[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018031770A - Measuring method of sample using scan type probe microscope, and sample holder for scan type probe microscope - Google Patents

Measuring method of sample using scan type probe microscope, and sample holder for scan type probe microscope Download PDF

Info

Publication number
JP2018031770A
JP2018031770A JP2017124393A JP2017124393A JP2018031770A JP 2018031770 A JP2018031770 A JP 2018031770A JP 2017124393 A JP2017124393 A JP 2017124393A JP 2017124393 A JP2017124393 A JP 2017124393A JP 2018031770 A JP2018031770 A JP 2018031770A
Authority
JP
Japan
Prior art keywords
sample
probe microscope
scanning probe
pressing
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017124393A
Other languages
Japanese (ja)
Other versions
JP6879078B2 (en
Inventor
信満 押村
Nobumitsu Oshimura
信満 押村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2018031770A publication Critical patent/JP2018031770A/en
Application granted granted Critical
Publication of JP6879078B2 publication Critical patent/JP6879078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology capable of accurately measuring samples of various shapes while keeping the measuring surface in parallel with the scan surface of a probe, in various measurement using a scan type probe microscope.SOLUTION: A method of measuring a sample using a scan type probe microscope includes: a pressing process of pressing the sample to a surface having an opening in a sample holder and exposing a part of the sample upward from the opening; and a scanning process of bringing the sample holder into contact with a sample stage in a sample pressed state, making the principal surface of the sample stage parallel with the exposure surface of the sample, and scanning the exposure surface of the sample using the scan type probe microscope. A sample holder for the scan type probe microscope related to the measuring method is provided.SELECTED DRAWING: Figure 4

Description

本発明は、走査型プローブ顕微鏡を用いた試料の測定方法および走査型プローブ顕微鏡用試料ホルダーに属する。   The present invention belongs to a sample measuring method using a scanning probe microscope and a sample holder for a scanning probe microscope.

走査型プローブ顕微鏡は、先端を尖らせた探針を用いて試料表面を走査することで試料表面の物性を拡大して観察・測定することができる顕微鏡の一種である。走査型プローブ顕微鏡は、光学顕微鏡に比べて空間分解能が非常に高く、測定環境を整えることで原子オーダーでの解析が可能である。   A scanning probe microscope is a type of microscope that can observe and measure physical properties of a sample surface by scanning the sample surface with a probe having a sharp tip. Scanning probe microscopes have a very high spatial resolution compared to optical microscopes, and analysis on the atomic order is possible by adjusting the measurement environment.

また、探針の種類や操作方法、検出信号の選択により、様々な情報を取得することができる。例えば、走査型トンネル顕微鏡:STM、原子間力顕微鏡:AFM(例えば特許文献1)のように、探針を試料表面にある程度以上近づけた際に現れるトンネル電流や原子間力を検出することにより試料表面の凹凸を測定することができる。また、磁気(走査型磁気力顕微鏡:MFM)、電位(KFM、SMM)、誘電率(走査型非線形誘電率顕微鏡:SNDM))を検出することで試料表面の各物性分布を測定することができる。   Various types of information can be acquired by selecting the probe type, operation method, and detection signal. For example, a sample is detected by detecting a tunnel current or an atomic force that appears when a probe is brought close to a sample surface to some extent as in a scanning tunneling microscope: STM, an atomic force microscope: AFM (for example, Patent Document 1). Surface irregularities can be measured. Also, each physical property distribution on the sample surface can be measured by detecting magnetism (scanning magnetic force microscope: MFM), potential (KFM, SMM), dielectric constant (scanning nonlinear dielectric microscope: SNDM). .

特表2009−525466号公報Special table 2009-525466

このように走査型プローブ顕微鏡は、非常に空間分解能が高く様々な物性を測定することができるが、真に近い状態を測定するためには、“外乱の影響”“試料の状態(例えば形状)”が重要である。   As described above, the scanning probe microscope has a very high spatial resolution and can measure various physical properties. However, in order to measure a true state, “effect of disturbance” “sample state (for example, shape) "is important.

外乱については、音や振動を抑制するための付属装置や手法が多数用意され市販されているため、外乱の影響は現状問題になるレベル以下で測定できる環境は揃っているといって良い。
しかし、試料の状態は多種多様であり、試料の状態に合わせた測定は測定者の技量に委ねられる部分が多く、必ずしも正確な測定ができていたとは言い難い。
As for disturbances, there are a lot of attached devices and methods for suppressing sound and vibration available on the market, so it can be said that there are environments where the influence of disturbances can be measured at a level below the current level.
However, there are a wide variety of sample states, and there are many parts that depend on the skill of the measurer for measurement according to the state of the sample, and it is difficult to say that accurate measurement has been achieved.

例えば、探針での走査部分すなわち試料表面と試料裏面との平行度が良くない試料をAFMで測定する場合、正確な測定が行えないおそれがある。試料ホルダー100の上に試料Sを載せた場合、図1に示すように、探針MPを走査する方向(走査面)に対して測定面が平行でなくなる可能性がある。これは、試料S裏面の平坦度が良くない試料Sでも同様である。   For example, when measuring a scanning portion of a probe, that is, a sample in which the parallelism between the sample surface and the sample back surface is not good, an AFM may fail to perform an accurate measurement. When the sample S is placed on the sample holder 100, the measurement surface may not be parallel to the scanning direction (scanning surface) of the probe MP as shown in FIG. The same applies to the sample S whose flatness of the back surface of the sample S is not good.

市販されている走査型プローブ顕微鏡に係る装置には、測定結果のうち試料表面の傾斜や湾曲によりもたらされたものを、関数を用いて一義的に補正する機能が搭載されている。ただ、この機能にも限界がある。   A commercially available apparatus related to a scanning probe microscope is equipped with a function for unambiguously correcting a measurement result caused by the inclination or curvature of the sample surface using a function. However, this function has its limits.

例えば、図2に示すように試料S表面に表面粗さとは別の小さなうねりが存在する場合、市販の装置に搭載された機能だと、この小さなうねりを傾斜と認識してしまい、本来は補正すべきでないところにもかかわらず補正がなされてしまう可能性がある。   For example, as shown in FIG. 2, when there is a small undulation different from the surface roughness on the surface of the sample S, the function mounted on a commercially available apparatus recognizes this small undulation as an inclination and is originally corrected. There is a possibility that corrections will be made regardless of where they should not be.

また、図3に示すように、試料S表面が傾斜している場合、探針MPのアスペクト比と試料表面の凹凸のアスペクト比との関係によっては、探針MPが試料S表面の凹凸に干渉し、凹凸の方向により探針MPが試料S表面に近づけなくなることが考えられ、真の凹凸を測定することが出来なくなる可能性がある。市販の装置に搭載された機能だと、このような状態での測定結果に対して傾斜を加味した補正がなされるものの、図3に示すように、だからといって正確な結果が得られるとは限らない。   Further, as shown in FIG. 3, when the surface of the sample S is inclined, the probe MP interferes with the unevenness on the surface of the sample S depending on the relationship between the aspect ratio of the probe MP and the aspect ratio of the unevenness on the sample surface. However, it is conceivable that the probe MP does not approach the surface of the sample S depending on the direction of the unevenness, and there is a possibility that the true unevenness cannot be measured. The function installed in a commercially available device corrects the measurement result in such a state with an inclination, but as shown in FIG. 3, it does not always give an accurate result. .

つまり、市販の装置に搭載された機能だと、試料の状態(例えば形状)に関して必ずしも十分に補正しきれておらず、その結果、試料の状態によっては厳密には真の状態を測定できていない可能性もある。   In other words, with the functions installed in commercially available devices, the sample state (for example, shape) is not necessarily fully corrected, and as a result, the true state cannot be measured strictly depending on the sample state. There is a possibility.

上記のように本発明者の鋭意検討により得られた知見に鑑み、本発明は、走査型プローブ顕微鏡を用いた各種測定において、様々な形状の試料に対し、探針の走査面に対して測定面を平行に保ち、精度良く測定可能とする技術を提供することを目的とする。   In view of the knowledge obtained by the inventor's earnest study as described above, the present invention measures various types of samples with respect to the scanning surface of the probe in various types of measurements using a scanning probe microscope. An object of the present invention is to provide a technique for keeping the plane parallel and enabling measurement with high accuracy.

上記課題を解決するため検討を行った結果、試料の状態が種々存在し得ることへの対策として、試料の固定の仕方に工夫を加えれば解決可能であるという知見を得た。すなわち、試料ホルダーにおいて開口を有する面に対して天地の地の方向(下)から天の方向(上)へと試料を押し付け、開口に試料を架け渡した状態を保持することにより、開口から上方に露出する部分は当該面と同一面となる。そうなると、後は当該面と走査面とを平行な状態に維持すれば、少なくとも開口から上方に露出する部分(すなわち測定面)を走査面と平行に保つことができる。   As a result of investigations to solve the above-mentioned problems, it was found that if measures can be taken to fix the sample, it can be solved as a countermeasure against the existence of various sample states. That is, by pressing the sample from the top and bottom of the sample holder to the top (top) and the top (top) of the top and holding the state where the sample is spanned over the opening, The portion exposed to the surface is the same surface. Then, if the surface and the scanning surface are maintained in a parallel state after that, at least a portion exposed upward from the opening (that is, the measurement surface) can be maintained in parallel with the scanning surface.

上記の知見に基づいて成された本発明の態様は、以下の通りである。
本発明の第1の態様は、
走査型プローブ顕微鏡にて試料を測定する方法であって、
試料ホルダーにおける開口を有する面に対して試料を押し付けて試料の一部を前記開口から上方に向けて露出させる押し付け工程と、
試料を押し付けた状態で前記試料ホルダーを試料ステージに接地させ、試料ステージの主表面および試料の露出面を互いに平行にして走査型プローブ顕微鏡にて試料の露出面を走査する走査工程と、
を有する、走査型プローブ顕微鏡を用いた試料の測定方法である。
The embodiments of the present invention made based on the above findings are as follows.
The first aspect of the present invention is:
A method of measuring a sample with a scanning probe microscope,
A pressing step of pressing a sample against a surface having an opening in the sample holder to expose a part of the sample upward from the opening;
A scanning step in which the sample holder is grounded to the sample stage while the sample is pressed, and the main surface of the sample stage and the exposed surface of the sample are parallel to each other, and the exposed surface of the sample is scanned with a scanning probe microscope;
Is a method for measuring a sample using a scanning probe microscope.

本発明の第2の態様は、第1の態様に記載の発明において、
前記試料ホルダーを水平な試料ステージに接地させた際の接地面および試料の露出面をいずれも水平面とする。
According to a second aspect of the present invention, in the invention according to the first aspect,
Both the grounding surface and the exposed surface of the sample when the sample holder is grounded to a horizontal sample stage are horizontal surfaces.

本発明の第3の態様は、第1または第2の態様に記載の発明において、
前記試料ホルダーのうち少なくとも前記開口を有する面を導通可能としたうえで試料の露出面における電気特性の面内分布情報を測定する。
According to a third aspect of the present invention, in the invention according to the first or second aspect,
In-plane distribution information of electrical characteristics on the exposed surface of the sample is measured after making at least the surface of the sample holder having the opening conductive.

本発明の第4の態様は、
走査型プローブ顕微鏡用の試料を固定自在な試料ホルダーであって、
走査型プローブ顕微鏡の試料ステージと接地する土台と、
試料を押し付けた際に試料の一部を上方に向けて露出させる開口を有する試料押し付け面と、
前記試料押し付け面に対して試料を押し付ける押し付け部材と、
を有し、
試料ステージの主表面および前記試料押し付け面が互いに平行になるように前記土台と前記試料押し付け面とが構成された、走査型プローブ顕微鏡用試料ホルダーである。
The fourth aspect of the present invention is:
A sample holder for fixing a sample for a scanning probe microscope,
A scanning probe microscope sample stage and a grounding base;
A sample pressing surface having an opening that exposes a part of the sample upward when the sample is pressed;
A pressing member that presses the sample against the sample pressing surface;
Have
It is a sample holder for a scanning probe microscope in which the base and the sample pressing surface are configured such that the main surface of the sample stage and the sample pressing surface are parallel to each other.

本発明の第5の態様は、第4の態様に記載の発明において、
前記土台を試料ステージに接地させた際の接地面および前記試料押し付け面は互いに平行である。
According to a fifth aspect of the present invention, in the invention described in the fourth aspect,
The ground contact surface and the sample pressing surface when the base is grounded to the sample stage are parallel to each other.

本発明の第6の態様は、第4または第5の態様に記載の発明において、
前記押し付け部材は、前記土台に囲まれた部分に配される。
According to a sixth aspect of the present invention, in the invention according to the fourth or fifth aspect,
The pressing member is disposed in a portion surrounded by the base.

本発明の第7の態様は、第4〜第6のいずれかの態様に記載の発明において、
前記押し付け部材は、前記試料押し付け面に向かって付勢する弾性部材と、試料を押し付けた状態の前記弾性部材を前記試料ホルダー内にて固定する部材であって前記土台に係合自在な固定部材と、を備える。
According to a seventh aspect of the present invention, in the invention according to any one of the fourth to sixth aspects,
The pressing member includes an elastic member that urges toward the sample pressing surface, and a member that fixes the elastic member in a state where the sample is pressed in the sample holder, and is a fixing member that is freely engageable with the base. And comprising.

本発明の第8の態様は、第7の態様に記載の発明において、
前記押し付け部材は、前記弾性部材の付勢にて試料を前記試料押し付け面に押し付ける下敷部材を更に備える。
According to an eighth aspect of the present invention, in the invention according to the seventh aspect,
The pressing member further includes an underlay member that presses the sample against the sample pressing surface by the biasing of the elastic member.

本発明の第9の態様は、第4〜第8のいずれかの態様に記載の発明において、
前記試料ホルダーのうち少なくとも前記開口を有する面は、導通可能であって走査型プローブ顕微鏡における測定装置電極と接続可能に構成されている。
According to a ninth aspect of the present invention, in the invention according to any one of the fourth to eighth aspects,
At least a surface of the sample holder having the opening is configured to be conductive and connectable to a measuring device electrode in a scanning probe microscope.

本発明の第10の態様は、
走査型プローブ顕微鏡にて試料を測定する方法であって、
試料ホルダーにおける開口を有する面に対して試料を押し付けて、試料の一部を前記開口から露出させるとともに露出面が走査面と平行になるように試料を矯正した状態で、走査型プローブ顕微鏡にて試料の露出面を走査する、走査型プローブ顕微鏡を用いた試料の測定方法である。
The tenth aspect of the present invention provides
A method of measuring a sample with a scanning probe microscope,
With a scanning probe microscope, press the sample against the surface of the sample holder that has an opening to expose a part of the sample from the opening and correct the sample so that the exposed surface is parallel to the scanning surface. This is a method for measuring a sample using a scanning probe microscope that scans the exposed surface of the sample.

本発明によれば、走査型プローブ顕微鏡を用いた各種測定において、様々な形状の試料に対し、探針の走査面に対して測定面を平行に保ち、精度良く測定可能とする。   According to the present invention, in various measurements using a scanning probe microscope, a measurement surface can be kept parallel to the scanning surface of a probe for a sample having various shapes, and measurement can be performed with high accuracy.

従来技術(比較例1)における走査型プローブ顕微鏡を用いて探針により走査する様子を示す概略側面図である。It is a schematic side view which shows a mode that it scans with a probe using the scanning probe microscope in a prior art (comparative example 1). 試料表面における小さなうねりを示す図である。。It is a figure which shows the small wave | undulation in the sample surface. . 従来技術(比較例2)における走査型プローブ顕微鏡による測定結果を説明する図である。It is a figure explaining the measurement result by the scanning probe microscope in a prior art (comparative example 2). 本実施形態(実施例1)における走査型プローブ顕微鏡を用いて探針により走査する様子を示す概略側面図である。It is a schematic side view which shows a mode that it scans with a probe using the scanning probe microscope in this embodiment (Example 1). 本実施形態の走査型プローブ顕微鏡用試料ホルダーにおける土台を示す概略図であり、(a)は上面図、(b)は側面図、(c)は下面図である。It is the schematic which shows the base in the sample holder for scanning probe microscopes of this embodiment, (a) is a top view, (b) is a side view, (c) is a bottom view. (a)は本実施形態の走査型プローブ顕微鏡用試料ホルダーにおける試料押し付け面の概略上面図である。(b)と(c)は試料押し付け面を土台に取り付けかつ試料を該試料ホルダーに設置した概略図であり、(b)はその上面図、(c)はその下面図である。(A) is a schematic top view of the sample pressing surface in the sample holder for scanning probe microscopes of this embodiment. (B) and (c) are schematic views in which the sample pressing surface is attached to the base and the sample is placed on the sample holder, (b) is a top view thereof, and (c) is a bottom view thereof. 本実施形態の走査型プローブ顕微鏡用試料ホルダーにおける弾性部材および固定部材を示す概略側面図であり、(a)は該弾性部材がドーム状のバネである場合、(b)は該弾性部材がコイル状のバネである場合を示す。It is a schematic side view which shows the elastic member and fixing member in the sample holder for scanning probe microscopes of this embodiment, (a) is a dome shaped spring, (b) is a coil in this elastic member The case of a spring is shown. 固定部材を土台(駆体)に嵌め込む様子を示す概略図であって、(a)本実施形態の走査型プローブ顕微鏡用試料ホルダーにおける土台の側面図(再掲)であり、(b)は固定部材の上面図である。It is the schematic which shows a mode that a fixing member is fitted to a base (driving body), Comprising: (a) It is a side view (repost) of the base in the sample holder for scanning probe microscopes of this embodiment, (b) is fixed It is a top view of a member. 本実施形態の走査型プローブ顕微鏡用試料ホルダーに試料を設置した様子を示す概略側面図であり、(a)は試料の表面と裏面とで平行度が低い試料を採用した場合、(b)は湾曲試料を採用した場合を示す。It is a schematic side view which shows a mode that the sample was installed in the sample holder for scanning probe microscopes of this embodiment, (a) is a case where a sample with low parallelism is adopted by the surface and back surface of a sample, (b) The case where a curved sample is employed is shown. 実施例1における試料の表面の様子を示す鳥瞰図である。2 is a bird's-eye view showing a state of a surface of a sample in Example 1. FIG. 比較例1における試料の表面の様子を示す鳥瞰図である。6 is a bird's-eye view showing a state of a surface of a sample in Comparative Example 1. FIG. 比較例2における試料の表面の様子を示す鳥瞰図である。6 is a bird's-eye view showing a state of a surface of a sample in Comparative Example 2. FIG. 試料の露出面における電気特性の面内分布情報を測定する様子を示す図であり、(a)は、本実施形態の好適例であって、試料ホルダー1のうち少なくとも開口を有する面が、導通可能であって走査型プローブ顕微鏡における測定装置電極と接続された例を示す概略側面図であるのに対し、(b)は、導電性を有する面上に試料を載置して電気特性の面内分布情報を測定する様子を示す図である。It is a figure which shows a mode that the in-plane distribution information of the electrical property in the exposed surface of a sample is measured, Comprising: (a) is a suitable example of this embodiment, Comprising: The surface which has an opening at least among sample holders 1 is conduction | electrical_connection. FIG. 2B is a schematic side view showing an example of connection with a measuring device electrode in a scanning probe microscope, while FIG. 2B shows a surface of electrical characteristics by placing a sample on a conductive surface. It is a figure which shows a mode that internal distribution information is measured. 本実施形態の試料ホルダーにおける固定部材と土台の別態様を示す概略図であって、(a)は固定部材と土台の拡大側面図であり、(b)は固定部材と土台の下面図である。It is the schematic which shows the other aspect of the fixing member and base in the sample holder of this embodiment, (a) is an enlarged side view of a fixing member and a base, (b) is a bottom view of a fixing member and a base. .

以下、本発明の実施の形態について、以下の順に説明する。
1.走査型プローブ顕微鏡を用いた試料の測定方法
1−1.準備工程(走査型プローブ顕微鏡用試料ホルダー)
1−2.押し付け工程
1−3.走査工程
2.実施の形態による効果
3.変形例等
本明細書において「〜」は所定の値以上かつ所定の値以下のことを指す。
Hereinafter, embodiments of the present invention will be described in the following order.
1. 1. Measuring method of sample using scanning probe microscope 1-1. Preparation process (sample holder for scanning probe microscope)
1-2. Pressing process 1-3. Scanning process 2. Effects of the embodiment Modifications etc. In this specification, “to” refers to a value that is greater than or equal to a predetermined value and less than or equal to a predetermined value.

<1.走査型プローブ顕微鏡を用いた試料の測定方法>
本実施形態においては、主に以下の工程を行う。以下、各工程について図4を用いて説明する。図4は、本実施形態における走査型プローブ顕微鏡を用いて探針MPにより走査する様子を示す概略側面図である。
<1. Sample Measurement Method Using Scanning Probe Microscope>
In the present embodiment, the following steps are mainly performed. Hereinafter, each step will be described with reference to FIG. FIG. 4 is a schematic side view showing a state of scanning with the probe MP using the scanning probe microscope in the present embodiment.

1−1.準備工程
本工程においては、走査型プローブ顕微鏡を用いた試料Sの測定方法のための準備を行う。具体的に言うと、走査型プローブ顕微鏡の準備、走査型プローブ顕微鏡を用いた測定の対象の準備、そして走査型プローブ顕微鏡用試料ホルダー1の準備等を本工程にて行う。
1-1. Preparation Step In this step, preparation for a method for measuring the sample S using a scanning probe microscope is performed. Specifically, preparation of a scanning probe microscope, preparation of a measurement target using the scanning probe microscope, preparation of the sample holder 1 for the scanning probe microscope, and the like are performed in this step.

なお、本実施形態においては走査型プローブ顕微鏡としては、所定の面内を走査する探針MPを有するものであれば特に限定は無く、上記にて列挙したものを使用することができる。また、探針MP等のような走査型プローブ顕微鏡の具体的な構成としては、先に述べた通りである。   In the present embodiment, the scanning probe microscope is not particularly limited as long as it has a probe MP that scans in a predetermined plane, and those listed above can be used. The specific configuration of the scanning probe microscope such as the probe MP is as described above.

本実施形態における試料Sの種類については特に限定は無い。本発明の効果でも述べているように、試料Sの形状についてであるが、後述の試料押し付け面3に設けられた開口31を架け渡す大きさがあれば問題ない。ただ、極小の試料Sを採用するときには開口31の大きさを変更すれば済むので、試料Sの形状についての限定は実質的には無い。   There is no limitation in particular about the kind of sample S in this embodiment. As described in the effect of the present invention, the shape of the sample S is not a problem as long as it is large enough to span an opening 31 provided in the sample pressing surface 3 described later. However, since the size of the opening 31 may be changed when the extremely small sample S is employed, the shape of the sample S is not substantially limited.

そして、本実施形態においては、以下に説明する走査型プローブ顕微鏡用試料ホルダー1(以下、単に試料ホルダー1とも称する。)にて試料Sを保持した状態で、走査型プローブ顕微鏡を用いて測定することに大きな特徴がある。以下、試料ホルダー1の構成について図4〜9を用いて説明する。   In the present embodiment, the measurement is performed using the scanning probe microscope while the sample S is held by the scanning probe microscope sample holder 1 (hereinafter also simply referred to as the sample holder 1) described below. There is a big feature. Hereinafter, the configuration of the sample holder 1 will be described with reference to FIGS.

[試料ホルダー]
図4に示すように、本実施形態における試料ホルダー1は、面内を走査する走査型プローブ顕微鏡用の試料Sを固定自在な試料ホルダーである。そして、主として以下の構成を備える。
・走査型プローブ顕微鏡の試料ステージMSと接地する土台2
・試料Sを押し付けた際に試料Sの一部を上方に向けて露出させる開口31を有する試料押し付け面3
・試料押し付け面3に対して試料Sを押し付ける押し付け部材4
[Sample holder]
As shown in FIG. 4, the sample holder 1 in the present embodiment is a sample holder that can freely fix a sample S for a scanning probe microscope that scans in-plane. And it mainly comprises the following configuration.
・ Base 2 that contacts the sample stage MS of the scanning probe microscope
A sample pressing surface 3 having an opening 31 that exposes a part of the sample S upward when the sample S is pressed.
A pressing member 4 that presses the sample S against the sample pressing surface 3

(土台)
本実施形態における試料ホルダー1の土台2は、走査型プローブ顕微鏡の試料ステージMSに対して接地するものである。ここでいう接地とは、試料ステージMSに対して試料ホルダー1を載置する際に接触することを指す。もちろん、試料ステージMSに単に置くだけでもよいし、適宜、試料ステージMSを構成する部材に対して係合させてもよい。
以下、土台2について図5を用いて説明する。図5は、本実施形態の試料ホルダー1における土台2を示す概略図であり、(a)は上面図、(b)は側面図、(c)は下面図である。
(Base)
The base 2 of the sample holder 1 in this embodiment is to be grounded to the sample stage MS of the scanning probe microscope. The grounding here refers to contact when placing the sample holder 1 on the sample stage MS. Of course, it may be simply placed on the sample stage MS, or may be appropriately engaged with a member constituting the sample stage MS.
Hereinafter, the base 2 will be described with reference to FIG. 5A and 5B are schematic views showing the base 2 in the sample holder 1 of the present embodiment, where FIG. 5A is a top view, FIG. 5B is a side view, and FIG. 5C is a bottom view.

本実施形態における試料ホルダー1における土台2は、試料ホルダー1の駆体となる部分である。その場合、あくまで一例であるが、土台2の形状は略円筒形状(以降、「略」は省略。)であり、円筒上方には開口31を有する円板状の試料押し付け面3を配する一方、下方においては試料ステージMSにおいて物が載置される主表面に対して接地することになる。本例では、円筒上方には試料押し付け面3を配する一方、下方を完全に開放し、円筒側面部分にて試料ステージMSと接地させる。円筒側面部分には下方に向けた切り欠き21が4か所形成されている。そして、円筒側面部分の内周側には、押し付け部材4の一つであるところの円板状の固定部材42(後述)を嵌め込むための溝22が形成されている。   The base 2 in the sample holder 1 in the present embodiment is a portion that serves as a driving body of the sample holder 1. In this case, the shape of the base 2 is a substantially cylindrical shape (hereinafter, “abbreviated” is omitted), and a disk-shaped sample pressing surface 3 having an opening 31 is disposed above the cylinder. In the lower part, the sample stage MS is grounded to the main surface on which an object is placed. In this example, the sample pressing surface 3 is disposed above the cylinder, while the lower portion is completely opened, and the sample stage MS is grounded at the cylindrical side surface portion. Four notches 21 directed downward are formed in the cylindrical side surface portion. A groove 22 for fitting a disk-shaped fixing member 42 (described later), which is one of the pressing members 4, is formed on the inner peripheral side of the cylindrical side surface portion.

土台2(駆体)や試料ホルダー1を構成する部材の素材としては特に限定は無いが、十分な強度を持つ鉄、アルミニウムなどの金属やその合金、複合材料を選択するのが好ましい。こうすることにより、押し付け部材4の一つであるところの弾性部材41(後述)の付勢に起因する荷重による駆体の変形を効果的に抑制し、ひいては開口31から上方に向けて露出した試料Sの部分(露出面SE、測定面)を走査面と平行にした状態を効果的に維持できる。   There are no particular limitations on the material of the members constituting the base 2 (driving body) and the sample holder 1, but it is preferable to select a metal such as iron or aluminum having sufficient strength, an alloy thereof, or a composite material. By doing so, deformation of the driving body due to a load caused by the biasing of an elastic member 41 (described later) which is one of the pressing members 4 is effectively suppressed, and as a result, exposed upward from the opening 31. It is possible to effectively maintain a state in which the portion of the sample S (exposed surface SE, measurement surface) is parallel to the scanning surface.

(試料押し付け面)
以下、試料押し付け面3について図6を用いて説明する。図5(a)は本実施形態の試料ホルダー1における試料押し付け面3の概略上面図である。図5(b)と図5(c)は試料押し付け面3を土台2に取り付けかつ試料Sを該試料ホルダー1に設置した概略図であり、(b)はその上面図、(c)はその下面図である。
本実施形態における試料ホルダー1の試料押し付け面3は、試料Sを押し付けた際に試料Sの一部を上方に向けて露出させる開口31を有する。そして本例においては、試料押し付け面3は土台2(試料ホルダー1の駆体)における円筒上方の内側に配される。
(Sample pressing surface)
Hereinafter, the sample pressing surface 3 will be described with reference to FIG. FIG. 5A is a schematic top view of the sample pressing surface 3 in the sample holder 1 of the present embodiment. 5 (b) and 5 (c) are schematic views in which the sample pressing surface 3 is attached to the base 2 and the sample S is placed on the sample holder 1, (b) is a top view thereof, and (c) is its top view. It is a bottom view.
The sample pressing surface 3 of the sample holder 1 in the present embodiment has an opening 31 that exposes a part of the sample S upward when the sample S is pressed. In this example, the sample pressing surface 3 is disposed on the inner side of the base 2 (the driving body of the sample holder 1) above the cylinder.

試料押し付け面3における開口31の形状としては特に限定が無く、例えば平面視で円形であっても構わないし、図6(b)に示すようにスリット形状であっても構わない。その際に、図6(a)に示すように、半月状のプレートを二つ用意し、これを円筒状の土台2の上方にて固定し、図6(b)に示すようなスリット形状の開口31を設けても構わない。   The shape of the opening 31 in the sample pressing surface 3 is not particularly limited, and may be, for example, a circular shape in a plan view, or may be a slit shape as shown in FIG. At that time, as shown in FIG. 6 (a), two half-moon-shaped plates are prepared, which are fixed above the cylindrical base 2, and have a slit shape as shown in FIG. 6 (b). An opening 31 may be provided.

また、開口31の大きさとしては、試料ホルダー1において開口31を有する面に対して下から上へと試料Sを押し付け、開口31に試料Sを架け渡した状態にし(図6(c))、試料Sの一部のみを開口31から上方に向けて露出(図6(b))させられる程度の大きさならば特に限定は無い。   Further, the size of the opening 31 is such that the sample S is pressed from the bottom to the top of the surface having the opening 31 in the sample holder 1 so that the sample S is bridged over the opening 31 (FIG. 6C). There is no particular limitation as long as only a part of the sample S can be exposed upward from the opening 31 (FIG. 6B).

ただ、走査型プローブ顕微鏡を用いた測定に供されることを鑑みると、試料S自体は非常に小さな大きさで済む。その関係上、開口31自体も非常に小さな大きさにすることになる。その一方、後述の押し付け部材4にて試料Sを試料押し付け面3に押し付ける関係上、押し付け部材4の一つであって押し付けの主力となる弾性部材41が開口31よりも大きい方が、試料Sの押し付けを確実にし、開口31から上方に露出する部分を確実に試料押し付け面3と同一面とできるため、非常に好ましい。そのため、弾性部材41の幅を、開口31の最小幅よりも大きくするのが非常に好ましい。
なお、弾性部材41の幅とは、弾性部材41がコイル状のバネやバルーンの場合は平面視における外径であり、弾性部材41が板バネの場合は板バネの最小幅を指すものとする。
However, in view of being subjected to measurement using a scanning probe microscope, the sample S itself needs only a very small size. For this reason, the opening 31 itself is also very small. On the other hand, because of the relationship of pressing the sample S against the sample pressing surface 3 with the pressing member 4 described later, the sample S is larger in the elastic member 41 that is one of the pressing members 4 and is the main force of pressing than the opening 31. Is highly preferable, and the portion exposed upward from the opening 31 can be surely made the same surface as the sample pressing surface 3. Therefore, it is very preferable to make the width of the elastic member 41 larger than the minimum width of the opening 31.
The width of the elastic member 41 is the outer diameter in plan view when the elastic member 41 is a coiled spring or balloon, and indicates the minimum width of the plate spring when the elastic member 41 is a leaf spring. .

ここで、試料ホルダー1のうち少なくとも開口31を有する面(試料押し付け面3)は、導通可能であって走査型プローブ顕微鏡における測定装置電極と接続可能に構成されているのが好ましい。この好適例について図13を用いて説明する。図13は、試料の露出面における電気特性の面内分布情報を測定する様子を示す図であり、(a)は、本実施形態の好適例であって、試料ホルダー1のうち少なくとも開口31を有する面が、導通可能であって走査型プローブ顕微鏡における測定装置電極と接続可能に構成された例を示す概略側面図であるのに対し、(b)は、導電性を有する面上に試料を載置して電気特性の面内分布情報を測定する様子を示す図である。   Here, the surface (sample pressing surface 3) having at least the opening 31 in the sample holder 1 is preferably configured to be conductive and connectable to a measuring device electrode in a scanning probe microscope. This preferred example will be described with reference to FIG. FIG. 13 is a diagram showing a state of measuring in-plane distribution information of electrical characteristics on the exposed surface of the sample. FIG. 13A is a preferred example of this embodiment, and at least the opening 31 of the sample holder 1 is formed. FIG. 4B is a schematic side view showing an example in which the surface having conductivity is configured to be connectable to the measuring device electrode in the scanning probe microscope, whereas FIG. It is a figure which shows a mode that it mounts and the in-plane distribution information of an electrical property is measured.

走査型プローブ顕微鏡の中でも走査型広がり抵抗顕微鏡(Scanning Spreading Resistance Microscope:SSRM)や走査型静電容量顕微鏡(Scanning Capacitance Microscope:SCM)は、微小領域における電気特性の面内分布情報(例えば面内における抵抗値のマッピング)が得られることから、近年、微細化が進む半導体分野では、デバイスのキャリア濃度分布などの観察に欠かせないツールとなっている。また、微小領域における電気特性を二次元的な情報として得られることから、半導体材料に限らず様々な材料に応用され始めている。   Among scanning probe microscopes, a scanning spreading resistance microscope (SSRM) and a scanning capacitance microscope (SCM) are in-plane distribution information (for example, in-plane) of electrical characteristics in a minute region. Therefore, in the semiconductor field where miniaturization is progressing in recent years, it has become an indispensable tool for observing the carrier concentration distribution of devices. In addition, since electrical characteristics in a minute region can be obtained as two-dimensional information, it has begun to be applied to various materials as well as semiconductor materials.

このように電気特性の面内分布情報を測定する際に、図13(a)の試料ホルダー1の構造を採用することには大きな利点がある。もし、図13(b)のように導電性を有する面上に試料Sを載置して電気特性の面内分布情報を測定すると、試料Sの表面から裏面に至るまで(白抜き矢印部分)の導通が確保できず、チャージアップ(帯電)が生じるおそれがある。ところが図13(a)だと探針MPと開口31を有する面との間すなわち試料Sの露出面SEにて導通を確保すればよく試料Sの厚さ方向に導通を確保する必要が無くなる。そうなるとチャージアップのおそれを低減することが可能となる。これは試料Sが導電性に乏しい場合、特に有効である。   Thus, when measuring the in-plane distribution information of the electrical characteristics, there is a great advantage in adopting the structure of the sample holder 1 shown in FIG. If the sample S is placed on a conductive surface as shown in FIG. 13B and the in-plane distribution information of the electrical characteristics is measured, the surface from the front surface to the back surface of the sample S (open arrow portion). Continuity cannot be ensured, and charge-up (charging) may occur. However, in FIG. 13A, it is only necessary to ensure conduction between the probe MP and the surface having the opening 31, that is, on the exposed surface SE of the sample S, and it is not necessary to ensure conduction in the thickness direction of the sample S. Then, it becomes possible to reduce the risk of charge-up. This is particularly effective when the sample S has poor conductivity.

なお、このとき導通可能とするのは試料ホルダー1のうち少なくとも試料押し付け面3であればよい。その場合、試料押し付け面3を測定装置電極(不図示)と接続する。その一方、試料押し付け面3と連結された土台2も導通可能としてもよい。その場合は、試料ステージMSに対して測定装置電極を設けておき、土台2を測定装置電極と接続すればよい。   At this time, it is sufficient that at least the sample pressing surface 3 of the sample holder 1 is made conductive. In that case, the sample pressing surface 3 is connected to a measuring device electrode (not shown). On the other hand, the base 2 connected to the sample pressing surface 3 may be conductive. In that case, a measuring device electrode may be provided for the sample stage MS, and the base 2 may be connected to the measuring device electrode.

(押し付け部材)
本実施形態における試料ホルダー1の押し付け部材4は、試料押し付け面3に対して試料Sを押し付けるものであり、主として以下の部材を備える。
・試料押し付け面3に向かって付勢する弾性部材41
・試料Sを押し付けた状態の弾性部材41を試料ホルダー1内にて固定する部材であって土台2に係合自在な固定部材42
・弾性部材41の付勢にて試料Sを試料押し付け面3に押し付ける下敷部材43
(Pressing member)
The pressing member 4 of the sample holder 1 in this embodiment presses the sample S against the sample pressing surface 3, and mainly includes the following members.
-Elastic member 41 urged toward the specimen pressing surface 3
A fixing member 42 that fixes the elastic member 41 in a state where the sample S is pressed in the sample holder 1 and is engageable with the base 2.
An underlay member 43 that presses the sample S against the sample pressing surface 3 by urging the elastic member 41

弾性部材41について図7を用いて説明する。図7は、本実施形態の試料ホルダー1における弾性部材41および固定部材42を示す概略側面図であり、図7(a)は該弾性部材41がドーム状のバネである場合、図7(b)は該弾性部材41がコイル状のバネである場合を示す。
弾性部材41としては、いずれかの方向へと付勢可能なものならば特に限定は無いが、過度に付勢してしまうと試料Sへの負荷が過大となってしまい試料Sの破損または変形が生じてしまうため、適度な弾性を有するもの、例えばスプリングやバルーン等が挙げられる。スプリングとしては、コイル状のバネやドーム状のバネ、板バネ等が挙げられる。
The elastic member 41 will be described with reference to FIG. FIG. 7 is a schematic side view showing the elastic member 41 and the fixing member 42 in the sample holder 1 of the present embodiment. FIG. 7A shows a case where the elastic member 41 is a dome-shaped spring. ) Shows a case where the elastic member 41 is a coiled spring.
The elastic member 41 is not particularly limited as long as it can be biased in either direction, but if it is excessively biased, the load on the sample S becomes excessive and the sample S is damaged or deformed. Therefore, a material having moderate elasticity such as a spring or a balloon can be used. Examples of the spring include a coiled spring, a dome-shaped spring, and a leaf spring.

固定部材42について図8を用いて説明する。図8は、固定部材42を土台2(駆体)に嵌め込む様子を示す概略図であって、(a)本実施形態の試料ホルダー1における土台2の側面図(再掲)であり、(b)は固定部材42の上面図である。
固定部材42としては、土台2の溝22に係合自在なものであれば特に限定は無い。例えば、試料ホルダー1が円筒形であることに合わせて円板を使用しても構わない。この円板としては、土台2の足に対応する部分を切り欠いて出っ張り421を形成したものを採用してもよい(図8(b))。こうすることにより、土台2の溝22に該固定部材42を係合させることが可能となる。具体例を挙げると、図4に示すように、試料ホルダー1に対し、上から試料S、下敷部材43(後述)、弾性部材41の順に嵌め入れ、最後に固定部材42を嵌め入れる。固定部材42の直径は、試料ホルダー1の内径に溝22の深さを合わせた大きさを有する。このとき、固定部材42には土台2の足に対応する部分を切り欠いていることから、試料ホルダー1の下方の切り欠き21から固定部材42の出っ張り421を嵌め入れる(図8(b))ことにより、スムーズに試料ホルダー1内に固定部材42を嵌め入れることができる。そして、弾性部材41が下敷部材43越しに試料Sを試料押し付け面3へと押し付けた状態のまま、固定部材42を円周方向に回転させ、固定部材42の切り欠き21の無い部分を溝22へと嵌め入れ、土台2(すなわち試料ホルダー1の駆体)に対して固定部材42を係合し、固定する。
The fixing member 42 will be described with reference to FIG. FIG. 8 is a schematic view showing a state in which the fixing member 42 is fitted into the base 2 (driving body), and (a) is a side view (repost) of the base 2 in the sample holder 1 of the present embodiment. ) Is a top view of the fixing member 42.
The fixing member 42 is not particularly limited as long as it can be engaged with the groove 22 of the base 2. For example, a disk may be used in accordance with the sample holder 1 having a cylindrical shape. As this disk, you may employ | adopt what formed the protrusion 421 by notching the part corresponding to the leg | foot of the base 2 (FIG.8 (b)). By doing so, the fixing member 42 can be engaged with the groove 22 of the base 2. Specifically, as shown in FIG. 4, the sample S, the underlay member 43 (described later), and the elastic member 41 are inserted into the sample holder 1 in this order from the top, and finally the fixing member 42 is inserted. The diameter of the fixing member 42 has a size obtained by adding the depth of the groove 22 to the inner diameter of the sample holder 1. At this time, since the portion corresponding to the foot of the base 2 is notched in the fixing member 42, the protrusion 421 of the fixing member 42 is fitted from the notch 21 below the sample holder 1 (FIG. 8B). Thus, the fixing member 42 can be fitted into the sample holder 1 smoothly. Then, with the elastic member 41 pressing the sample S against the sample pressing surface 3 through the underlay member 43, the fixing member 42 is rotated in the circumferential direction, and the portion of the fixing member 42 where the notch 21 is not provided is the groove 22. Then, the fixing member 42 is engaged with and fixed to the base 2 (that is, the main body of the sample holder 1).

下敷部材43としては、試料ホルダー1の内部に嵌め入れ可能であって、弾性部材41の付勢にて試料Sを試料押し付け面3に押し付けることができれば形状や素材に制限はない。   The underlay member 43 is not limited in shape and material as long as it can be fitted into the sample holder 1 and the sample S can be pressed against the sample pressing surface 3 by the urging of the elastic member 41.

ちなみに、下敷部材43と弾性部材41とが一体となっていても構わない。ただ、別体である方が、試料Sの裏面の形状に対して下敷部材43が追従できる。これについて図9を用いて説明する。図9は、本実施形態の試料ホルダー1に試料Sを設置した様子を示す概略側面図であり、図9(a)は試料の表面と裏面とで平行度が低い試料Sを採用した場合、図9(b)は湾曲試料Sを採用した場合を示す。   Incidentally, the underlay member 43 and the elastic member 41 may be integrated. However, the underlay member 43 can follow the shape of the back surface of the sample S when it is a separate body. This will be described with reference to FIG. FIG. 9 is a schematic side view showing a state in which the sample S is installed in the sample holder 1 of the present embodiment, and FIG. FIG. 9B shows a case where the curved sample S is employed.

図9(a)が示すように、試料Sの表面が裏面に対して傾斜していた場合であっても、下敷部材43は試料Sの裏面の形状に良く倣った状態で試料Sを試料押し付け面3に押し付け可能となる。つまり、試料Sの裏面に対して表面が傾斜していたとしても、相対的に試料Sの表面を水平面に配置できれば良く、試料Sの裏面がどれだけ傾斜していても下敷部材43により試料Sを試料押し付け面3に押し付け可能であり、不都合は生じない。
また、図9(b)が示すように、試料Sの表面が湾曲していた場合は、試料Sの素材にもよるが、弾性部材41および下敷部材43によって試料Sが試料押し付け面3に押し付けられ、湾曲形状が平面へと幾許かは矯正される。試料Sが例えば樹脂含有物であれば、弾性部材41による付勢の負荷の方が、樹脂含有物の変形に対する抵抗よりも大きくなる場合が多いため、上記のような矯正は十分に可能となる。
つまり、下敷部材43があれば、そして好ましくは弾性部材41とは別体で下敷部材43が存在すれば、より確実に試料Sを試料押し付け面3に押し付け、試料押し付け面3と平行な試料Sの露出面SEを得ることができる。
As shown in FIG. 9A, even if the surface of the sample S is inclined with respect to the back surface, the underlay member 43 presses the sample S in a state that closely follows the shape of the back surface of the sample S. It becomes possible to press against the surface 3. In other words, even if the surface is inclined with respect to the back surface of the sample S, it is only necessary that the surface of the sample S can be relatively disposed on a horizontal plane. Can be pressed against the sample pressing surface 3, and no inconvenience occurs.
As shown in FIG. 9B, when the surface of the sample S is curved, the sample S is pressed against the sample pressing surface 3 by the elastic member 41 and the underlay member 43 depending on the material of the sample S. And some curvature is corrected to a flat surface. If the sample S is, for example, a resin-containing material, the biasing load by the elastic member 41 is often larger than the resistance to deformation of the resin-containing material, and thus the above correction is sufficiently possible. .
That is, if the underlay member 43 is present, and preferably if the underlay member 43 exists separately from the elastic member 41, the sample S is more reliably pressed against the sample pressing surface 3, and the sample S parallel to the sample pressing surface 3 is obtained. The exposed surface SE can be obtained.

なお、試料ホルダー1をコンパクトに構成すべく、押し付け部材4を構成する上記の各部材を、土台2に囲まれた部分に配するのが好ましい。上記の具体例で言うと、試料ホルダー1の内部に押し付け部材4を収容自在な構成を採用するのが好ましい。   In addition, in order to make the sample holder 1 compact, it is preferable to arrange the above-mentioned members constituting the pressing member 4 in a portion surrounded by the base 2. In the above specific example, it is preferable to adopt a configuration in which the pressing member 4 can be accommodated inside the sample holder 1.

また、図14に示すように、土台2に対して溝22の代わりに雌ねじ23を設けておき、固定部材42の外縁を雄ねじ422の形状に加工しておき、固定部材42の下方に取り付けられた取っ手423を回すことにより固定部材42を上下方向に移動させるような構成を採用しても構わない。図14は、本実施形態の試料ホルダー1における固定部材42と土台2の別態様を示す概略図であって、(a)は固定部材42と土台2の拡大側面図であり、(b)は固定部材42と土台2の下面図である。点線は取っ手423の回転方向である。この構成ならば試料Sを試料押し付け面3に対して押し付ける度合いを手動で細かく調整することが可能となる。この場合、固定部材42のみにより押し付け部材4を構成しても構わないが、弾性部材41、下敷部材43を設ける方が試料Sに与えるダメージを低減しやすいため、好ましい。   Further, as shown in FIG. 14, a female screw 23 is provided in place of the groove 22 in the base 2, and the outer edge of the fixing member 42 is processed into the shape of the male screw 422, and is attached below the fixing member 42. A configuration in which the fixing member 42 is moved in the vertical direction by turning the handle 423 may be adopted. FIG. 14 is a schematic view showing another aspect of the fixing member 42 and the base 2 in the sample holder 1 of the present embodiment, in which (a) is an enlarged side view of the fixing member 42 and the base 2, and (b) is 4 is a bottom view of the fixing member 42 and the base 2. FIG. The dotted line is the rotation direction of the handle 423. With this configuration, the degree to which the sample S is pressed against the sample pressing surface 3 can be manually finely adjusted. In this case, the pressing member 4 may be configured only by the fixing member 42, but it is preferable to provide the elastic member 41 and the underlay member 43 because damage to the sample S can be easily reduced.

1−2.押し付け工程
本工程においては、試料ホルダー1における開口31を有する面に対して試料Sを押し付けて試料Sの一部を開口31から上方に向けて露出させる。こうすることにより、試料ステージMSの主表面と露出面SEとを平行にすることができ、ひいては露出面SEを走査面と平行にした状態を効果的に維持できる。
このとき、試料ホルダー1を水平な試料ステージMSに接地させた際の接地面MSFおよび試料Sの露出面SEをいずれも水平面とするのがよい。
1-2. Pressing Step In this step, the sample S is pressed against the surface of the sample holder 1 having the opening 31 to expose a part of the sample S upward from the opening 31. By doing so, the main surface of the sample stage MS and the exposed surface SE can be made parallel, and as a result, the state where the exposed surface SE is made parallel to the scanning surface can be effectively maintained.
At this time, both the ground contact surface MSF and the exposed surface SE of the sample S when the sample holder 1 is grounded to the horizontal sample stage MS are preferably horizontal surfaces.

1−3.走査工程
本工程においては、試料Sを押し付けた状態で試料ホルダー1を試料ステージMSに接地させ、試料ステージMSの主表面(本実施形態においては接地面MSF)および試料Sの露出面SEを互いに平行にして走査型プローブ顕微鏡にて試料Sの露出面SEを走査する。具体的な走査の手法としては、公知の走査型プローブ顕微鏡に関する作業を行えばよく、公知の各種測定を適宜選択して行えばよい。
1-3. Scanning Step In this step, the sample holder 1 is grounded to the sample stage MS while the sample S is pressed, and the main surface of the sample stage MS (the grounding surface MSF in this embodiment) and the exposed surface SE of the sample S are mutually connected. The exposed surface SE of the sample S is scanned with a scanning probe microscope in parallel. As a specific scanning method, an operation relating to a known scanning probe microscope may be performed, and various known measurements may be appropriately selected.

以上の工程を実施し、走査型プローブ顕微鏡用の試料Sを測定する。上記の内容を簡潔にまとめると以下のようになる。
「走査型プローブ顕微鏡にて試料を測定する方法であって、
試料ホルダーにおける開口を有する面に対して試料を押し付けて、試料の一部を前記開口から露出させるとともに露出面が走査面と平行になるように試料を矯正した状態で、走査型プローブ顕微鏡にて試料の露出面を走査する、走査型プローブ顕微鏡を用いた試料の測定方法。」
なお、上記以外の工程についても、公知の工程を適宜採用しても構わない。
The above process is implemented and the sample S for scanning probe microscopes is measured. The above contents can be summarized as follows.
"A method of measuring a sample with a scanning probe microscope,
With a scanning probe microscope, press the sample against the surface of the sample holder that has an opening to expose a part of the sample from the opening and correct the sample so that the exposed surface is parallel to the scanning surface. A method for measuring a sample using a scanning probe microscope, which scans an exposed surface of the sample. "
It should be noted that a known process may be adopted as appropriate for processes other than those described above.

<2.実施の形態による効果>
本実施形態によれば、走査型プローブ顕微鏡を用いた各種測定において、様々な形状の試料Sに対し、探針MPの走査面に対して測定面を平行に保ち、精度良く測定可能となる。
<2. Advantages of the embodiment>
According to the present embodiment, in various measurements using a scanning probe microscope, the measurement surface can be kept parallel to the scanning surface of the probe MP with respect to the sample S having various shapes, and measurement can be performed with high accuracy.

また、以下の効果もある。例えば、本発明の課題を解決するためには、試料Sの表面と裏面とを共に研磨等により加工し、試料Sの傾斜を無くすことも考えられる。しかしながら、走査型プローブ顕微鏡用の試料Sは極めて小さく、加工は容易とは言い難い。しかも、加工の際に試料Sが破損すると、試料Sを再び作製しなければならず、測定を行うまでの準備に多大な時間を費やすことになる。
その一方、本実施形態によれば、試料押し付け面3に対して下から試料Sを押し付けるだけで、開口31から上方にむけて試料Sの露出した部分(露出面SE)を試料押し付け面3と同一面とでき、ひいては走査面と平行にすることが可能となる。その結果、走査型プローブ顕微鏡を用いた各種測定の準備の時間や手間を大幅に削減することが可能となる。
There are also the following effects. For example, in order to solve the problem of the present invention, it is conceivable that both the front and back surfaces of the sample S are processed by polishing or the like to eliminate the inclination of the sample S. However, the sample S for the scanning probe microscope is extremely small, and it is difficult to say that processing is easy. Moreover, if the sample S is damaged during processing, the sample S must be prepared again, and a great deal of time is spent on preparations before measurement.
On the other hand, according to the present embodiment, by simply pressing the sample S from the bottom against the sample pressing surface 3, the exposed portion (exposed surface SE) of the sample S toward the upper side from the opening 31 is separated from the sample pressing surface 3. It is possible to have the same plane, and thus parallel to the scanning plane. As a result, it is possible to greatly reduce the time and labor for preparing various measurements using a scanning probe microscope.

<3.変形例>
本発明の技術的範囲は上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。
<3. Modification>
The technical scope of the present invention is not limited to the above-described embodiments, and includes various modifications and improvements as long as the specific effects obtained by the constituent elements of the invention and combinations thereof can be derived.

例えば、本実施形態においては押し付け部材4を備える試料ホルダー1を用いたが、試料ステージMSに弾性部材41を備えさせてもよい。この場合、試料ホルダー1は土台2(駆体)と試料押し付け面3とを備えていればよい。具体的な作業としては、円筒状の試料ホルダー1の中の試料押し付け面3の開口31の直下にて試料押し付け面3と下敷部材43とで挟まれる形で試料ホルダー1内に試料Sを配置する。そして、その状態で、試料ステージMSに設けられた弾性部材41の真上に下敷部材43が配されるように試料ステージMSに土台2を接地させ、試料ステージMSと土台2とを係合手段(不図示)にて係合させて固定する。こうすることにより、試料ホルダー1に弾性部材41ひいては固定部材42が無くとも、開口31からの露出面SEを試料ステージMSや試料押し付け面3と平行とすることができ、ひいては走査面と平行とすることができる。   For example, in the present embodiment, the sample holder 1 including the pressing member 4 is used. However, the sample stage MS may include the elastic member 41. In this case, the sample holder 1 only needs to include the base 2 (driving body) and the sample pressing surface 3. Specifically, the sample S is arranged in the sample holder 1 so as to be sandwiched between the sample pressing surface 3 and the underlay member 43 immediately below the opening 31 of the sample pressing surface 3 in the cylindrical sample holder 1. To do. In this state, the base 2 is grounded to the sample stage MS so that the underlay member 43 is disposed directly above the elastic member 41 provided on the sample stage MS, and the sample stage MS and the base 2 are engaged with each other. Engage and fix at (not shown). By doing so, the exposed surface SE from the opening 31 can be made parallel to the sample stage MS and the sample pressing surface 3 even without the elastic member 41 and thus the fixing member 42 in the sample holder 1, and in parallel to the scanning surface. can do.

また、押し付け部材4の構成として弾性部材41を例示したが、試料Sが脆くなく、一定の負荷を試料Sにかけても差し支えないならば、弾性部材41の代わりに非弾性部材(例えば押し棒)を使用し、固定部材42にて試料ホルダー1内に収められた際に試料Sを押圧する状態となりうるものならば差し支えない。   Further, although the elastic member 41 is exemplified as the configuration of the pressing member 4, if the sample S is not fragile and a constant load may be applied to the sample S, a non-elastic member (for example, a push rod) is used instead of the elastic member 41. Any material can be used as long as it can be in a state of pressing the sample S when it is stored in the sample holder 1 by the fixing member 42.

また、本実施形態においては下敷部材43を設けたが、弾性部材41が試料Sの方へ付勢した際に弾性部材41自体に下敷部材43としての機能が備わっているのならば、例えば上記の下敷部材43としての板状部材の代わりとなり得る板バネ等である場合は、下敷部材43を設けなくともよい。   Further, in this embodiment, the underlay member 43 is provided. If the elastic member 41 itself has a function as the underlay member 43 when the elastic member 41 is biased toward the sample S, for example, In the case of a leaf spring or the like that can replace the plate-like member as the underlay member 43, the underlay member 43 may not be provided.

以下、本実施例について説明する。なお、本発明の技術的範囲は以下の実施例に限定されるものではない。   Hereinafter, this embodiment will be described. The technical scope of the present invention is not limited to the following examples.

(実施例1)
本実施例においては、図4のように、本実施形態にて説明した試料ホルダー1に試料Sを設置し、試料Sを試料押し付け面3に押し付けた状態の試料ホルダー1を試料ステージMSに接地させた。
なお、本例における試料ホルダー1は図5に示すような円筒形であり、試料押し付け面3の開口31はスリット形状とした。また、試料Sとしてはポリイミド樹脂フィルムを用いた。
Example 1
In this embodiment, as shown in FIG. 4, the sample S is placed on the sample holder 1 described in the present embodiment, and the sample holder 1 in a state where the sample S is pressed against the sample pressing surface 3 is grounded to the sample stage MS. I let you.
The sample holder 1 in this example has a cylindrical shape as shown in FIG. 5, and the opening 31 of the sample pressing surface 3 has a slit shape. Further, as the sample S, a polyimide resin film was used.

そして、試料ホルダー1の開口31から上方に向けて露出した試料Sの部分(露出面SE)に対し、DI社製のAFM装置(NS−III,D5000システム)を用い、探針MPによる走査を行い、平均表面粗さRaを求めた。その際の結果として、図10には試料Sの表面(凹凸)の様子を示す鳥瞰図(XY:1目盛り0.2μm、Z:1目盛り10nm)、表1にはRaの数値を示す。
図10を見ると、試料Sの平行度が影響を及ぼしている様子は見受けられず、精度良く測定できていることがわかる。
A portion of the sample S (exposed surface SE) exposed upward from the opening 31 of the sample holder 1 is scanned with the probe MP using an AFM apparatus (NS-III, D5000 system) manufactured by DI. The average surface roughness Ra was determined. As a result at that time, FIG. 10 shows a bird's-eye view showing the surface (unevenness) of the sample S (XY: 1 scale 0.2 μm, Z: 1 scale 10 nm), and Table 1 shows Ra values.
As can be seen from FIG. 10, the parallelism of the sample S does not appear to be affected, and it can be measured with high accuracy.

(比較例1)
本例においては、上記の試料ホルダー1は使用せず、上記のAFM装置の試料ステージMSに対し、試料Sを直接両面テープで固定した。それ以外は、実施例1と同様の手法にて測定を行いRaを求めた。その際の結果として、図11には試料Sの表面(凹凸)の様子を示す鳥瞰図、表1にはRaの数値を示す。
図11を見ると、実施例1とは異なった像が得られていることがわかる。また、算出されたRaの値も大きくなっていることがわかる。これらの結果から、本例においては、試料Sの表面が探針MPの走査方向に対して平行となっていない影響が色濃く反映されていることがわかる。
(Comparative Example 1)
In this example, the sample holder 1 is not used, and the sample S is directly fixed to the sample stage MS of the AFM apparatus with a double-sided tape. Other than that, it measured by the method similar to Example 1, and calculated | required Ra. As a result at that time, FIG. 11 shows a bird's-eye view showing the surface (unevenness) of the sample S, and Table 1 shows Ra values.
FIG. 11 shows that an image different from that in Example 1 is obtained. It can also be seen that the calculated Ra value also increases. From these results, it can be seen that in this example, the influence that the surface of the sample S is not parallel to the scanning direction of the probe MP is reflected deeply.

(比較例2)
本例においては、比較例1で得られた結果を、上記のAMF装置に搭載されている傾斜補正機能で補正した。その際の結果として、図12には試料Sの表面(凹凸)の様子を示す鳥瞰図、表1には平均表面粗さRaの数値を示す。
図12自体は、一見すると、実施例1の図10と同様な状態を示している。ただ、その一方で、算出されたRaは実施例1の値よりも小さくなっていることがわかる。これは、上記のAMF装置に搭載されている傾斜補正機能により、小さなうねりの問題や、探針MPのアスペクト比と試料Sの表面の凹凸のアスペクト比との関係が加味されてしまい、測定結果が一義的に補正されてしまったためと考えられる。
(Comparative Example 2)
In this example, the result obtained in Comparative Example 1 was corrected by the inclination correction function mounted on the AMF apparatus. As a result at that time, FIG. 12 is a bird's-eye view showing the surface (unevenness) of the sample S, and Table 1 shows numerical values of the average surface roughness Ra.
FIG. 12 itself shows a state similar to that of FIG. However, on the other hand, it can be seen that the calculated Ra is smaller than the value of the first embodiment. This is because the tilt correction function installed in the above AMF apparatus takes into account the small waviness problem and the relationship between the aspect ratio of the probe MP and the surface roughness of the sample S, and the measurement results. This is thought to be due to the unambiguous correction.

(まとめ)
以上の結果、本実施例においては、走査型プローブ顕微鏡を用いた各種測定において、様々な形状の試料Sに対し、探針MPの走査面に対して測定面を平行に保ち、精度良く測定可能となったことがわかった。
(Summary)
As a result of the above, in the present embodiment, in various measurements using a scanning probe microscope, the measurement surface can be kept parallel to the scanning surface of the probe MP for various shapes of the sample S and can be measured with high accuracy. I found out that

1………試料ホルダー
2………土台
21……切り欠き
22……溝
23……雌ねじ
3………試料押し付け面
31……開口
4………押し付け部材
41……弾性部材
42……固定部材
421…出っ張り
422…雄ねじ
423…取っ手
43……下敷部材
100…試料ホルダー
S………試料
SE……露出面
MS……試料ステージ
MSF……接地面
MP……探針
1 ......... Sample holder 2 ......... Base 21 ... Notch 22 ... Groove 23 ... Female screw 3 ......... Sample pressing surface 31 ... Opening 4 ......... Pressing member 41 ... Elastic member 42 ... Fixed Member 421 ... Protruding 422 ... Male screw 423 ... Handle 43 ... Underlay member 100 ... Sample holder S ... Sample SE ... Exposed surface MS ... Sample stage MSF ... Grounding surface MP ... Probe

Claims (10)

走査型プローブ顕微鏡にて試料を測定する方法であって、
試料ホルダーにおける開口を有する面に対して試料を押し付けて試料の一部を前記開口から上方に向けて露出させる押し付け工程と、
試料を押し付けた状態で前記試料ホルダーを試料ステージに接地させ、試料ステージの主表面および試料の露出面を互いに平行にして走査型プローブ顕微鏡にて試料の露出面を走査する走査工程と、
を有する、走査型プローブ顕微鏡を用いた試料の測定方法。
A method of measuring a sample with a scanning probe microscope,
A pressing step of pressing a sample against a surface having an opening in the sample holder to expose a part of the sample upward from the opening;
A scanning step in which the sample holder is grounded to the sample stage while the sample is pressed, and the main surface of the sample stage and the exposed surface of the sample are parallel to each other, and the exposed surface of the sample is scanned with a scanning probe microscope;
A method for measuring a sample using a scanning probe microscope.
前記試料ホルダーを水平な試料ステージに接地させた際の接地面および試料の露出面をいずれも水平面とする、請求項1に記載の走査型プローブ顕微鏡を用いた試料の測定方法。   The method for measuring a sample using a scanning probe microscope according to claim 1, wherein a ground plane and an exposed surface of the sample are both horizontal when the sample holder is grounded to a horizontal sample stage. 前記試料ホルダーのうち少なくとも前記開口を有する面を導通可能としたうえで試料の露出面における電気特性の面内分布情報を測定する、請求項1または2に記載の走査型プローブ顕微鏡を用いた試料の測定方法。   The sample using the scanning probe microscope according to claim 1, wherein in-plane distribution information of electrical characteristics on an exposed surface of the sample is measured after enabling at least a surface having the opening of the sample holder to be conductive. Measuring method. 走査型プローブ顕微鏡用の試料を固定自在な試料ホルダーであって、
走査型プローブ顕微鏡の試料ステージと接地する土台と、
試料を押し付けた際に試料の一部を上方に向けて露出させる開口を有する試料押し付け面と、
前記試料押し付け面に対して試料を押し付ける押し付け部材と、
を有し、
試料ステージの主表面および前記試料押し付け面が互いに平行になるように前記土台と前記試料押し付け面とが構成された、走査型プローブ顕微鏡用試料ホルダー。
A sample holder for fixing a sample for a scanning probe microscope,
A scanning probe microscope sample stage and a grounding base;
A sample pressing surface having an opening that exposes a part of the sample upward when the sample is pressed;
A pressing member that presses the sample against the sample pressing surface;
Have
A sample holder for a scanning probe microscope, wherein the base and the sample pressing surface are configured such that a main surface of the sample stage and the sample pressing surface are parallel to each other.
前記土台を試料ステージに接地させた際の接地面および前記試料押し付け面は互いに平行である、請求項4に記載の走査型プローブ顕微鏡用試料ホルダー。   The sample holder for a scanning probe microscope according to claim 4, wherein a grounding surface and the sample pressing surface when the base is grounded to a sample stage are parallel to each other. 前記押し付け部材は、前記土台に囲まれた部分に配される、請求項4または5に記載の走査型プローブ顕微鏡用試料ホルダー。   The sample holder for a scanning probe microscope according to claim 4, wherein the pressing member is disposed in a portion surrounded by the base. 前記押し付け部材は、前記試料押し付け面に向かって付勢する弾性部材と、試料を押し付けた状態の前記弾性部材を前記試料ホルダー内にて固定する部材であって前記土台に係合自在な固定部材と、を備える、請求項4〜6のいずれかに記載の走査型プローブ顕微鏡用試料ホルダー。   The pressing member includes an elastic member that urges toward the sample pressing surface, and a member that fixes the elastic member in a state where the sample is pressed in the sample holder, and is a fixing member that is freely engageable with the base. A sample holder for a scanning probe microscope according to any one of claims 4 to 6. 前記押し付け部材は、前記弾性部材の付勢にて試料を前記試料押し付け面に押し付ける下敷部材を更に備える、請求項7に記載の走査型プローブ顕微鏡用試料ホルダー。   The sample holder for a scanning probe microscope according to claim 7, wherein the pressing member further includes an underlay member that presses the sample against the sample pressing surface by urging the elastic member. 前記試料ホルダーのうち少なくとも前記開口を有する面は、導通可能であって走査型プローブ顕微鏡における測定装置電極と接続可能に構成されている、請求項4〜8のいずれかに記載の走査型プローブ顕微鏡用試料ホルダー。   The scanning probe microscope according to claim 4, wherein at least a surface of the sample holder having the opening is configured to be conductive and connectable to a measuring device electrode in the scanning probe microscope. Sample holder. 走査型プローブ顕微鏡にて試料を測定する方法であって、
試料ホルダーにおける開口を有する面に対して試料を押し付けて、試料の一部を前記開口から露出させるとともに露出面が走査面と平行になるように試料を矯正した状態で、走査型プローブ顕微鏡にて試料の露出面を走査する、走査型プローブ顕微鏡を用いた試料の測定方法。
A method of measuring a sample with a scanning probe microscope,
With a scanning probe microscope, press the sample against the surface of the sample holder that has an opening to expose a part of the sample from the opening and correct the sample so that the exposed surface is parallel to the scanning surface. A method for measuring a sample using a scanning probe microscope, which scans an exposed surface of the sample.
JP2017124393A 2016-08-22 2017-06-26 Sample measurement method using scanning probe microscope and sample holder for scanning probe microscope Active JP6879078B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016161669 2016-08-22
JP2016161669 2016-08-22

Publications (2)

Publication Number Publication Date
JP2018031770A true JP2018031770A (en) 2018-03-01
JP6879078B2 JP6879078B2 (en) 2021-06-02

Family

ID=61304019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017124393A Active JP6879078B2 (en) 2016-08-22 2017-06-26 Sample measurement method using scanning probe microscope and sample holder for scanning probe microscope

Country Status (1)

Country Link
JP (1) JP6879078B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212001A (en) * 1990-09-14 1992-08-03 Hitachi Constr Mach Co Ltd Scanning tunnel microscope
JPH0592619U (en) * 1992-05-22 1993-12-17 日本電子株式会社 Sample holder for vacuum chamber
JPH0712824A (en) * 1993-06-25 1995-01-17 Canon Inc Scanning tunnel microscope having potential distribution measuring function
JP2000214064A (en) * 1999-01-26 2000-08-04 Japan Aviation Electronics Industry Ltd Sample holder for scanning tunneling microscope
JP2002031589A (en) * 2000-07-14 2002-01-31 Shimadzu Corp Scanning probe microscope
JP2003315225A (en) * 2002-04-26 2003-11-06 Jeol Ltd Sample holder, scanning probe microscope and heating method for semiconductor sample
JP2005283538A (en) * 2004-03-31 2005-10-13 Japan Science & Technology Agency Scanning probe microscope and leakage physical quantity measurement method
JP2009053017A (en) * 2007-08-27 2009-03-12 Fujitsu Ltd Scanning probe microscope and local electrical property measuring method using the same
JP2009525466A (en) * 2006-01-31 2009-07-09 アサイラム リサーチ コーポレーション This application claims priority to US Provisional Patent Application 60 / 763,659 filed on January 31, 2006, and is filed in the United States on November 28, 2006. And claims its priority in connection with patent application 11 / 563,822 (name of invention “variable density scanning”), which is hereby incorporated by reference in its entirety.
CN202533454U (en) * 2012-05-08 2012-11-14 赵烨梁 Ultrasonic single molecular sample preparation device
US20170169989A1 (en) * 2015-12-10 2017-06-15 Instituto Mexicano Del Petróleo Sample holder for scanning electron microscopy (sem) and atomic force microscopy (afm)

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212001A (en) * 1990-09-14 1992-08-03 Hitachi Constr Mach Co Ltd Scanning tunnel microscope
JPH0592619U (en) * 1992-05-22 1993-12-17 日本電子株式会社 Sample holder for vacuum chamber
JPH0712824A (en) * 1993-06-25 1995-01-17 Canon Inc Scanning tunnel microscope having potential distribution measuring function
JP2000214064A (en) * 1999-01-26 2000-08-04 Japan Aviation Electronics Industry Ltd Sample holder for scanning tunneling microscope
JP2002031589A (en) * 2000-07-14 2002-01-31 Shimadzu Corp Scanning probe microscope
JP2003315225A (en) * 2002-04-26 2003-11-06 Jeol Ltd Sample holder, scanning probe microscope and heating method for semiconductor sample
JP2005283538A (en) * 2004-03-31 2005-10-13 Japan Science & Technology Agency Scanning probe microscope and leakage physical quantity measurement method
JP2009525466A (en) * 2006-01-31 2009-07-09 アサイラム リサーチ コーポレーション This application claims priority to US Provisional Patent Application 60 / 763,659 filed on January 31, 2006, and is filed in the United States on November 28, 2006. And claims its priority in connection with patent application 11 / 563,822 (name of invention “variable density scanning”), which is hereby incorporated by reference in its entirety.
JP2009053017A (en) * 2007-08-27 2009-03-12 Fujitsu Ltd Scanning probe microscope and local electrical property measuring method using the same
CN202533454U (en) * 2012-05-08 2012-11-14 赵烨梁 Ultrasonic single molecular sample preparation device
US20170169989A1 (en) * 2015-12-10 2017-06-15 Instituto Mexicano Del Petróleo Sample holder for scanning electron microscopy (sem) and atomic force microscopy (afm)

Also Published As

Publication number Publication date
JP6879078B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
Britton et al. Factors affecting the accuracy of high resolution electron backscatter diffraction when using simulated patterns
Dixson et al. Traceable calibration of critical-dimension atomic force microscope linewidth measurements with nanometer uncertainty
US20140218503A1 (en) Apparatus and method for optical inspection, magnetic field and height mapping
KR20110103951A (en) Methods and Systems for Centering Wafers on a Chuck
JP6677748B2 (en) Probe system and method for receiving a probe of a scanning probe microscope
KR102605063B1 (en) Probe system and method of operating the probe system for optically probing the device under test
CN108548943B (en) A method of converting the coordinates of the A-S universal sample stage to the coordinates of the AFM sample stage
KR100761059B1 (en) Scanning probe microscope with overhang sample measurement
US11513079B2 (en) Method and system for wafer defect inspection
CN108398776A (en) A kind of general level adjusting apparatus adapted on microscope
TW201037325A (en) Prober cleaning block assembly
US8381311B2 (en) Method for examining a test sample using a scanning probe microscope, measurement system and a measuring probe system
WO2022151645A1 (en) Dimension measurement method and device for semiconductor structure
JP2018031770A (en) Measuring method of sample using scan type probe microscope, and sample holder for scan type probe microscope
CN111556963B (en) Scanning Electron Microscopy and Methods for Analyzing Secondary Electron Spin Polarization
CN108490011B (en) A method for locating the detected area of a bulk sample for transmission electron microscopy
US9470712B1 (en) Apparatus and method for atomic force probing/SEM nano-probing/scanning probe microscopy and collimated ion milling
Lucibello et al. A broadband toolbox for scanning microwave microscopy transmission measurements
US7895879B2 (en) Sample holder for holding samples at pre-determined angles
CN219590244U (en) Jig for ultrasonic detection and ultrasonic detection device
US10541108B2 (en) Method and apparatus for transmission electron microscopy
US20160274145A1 (en) Reconstruction Of Scanning Probe Microscopy Cantilever Tip
CN108761137B (en) AFM tip wear measurement method
JP4148273B2 (en) Crystal orientation measuring method and crystal orientation measuring apparatus
CN109188028B (en) Roughness measuring clamp and measuring method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210412

R150 Certificate of patent or registration of utility model

Ref document number: 6879078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150