利用が可能である。なお、バイヤライト系アルミナは1M-NaOH溶液でアルミニウム(Al)の溶離も観察されたことから、Alの除去工程を入れる必要もある。 A 1M NaOH solution containing bayerite-based alumina was heated at 90 ° C. for 4 hours. After allowing to cool, the supernatant was taken out, and the bayerite-based alumina was washed with ion-exchanged water, and the Mo concentration in the obtained solution was measured by ICP analysis. By this operation, the Mo elution rate from the bayerite-based alumina is 99.5% or more, and Mo can be recovered. Therefore, the 98 Mo-enriched molybdenum raw material can be reused. In addition, since the elution of aluminum (Al) was also observed in the bayerite-based alumina in the 1M-NaOH solution, it is necessary to include an Al removal step.
以上説明したバイヤライト系アルミナのモリブデン(Mo)吸着剤は、次の特徴を有する。
1)放射化法((n,γ)法)により製造した比放射能の低い99Moでも使用可能である。
2)現行医療用アルミナと同等の高純度99mTc溶液を得ることが可能である。
3)高価な98Mo濃縮原料をアルミナから回収し、98Mo濃縮モリブデン原料は再利用が可能である。
4)安価で大量製造が可能である。
The bayerite-based molybdenum (Mo) adsorbent described above has the following characteristics.
1) 99 Mo with low specific activity produced by the activation method ((n, γ) method) can also be used.
2) It is possible to obtain a high-purity 99m Tc solution equivalent to the current medical alumina.
3) Expensive 98 Mo concentrated raw material is recovered from alumina, and 98 Mo concentrated molybdenum raw material can be reused.
4) Mass production is possible at low cost.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016172616A JP6819954B2 (en) | 2016-09-05 | 2016-09-05 | Molybdenum adsorbent of biasite alumina and 99Mo / 99mTc generator using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016172616A JP6819954B2 (en) | 2016-09-05 | 2016-09-05 | Molybdenum adsorbent of biasite alumina and 99Mo / 99mTc generator using it |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018038935A true JP2018038935A (en) | 2018-03-15 |
JP6819954B2 JP6819954B2 (en) | 2021-01-27 |
Family
ID=61624599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016172616A Active JP6819954B2 (en) | 2016-09-05 | 2016-09-05 | Molybdenum adsorbent of biasite alumina and 99Mo / 99mTc generator using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6819954B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07133109A (en) * | 1993-11-08 | 1995-05-23 | Mizusawa Ind Chem Ltd | Production of granular alumina and spherical alumina particle |
JP2000086236A (en) * | 1998-09-17 | 2000-03-28 | Mizusawa Ind Chem Ltd | Acidic activated alumina and its production |
KR100755933B1 (en) * | 2006-11-08 | 2007-09-06 | 한국원자력연구원 | Absorbents for radioactive element and preparation method thereof |
WO2013095108A1 (en) * | 2011-12-12 | 2013-06-27 | Technische Universiteit Delft | A column material and a method for adsorbing mo-99 in a 99mo/99mtc generator |
-
2016
- 2016-09-05 JP JP2016172616A patent/JP6819954B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07133109A (en) * | 1993-11-08 | 1995-05-23 | Mizusawa Ind Chem Ltd | Production of granular alumina and spherical alumina particle |
JP2000086236A (en) * | 1998-09-17 | 2000-03-28 | Mizusawa Ind Chem Ltd | Acidic activated alumina and its production |
KR100755933B1 (en) * | 2006-11-08 | 2007-09-06 | 한국원자력연구원 | Absorbents for radioactive element and preparation method thereof |
WO2013095108A1 (en) * | 2011-12-12 | 2013-06-27 | Technische Universiteit Delft | A column material and a method for adsorbing mo-99 in a 99mo/99mtc generator |
Also Published As
Publication number | Publication date |
---|---|
JP6819954B2 (en) | 2021-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alliot et al. | Cyclotron production of high purity 44m, 44Sc with deuterons from 44CaCO3 targets | |
WO1991005352A1 (en) | Soluble irradiation targets and methods for the production of radiorhenium | |
JP7312621B2 (en) | Radionuclide production method and radionuclide production system | |
Lambrecht et al. | Radionuclide generators | |
Le | 68Ga generator integrated system: elution–purification–concentration integration | |
JP6429899B2 (en) | Production of 43Sc radionuclide and its radiopharmaceutical for use in positron emission tomography | |
Chakravarty et al. | Nanocrystalline zirconia: A novel sorbent for the preparation of 188W/188Re generator | |
Qazi et al. | Preparation and evaluation of hydrous titanium oxide as a high affinity adsorbent for molybdenum (99Mo) and its potential for use in 99mTc generators | |
Horlock et al. | The preparation of a rubidium-82 radionuclide generator | |
US9670563B2 (en) | Sorbent material | |
Romero et al. | Inorganic oxides with potential application in the preparation of a 68Ge/68Ga generator system | |
JP7343581B2 (en) | Method for preparing at least one generator with high radium-228 content | |
Wang et al. | Practicality of hierarchically macro/mesoporous γ-Al2O3 as a promising sorbent in the preparation of low specific activity 99Mo/99mTc generator | |
JP6819954B2 (en) | Molybdenum adsorbent of biasite alumina and 99Mo / 99mTc generator using it | |
JP6890311B2 (en) | Pseudo-boehmite alumina molybdenum adsorbent and 99Mo / 99mTc generator using it | |
Tatenuma et al. | A mass-production process of a highly pure medical use 99mTc from natural isotopic Mo (n, γ) 99Mo without using uranium | |
JP6818342B2 (en) | Gibbsite-based alumina molybdenum adsorbent and 99Mo / 99mTc generator using it | |
US9449726B2 (en) | 100Mo compounds as accelerator targets for production of 99mTc | |
WO2003086569A1 (en) | Multicolumn selectivity inversion generator for production of ultrapure radionuclides | |
Szűcs et al. | Development of cost effective method for production of 64 Cu from nat Ni | |
KR100755933B1 (en) | Absorbents for radioactive element and preparation method thereof | |
Saha et al. | Feasibility studies for production of 89Sr in the Fast Breeder Test Reactor (FBTR) | |
Konior et al. | Classic radionuclide 188W/188Re generator (experiments, design and construction) | |
Iller et al. | Synthesis and structural investigations of gel metal oxide composites WO3–ZrO2, WO3–TiO2, WO3–ZrO2–SiO2, and their evaluation as materials for the preparation of 188W/188Re generator | |
Amin et al. | 99 Mo/99m Tc generators based on aluminum molybdate gel matrix prepared by nano method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160914 |
|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20161005 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190828 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200818 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201016 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6819954 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |