JP2018025794A - 光学レンズ - Google Patents
光学レンズ Download PDFInfo
- Publication number
- JP2018025794A JP2018025794A JP2017150321A JP2017150321A JP2018025794A JP 2018025794 A JP2018025794 A JP 2018025794A JP 2017150321 A JP2017150321 A JP 2017150321A JP 2017150321 A JP2017150321 A JP 2017150321A JP 2018025794 A JP2018025794 A JP 2018025794A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- optical
- group
- present
- optical lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/62—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
- Nonlinear Science (AREA)
Abstract
【課題】本発明は、光学レンズを提供する。【解決手段】光学レンズは、第一レンズ群及び第二レンズ群を含む。第一レンズ群は、拡大側から縮小側へ順に配列される第一レンズ、第二レンズ及び第三レンズを含む。第一レンズ、第二レンズ及び第三レンズの屈折力は順に、負、負及び正である。第三レンズは、ガラスレンズである。第二レンズは、第一レンズ群と縮小側との間に配置される。第二レンズ群は、拡大側から縮小側へ順に配列される第四レンズ、第五レンズ及び第六レンズを含む。第四レンズ、第五レンズ及び第六レンズの屈折力は順に、正、負及び正である。第一レンズ、第二レンズ、第四レンズ、第五レンズ及び第六レンズは、プラスチックレンズである。本発明の光学レンズにより、広視角且つ低歪みの良好な光学品質を提供できる。【選択図】図1
Description
本発明は、光学素子に関し、特に、光学レンズに関する。
広角レンズが超広角視野(field of view、FOV)を有し、これにより、周囲の景物をセンサーに入力させることができる。広角レンズは、モニタリング、スポーツカメラ(Sport camera)又はドローン(Drone)などの製品に幅広く用いられている。広角レンズにより、酷い歪み収差(Distortion Aberration)を生じさせることができるため、使用者は、撮影した、歪み収差を有する映像をソフトウェア処理して映像の歪み収差を低減することができる。しかし、映像の辺縁(エッジ)部分については、解像度が比較的に低いため、補間(interpolation)などの方法で解像度を向上させる必要がある。異なる広角レンズの歪みに若干の違いがあり、単一(シングル)パラメータの条件下で完璧に修正することができないので、ソフトウェア処理による歪みの消去は、依然として、制限されている。
なお、この“背景技術”の部分が、本発明の内容への理解を助けるためだけのものであるため、この“背景技術”の部分に開示されている内容は、当業者に知られていない技術を含む可能性がある。よって、この“背景技術”の部分に開示されている内容は、該内容、又は、本発明の1つ又は複数の実施例が解決しようとする課題が本発明出願前に既に当業者に周知されていることを意味しない。
本発明の目的は、広視角且つ低歪みの光学レンズを提供することにある。
本発明の他の目的及び利点は、本発明に開示されている技術的特徴からさらに理解することができる。
上述の1つ又は一部又は全部の目的或いは他の目的を達成するために、本発明の一実施例によれば、光学レンズが提供され、それは、第一レンズ群及び第二レンズ群を含む。第一レンズ群は、拡大側から縮小側へ順に配列される第一レンズ、第二レンズ及び第三レンズを含む。第一レンズ、第二レンズ及び第三レンズの屈折力は、順に、負、負及び正である。第三レンズは、ガラスレンズである。第二レンズ群は、第一レンズ群と縮小側との間に配置される。第二レンズ群は、拡大側から縮小側へ順に配列される第四レンズ、第五レンズ及び第六レンズを含む。第四レンズ、第五レンズ及び第六レンズの屈折力は、順に、正、負及び正である。第一レンズ、第二レンズ、第四レンズ、第五レンズ及び第六レンズは、プラスチックレンズである。
上述により、本発明の実施例は、少なくとも、次のような1つの利点又は効果を有する。本発明の好適な実施例では、光学レンズにおける各レンズの全体的な配置アーキテクチャに基づいて、光学レンズは、大絞り(aperture)、広視角且つ低歪みの良好な光学品質を提供することができる。
本発明の上述の特徴及び利点をより明らかにするために、以下、実施例を挙げ、添付した図面を参照することにより、詳細に説明する。
本発明の上述した及び他の技術的内容、特徴、機能及び効果は、添付した図面に基づく次のような好適な実施例の詳細な説明により明確になる。なお、次の実施例に言及されている方向についての用語、例えば、上、下、左、右、前又は後などは、添付した図面の方向に過ぎない。よって、使用されている方向の用語は、本発明を説明するためだけのものであり、本発明を限定するためのものではない。
図1は、本発明の一実施例における光学レンズを示す図である。図1に示すように、本実施例の光学レンズ100は、第一レンズ群110、開口絞りS及び第二レンズ群120を含む。本実施例では、第一レンズ群110、開口絞りS及び第二レンズ群120は、順に、光学レンズ100の光軸OAに配置される。本実施例では、第一レンズ群110は、負屈折力を有し、且つ拡大側OSと第二レンズ群120との間に配置される。第二レンズ群120は、正屈折力を有し、且つ第一レンズ群110と縮小側ISとの間に配置される。開口絞りSは、第一レンズ群110と第二レンズ群120との間に配置される。
本実施例では、第一レンズ群110は、拡大側OSから縮小側ISへ順に配列される第一レンズ112、第二レンズ114及び第三レンズ116を含む。第一レンズ112、第二レンズ114及び第三レンズ116の屈折力は、順に、負、負及び正である。本実施例では、第一レンズ112及び第二レンズ114は、非球面レンズであり、第三レンズ116は、球面レンズである。具体的に言えば、本実施例では、第一レンズ112は、凸凹レンズであり、且つ拡大側OSに面する凸面を有し、第二レンズ114は、両凹レンズであり、第三レンズ116は、凹凸レンズであり、且つ拡大側OSに面する凸面を有する。本実施例では、第一レンズ112及び第二レンズ114は、プラスチックレンズであり、第三レンズ116は、ガラスレンズである。第三レンズ116の屈折率は、1.8よりも大きく、且つ第三レンズ116のアッベ数は、25よりも小さい。
本実施例では、第二レンズ群120は、拡大側OSから縮小側ISへ順に配列される第四レンズ122、第五レンズ124及び第六レンズ126を含む。第四レンズ122、第五レンズ124及び第六レンズ126の屈折力は、順に、正、負及び正である。本実施例では、第四レンズ122、第五レンズ124及び第六レンズ126は、非球面レンズである。具体的に言えば、本実施例では、第四レンズ122は、両凸レンズであり、第五レンズ124は、両凹レンズであり、且つ第六レンズ126は、両凸レンズである。本実施例では、第四レンズ122、第五レンズ124及び第六レンズ126は、プラスチックレンズである。また、本実施例では、開口絞りSは、単独で第一レンズ群110と第二レンズ群120との間に配置されても良いが、他の実施例では、開口絞りSは、第一レンズ群110の第三レンズ116の、縮小側ISに面する表面に配置されても良く、又は、第二レンズ群120の第四レンズ122の、拡大側OSに面する表面に配置されても良いが、本発明は、これに限定されない。
本実施例では、光学レンズ100は、次のような条件のうちの少なくとも1つを満たす。即ち、
1<|fG1/fG2|<2.2;
0.2<f/fL3<0.3;
|TTL/fG1|<6;
5<TTL/fG2<6.5;及ひ、
0.9<DL1/TTL<1
である。
1<|fG1/fG2|<2.2;
0.2<f/fL3<0.3;
|TTL/fG1|<6;
5<TTL/fG2<6.5;及ひ、
0.9<DL1/TTL<1
である。
そのうち、fG1は、第一レンズ群110の有効焦点距離であり、fG2は、第二レンズ群120の有効焦点距離であり、fは、光学レンズ100の有効焦点距離であり、fL3は、第三レンズ116の有効焦点距離であり、TTLは、光学レンズ110のレンズ総長さであり、且つDL1は、第一レンズ112の開口(clear aperture)である。
以下、光学レンズ100の一実施例を挙げる。なお、次の表1及表2にリストされるデータは、本発明を限定するためのものではない。当業者は、本発明を参照した上で、本発明の原理に基づいてそのパラメータ又は設定を適切に変更することもできるが、このような変更は、すべて、本発明の範囲に属する。
表1では、間隔とは、2つの隣接表面間の光学レンズ100の光軸OA上での直線距離を指し、例えば、表面S1の間隔は、表面S1と表面S2との間の光軸OA上での直線距離である。注釈欄における各レンズに対応する厚さ、屈折率及びアッベ数は、同一行における間隔、屈折率及びアッベ数に対応する数値を参照することができる。また、表1では、表面S1及び表面S2は、第一レンズ112の対向する2つの表面であり、且つ表面S1は、拡大側OSに面する表面であり、表面S2は、縮小側ISに面する表面である。表面S3及び表面S4は、第二レンズ114の対向する2つの表面であり、且つ表面S3は、拡大側OSに面する表面であり、表面S4は、縮小側ISに面する表面である。表面S5及び表面S6は、第三レンズ116の対向する2つの表面であり、且つ表面S5は、拡大側OSに面する表面であり、表面S6は、縮小側ISに面する表面である。表面S7及び表面S8は、第四レンズ122の対向する2つの表面であり、且つ表面S7は、拡大側OSに面する表面であり、表面S8は、縮小側ISに面する表面である。表面S9及び表面S10は、第五レンズ124の対向する2つの表面であり、且つ表面S9は、拡大側OSに面する表面であり、表面S10は、縮小側ISに面する表面である。表面S11及び表面S12は、第六レンズ126の対向する2つの表面であり、且つ表面S11は、拡大側OSに面する表面であり、表面S12は、縮小側ISに面する表面である。表面S13及び表面S14は、保護カバー130の対向する2つの表面であり、且つ表面S13は、拡大側OSに面する表面であり、表面S14は、縮小側ISに面する表面である。
上述した表面S1乃至表面S4及び表面S7乃至表面S12は、偶数次非球面であり、それは、次のような公式で表すことができる。即ち、
そのうち、Zは、非球面の光軸OA方向上でのオフセット(sag)であり、Rは、接触球面(osculating sphere)の半径であり、即ち、光軸OAに接近する処の曲率半径(例えば、表1中の表面S1乃至表面S4及び表面S7乃至表面S12の曲率半径)である。cは、二次曲面の係数(conic)であり、φは、非球面の高さ、即ち、レンズの中心からレンズの辺縁(エッジ)までの高さであり、A、B、C、D、E、F、G、H、J...は、非球面の係数(aspheric coefficient)である。また、次の表2にリストされるのは、表面S1乃至表面S4及び表面S7乃至表面S12の非球面のパラメータ値である。
そのうち“1.6165E-14”とは、1.6165×10-14を指し、その他の数値は、これに基づいて類推することができる。本実施例では、光学レンズ100の視野角(field of view、FOV)は、131度である。歪み率は、0.18%である。光学レンズ100の有効焦点距離fは、1.82ミリメートル(mm)である。絞り値(F-number)は、2.5である。光学レンズ100のレンズ総長さTTLは、27.38ミリメートルであり、第一レンズ群110の有効焦点距離|fG1|は、4.58ミリメートルであり、第二レンズ群120の有効焦点距離fG2は、4.50ミリメートルであり、第三レンズ116の有効焦点距離fL3は、7.52ミリメートルであり、且つ第一レンズ112の開口DL1は、25.4ミリメートルである。
図2は、図1における光学レンズの歪み図である。そのうち、図2に示す図形は、波長が587.6ナノメートル(nm)である光を以てシミュレートした図形である。図2から分かるように、物体の高さ(mm)の増加に伴い、その歪み量(%)の変化は、規格の範囲にある。よって、本実施例における光学レンズ100は、広視角且つ低歪みの良好な光学品質を提供することができ、低照度且つ大絞りの設計アーキテクチャに用いることもできる。また、光学レンズ100により撮影された映像は、その辺縁の解像度も向上している。
図3は、本発明のもう1つの実施例における光学レンズを示す図である。図3に示すように、本実施例における光学レンズ200は、第一レンズ群210、開口絞りS及び第二レンズ群220を含む。本実施例では、第一レンズ群210、開口絞りS及び第二レンズ群220は、順に、光学レンズ200の光軸OAに配置される。本実施例では、第一レンズ群210は、負屈折力を有し、且つ拡大側OSと第二レンズ群220との間に配置される。第二レンズ群220は、正屈折力を有し、且つ第一レンズ群210と縮小側ISとの間に配置される。開口絞りSは、第一レンズ群210と第二レンズ群220との間に配置される。
本実施例では、第一レンズ群210は、拡大側OSから縮小側ISへ順に配列される第一レンズ212、第二レンズ214及び第三レンズ216を含む。第一レンズ212、第二レンズ214及び第三レンズ216の屈折力は、順に、負、負及び正である。本実施例では、第一レンズ212及び第二レンズ214は、非球面レンズであり、第三レンズ216は、球面レンズである。具体的に言えば、本実施例では、第一レンズ212は、凸凹レンズであり、且つ拡大側OSに面する凸面を有し、第二レンズ214は、両凹レンズであり、第三レンズ216は、凹凸レンズであり、且つ拡大側OSに面する凸面を有する。本実施例では、第一レンズ212及び第二レンズ214は、プラスチックレンズであり、第三レンズ216は、ガラスレンズである。第三レンズ216の屈折率は、1.8よりも大きく、且つ第三レンズ216のアッベ数は、25よりも小さい。
本実施例では、第二レンズ群220は、拡大側OSから縮小側ISへ順に配列される第四レンズ222、第五レンズ224及び第六レンズ226を含む。第四レンズ222、第五レンズ224及び第六レンズ226の屈折力は、順に、正、負及び正である。本実施例では、第四レンズ222、第五レンズ224及び第六レンズ226は、非球面レンズである。具体的に言えば、本実施例では、第四レンズ222は、両凸レンズであり、第五レンズ224は、両凹レンズであり、且つ第六レンズ226は、両凸レンズである。本実施例では、第四レンズ222、第五レンズ224及び第六レンズ226は、プラスチックレンズである。
本実施例では、光学レンズ200は、次のような条件のうちの少なくとも1つを満たす。即ち、
1<|fG1/fG2|<2.2;
0.2<f/fL3<0.3;
|TTL/fG1|<6;
5<TTL/fG2<6.5;及び
0.9<DL1/TTL<1
である。
1<|fG1/fG2|<2.2;
0.2<f/fL3<0.3;
|TTL/fG1|<6;
5<TTL/fG2<6.5;及び
0.9<DL1/TTL<1
である。
そのうち、fG1は、第一レンズ群210の有効焦点距離であり、fG2は、第二レンズ群220の有効焦点距離であり、fは、光学レンズ200の有効焦点距離であり、fL3は、第三レンズ216の有効焦点距離であり、TTLは、光学レンズ210のレンズ総長さであり、且つDL1は、第一レンズ212の開口である。
以下、光学レンズ200の一実施例を挙げる。なお、次の表3及表4にリストされるデータは、本発明を限定するためのものではない。当業者は、本発明を参照した上で、本発明の原理に基づいてそのパラメータ又は設定を適切に変更することもできるが、このような変更は、すべて、本発明の範囲に属する。
表3では、間隔とは、2つの隣接表面間の光学レンズ200の光軸OA上での直線距離を指し、例えば、表面S1の間隔は、表面S1と表面S2との間の光軸OA上での直線距離である。注釈欄における各レンズに対応する厚さ、屈折率及びアッベ数は、同一行における間隔、屈折率及びアッベ数に対応する数値を参照することができる。また、表3では、表面S1及び表面S2は、第一レンズ212の対向する2つの表面であり、且つ表面S1は、拡大側OSに面する表面であり、表面S2は、縮小側ISに面する表面である。表面S3及び表面S4は、第二レンズ214の対向する2つの表面であり、且つ表面S3は、拡大側OSに面する表面であり、表面S4は、縮小側ISに面する表面である。表面S5及び表面S6は、第三レンズ216の対向する2つの表面であり、且つ表面S5は、拡大側OSに面する表面であり、表面S6は、縮小側ISに面する表面である。表面S7及び表面S8は、第四レンズ222の対向する2つの表面であり、且つ表面S7は、拡大側OSに面する表面であり、表面S8は、縮小側ISに面する表面である。表面S9及び表面S10は、第五レンズ224の対向する2つの表面であり、且つ表面S9は、拡大側OSに面する表面であり、表面S10は、縮小側ISに面する表面である。表面S11及び表面S12は、第六レンズ226の対向する2つの表面であり、且つ表面S11は、拡大側OSに面する表面であり、表面S12は、縮小側ISに面する表面である。表面S13及び表面S14は、保護カバー230の対向する2つの表面であり、且つ表面S13は、拡大側OSに面する表面であり、表面S14は、縮小側ISに面する表面である。
上述した表面S1乃至表面S4及び表面S7乃至表面S12は、偶数次非球面であり、それは、次のような式で表すことができる。即ち、
そのうち、Zは、非球面の光軸OA方向上でのオフセット(sag)であり、Rは、接触球面(osculating sphere)の半径であり、即ち、光軸OAに接近する処の曲率半径(例えば、表3中の表面S1乃至表面S4及び表面S7乃至表面S12の曲率半径)である。cは、二次曲面の係数(conic)であり、φは、非球面の高さ、即ち、レンズの中心からレンズの辺縁(エッジ)までの高さであり、A、B、C、D、E、F、G、H、J...は、非球面の係数(aspheric coefficient)である。また、次の表4にリストされるのは、表面S1乃至表面S4及び表面S7乃至表面S12の非球面のパラメータ値である。
そのうち“1.2736E-04”とは、1.2736×10-4を指し、その他の数値は、これに基づいて類推することができる。本実施例では、光学レンズ200の視野角(field of view、FOV)は、131度である。歪み率は、0.14%である。光学レンズ200の有効焦点距離fは、1.82ミリメートル(mm)である。絞り値(F-number)は、2.5である。光学レンズ200のレンズ総長さTTLは、27.80ミリメートルであり、第一レンズ群210の有効焦点距離|fG1|は、5.73ミリメートルであり、第二レンズ群220の有効焦点距離fG2は、4.99ミリメートルであり、第三レンズ216の有効焦点距離fL3は、6.47ミリメートルであり、且つ第一レンズ212の開口DL1は、25.4ミリメートルである。
図4は、図3における光学レンズの歪み図である。そのうち、図4に示す図形は、波長が587.6ナノメートル(nm)である光を以てシミュレートした図形である。図4から分かるように、物体の高さ(mm)の増加に伴い、その歪み量(%)の変化は、規格の範囲にある。よって、本実施例における光学レンズ200は、広視角且つ低歪みの良好な光学品質を提供することができ、低照度且つ大絞りの設計アーキテクチャに用いることもできる。また、光学レンズ200により撮影された映像は、その辺縁の解像度も向上している。
図5は、本発明のもう1つの実施例における光学レンズを示す図である。図5に示すように、本実施例における光学レンズ300は、第一レンズ群310、開口絞りS及び第二レンズ群320を含む。本実施例では、第一レンズ群310、開口絞りS及び第二レンズ群320は、順に、光学レンズ300の光軸OAに配置される。本実施例では、第一レンズ群310は、負屈折力を有し、且つ拡大側OSと第二レンズ群320との間に配置される。第二レンズ群320は、正屈折力を有し、且つ第一レンズ群310と縮小側ISとの間に配置される。開口絞りSは、第一レンズ群310と第二レンズ群320との間に配置される。
本実施例では、第一レンズ群310は、拡大側OSから縮小側ISへ順に配列される第一レンズ312、第二レンズ314及び第三レンズ316を含む。第一レンズ312、第二レンズ314及び第三レンズ316の屈折力は、順に、負、負及び正である。本実施例では、第一レンズ312、第二レンズ314及び第三レンズ316は、非球面レンズである。具体的に言えば、本実施例では、第一レンズ312は、凸凹レンズであり、且つ拡大側OSに面する凸面を有し、第二レンズ314は、両凹レンズであり、第三レンズ316は、凹凸レンズであり、且つ拡大側OSに面する凸面を有する。本実施例では、第一レンズ312及び第二レンズ314は、プラスチックレンズであり、第三レンズ316は、ガラスレンズである。第三レンズ316の屈折率は、1.8よりも大きく、且つ第三レンズ316のアッベ数は、25よりも小さい。
本実施例では、第二レンズ群320は、拡大側OSから縮小側ISへ順に配列される第四レンズ322、第五レンズ324及び第六レンズ326を含む。第四レンズ322、第五レンズ324及び第六レンズ326の屈折力は、順に、正、負及び正である。本実施例では、第四レンズ322、第五レンズ324及び第六レンズ326は、非球面レンズである。具体的に言えば、本実施例では、第四レンズ322は、両凸レンズであり、第五レンズ324は、両凹レンズであり、且つ第六レンズ326は、両凸レンズである。本実施例では、第四レンズ322、第五レンズ324及び第六レンズ326は、プラスチックレンズである。
本実施例では、光学レンズ300は、次のような条件のうちの少なくとも1つを満たす。即ち、
1<|fG1/fG2|<2.2;
0.2<f/fL3<0.3;
|TTL/fG1|<6;
5<TTL/fG2<6.5;及び
0.9<DL1/TTL<1
である。
1<|fG1/fG2|<2.2;
0.2<f/fL3<0.3;
|TTL/fG1|<6;
5<TTL/fG2<6.5;及び
0.9<DL1/TTL<1
である。
そのうち、fG1は、第一レンズ群310の有効焦点距離であり、fG2は、第二レンズ群320の有効焦点距離であり、fは、光学レンズ300の有効焦点距離であり、fL3は、第三レンズ316の有効焦点距離であり、TTLは、光学レンズ310のレンズ総長さであり、且つDL1は、第一レンズ312の開口である。
以下、光学レンズ300の一実施例を挙げる。なお、次の表5及表6にリストされるデータは、本発明を限定するためのものではない。当業者は、本発明を参照した上で、本発明の原理に基づいてそのパラメータ又は設定を適切に変更することもできるが、このような変更は、すべて、本発明の範囲に属する。
表5では、間隔とは、2つの隣接表面間の光学レンズ300の光軸OA上での直線距離を指し、例えば、表面S1の間隔は、表面S1と表面S2との間の光軸OA上での直線距離である。注釈欄における各レンズに対応する厚さ、屈折率及びアッベ数は、同一行における間隔、屈折率及びアッベ数に対応する数値を参照することができる。また、表5では、表面S1及び表面S2は、第一レンズ312の対向する2つの表面であり、且つ表面S1は、拡大側OSに面する表面であり、表面S2は、縮小側ISに面する表面である。表面S3及び表面S4は、第二レンズ314の対向する2つの表面であり、且つ表面S3は、拡大側OSに面する表面であり、表面S4は、縮小側ISに面する表面である。表面S5及び表面S6は、第三レンズ316の対向する2つの表面であり、且つ表面S5は、拡大側OSに面する表面であり、表面S6は、縮小側ISに面する表面である。表面S7及び表面S8は、第四レンズ322の対向する2つの表面であり、且つ表面S7は、拡大側OSに面する表面であり、表面S8は、縮小側ISに面する表面である。表面S9及び表面S10は、第五レンズ324の対向する2つの表面であり、且つ表面S9は、拡大側OSに面する表面であり、表面S10は、縮小側ISに面する表面である。表面S11及び表面S12は、第六レンズ326の対向する2つの表面であり、且つ表面S11は、拡大側OSに面する表面であり、表面S12は、縮小側ISに面する表面である。表面S13及び表面S14は、保護カバー330の対向する2つの表面であり、且つ表面S13は、拡大側OSに面する表面であり、表面S14は、縮小側ISに面する表面である。
上述した表面S1乃至表面S12は、偶数次非球面であり、それは、次のような式で表すことができる。即ち、
そのうち、Zは、非球面の光軸OA方向上でのオフセット(sag)であり、Rは、接触球面(osculating sphere)の半径であり、即ち、光軸OAに接近する処の曲率半径(例えば、表5中の表面S1乃至S12の曲率半径)である。cは、二次曲面の係数(conic)であり、φは、非球面の高さ、即ち、レンズの中心からレンズの辺縁(エッジ)までの高さであり、A、B、C、D、E、F、G、H、J...は、非球面の係数(aspheric coefficient)である。また、次の表6にリストされるのは、表面S1乃至表面S12の非球面のパラメータ値である。
そのうち“7.9330E-05”とは、7.9330×10-5を指し、その他の数値は、これに基づいて類推することができる。本実施例では、光学レンズ300の視野角(field of view、FOV)は、131度である。歪み率は、0.43%である。光学レンズ300の有効焦点距離fは、1.82ミリメートル(mm)である。絞り値(F-number)は、2.5である。光学レンズ300のレンズ総長さTTLは、27.8ミリメートルであり、第一レンズ群310の有効焦点距離|fG1|は、8.37ミリメートルであり、第二レンズ群320の有効焦点距離fG2は、5.26ミリメートルであり、第三レンズ316の有効焦点距離fL3は、6.69ミリメートルであり、且つ第一レンズ312の開口DL1は、25.2ミリメートルである。
図6は、図5における光学レンズの歪み図である。そのうち、図6に示す図形は、波長が587.6ナノメートル(nm)である光を以てシミュレートした図形である。図6から分かるように、物体の高さ(mm)の増加に伴い、その歪み量(%)の変化は、規格の範囲にある。よって、本実施例における光学レンズ300は、広視角且つ低歪みの良好な光学品質を提供することができ、低照度且つ大絞りの設計アーキテクチャに用いることもできる。また、光学レンズ300により撮影された映像は、その辺縁の解像度も向上している。
図7は、本発明のもう1つの実施例における光学レンズを示す図である。図7に示すように、本実施例の光学レンズ400は、第一レンズ群410、開口絞りS及び第二レンズ群420を含む。本実施例では、第一レンズ群410、開口絞りS及び第二レンズ群420は、順に、光学レンズ400の光軸OAに配置される。本実施例では、第一レンズ群410は、負屈折力を有し、且つ拡大側OSと第二レンズ群420との間に配置される。第二レンズ群420は、正屈折力を有し、且つ第一レンズ群410と縮小側ISとの間に配置される。開口絞りSは、第一レンズ群410と第二レンズ群420との間に配置される。
本実施例では、第一レンズ群410は、拡大側OSから縮小側ISへ順に配列される第一レンズ412、第二レンズ414及び第三レンズ416を含む。第一レンズ412、第二レンズ414及び第三レンズ416の屈折力は、順に、負、負及び正である。本実施例では、第一レンズ412及び第二レンズ414は、非球面レンズであり、第三レンズ416は、球面レンズである。具体的に言えば、本実施例では、第一レンズ412は、凸凹レンズであり、且つ拡大側OSに面する凸面を有し、第二レンズ414は、両凹レンズであり、第三レンズ416は、平凸レンズであり、且つ拡大側OSに面する凸面を有する。本実施例では、第一レンズ412及び第二レンズ414は、プラスチックレンズであり、第三レンズ416は、ガラスレンズである。第三レンズ416の屈折率は、1.8よりも大きく、且つ第三レンズ416のアッベ数は、25よりも小さい。
本実施例では、第二レンズ群420は、拡大側OSから縮小側ISへ順に配列される第四レンズ422、第五レンズ424及び第六レンズ426を含む。第四レンズ422、第五レンズ424及び第六レンズ426の屈折力は、順に、正、負及び正である。本実施例では、第四レンズ422、第五レンズ424及び第六レンズ426は、非球面レンズである。具体的に言えば、本実施例では、第四レンズ422は、両凸レンズであり、第五レンズ424は、両凹レンズであり、且つ第六レンズ426は、両凸レンズである。本実施例では、第四レンズ422、第五レンズ424及び第六レンズ426は、プラスチックレンズである。
本実施例では、光学レンズ400は、次のような条件のうちの少なくとも1つを満たす。即ち、
1<|fG1/fG2|<2.2;
0.2<f/fL3<0.3;
|TTL/fG1|<6;
5<TTL/fG2<6.5;及び
0.9<DL1/TTL<1
である。
1<|fG1/fG2|<2.2;
0.2<f/fL3<0.3;
|TTL/fG1|<6;
5<TTL/fG2<6.5;及び
0.9<DL1/TTL<1
である。
そのうち、fG1は、第一レンズ群410の有効焦点距離であり、fG2は、第二レンズ群420の有効焦点距離であり、fは、光学レンズ400の有効焦点距離であり、fL3は、第三レンズ416の有効焦点距離であり、TTLは、光学レンズ410のレンズ総長さであり、且つDL1は、第一レンズ412の開口である。
以下、光学レンズ400の一実施例を挙げる。なお、次の表7及表8にリストされるデータは、本発明を限定するためのものではない。当業者は、本発明を参照した上で、本発明の原理に基づいてそのパラメータ又は設定を適切に変更することもできるが、このような変更は、すべて、本発明の範囲に属する。
表7では、間隔とは、2つの隣接表面間の光学レンズ400の光軸OA上での直線距離を指し、例えば、表面S1の間隔は、表面S1と表面S2との間の光軸OA上での直線距離である。注釈欄における各レンズに対応する厚さ、屈折率及びアッベ数は、同一行における間隔、屈折率及びアッベ数に対応する数値を参照することができる。また、表7では、表面S1及び表面S2は、第一レンズ412の対向する2つの表面であり、且つ表面S1は、拡大側OSに面する表面であり、表面S2は、縮小側ISに面する表面である。表面S3及び表面S4は、第二レンズ414の対向する2つの表面であり、且つ表面S3は、拡大側OSに面する表面であり、表面S4は、縮小側ISに面する表面である。表面S5及び表面S6は、第三レンズ416の対向する2つの表面であり、且つ表面S5は、拡大側OSに面する表面であり、表面S6は、縮小側ISに面する表面である。表面S7及び表面S8は、第四レンズ422の対向する2つの表面であり、且つ表面S7は、拡大側OSに面する表面であり、表面S8は、縮小側ISに面する表面である。表面S9及び表面S10は、第五レンズ424の対向する2つの表面であり、且つ表面S9は、拡大側OSに面する表面であり、表面S10は、縮小側ISに面する表面である。表面S11及び表面S12は、第六レンズ426の対向する2つの表面であり、且つ表面S11は、拡大側OSに面する表面であり、表面S12は、縮小側ISに面する表面である。表面S13及び表面S14は、保護カバー430の対向する2つの表面であり、且つ表面S14は、拡大側OSに面する表面であり、表面S14は、縮小側ISに面する表面である。
上述した表面S1乃至表面S4及び表面S7乃至表面S12は、偶数次非球面であり、それは、次のような式で表すことができる。即ち、
そのうち、Zは、非球面の光軸OA方向上でのオフセット(sag)であり、Rは、接触球面(osculating sphere)の半径であり、即ち、光軸OAに接近する処の曲率半径(例えば、表7中の表面S1乃至表面S4及び表面S7乃至表面S12の曲率半径)である。cは、二次曲面の係数(conic)であり、φは、非球面の高さ、即ち、レンズの中心からレンズの辺縁(エッジ)までの高さであり、A、B、C、D、E、F、G、H、J...は、非球面の係数(aspheric coefficient)である。また、次の表8にリストされるのは、表面S1乃至表面S4及び表面S7乃至表面S12の非球面のパラメータ値である。
そのうち“-5.18963E-05”とは、-5.18963×10-5を指し、その他の数値は、これに基づいて類推することができる。本実施例では、光学レンズ400の視野角(field of view、FOV)は、131度である。歪み率は、0.55%である。光学レンズ400の有効焦点距離fは、1.82ミリメートル(mm)である。絞り値(F-number)は、2.5である。光学レンズ400のレンズ総長さTTLは、27.8ミリメートルであり、第一レンズ群410の有効焦点距離|fG1|は、10.96ミリメートルであり、第二レンズ群420の有効焦点距離fG2は、5.14ミリメートルであり、第三レンズ416の有効焦点距離fL3は、8.15ミリメートルであり、且つ第一レンズ412の開口DL1は、25.4ミリメートルである。
図8は、図7における光学レンズの歪み図である。そのうち、図8に示す図形は、波長が587.6ナノメートル(nm)である光を以てシミュレートした図形である。図8から分かるように、物体の高さ(mm)の増加に伴い、その歪み量(%)の変化は、規格の範囲にある。よって、本実施例における光学レンズ400は、広視角且つ低歪みの良好な光学品質を提供することができ、低照度且つ大絞りの設計アーキテクチャに用いることもできる。また、光学レンズ400により撮影された映像は、その辺縁の解像度も向上している。
以上のことを纏めると、本発明の実施例は、少なくとも、次のような1つの利点又は効果を有する。本発明の好適な実施例では、光学レンズにおける各レンズの全体的な配置アーキテクチャに基づいて、光学レンズは、広視角且つ低歪みの良好な光学品質を提供することができる。また、本発明の好適な実施例における光学レンズの大絞りの設計アーキテクチャは、少なくとも、低照度の環境に用いることができる。また、撮影された映像は、その辺縁の解像度も向上している。また、本発明の光学レンズを、例えば、映像取得用固定焦点レンズ(prime lens)とする場合、上述の実施例における映像ソース140、240、340、440は、例えば、縮小側ISに位置する結像面であり、物体の高さ(object height)は、例えば、拡大側OSに位置する被撮影物体の高さである。
本発明は、前述した好適な実施例に基づいて以上のように開示されたが、前述した好適な実施例は、本発明を限定するためのものでなく、当業者は、本発明の精神と範囲を離脱しない限り、本発明に対して些細な変更と潤色を行うことができるので、本発明の保護範囲は、添付した特許請求の範囲に定まったものを基準とする。また、本発明の何れの実施例又は特許請求の範囲は、本発明に開示された全ての目的又は利点又は特徴を達成する必要がない。また、要約の一部と発明の名称は、文献の検索を助けるためのみのものであり、本発明の権利範囲を限定するものでない。また、本明細書又は特許請求の範囲に言及されている「第一」、「第二」などの用語は、要素(element)に名前を付け、又は、異なる実施例又は範囲を区別するためのもののみであり、要素の数量上の上限又は下限を限定するためのものでない。
100、200、300、400:光学レンズ
110、210、310、410:第一レンズ群
112、212、312、412:第一レンズ
114、214、314、414:第二レンズ
116、216、316、416:第三レンズ
120、220、320、420:第二レンズ群
122、222、322、422:第四レンズ
124、224、324、424:第五レンズ
126、226、326、426:第六レンズ
130、230、330、430:保護カバー
140、240、340、440:映像ソース
OA:光軸
OS:拡大側
IS:縮小側
S:開口絞り(aperture stop)
S1、S2、S3、S4、S5、S6、S7、S8、S9、S10、S11、S12、S13、S14:表面
110、210、310、410:第一レンズ群
112、212、312、412:第一レンズ
114、214、314、414:第二レンズ
116、216、316、416:第三レンズ
120、220、320、420:第二レンズ群
122、222、322、422:第四レンズ
124、224、324、424:第五レンズ
126、226、326、426:第六レンズ
130、230、330、430:保護カバー
140、240、340、440:映像ソース
OA:光軸
OS:拡大側
IS:縮小側
S:開口絞り(aperture stop)
S1、S2、S3、S4、S5、S6、S7、S8、S9、S10、S11、S12、S13、S14:表面
Claims (14)
- 光学レンズであって、
第一レンズ群及び第二レンズ群を含み、
前記第一レンズ群は、拡大側から縮小側へ順に配列される第一レンズ、第二レンズ及び第三レンズを含み、前記第一レンズ、前記第二レンズ及び前記第三レンズの屈折力は、順位、負、負及び正であり、且つ前記第三レンズは、ガラスレンズであり、
前記第二レンズ群は、前記第一レンズ群と前記縮小側との間に配置され、前記第二レンズ群は、前記拡大側から前記縮小側へ順に配列される第四レンズ、第五レンズ及び第六レンズを含み、前記第四レンズ、前記第五レンズ及び前記第六レンズの屈折力は、順に、正、負及び正であり、且つ前記第一レンズ、前記第二レンズ、前記第四レンズ、前記第五レンズ及び前記第六レンズは、プラスチックレンズである、光学レンズ。 - 請求項1に記載の光学レンズであって、
前記第三レンズは、非球面レンズである、光学レンズ。 - 請求項1に記載の光学レンズであって、
前記第三レンズは、球面レンズである、光学レンズ。 - 請求項1に記載の光学レンズであって、
前記第一レンズ、前記第二レンズ、前記第四レンズ、前記第五レンズ及び前記第六レンズは、非球面レンズである、光学レンズ。 - 請求項1に記載の光学レンズであって、
前記第一レンズは、凸凹レンズであり、且つ前記拡大側に面する凸面を有し、前記第二レンズは、両凹レンズであり、前記第四レンズは、両凸レンズであり、前記第五レンズは、両凹レンズであり、且つ前記第六レンズは、両凸レンズである、光学レンズ。 - 請求項1に記載の光学レンズであって、
前記第三レンズは、凹凸レンズであり、且つ前記拡大側に面する凸面を有する、光学レンズ。 - 請求項1に記載の光学レンズであって、
前記第三レンズは、平凸レンズであり、且つ前記拡大側に面する凸面を有する、光学レンズ。 - 請求項1に記載の光学レンズであって、
前記光学レンズは、1<|fG1/fG2|<2.2を満たし、
fG1は、前記第一レンズ群の有効焦点距離であり、fG2は、前記第二レンズ群の有効焦点距離である、光学レンズ。 - 請求項1に記載の光学レンズであって、
前記光学レンズは、0.2<f/fL3<0.3を満たし、
fは、前記光学レンズの有効焦点距離であり、fL3は、前記第三レンズの有効焦点距離である、光学レンズ。 - 請求項1に記載の光学レンズであって、
前記光学レンズは、|TTL/fG1|<6を満たし、
fG1は、前記第一レンズ群の有効焦点距離であり、TTLは、前記光学レンズのレンズ総長さである、光学レンズ。 - 請求項1に記載の光学レンズであって、
前記光学レンズは、5<TTL/fG2<6.5を満たし、
fG2は、前記第二レンズ群の有効焦点距離であり、TTLは、前記光学レンズのレンズ総長さである、光学レンズ。 - 請求項1に記載の光学レンズであって、
前記光学レンズは、0.9<DL1/TTL<1を満たし、
DL1は、前記第一レンズの開口であり、TTLは、前記光学レンズのレンズ総長さである、光学レンズ。 - 請求項1に記載の光学レンズであって、
前記第三レンズの屈折率は、1.8よりも大きく、前記第三レンズのアッベ数は、25よりも小さい、光学レンズ。 - 請求項1に記載の光学レンズであって、
開口絞りを更に含み、
前記開口絞りは、前記第一レンズ群と前記第二レンズ群との間に配置される、光学レンズ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610644863.1 | 2016-08-09 | ||
CN201610644863.1A CN107703604A (zh) | 2016-08-09 | 2016-08-09 | 光学镜头 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018025794A true JP2018025794A (ja) | 2018-02-15 |
Family
ID=59522994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017150321A Pending JP2018025794A (ja) | 2016-08-09 | 2017-08-03 | 光学レンズ |
Country Status (4)
Country | Link |
---|---|
US (1) | US10416420B2 (ja) |
EP (1) | EP3282298A1 (ja) |
JP (1) | JP2018025794A (ja) |
CN (1) | CN107703604A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7547310B2 (ja) | 2021-12-20 | 2024-09-09 | キヤノン株式会社 | 撮像システム、移動装置、撮像方法およびプログラム |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10564398B2 (en) * | 2017-12-27 | 2020-02-18 | Rays Optics Inc. | Lens and manufacturing method thereof |
CN109375341B (zh) * | 2018-09-20 | 2023-10-10 | 苏州莱能士光电科技股份有限公司 | 一种车载倒车影像光学成像系统 |
TWI735013B (zh) * | 2019-07-26 | 2021-08-01 | 光芒光學股份有限公司 | 定焦取像鏡頭 |
TWI722713B (zh) * | 2019-12-12 | 2021-03-21 | 大陸商信泰光學(深圳)有限公司 | 廣角鏡頭(二十六) |
CN113777748A (zh) * | 2020-06-09 | 2021-12-10 | 三营超精密光电(晋城)有限公司 | 光学镜头及具有该光学镜头的电子装置 |
CN112965205B (zh) * | 2021-02-26 | 2022-06-28 | 天津欧菲光电有限公司 | 成像透镜组、摄像模组、电子设备以及汽车 |
TWI764764B (zh) * | 2021-06-22 | 2022-05-11 | 佳凌科技股份有限公司 | 光學成像鏡頭 |
CN114815181B (zh) * | 2022-04-19 | 2023-09-05 | 江西晶超光学有限公司 | 光学系统、镜头模组及电子设备 |
CN116908999B (zh) * | 2023-09-14 | 2023-12-08 | 武汉宇熠科技有限公司 | 一种大广角低畸变视讯会议镜头 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004354572A (ja) * | 2003-05-28 | 2004-12-16 | Minolta Co Ltd | 撮像装置 |
JP2006171597A (ja) * | 2004-12-20 | 2006-06-29 | Matsushita Electric Ind Co Ltd | 広角レンズ |
JP2007249073A (ja) * | 2006-03-17 | 2007-09-27 | Sony Corp | レンズユニット |
JP2010009028A (ja) * | 2008-05-27 | 2010-01-14 | Fujinon Corp | 撮像レンズおよびこの撮像レンズを用いた撮像装置 |
JP2010243709A (ja) * | 2009-04-03 | 2010-10-28 | Ricoh Co Ltd | 広角レンズおよび撮像装置 |
JP2011221055A (ja) * | 2010-04-02 | 2011-11-04 | Fujifilm Corp | 投写レンズおよびこれを用いた投写型表示装置 |
WO2012127826A1 (ja) * | 2011-03-18 | 2012-09-27 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01303409A (ja) * | 1988-05-31 | 1989-12-07 | Minolta Camera Co Ltd | プラスチックレンズを含むレンズ |
TWI330720B (en) * | 2007-04-14 | 2010-09-21 | Young Optics Inc | Zoom lens |
JP5042767B2 (ja) | 2007-10-05 | 2012-10-03 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置 |
JP2010160479A (ja) * | 2008-12-10 | 2010-07-22 | Fujinon Corp | 撮像レンズおよびこの撮像レンズを用いた撮像装置 |
TW201209471A (en) * | 2010-08-30 | 2012-03-01 | Young Optics Inc | Lens module |
CN102455486B (zh) | 2010-10-20 | 2014-04-30 | 鸿富锦精密工业(深圳)有限公司 | 超广角镜头 |
WO2013046566A1 (ja) * | 2011-09-29 | 2013-04-04 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置 |
CN203773132U (zh) * | 2011-09-29 | 2014-08-13 | 富士胶片株式会社 | 成像镜头和成像设备 |
TWI449944B (zh) * | 2012-07-24 | 2014-08-21 | Largan Precision Co Ltd | 廣視角光學鏡頭組 |
JP5963360B2 (ja) * | 2012-11-21 | 2016-08-03 | カンタツ株式会社 | 撮像レンズ |
TWI533018B (zh) | 2013-08-28 | 2016-05-11 | 揚明光學股份有限公司 | 定焦鏡頭 |
CN103576290B (zh) | 2013-10-30 | 2016-01-06 | 宁波舜宇车载光学技术有限公司 | 一种广角镜头 |
US10133030B2 (en) * | 2014-06-17 | 2018-11-20 | Samsung Electro-Mechanics Co., Ltd. | High resolution lens module |
-
2016
- 2016-08-09 CN CN201610644863.1A patent/CN107703604A/zh active Pending
-
2017
- 2017-08-03 JP JP2017150321A patent/JP2018025794A/ja active Pending
- 2017-08-03 EP EP17184692.6A patent/EP3282298A1/en not_active Withdrawn
- 2017-08-08 US US15/671,146 patent/US10416420B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004354572A (ja) * | 2003-05-28 | 2004-12-16 | Minolta Co Ltd | 撮像装置 |
JP2006171597A (ja) * | 2004-12-20 | 2006-06-29 | Matsushita Electric Ind Co Ltd | 広角レンズ |
JP2007249073A (ja) * | 2006-03-17 | 2007-09-27 | Sony Corp | レンズユニット |
JP2010009028A (ja) * | 2008-05-27 | 2010-01-14 | Fujinon Corp | 撮像レンズおよびこの撮像レンズを用いた撮像装置 |
JP2010243709A (ja) * | 2009-04-03 | 2010-10-28 | Ricoh Co Ltd | 広角レンズおよび撮像装置 |
JP2011221055A (ja) * | 2010-04-02 | 2011-11-04 | Fujifilm Corp | 投写レンズおよびこれを用いた投写型表示装置 |
WO2012127826A1 (ja) * | 2011-03-18 | 2012-09-27 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7547310B2 (ja) | 2021-12-20 | 2024-09-09 | キヤノン株式会社 | 撮像システム、移動装置、撮像方法およびプログラム |
Also Published As
Publication number | Publication date |
---|---|
CN107703604A (zh) | 2018-02-16 |
US20180045925A1 (en) | 2018-02-15 |
EP3282298A1 (en) | 2018-02-14 |
US10416420B2 (en) | 2019-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018025794A (ja) | 光学レンズ | |
TWI585455B (zh) | 影像擷取透鏡系統、取像裝置及電子裝置 | |
KR101946261B1 (ko) | 촬상 광학계 | |
KR101762006B1 (ko) | 촬상 광학계 및 서로 다른 화각을 가진 복수의 촬상 광학계가 장착된 모바일 기기 | |
TWI463173B (zh) | 變焦鏡頭 | |
KR20230042450A (ko) | 촬상 광학계 | |
TWI509282B (zh) | 鏡頭模組 | |
TWI660193B (zh) | 光學鏡頭 | |
TW201802517A (zh) | 光學鏡頭 | |
TW201626036A (zh) | 定焦鏡頭 | |
TWI480577B (zh) | 廣角鏡頭 | |
TWI796312B (zh) | 鏡頭及其製造方法 | |
KR20190096680A (ko) | 촬상 광학계 | |
TWI524109B (zh) | 光學成像鏡頭 | |
TWI612327B (zh) | 六片式廣角鏡片組 | |
TWI664441B (zh) | 廣角鏡頭 | |
KR102632359B1 (ko) | 촬상 광학계 | |
TW201619660A (zh) | 光學成像鏡頭 | |
TWI617832B (zh) | 影像擷取透鏡系統、取像裝置及電子裝置 | |
TW201901231A (zh) | 五片式廣角鏡片組 | |
TWI784986B (zh) | 鏡頭及其製造方法 | |
TW201814346A (zh) | 廣角鏡片組 | |
TWI407182B (zh) | 廣角成像鏡片組 | |
TW201901224A (zh) | 六片式廣角鏡片組 | |
TW201901221A (zh) | 五片式成像鏡片組 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200923 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210420 |