[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018023264A - Rubber molding component and power cable connection component - Google Patents

Rubber molding component and power cable connection component Download PDF

Info

Publication number
JP2018023264A
JP2018023264A JP2016155073A JP2016155073A JP2018023264A JP 2018023264 A JP2018023264 A JP 2018023264A JP 2016155073 A JP2016155073 A JP 2016155073A JP 2016155073 A JP2016155073 A JP 2016155073A JP 2018023264 A JP2018023264 A JP 2018023264A
Authority
JP
Japan
Prior art keywords
sheath
main body
slip
rubber
power cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016155073A
Other languages
Japanese (ja)
Other versions
JP6723507B2 (en
Inventor
北川 秀樹
Hideki Kitagawa
秀樹 北川
常義 藤井
Tsuneyoshi Fujii
常義 藤井
良彦 加藤
Yoshihiko Kato
良彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumiden Transmission and Distribution Systems Products Corp
Original Assignee
Sumiden Transmission and Distribution Systems Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumiden Transmission and Distribution Systems Products Corp filed Critical Sumiden Transmission and Distribution Systems Products Corp
Priority to JP2016155073A priority Critical patent/JP6723507B2/en
Publication of JP2018023264A publication Critical patent/JP2018023264A/en
Application granted granted Critical
Publication of JP6723507B2 publication Critical patent/JP6723507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cable Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rubber molding component which can inhibit exposure of a shield layer within a sheath at a power cable.SOLUTION: The invention relates to a rubber molding component attached to an end part of a power cable. The power cable includes a shield layer and a sheath covering an outer periphery of the shield layer. The rubber molding component includes: a cylindrical body part which holds an end part of the sheath and applies a predetermined contact pressure to the sheath; and an anti-slip part which is disposed between the sheath and the body part and inhibits the sheath from being axially displaced relative to the shield layer by thermal effect. The anti-slip part has a high frictional resistance part in which a static friction coefficient between the anti-slip part and the sheath is larger than a static friction coefficient between the body part and the sheath.SELECTED DRAWING: Figure 1

Description

本発明は、ゴムモールド部品、及び電力ケーブルの接続用部品に関するものである。   The present invention relates to a rubber molded part and a power cable connecting part.

電力ケーブルの端末接続部や中間接続部を構築する部品の一つに、ゴムモールド部品がある(例えば、特許文献1)。   One of parts for constructing a terminal connection part and an intermediate connection part of a power cable is a rubber mold part (for example, Patent Document 1).

特開平11−289650号公報Japanese Patent Laid-Open No. 11-289650

電力ケーブルに備わるシース内の遮蔽層の露出を抑制することが望まれている。シースは、製造過程上、その長手方向(電力ケーブルの軸方向)に対して引張方向の歪みが残留している。この残留歪みは、外気温度の変化や通電等のヒートサイクルなどの熱影響によって開放される。そうすると、シースは、その長手方向に収縮(シュリンクバック)して、遮蔽層に対してずれることがある。そのシースの収縮に伴い、シース内の遮蔽層は、シース(ゴムモールド部品)から露出し、ひいてはシースの収縮により負荷がかかることで破断(切断)など損傷したりする虞がある。   It is desired to suppress the exposure of the shielding layer in the sheath provided in the power cable. In the manufacturing process, strain in the tensile direction remains in the longitudinal direction (axial direction of the power cable) of the sheath. This residual strain is released by a thermal effect such as a change in the outside air temperature or a heat cycle such as energization. If it does so, a sheath may shrink | contract (shrink back) in the longitudinal direction, and may shift | deviate with respect to a shielding layer. As the sheath contracts, the shielding layer in the sheath is exposed from the sheath (rubber mold component), and as a result, a load is applied due to the contraction of the sheath, and there is a risk of damage such as breakage (cutting).

そこで、電力ケーブルにおけるシース内の遮蔽層の露出を抑制できるゴムモールド部品を提供することを目的の一つとする。   Therefore, an object of the present invention is to provide a rubber molded part that can suppress the exposure of the shielding layer in the sheath of the power cable.

また、電力ケーブルにおけるシース内の遮蔽層の露出を抑制できる電力ケーブルの接続用部品を供することを目的の一つとする。   Another object of the present invention is to provide a power cable connection part that can suppress exposure of a shielding layer in a sheath of the power cable.

本開示に係るゴムモールド部品は、
電力ケーブルの端部に装着されるゴムモールド部品であって、
前記電力ケーブルは、遮蔽層と前記遮蔽層の外周を覆うシースとを備え、
前記ゴムモールド部品は、
前記シースの端部を把持して前記シースに所定の面圧を付加する筒状の本体部と、
前記シースと前記本体部との間に介在されて、熱影響に伴う前記シースの前記遮蔽層に対する軸方向のずれを抑制する滑り止め部とを備え、
前記滑り止め部は、前記滑り止め部と前記シースとの間の静摩擦係数が前記本体部と前記シースとの間の静摩擦係数よりも大きい高摩擦抵抗部を有する。
The rubber mold component according to the present disclosure is
It is a rubber mold part attached to the end of the power cable,
The power cable includes a shielding layer and a sheath covering an outer periphery of the shielding layer,
The rubber mold component is
A cylindrical main body that grips the end of the sheath and applies a predetermined surface pressure to the sheath;
An anti-slip portion interposed between the sheath and the main body portion to suppress axial displacement of the sheath with respect to the shielding layer due to thermal effects;
The anti-slip portion includes a high friction resistance portion in which a static friction coefficient between the anti-slip portion and the sheath is larger than a static friction coefficient between the main body portion and the sheath.

本開示に係る電力ケーブルの接続用部品は、
ゴムモールド部品の本体部が装着される端部を有するシースと前記シース内の遮蔽層とを有する複数の電力ケーブルの外周に、前記ゴムモールド部品とずれて配置されて、熱影響に伴う前記シースの軸方向へのずれを抑制する滑り止め機構を備え、
前記滑り止め機構は、前記各電力ケーブルの前記シースの外周面に所定の面圧を付加するように装着されて前記複数の電力ケーブルを束ねるゴムスペーサーを備え、
前記ゴムスペーサーは、前記ゴムスペーサーと前記シースとの間の静摩擦係数が前記本体部と前記シースとの間の静摩擦係数よりも大きい高摩擦抵抗部を有する。
The power cable connection parts according to the present disclosure are:
The sheath that is disposed on the outer periphery of a plurality of power cables having a sheath having an end portion to which a main body portion of the rubber mold component is mounted and a shielding layer in the sheath is shifted from the rubber mold component and is affected by a thermal effect. Equipped with a non-slip mechanism that suppresses the axial displacement of
The anti-slip mechanism includes a rubber spacer that is attached so as to apply a predetermined surface pressure to the outer peripheral surface of the sheath of each power cable and bundles the plurality of power cables.
The rubber spacer has a high friction resistance portion in which a static friction coefficient between the rubber spacer and the sheath is larger than a static friction coefficient between the main body portion and the sheath.

上記ゴムモールド部品は、電力ケーブルにおけるシース内の遮蔽層の露出を抑制できる。   The rubber mold component can suppress exposure of the shielding layer in the sheath of the power cable.

上記電力ケーブルの接続用部品は、電力ケーブルにおけるシース内の遮蔽層の露出を抑制できる。   The component for connecting the power cable can suppress the exposure of the shielding layer in the sheath of the power cable.

実施形態1に係るゴムモールド部品の縦断面図である。It is a longitudinal cross-sectional view of the rubber mold component which concerns on Embodiment 1. FIG. 実施形態2に係る電力ケーブルの接続用部品の概略図である。It is the schematic of the components for connection of the power cable which concerns on Embodiment 2. FIG. 図2に示す電力ケーブルの接続用部品の(III)−(III)切断線で切断した状態を示す断面図である。It is sectional drawing which shows the state cut | disconnected by the (III)-(III) cutting line of the components for connection of the power cable shown in FIG.

《本発明の実施形態の説明》
最初に本発明の実施態様の内容を列記して説明する。
<< Description of Embodiments of the Present Invention >>
First, the contents of the embodiments of the present invention will be listed and described.

(1)本発明の一態様に係るゴムモールド部品は、
電力ケーブルの端部に装着されるゴムモールド部品であって、
前記電力ケーブルは、遮蔽層と前記遮蔽層の外周を覆うシースとを備え、
前記ゴムモールド部品は、
前記シースの端部を把持して前記シースに所定の面圧を付加する筒状の本体部と、
前記シースと前記本体部との間に介在されて、熱影響に伴う前記シースの前記遮蔽層に対する軸方向のずれを抑制する滑り止め部とを備え、
前記滑り止め部は、前記滑り止め部と前記シースとの間の静摩擦係数が前記本体部と前記シースとの間の静摩擦係数よりも大きい高摩擦抵抗部を有する。
(1) A rubber mold component according to one aspect of the present invention is
It is a rubber mold part attached to the end of the power cable,
The power cable includes a shielding layer and a sheath covering an outer periphery of the shielding layer,
The rubber mold component is
A cylindrical main body that grips the end of the sheath and applies a predetermined surface pressure to the sheath;
An anti-slip portion interposed between the sheath and the main body portion to suppress axial displacement of the sheath with respect to the shielding layer due to thermal effects;
The anti-slip portion includes a high friction resistance portion in which a static friction coefficient between the anti-slip portion and the sheath is larger than a static friction coefficient between the main body portion and the sheath.

上記の構成によれば、電力ケーブルにおけるシース内の遮蔽層の露出を抑制できる。本体部とシースとの間の静摩擦係数よりもシースとの間の静摩擦係数が高い高摩擦抵抗部をシースに接触させると共に、本体部の把持により高摩擦抵抗部を介してシースに所定の面圧を付加することで、滑り止め部とシースとの間に作用する摩擦力を大きくできるからである。そのため、熱影響に伴うシースの長手方向の収縮を抑制し易く、シースが遮蔽層に対して軸方向にずれることを抑制し易い。その上、シースが遮蔽層に対して軸方向にずれても、そのずれに対して滑り止め部が追随してずれ易く、本体部が滑り止め部のずれにある程度追従して延びることで、本体部がシースを覆い続けられる。シースの軸方向のずれを抑制できることで、シースの軸方向のずれに伴う遮蔽層への負荷がかかり難く、負荷がかかることに伴う遮蔽層の破断なども生じ難い。   According to said structure, exposure of the shielding layer in the sheath in an electric power cable can be suppressed. The high frictional resistance part having a higher static friction coefficient between the sheath and the sheath than the static friction coefficient between the body part and the sheath is brought into contact with the sheath, and a predetermined surface pressure is applied to the sheath via the high frictional resistance part by gripping the main body part. This is because the frictional force acting between the anti-slip portion and the sheath can be increased by adding. Therefore, it is easy to suppress the contraction of the sheath in the longitudinal direction due to the thermal effect, and it is easy to suppress the sheath from shifting in the axial direction with respect to the shielding layer. In addition, even if the sheath is displaced in the axial direction with respect to the shielding layer, the non-slip portion easily follows the displacement, and the main body portion extends to follow the slip of the non-slip portion to some extent. The part continues to cover the sheath. By suppressing the axial displacement of the sheath, it is difficult to apply a load to the shielding layer due to the axial displacement of the sheath, and the shielding layer is not easily broken due to the load.

(2)上記ゴムモールド部品の一形態として、前記滑り止め部の形状は、筒状であることが挙げられる。   (2) As one form of the said rubber mold component, it is mentioned that the shape of the said anti-slip | skid part is a cylinder shape.

上記の構成によれば、滑り止め部を筒状で構成することで、シースの外周全周に所定の面圧を付加し易く、シースの外周全周に亘ってシースの収縮を抑制し易い。   According to said structure, it is easy to apply a predetermined surface pressure to the outer periphery perimeter of a sheath, and to suppress shrinkage | contraction of a sheath over the outer periphery perimeter of a sheath by comprising a slip prevention part by cylinder shape.

(3)上記ゴムモールド部品の一形態として、前記滑り止め部における前記ゴムモールド部品の軸方向に沿った長さは、30mm以上120mm以下であることが挙げられる。   (3) As one form of the said rubber mold component, it is mentioned that the length along the axial direction of the said rubber mold component in the said anti-slip | skid part is 30 mm or more and 120 mm or less.

滑り止め部の上記長さが30mm以上であれば、シースとの接触面積を広くできるため、シースの軸方向のずれを抑制し易い。滑り止めの上記長さが120mm以下であれば、過度に長くなり過ぎないため、電力ケーブルの端部に装着し易い。   If the above-mentioned length of the anti-slip portion is 30 mm or more, the contact area with the sheath can be widened, so that the axial displacement of the sheath can be easily suppressed. If the length of the non-slip is 120 mm or less, it is not excessively long, and therefore it is easy to attach to the end of the power cable.

(4)上記ゴムモールド部品の一形態として、前記滑り止め部の厚みは、0.5mm以上5.0mm以下であることが挙げられる。   (4) As one form of the said rubber mold component, it is mentioned that the thickness of the said anti-slip | skid part is 0.5 mm or more and 5.0 mm or less.

滑り止め部の厚みが0.5mm以上であれば、ある程度の厚みを有することで遮蔽層の露出を抑制し易い上に、滑り止め部自体の機械的強度を高め易い。滑り止め部の厚みが5.0mm以下であれば、過度に厚くなり過ぎないため、電力ケーブルの端部へ装着し易い。   If the thickness of the non-slip portion is 0.5 mm or more, it is easy to suppress the exposure of the shielding layer by having a certain thickness, and it is easy to increase the mechanical strength of the anti-slip portion itself. If the thickness of the non-slip portion is 5.0 mm or less, it will not be excessively thick and can be easily attached to the end of the power cable.

(5)上記ゴムモールド部品の一形態として、前記本体部の内周面のうち前記滑り止め部のない面と、前記滑り止め部の内面とが、面一であることが挙げられる。   (5) As one form of the said rubber mold component, it is mentioned that the surface which does not have the said slip prevention part among the internal peripheral surfaces of the said main-body part, and the inner surface of the said slip prevention part are flush | level.

上記の構成によれば、滑り止め部の内面が本体部の滑り止め部の内面よりも内側に位置する場合に比較して、電力ケーブルの端部に装着し易い。その上、面一であることで段差がないため、段差に空隙ができて電気的弱点になることを抑制できる。   According to said structure, compared with the case where the inner surface of a slip prevention part is located inside the inner surface of the slip prevention part of a main-body part, it is easy to mount | wear to the edge part of a power cable. In addition, since there is no step due to being flush, it is possible to suppress the formation of a gap in the step and an electrical weak point.

(6)上記ゴムモールド部品の一形態として、前記本体部の内周面、又は前記滑り止め部の内面のいずれか一方は、前記本体部の折り返し位置を示す目印を備えることが挙げられる。   (6) As one form of the said rubber mold component, it is mentioned that either one of the inner peripheral surface of the said main-body part or the inner surface of the said anti-slip | skid part is provided with the mark which shows the folding | turning position of the said main-body part.

ゴムモールド部品を電力ケーブルの端部に装着する際、ゴムモールド部品における電力ケーブルの挿入側を折り返しておき、挿入後、折り返した箇所を元に戻してシース上に被せることで、ゴムモールド部品の電力ケーブルの端部への装着を行ない易い。上記の構成によれば、折り返し位置を示す目印を備えておくことで、適切な折り返し位置を明確に知ることができ、折り返す位置にばらつきが生じることを抑制できる。また、ゴムモールド部品と電力ケーブルの端部とを正確な位置で装着することができる。目印は、挿入位置の目印にも使えるため、例えば、本体部を目印まで折り返したゴムモールド部品に電力ケーブルを挿入する際、シースの端面が目印のところまで電力ケーブルを挿入すればよいからである。   When attaching the rubber mold part to the end of the power cable, the insertion side of the power cable in the rubber mold part is folded back, and after the insertion, the folded part is returned to the original and covered on the sheath, Easy to attach to the end of the power cable. According to said structure, by providing the mark which shows a folding | turning position, an appropriate folding | turning position can be known clearly and it can suppress that dispersion | variation arises in the folding | turning position. Further, the rubber molded component and the end portion of the power cable can be mounted at an accurate position. Because the mark can also be used as a mark of the insertion position, for example, when the power cable is inserted into a rubber molded part in which the main body portion is folded back to the mark, the power cable may be inserted until the end surface of the sheath is the mark. .

(7)上記ゴムモール部品の一形態として、前記本体部の内周面は、前記目印を備え、前記滑り止め部は、前記本体部における前記電力ケーブルの挿入側の開口端と前記目印との間に配置されていることが挙げられる。   (7) As one form of the rubber molding component, an inner peripheral surface of the main body portion includes the mark, and the anti-slip portion is between the opening end of the main body portion on the insertion side of the power cable and the mark. Is arranged.

上記の構成によれば、電力ケーブルの端部へ装着し易い。ゴムモールド部品を電力ケーブルの端部に装着する際、上述のように目印を基点に本体部を折り返すことで滑り止め部を本体部の外周側に配置できるため、滑り止め部が電力ケーブル上を移動せず、滑り止め部がその装着を阻害しないからである。   According to said structure, it is easy to mount | wear to the edge part of an electric power cable. When attaching rubber molded parts to the end of the power cable, the anti-slip part can be placed on the outer periphery of the main body by folding the main body with the mark as the base point as described above. It is because it does not move and the anti-slip portion does not hinder the wearing.

(8)上記ゴムモールド部品の一形態として、前記本体部は、前記目印を基点に折り返されていることが挙げられる。   (8) As one form of the said rubber mold components, it is mentioned that the said main-body part is return | folded by making the said mark into a base point.

上記の構成によれば、電力ケーブルの端末接続部や中間接続部を構築する施工現場での本体部の折り返し作業を簡略化できるため、ゴムモールド部品の電力ケーブルの端部への装着作業を簡略化できる。   According to the above configuration, it is possible to simplify the folding work of the main body part at the construction site where the terminal connection part and the intermediate connection part of the power cable are constructed, so the mounting work of the rubber mold part to the end part of the power cable is simplified. Can be

(9)上記ゴムモールド部品の一形態として、前記本体部の内周面に一体に形成される筒状の電界緩和層を備えることが挙げられる。   (9) As one form of the said rubber mold component, providing the cylindrical electric field relaxation layer integrally formed in the internal peripheral surface of the said main-body part is mentioned.

上記の構成によれば、遮蔽層の先端部への電界の集中を抑制して、遮蔽層の内側の絶縁体の絶縁破壊を抑制できる。   According to said structure, the electric field concentration to the front-end | tip part of a shielding layer can be suppressed, and the dielectric breakdown of the insulator inside a shielding layer can be suppressed.

(10)本発明の一態様に係る電力ケーブルの接続用部品は、
ゴムモールド部品の本体部が装着される端部を有するシースと前記シース内の遮蔽層とを有する複数の電力ケーブルの外周に、前記ゴムモールド部品とずれて配置されて、熱影響に伴う前記シースの軸方向へのずれを抑制する滑り止め機構を備え、
前記滑り止め機構は、前記各電力ケーブルの前記シースの外周面に所定の面圧を付加するように装着されて前記複数の電力ケーブルを束ねるゴムスペーサーを備え、
前記ゴムスペーサーは、前記ゴムスペーサーと前記シースとの間の静摩擦係数が前記本体部と前記シースとの間の静摩擦係数よりも大きい高摩擦抵抗部を有する。
(10) A power cable connecting component according to an aspect of the present invention is provided as follows:
The sheath that is disposed on the outer periphery of a plurality of power cables having a sheath having an end portion to which a main body portion of the rubber mold component is mounted and a shielding layer in the sheath is shifted from the rubber mold component and is affected by a thermal effect. Equipped with a non-slip mechanism that suppresses the axial displacement of
The anti-slip mechanism includes a rubber spacer that is attached so as to apply a predetermined surface pressure to the outer peripheral surface of the sheath of each power cable and bundles the plurality of power cables.
The rubber spacer has a high friction resistance portion in which a static friction coefficient between the rubber spacer and the sheath is larger than a static friction coefficient between the main body portion and the sheath.

上記の構成によれば、電力ケーブルの接続用部品はゴムモールド部品とずれて配置されていてゴムモールド部品のようにシースの端部を直接覆わなくてもシースの端部に近い箇所に設けられるため、上述の本発明の一態様に係るゴムモールド部品と同様に、電力ケーブルにおけるシース内の遮蔽層の露出を抑制できる。   According to the above configuration, the power cable connection component is arranged so as to be shifted from the rubber mold component, and is provided at a location close to the end of the sheath without directly covering the end of the sheath like the rubber mold component. Therefore, exposure of the shielding layer in the sheath of the power cable can be suppressed, similarly to the rubber mold component according to one embodiment of the present invention described above.

(11)上記電力ケーブルの接続用部品の一形態として、前記滑り止め機構は、前記ゴムスペーサーの外周面に装着されて前記ゴムスペーサーを締め付けることで、前記ゴムスペーサーを介して前記シースに所定の面圧を付加するブラケットを備えることが挙げられる。   (11) As one form of the power cable connecting part, the anti-slip mechanism is attached to the outer peripheral surface of the rubber spacer and tightens the rubber spacer, whereby a predetermined amount is attached to the sheath via the rubber spacer. It is mentioned that a bracket for applying a surface pressure is provided.

上記の構成によれば、電力ケーブルにおけるシース内の遮蔽層の露出を抑制できる。   According to said structure, exposure of the shielding layer in the sheath in an electric power cable can be suppressed.

《本発明の実施形態の詳細》
本発明の実施形態の詳細を、以下に図面を参照しつつ説明する。図中の同一符号は、同一名称物を示す。実施形態1では、ゴムモールド部品を説明し、実施形態2では、電力ケーブルの接続用部品を説明する。
<< Details of Embodiment of the Present Invention >>
Details of embodiments of the present invention will be described below with reference to the drawings. The same code | symbol in a figure shows the same name thing. In Embodiment 1, rubber molded parts will be described, and in Embodiment 2, power cable connection parts will be described.

《実施形態1》
〔ゴムモールド部品〕
図1を参照して実施形態1に係るゴムモールド部品1を説明する。実施形態1に係るゴムモールド部品1は、遮蔽層55と遮蔽層55の外周を覆うシース56とを備える電力ケーブル50の端部に装着される。図1では、説明の便宜上、ゴムモールド部品1を電力ケーブル50の端部に装着した状態を示し、電力ケーブル50を二点鎖線で示す。電力ケーブル50は、内周から順に、導体(図示略)、内部半導電層(図示略)、絶縁体53、外部半導電層(図示略)、遮蔽層55、シース56を備える。内部・外部半導電層は、必要に応じて省略できる。ゴムモールド部品1の特徴の一つは、シース56に所定の面圧を付加する本体部11と、本体部11とシース56との間に介在される滑り止め部15とを備え、滑り止め部15が所定の高摩擦抵抗部15aを有する点にある。それにより、詳しくは後述するが、熱影響に伴うシース56の遮蔽層55に対する軸方向のずれ(以下、シース56の軸方向のずれ、ということがある)を抑制する。以下、各構成を詳細に説明する。
Embodiment 1
[Rubber mold parts]
A rubber molded component 1 according to Embodiment 1 will be described with reference to FIG. The rubber mold component 1 according to the first embodiment is attached to an end portion of a power cable 50 including a shielding layer 55 and a sheath 56 that covers the outer periphery of the shielding layer 55. In FIG. 1, for convenience of explanation, a state where the rubber molded component 1 is attached to the end of the power cable 50 is shown, and the power cable 50 is indicated by a two-dot chain line. The power cable 50 includes, in order from the inner periphery, a conductor (not shown), an internal semiconductive layer (not shown), an insulator 53, an external semiconductive layer (not shown), a shielding layer 55, and a sheath 56. The internal and external semiconductive layers can be omitted as required. One of the features of the rubber molded part 1 includes a main body 11 that applies a predetermined surface pressure to the sheath 56, and a non-slip part 15 that is interposed between the main body 11 and the sheath 56. 15 has a predetermined high frictional resistance portion 15a. Thereby, as will be described in detail later, axial displacement of the sheath 56 with respect to the shielding layer 55 due to thermal influence (hereinafter, sometimes referred to as axial displacement of the sheath 56) is suppressed. Hereinafter, each configuration will be described in detail.

[本体部]
本体部11は、筒状であり、段剥ぎされた電力ケーブル50の端部が挿入されて電力ケーブル50の端部の絶縁性を高める。本体部11の材質は、電気絶縁性に優れるゴム、例えば、シリコーンゴム、エチレンプロピレンゴム、及びクロロプレンゴムなどが挙げられる。本体部11とシース56との間の静摩擦係数μは、本体部11とシース56の材質によるが、例えば、0.5以上2.0以下が挙げられる。シース56の材質は、ポリ塩化ビニルやポリエチレンなどが挙げられる。
[Main unit]
The main body 11 has a cylindrical shape, and the end of the stepped power cable 50 is inserted to enhance the insulation of the end of the power cable 50. Examples of the material of the main body 11 include rubber having excellent electrical insulation properties, such as silicone rubber, ethylene propylene rubber, and chloroprene rubber. The coefficient of static friction μ 2 between the main body part 11 and the sheath 56 depends on the material of the main body part 11 and the sheath 56, and may be 0.5 or more and 2.0 or less, for example. Examples of the material of the sheath 56 include polyvinyl chloride and polyethylene.

本体部11は、電力ケーブル50の端部に装着された際、電力ケーブル50の先端(図1の上側)の導体からそれよりも後方(図1の下側)に位置するシース56の端部に亘って覆う。本体部11の上記先端側の開口端は、電力ケーブル50の導体に電気的に接続される金属端子(図示略)が設けられる。本体部11の上記後方側の開口端は、電力ケーブル50の挿入側の開口端である。この本体部11における電力ケーブル50の挿入側の開口端側は、本体部11に電力ケーブル50の端部を挿入した際、シース56の端部の外周に装着されてシース56の端部を把持する。本体部11は、シース56の端部の把持によりシース56に対して所定の面圧を付加する。シース56に対する所定の面圧の付加は、後述の滑り止め部15を介して行われる。   When the main body portion 11 is attached to the end portion of the power cable 50, the end portion of the sheath 56 located behind (from the lower side in FIG. 1) the conductor at the tip (upper side in FIG. 1) of the power cable 50. Cover over. A metal terminal (not shown) that is electrically connected to the conductor of the power cable 50 is provided at the opening end on the distal end side of the main body 11. The opening end on the rear side of the main body 11 is an opening end on the insertion side of the power cable 50. The opening end of the main body 11 on the insertion side of the power cable 50 is attached to the outer periphery of the end of the sheath 56 and grips the end of the sheath 56 when the end of the power cable 50 is inserted into the main body 11. To do. The main body 11 applies a predetermined surface pressure to the sheath 56 by gripping the end of the sheath 56. The application of a predetermined surface pressure to the sheath 56 is performed via a non-slip portion 15 described later.

本体部11の内周面には、本体部11の折り返し位置を示す目印12を備えていてもよい。ゴムモールド部品1を電力ケーブル50の端部に装着する際、ゴムモールド部品1における電力ケーブル50の挿入側を折り返しておき、挿入後、折り返した箇所を元に戻してシース56上に被せることで、ゴムモールド部品1の電力ケーブル50の端部への装着を行ない易い。目印12を備えていれば、本体部11の一部を折り返してゴムモールド部品1に電力ケーブル50の端部を挿入する際、本体部11の適切な折り返し位置を明確に知ることができ、折り返す位置にばらつきが生じることを抑制できる。また、目印12は、挿入位置の目印にも使えるため、ゴムモールド部品1と電力ケーブル50の端部とを正確な位置で装着することができる。   On the inner peripheral surface of the main body 11, a mark 12 that indicates the folding position of the main body 11 may be provided. When the rubber mold component 1 is attached to the end of the power cable 50, the insertion side of the power cable 50 in the rubber mold component 1 is folded back, and after the insertion, the folded portion is returned to its original position and covered on the sheath 56. It is easy to attach the rubber mold component 1 to the end of the power cable 50. If the mark 12 is provided, when the end of the power cable 50 is inserted into the rubber mold part 1 by folding a part of the main body part 11, the proper folding position of the main body part 11 can be clearly known and turned back. Variations in position can be suppressed. Moreover, since the mark 12 can also be used as a mark of the insertion position, the rubber mold component 1 and the end portion of the power cable 50 can be attached at an accurate position.

目印12は、本体部11の内周面にその内側に向かって突出する突起12aを有することが挙げられる。本体部11の軸方向において、突起12aの形成箇所は、電力ケーブル50にゴムモールド部品1を装着した際、シース56の端面に対応する箇所とすることが好ましい。そうすれば、ゴムモールド部品1と電力ケーブル50の端部とを正確な位置で装着することができる。本体部11を突起12aまで折り返したゴムモールド部品1に電力ケーブル50を挿入する際、シース56の端面が突起12aに当たるところまで挿入すればよいからである。目印12を基点に本体部11を折り返せば本体部11のうちシース56を覆う部分が折り返され、その折り返した部分を元に戻せば本体部11をシース56に装着できるからである。この場合、突起12aは、滑り止め部15の本体部11に対する位置決めに利用できる。本体部11の周方向において、突起12aの形成領域は、周方向の一部でもよいし、全周に亘る領域でもよい。目印12は、突起12aに加えて、突起12aの位置を指し示す矢印(図示略)を有していてもよい。矢印は、突起12aよりも本体部11の上記後方側に形成することが挙げられる。   It is mentioned that the mark 12 has the protrusion 12a which protrudes toward the inner peripheral surface of the main-body part 11 toward the inner side. In the axial direction of the main body 11, it is preferable that the protrusion 12 a is formed at a position corresponding to the end face of the sheath 56 when the rubber mold component 1 is attached to the power cable 50. If it does so, the rubber mold component 1 and the edge part of the electric power cable 50 can be mounted | worn in an exact position. This is because when the power cable 50 is inserted into the rubber mold component 1 in which the main body portion 11 is folded back to the protrusion 12a, the power cable 50 may be inserted until the end surface of the sheath 56 contacts the protrusion 12a. This is because if the body portion 11 is folded back with the mark 12 as a base point, the portion of the body portion 11 covering the sheath 56 is folded back, and if the folded portion is returned to the original position, the body portion 11 can be attached to the sheath 56. In this case, the protrusion 12 a can be used for positioning the anti-slip portion 15 with respect to the main body portion 11. In the circumferential direction of the main body 11, a region where the protrusion 12 a is formed may be a part of the circumferential direction or a region extending over the entire circumference. The mark 12 may have an arrow (not shown) indicating the position of the protrusion 12a in addition to the protrusion 12a. The arrow may be formed on the rear side of the main body 11 with respect to the protrusion 12a.

本体部11は、目印12を基点に折り返されていてもよい。そうすれば、電力ケーブル50の端末接続部や中間接続部を構築する施工現場での本体部11の折り返し作業を簡略化できるため、ゴムモールド部品1の電力ケーブル50の端部への装着作業を簡略化できる。   The main body 11 may be folded back with the mark 12 as a base point. If it does so, since the folding | returning operation | work of the main-body part 11 in the construction site which constructs the terminal connection part and intermediate | middle connection part of the power cable 50 can be simplified, the mounting work to the edge part of the power cable 50 of the rubber mold component 1 is carried out. It can be simplified.

[滑り止め部]
滑り止め部15は、熱影響に伴うシース56の遮蔽層55に対する軸方向のずれ(図1下方へのずれ)を抑制する。滑り止め部15は、本体部11とシース56との間に介在され、その外面と本体部11の内周面とが接して本体部11の把持力が付加され、その内面とシース56の外周面とが接する。滑り止め部15は、滑り止め部15とシース56との間の静摩擦係数μが本体部11とシース56との間の静摩擦係数μよりも大きい高摩擦抵抗部15aを有する。
[Non-slip part]
The non-slip portion 15 suppresses an axial shift (downward shift in FIG. 1) of the sheath 56 with respect to the shielding layer 55 due to a thermal effect. The non-slip portion 15 is interposed between the main body portion 11 and the sheath 56, the outer surface thereof is in contact with the inner peripheral surface of the main body portion 11, and the gripping force of the main body portion 11 is applied. The surface touches. The anti-slip portion 15 has a high friction resistance portion 15 a in which the static friction coefficient μ 1 between the anti-slip portion 15 and the sheath 56 is larger than the static friction coefficient μ 2 between the main body portion 11 and the sheath 56.

高摩擦抵抗部15aにおける滑り止め部15の厚み方向の形成領域は、滑り止め部15の内面側の領域のみとしてもよいし、滑り止め部15の厚み方向に亘る全領域としてもよい。前者の場合、滑り止め部15の外面側の領域は、例えば、本体部11とシース56との間の静摩擦係数μと同等の抵抗部で形成することが挙げられる。ここでは、滑り止め部15の全体が高摩擦抵抗部15aで形成されている。 The formation region in the thickness direction of the anti-slip portion 15 in the high frictional resistance portion 15 a may be only the region on the inner surface side of the anti-slip portion 15 or the entire region in the thickness direction of the anti-slip portion 15. In the former case, for example, the region on the outer surface side of the anti-slip portion 15 may be formed by a resistance portion equivalent to the static friction coefficient μ 2 between the main body portion 11 and the sheath 56. Here, the entire anti-slip portion 15 is formed of the high friction resistance portion 15a.

高摩擦抵抗部15a(滑り止め部15)とシース56との間の静摩擦係数μと、本体部11とシース56との間の静摩擦係数μとの差Δμ(μ−μ)は、0.5以上が好ましい。この差Δが0.5以上であれば、シース56の軸方向のずれを抑制しやすい。この差Δは、大きいほど好ましく、例えば、1.0以上が好ましく、更に1.5以上が好ましく、特に2.1以上が好ましい。この差Δの上限値は、実用上3.6以下程度が挙げられる。高摩擦抵抗部15aとシース56との間の静摩擦係数μは、高摩擦抵抗部15aとシース56の材質によるが、例えば、1.1以上4.1以下が挙げられる。この静摩擦係数μは、1.5以上、1.8以上、2.1以上とすることができる。 The high friction resistance portion 15a (slip section 15) and the static friction coefficient mu 1 between the sheath 56, the difference between the static friction coefficient mu 2 between the main body portion 11 and the sheath 56 Δμ (μ 12) is 0.5 or more is preferable. If this difference Δ is 0.5 or more, it is easy to suppress the axial displacement of the sheath 56. The difference Δ is preferably as large as possible. For example, it is preferably 1.0 or more, more preferably 1.5 or more, and particularly preferably 2.1 or more. The upper limit value of the difference Δ is practically about 3.6 or less. The static friction coefficient μ 1 between the high frictional resistance portion 15a and the sheath 56 depends on the material of the high frictional resistance portion 15a and the sheath 56, and may be 1.1 or more and 4.1 or less, for example. The static friction coefficient μ 1 can be 1.5 or more, 1.8 or more, or 2.1 or more.

この静摩擦係数μ(μ)は、例えば、次のようにして求められる。高摩擦抵抗部15a(本体部11)と同材質の中実(横断面が円形又は半円形の棒状)又は中空(円筒状)の測定用部材A(外径:21mm)と、シース56と同材質で同形状の測定用部材B(外径:21mm)とを用意する。測定用部材Aと測定用部材Bの外周面を互いの軸が直交するように接触させる。測定用部材Bを固定し、測定用部材Aに所定の荷重(ここでは、0.98N)を付加した状態で測定用部材Aを測定用部材Aの軸方向に沿って移動させる。このときの最大静摩擦力F(gf)を測定し、μ=F/Nにより算出した静摩擦係数μを高摩擦抵抗部15a(本体部11)とシース56との間の静摩擦係数μ(μ)とする。Nは、垂直抗力(ここでは100gf≒0.98N)である。 This static friction coefficient μ 12 ) is obtained as follows, for example. The same material as the sheath 56, which is a solid member (outer diameter: 21 mm) having the same material as the high friction resistance portion 15 a (main body portion 11) (solid or circular in cross section) or hollow (cylindrical) A measurement member B (outer diameter: 21 mm) having the same shape as the material is prepared. The outer peripheral surfaces of the measurement member A and the measurement member B are brought into contact with each other so that their axes are orthogonal to each other. The measurement member B is fixed, and the measurement member A is moved along the axial direction of the measurement member A in a state where a predetermined load (0.98 N in this case) is applied to the measurement member A. The maximum static friction force F (gf) at this time is measured, and the static friction coefficient μ calculated by μ = F / N is determined as the static friction coefficient μ 12 ) between the high friction resistance portion 15a (main body portion 11) and the sheath 56. ). N is a vertical drag (here, 100 gf≈0.98 N).

高摩擦抵抗部15a(滑り止め部15)の材質は、例えば、シリコーンゴムやウレタンゴムなどが挙げられる。高摩擦抵抗部15aと本体部11とが同種の場合(例えば、シリコーンゴム同士)、高摩擦抵抗部15aの材質は、同種の中でも、本体部11よりもシース56との間の静摩擦係数が高い材質とする。例えば、同じシリコーンゴムでも、高摩擦抵抗部15aは、本体部11よりもシース56との静摩擦係数の高いシリコーンゴムとする。   Examples of the material of the high friction resistance portion 15a (slip prevention portion 15) include silicone rubber and urethane rubber. When the high friction resistance portion 15a and the main body portion 11 are the same type (for example, silicone rubber), the material of the high friction resistance portion 15a has a higher coefficient of static friction with the sheath 56 than the main body portion 11 among the same type. Material. For example, even if the same silicone rubber is used, the high friction resistance portion 15 a is a silicone rubber having a higher static friction coefficient with the sheath 56 than the main body portion 11.

高摩擦抵抗部15a(滑り止め部15)の形状は、シース56の周方向の一部が覆われない円弧状としてもよいし、シース56の周方向の全周を覆う筒状としてもよい。この形状は、高摩擦抵抗部15aをゴムモールド部品1の軸方向からみた形状を言う。高摩擦抵抗部15aの形状が円弧状の場合、円弧の長さは、シース56の周方向の2/3以上を覆う長さであることが好ましい。そうすれば、高摩擦抵抗部15aとシース56との接触領域を広くできるため、シース56の軸方向のずれ止め効果を得易い。この場合、高摩擦抵抗部15aは、シース56の周方向に連続して形成されていてもよいし、シース56の周方向に不連続で等間隔に複数形成されていてもよい。高摩擦抵抗部15aの形状が筒状の場合、シース56の周方向の全周に亘って高摩擦抵抗部15aを接触させられるため、シース56の軸方向のずれを効果的に抑制し易い。ここでは、高摩擦抵抗部15a(滑り止め部材15)の形状は筒状である。高摩擦抵抗部15a(滑り止め部15)は、軸方向に複数に分割されていてもよい。   The shape of the high friction resistance portion 15a (slip prevention portion 15) may be an arc shape in which a part of the sheath 56 in the circumferential direction is not covered, or may be a cylindrical shape that covers the entire circumference of the sheath 56 in the circumferential direction. This shape refers to the shape of the high frictional resistance portion 15a viewed from the axial direction of the rubber mold part 1. When the shape of the high frictional resistance portion 15 a is an arc shape, the length of the arc is preferably a length that covers 2/3 or more of the circumferential direction of the sheath 56. By doing so, the contact area between the high frictional resistance portion 15a and the sheath 56 can be widened, so that the effect of preventing the sheath 56 in the axial direction can be easily obtained. In this case, the high frictional resistance portions 15a may be formed continuously in the circumferential direction of the sheath 56, or a plurality of high friction resistance portions 15a may be formed at regular intervals in the circumferential direction of the sheath 56. When the shape of the high frictional resistance portion 15a is cylindrical, the high frictional resistance portion 15a can be brought into contact with the entire circumference of the sheath 56 in the circumferential direction, so that the axial displacement of the sheath 56 can be easily suppressed effectively. Here, the shape of the high frictional resistance portion 15a (slip prevention member 15) is cylindrical. The high frictional resistance part 15a (slip prevention part 15) may be divided into a plurality of parts in the axial direction.

高摩擦抵抗部15a(滑り止め部15)のゴムモールド部品1の軸方向に沿った長さLは、例えば、30mm以上120mm以下が好ましい。この長さLは、高摩擦抵抗部15aが軸方向に複数に分割されている場合、合計長さとする。この長さLが30mm以上であれば、シース56との接触面積を広くできるため、シース56の軸方向のずれを抑制し易い。この長さLが120mm以下であれば、過度に長くなり過ぎないため、電力ケーブル50の端部に装着し易い。この長さLは、更に30mm以上110mm以下が好ましく、特に30mm以上60mm以下が好ましい。 The length L 1 along the axial direction of the rubber mold part 1 of the high frictional resistance portion 15a (slip section 15), for example, preferably 30mm or more 120mm or less. The length L 1, when the high frictional resistance portion 15a is divided into a plurality in the axial direction, and total length. If this length L 1 is 30mm or more, it is possible to widen the contact area between the sheath 56, easy to suppress the axial displacement of the sheath 56. If this length L 1 is 120mm or less, the not too excessively long, easily mounted on an end portion of the power cable 50. The length L 1 is more preferably 30mm or more 110mm or less, particularly preferably 30mm or more 60mm or less.

高摩擦抵抗部15a(滑り止め部15)の厚みTは、例えば、0.5mm以上5.0mm以下が好ましい。この厚みTは、滑り止め部15における本体部11の径方向の長さを言う。厚みTが0.5mm以上であれば、ある程度の厚みを有することで遮蔽層55の露出を抑制し易い上に、滑り止め部15自体の機械的強度を高め易い。厚みTが5.0mm以上であれば、過度に厚くなり過ぎないため、電力ケーブル50の端部へ装着し易い。この厚みTは、更に2.0mm以上3.0mm以下が好ましい。   The thickness T of the high frictional resistance portion 15a (slip prevention portion 15) is preferably, for example, 0.5 mm or more and 5.0 mm or less. This thickness T refers to the length in the radial direction of the main body portion 11 in the anti-slip portion 15. If the thickness T is 0.5 mm or more, it is easy to suppress the exposure of the shielding layer 55 by having a certain thickness, and it is easy to increase the mechanical strength of the anti-slip portion 15 itself. If the thickness T is 5.0 mm or more, it will not be excessively thick and can be easily attached to the end of the power cable 50. The thickness T is preferably 2.0 mm or greater and 3.0 mm or less.

滑り止め部15の本体部11に対する配置箇所は、本体部11のシース56と重なる位置で上記後方側が挙げられる。上述のように本体部11が突起12a(目印12)を備える場合、滑り止め部15の上記配置箇所は、本体部11における突起12aと上記後方側の開口端との間が挙げられる。そうすれば、突起12aと滑り止め部15とが干渉しない上に、突起12aを滑り止め部15の位置決めに利用することもできる。本体部11と滑り止め部15が一体の場合には、ゴムモールド部品1を電力ケーブル50の端部に装着させ易い。本体部11の内側に配置される滑り止め部15が、本体部11を折り返した際に本体部11の外周側に位置するため、ゴムモールド部品1を電力ケーブル50の端部に装着する際、滑り止め部15が電力ケーブル50と接触することがなく、その装着を阻害しないからである。   The position where the non-slip portion 15 is disposed with respect to the main body 11 includes the rear side at a position overlapping the sheath 56 of the main body 11. As described above, when the main body portion 11 includes the protrusions 12a (marks 12), the arrangement portion of the anti-slip portion 15 is between the protrusion 12a in the main body portion 11 and the opening end on the rear side. By doing so, the protrusion 12a and the anti-slip portion 15 do not interfere with each other, and the protrusion 12a can be used for positioning the anti-slip portion 15. When the main body part 11 and the anti-slip part 15 are integrated, it is easy to attach the rubber molded component 1 to the end of the power cable 50. When the rubber mold component 1 is attached to the end portion of the power cable 50, the anti-slip portion 15 disposed inside the main body portion 11 is positioned on the outer peripheral side of the main body portion 11 when the main body portion 11 is folded back. This is because the anti-slip portion 15 does not come into contact with the power cable 50 and does not hinder the mounting.

滑り止め部15と本体部11とは、一体に形成されていてもよいし、分離可能に独立して形成されていてもよい。滑り止め部15と本体部11とが一体に形成されている場合、本体部11の電力ケーブル50の端部に装着と同時に滑り止め部15をシース56の端部に装着できるため、ゴムモールド部品1の電力ケーブル50の端部への装着作業が容易である。その上、本体部11を折り返して装着する際、滑り止め部15を合わせて折り返せる。滑り止め部15と本体部11とを別体とする場合、ゴムモールド部品1の電力ケーブル50の端部への装着は、滑り止め部15と本体部11とを順に行う。即ち、滑り止め部15をシース56の外周に装着した後、本体部11を滑り止め部15の外周に装着する。   The anti-slip part 15 and the main body part 11 may be formed integrally, or may be formed independently so as to be separable. When the non-slip portion 15 and the main body portion 11 are integrally formed, the anti-slip portion 15 can be attached to the end portion of the sheath 56 simultaneously with the attachment to the end portion of the power cable 50 of the main body portion 11. Installation work to the end of one power cable 50 is easy. In addition, when the body portion 11 is folded and attached, the anti-slip portion 15 can be folded back. When the non-slip part 15 and the main body part 11 are separated, the rubber mold part 1 is attached to the end of the power cable 50 by sequentially performing the non-slip part 15 and the main body part 11. That is, after the anti-slip portion 15 is attached to the outer periphery of the sheath 56, the main body portion 11 is attached to the outer periphery of the anti-slip portion 15.

滑り止め部15の内面は、上述の目印12を備えていてもよい。その場合、本体部11は目印12を備えていなくてよく、目印12の形成箇所は、滑り止め部15の先端側(図1の上端部)の縁が挙げられる。   The inner surface of the non-slip portion 15 may be provided with the above-described mark 12. In that case, the main body part 11 does not need to have the mark 12, and the mark 12 is formed at the edge of the anti-slip part 15 (upper end part in FIG. 1).

滑り止め部15の内面は、本体部11の内周面のうち滑り止め部15のない内面と面一であることが好ましい。滑り止め部15の内面と本体部11の上記内面とを面一にするには、例えば、本体部11の滑り止め部15を覆う部分の厚みを滑り止め部15の厚み分薄くしたり、その覆う部分を滑り止め部15の厚み分だけ外周側に張り出すように成形して、本体部11の厚みは長手方向に一様としたりすることが挙げられる。滑り止め部15の内面と本体部15の滑り止め部15のない内面と面一にしない場合には、本体部11の内周面から滑り止め部15の内面を内側に突出させることが好ましい。そうすれば、滑り止め部15をシース56に密着させ易い。   The inner surface of the non-slip portion 15 is preferably flush with the inner surface of the main body portion 11 without the anti-slip portion 15. In order to make the inner surface of the non-slip portion 15 and the inner surface of the main body portion 11 flush with each other, for example, the thickness of the portion covering the anti-slip portion 15 of the main body portion 11 is reduced by the thickness of the anti-slip portion 15, For example, the covering portion is formed so as to protrude toward the outer peripheral side by the thickness of the anti-slip portion 15, and the thickness of the main body portion 11 is uniform in the longitudinal direction. When the inner surface of the anti-slip portion 15 and the inner surface of the main body portion 15 without the anti-slip portion 15 are not flush with each other, it is preferable that the inner surface of the anti-slip portion 15 protrudes inward from the inner peripheral surface of the main body portion 11. If it does so, it will be easy to make the slip prevention part 15 contact | adhere to the sheath 56 easily.

[電界緩和層]
ゴムモールド部品1は、必要に応じて電界緩和層13を備えることができる。電界緩和層13は、筒状であり、内部に挿通された電力ケーブル50の遮蔽層55の端部への電界の集中を緩和する。それにより、電力ケーブル50の絶縁体53の電気的ストレスによる劣化を低減して絶縁破壊を抑制する。電界緩和層13は、ゴムモールド部品1における軸方向の中間部の内周面に一体に形成されていて、遮蔽層55(半導電性テープ層:図示略)から絶縁体53に亘って覆っている。電界緩和層13の材質は、例えば、半導電性ゴムが挙げられる。
[Electric field relaxation layer]
The rubber mold component 1 can include an electric field relaxation layer 13 as necessary. The electric field relaxation layer 13 has a cylindrical shape, and relaxes the concentration of the electric field on the end of the shielding layer 55 of the power cable 50 inserted inside. Thereby, the deterioration by the electrical stress of the insulator 53 of the power cable 50 is reduced, and the dielectric breakdown is suppressed. The electric field relaxation layer 13 is integrally formed on the inner peripheral surface of the intermediate portion in the axial direction of the rubber mold part 1 and covers the insulating layer 53 from the shielding layer 55 (semiconductive tape layer: not shown). Yes. Examples of the material of the electric field relaxation layer 13 include semiconductive rubber.

[用途]
実施形態1に係るゴムモールド部品1は、電力ケーブルの端末接続部や中間接続部を構築するゴムモールド部品に好適に利用できる。また、実施形態1のゴムモールド部品1は、シュリンクバックが生じ易いポリエチレンシースを備える電力ケーブルの端末接続部や中間接続部を構築するゴムモールド部品に好適に利用できる。
[Usage]
The rubber molded component 1 according to the first embodiment can be suitably used for a rubber molded component that constructs a terminal connection portion or an intermediate connection portion of a power cable. Moreover, the rubber mold component 1 of Embodiment 1 can be suitably used for a rubber mold component that constructs a terminal connection portion or an intermediate connection portion of a power cable including a polyethylene sheath that is likely to cause shrinkback.

〔作用効果〕
実施形態1に係るゴムモールド部品1によれば、高摩擦抵抗部15aをシース56に接触させると共に、本体部11の把持により高摩擦抵抗部15aを介してシース56に所定の面圧を付加することで、滑り止め部15とシース56との間に作用する摩擦力を大きくできる。そのため、熱影響に伴うシース56の長手方向の収縮を抑制し易くて、シース56が遮蔽層55に対して軸方向にずれることを抑制し易い。その上、シース56が遮蔽層55に対して軸方向にずれても、そのずれに対して滑り止め部15が追随してずれ易く、本体部11が滑り止め部15のずれにある程度追従して延びることで、本体部11がシース56を覆い続けられる。従って、遮蔽層55のシース56(ゴムモールド部品1)からの露出を抑制できる。このシース56の軸方向のずれを抑制できることで、シース56の軸方向のずれに伴う遮蔽層55への負荷がかかり難く、負荷がかかることに伴う遮蔽層55の破断なども生じ難い。
[Function and effect]
According to the rubber mold component 1 according to the first embodiment, the high frictional resistance portion 15a is brought into contact with the sheath 56, and a predetermined surface pressure is applied to the sheath 56 through the high frictional resistance portion 15a by gripping the main body portion 11. Thus, the frictional force acting between the anti-slip portion 15 and the sheath 56 can be increased. Therefore, it is easy to suppress contraction in the longitudinal direction of the sheath 56 due to thermal influence, and it is easy to suppress the sheath 56 from shifting in the axial direction with respect to the shielding layer 55. In addition, even if the sheath 56 is displaced in the axial direction with respect to the shielding layer 55, the non-slip portion 15 easily follows the deviation, and the main body portion 11 follows the slip of the anti-slip portion 15 to some extent. By extending, the main body 11 can continue to cover the sheath 56. Therefore, exposure from the sheath 56 (rubber mold part 1) of the shielding layer 55 can be suppressed. Since the axial displacement of the sheath 56 can be suppressed, it is difficult to apply a load to the shielding layer 55 due to the axial displacement of the sheath 56, and the shielding layer 55 is not easily broken due to the load.

《実施形態2》
〔電力ケーブルの接続要部品〕
図2、図3を参照して、実施形態2に係る電力ケーブルの接続用部品2を説明する。実施形態2に係る電力ケーブルの接続用部品2は、複数の電力ケーブル50の外周に、各電力ケーブル50の端部に装着されるゴムモールド部品10とずれて配置される。各電力ケーブル50の構成は、実施形態1と同様である。ゴムモールド部品10は、実施形態1のゴムモールド部品1とは異なり、滑り止め部を備えていない。この電力ケーブルの接続用部品2の特徴の一つは、熱影響に伴うシース56の軸方向へのずれを抑制する滑り止め機構20を備える点にある。ここでは、滑り止め機構20は、ブラケット21とゴムスペーサー25とを備える。以下、各構成を詳細に説明する。
<< Embodiment 2 >>
[Power cable connection components]
With reference to FIG. 2 and FIG. 3, the component 2 for connection of the power cable which concerns on Embodiment 2 is demonstrated. The power cable connection component 2 according to the second embodiment is arranged on the outer periphery of the plurality of power cables 50 so as to be shifted from the rubber mold component 10 attached to the end of each power cable 50. The configuration of each power cable 50 is the same as that of the first embodiment. Unlike the rubber mold component 1 of the first embodiment, the rubber mold component 10 does not include an anti-slip portion. One of the features of the power cable connecting component 2 is that it includes an anti-slip mechanism 20 that suppresses the axial displacement of the sheath 56 due to thermal effects. Here, the anti-slip mechanism 20 includes a bracket 21 and a rubber spacer 25. Hereinafter, each configuration will be described in detail.

[滑り止め機構]
(ブラケット)
ブラケット21は、ゴムスペーサー25の外周面に装着されてゴムスペーサー25を締め付けることで、ゴムスペーサー25を介してシース56に所定の面圧を付加する。また、ブラケット21は、複数の電力ケーブル50を取付対象に取り付ける。このブラケット21は、本体22と押え部材23と締付部材24とを備える(図3)。
[Anti-slip mechanism]
(bracket)
The bracket 21 is attached to the outer peripheral surface of the rubber spacer 25 and tightens the rubber spacer 25 to apply a predetermined surface pressure to the sheath 56 via the rubber spacer 25. Moreover, the bracket 21 attaches a plurality of power cables 50 to an attachment target. The bracket 21 includes a main body 22, a pressing member 23, and a tightening member 24 (FIG. 3).

〈本体〉
本体22は、ブラケット21自体を取付対象に固定するもので、半円状の湾曲部22aと、湾曲部22aの両側に形成されるフランジ部22bと、湾曲部の外側面に形成される固定台22cとを備える。この湾曲部22aは、後述する押え部材23の湾曲部23aとの間にゴムスペーサー25を配置する。このフランジ部22bは、押え部材23を本体22に固定するためのものである。このフランジ部22bには、後述する締付部材24が挿通される挿通孔(図示略)が形成されている。固定台22cは、本体22を取付対象に固定する。取付対象としては、例えば腕金などが挙げられる。固定台22cには、本体22を取付対象に固定するためのボルトなどの固定部材が挿通される挿通孔(図示略)が形成されている。
<Main body>
The main body 22 fixes the bracket 21 itself to an object to be attached, and includes a semicircular curved portion 22a, flange portions 22b formed on both sides of the curved portion 22a, and a fixing base formed on the outer surface of the curved portion. 22c. A rubber spacer 25 is disposed between the curved portion 22a and a curved portion 23a of a pressing member 23 described later. The flange portion 22 b is for fixing the pressing member 23 to the main body 22. The flange portion 22b is formed with an insertion hole (not shown) through which a later-described tightening member 24 is inserted. The fixing base 22c fixes the main body 22 to an attachment target. As an attachment object, a brace etc. are mentioned, for example. The fixing base 22c is formed with an insertion hole (not shown) through which a fixing member such as a bolt for fixing the main body 22 to the attachment target is inserted.

〈押え部材〉
押え部材23は、本体22の湾曲部22a及びフランジ部22bの内側面と対向配置され、本体22との間にゴムスペーサー25を配置してゴムスペーサー25の外周面を押さえ付ける。押え部材23は、半円状の湾曲部23aと、湾曲の両側に形成されるフランジ部23bとを備える。この湾曲部23aは、ゴムスペーサー25の外周面に接してゴムスペーサー25の外周面を押さえ付ける。このフランジ部23bは、本体22のフランジ部22bに締付部材24で固定される。このフランジ部23bには、締付部材24を挿通させる挿通孔(図示略)が形成されている。
<Presser member>
The pressing member 23 is disposed to face the inner side surfaces of the curved portion 22 a and the flange portion 22 b of the main body 22, and a rubber spacer 25 is arranged between the main body 22 and presses the outer peripheral surface of the rubber spacer 25. The pressing member 23 includes a semicircular curved portion 23a and flange portions 23b formed on both sides of the curve. The curved portion 23 a is in contact with the outer peripheral surface of the rubber spacer 25 and presses the outer peripheral surface of the rubber spacer 25. The flange portion 23 b is fixed to the flange portion 22 b of the main body 22 with a fastening member 24. An insertion hole (not shown) through which the tightening member 24 is inserted is formed in the flange portion 23b.

〈締付部材〉
締付部材24は、本体22及び押え部材23のフランジ部22b,23bとを一体に締め付けて本体22と押え部材23とを固定する。この締め付けにより、本体22及び押え部材23の湾曲部22a、23a同士で、両者の間に配置されるゴムスペーサー25を圧縮して、電力ケーブル50に所定の面圧が付加される。締付部材24は、ボルトが利用できる。
<Tightening member>
The fastening member 24 fixes the main body 22 and the presser member 23 by integrally fastening the main body 22 and the flange portions 22 b and 23 b of the presser member 23. By this tightening, the curved portions 22 a and 23 a of the main body 22 and the pressing member 23 compress the rubber spacer 25 disposed between them, and a predetermined surface pressure is applied to the power cable 50. The fastening member 24 can be a bolt.

ブラケット21の軸方向に沿った長さは、ゴムスペーサー25におけるブラケット21の軸方向に沿った全長よりも少し短いことが好ましい(図2)。   The length of the bracket 21 along the axial direction is preferably slightly shorter than the total length of the rubber spacer 25 along the axial direction of the bracket 21 (FIG. 2).

(ゴムスペーサー)
ゴムスペーサー25は、各電力ケーブル50のシース56の外周面に所定の面圧を付加するように装着されて複数の電力ケーブル50を束ねる。ここでは、ゴムスペーサー25は、3心(3相)の電力ケーブル50を一括して束ねる。ゴムスペーサー25は、円柱状体で、その軸方向に沿って形成されて各電力ケーブル50が収納される収納孔26と、その収納孔26に一連に形成されて、ゴムスペーサー25の外側から各電力ケーブル50を収納孔26に嵌め込むための切欠部27とを有する(図3)。このゴムスペーサー25は、ゴムスペーサー25とシース56との間の静摩擦係数μが本体部11(図1)とシース56との間の静摩擦係数μよりも大きい高摩擦抵抗部25aを有する。高摩擦抵抗部25aのゴムスペーサー25における形成領域は、収納孔26の近傍のみの領域としてもよいし、ゴムスペーサー25の全体に亘る領域としてもよい。高摩擦抵抗部25aの形成領域を収納孔26の近傍のみの領域とする場合、ゴムスペーサー25のうち高摩擦抵抗部25aとそれ以外の箇所とを一体に形成してもよいし分離可能に独立して形成されていてもよい。ここでは、ゴムスペーサー25の全体が高摩擦抵抗部25aで形成されている。
(Rubber spacer)
The rubber spacer 25 is attached so as to apply a predetermined surface pressure to the outer peripheral surface of the sheath 56 of each power cable 50 and bundles the plurality of power cables 50. Here, the rubber spacer 25 bundles three-core (three-phase) power cables 50 together. The rubber spacer 25 is a cylindrical body, is formed along the axial direction of the rubber spacer 25, and is formed in a series in the storage hole 26 in which each power cable 50 is stored. It has a notch 27 for fitting the power cable 50 into the storage hole 26 (FIG. 3). The rubber spacer 25 has a high friction resistance portion 25 a in which the static friction coefficient μ 3 between the rubber spacer 25 and the sheath 56 is larger than the static friction coefficient μ 2 between the main body portion 11 (FIG. 1) and the sheath 56. The formation region of the high-friction resistance portion 25a in the rubber spacer 25 may be a region only in the vicinity of the accommodation hole 26 or may be a region over the entire rubber spacer 25. When the formation area of the high friction resistance portion 25a is an area only in the vicinity of the accommodation hole 26, the high friction resistance portion 25a and other portions of the rubber spacer 25 may be integrally formed or separable independently. May be formed. Here, the entire rubber spacer 25 is formed of the high friction resistance portion 25a.

高摩擦抵抗部25a(ゴムスペーサー25)とシース56との間の静摩擦係数μと、本体部11とシース56との間の静摩擦係数μとの差Δμ(μ−μ)は、上述の実施形態1と同様、0.5以上3.6以下が好ましい。高摩擦抵抗部25aとシース56との間の静摩擦係数μは、上述の実施形態1と同様、1.1以上4.1以下が挙げられる。高摩擦抵抗部25a(ゴムスペーサー25)の材質は、上述した滑り止め部15の材質と同様、シリコーンゴムやウレタンゴムなどが挙げられる。 The difference Δμ (μ 3 −μ 2 ) between the static friction coefficient μ 3 between the high friction resistance portion 25 a (rubber spacer 25) and the sheath 56 and the static friction coefficient μ 2 between the main body 11 and the sheath 56 is Like the above-mentioned Embodiment 1, 0.5 or more and 3.6 or less are preferable. The static friction coefficient μ 3 between the high frictional resistance portion 25a and the sheath 56 is 1.1 or more and 4.1 or less as in the first embodiment. Examples of the material of the high friction resistance portion 25a (rubber spacer 25) include silicone rubber and urethane rubber similarly to the material of the anti-slip portion 15 described above.

高摩擦抵抗部25a(ゴムスペーサー25)におけるブラケット21の軸方向に沿った長さLは、上述の実施形態1の高摩擦抵抗部15a(滑り止め部15)と同様の理由から、例えば、30mm以上120mm以下が好ましい(図2)。この長さLは、ブラケット21で覆われた箇所の軸方向に沿った長さである。高摩擦抵抗部25aを介してシース56に所定の面圧が付加されるのは、実質的にブラケット21で覆われている箇所、即ち、長さでいうと、高摩擦抵抗部25aの長さのうちブラケットの長さの分だけである。この長さLは、更に35mm以上110mm以下が好ましく、特に45mm以上60mm以下が好ましい。 The length L 2 along the axial direction of the bracket 21 in the high frictional resistance portion 25a (rubber spacer 25), from the same reason as the high frictional resistance portion 15a of the first embodiment described above (slip section 15), for example, It is preferably 30 mm or more and 120 mm or less (FIG. 2). The length L 2 is the length along the axial direction of the portion covered by the bracket 21. The predetermined surface pressure is applied to the sheath 56 via the high frictional resistance portion 25a, which is substantially covered with the bracket 21, that is, in terms of length, the length of the high frictional resistance portion 25a. Of this, only the length of the bracket. The length L 2 is more preferably not less than 110mm or less 35 mm, particularly preferably 45mm or more 60mm or less.

高摩擦抵抗部25a(ゴムスペーサー25)の厚みは、上述の実施形態1の高摩擦抵抗部15a(滑り止め部15)と同様の理由から、例えば、0.5mm以上5.0mm以下が好ましく、特に2.0mm以上3.0mm以下が好ましい。この厚みとは、3つの収納孔26の包絡円とゴムスペーサー25の外周の径差を言う(図3)。   The thickness of the high friction resistance portion 25a (rubber spacer 25) is preferably, for example, 0.5 mm or more and 5.0 mm or less for the same reason as the high friction resistance portion 15a (slip prevention portion 15) of the first embodiment described above. In particular, 2.0 mm or more and 3.0 mm or less are preferable. This thickness refers to the difference in diameter between the envelope circle of the three storage holes 26 and the outer periphery of the rubber spacer 25 (FIG. 3).

ゴムスペーサー25は、その長さ方向の両端のうち、少なくとも電力ケーブル50の先端側の外周縁に形成される鍔部を有することが好ましい。そうすれば、ゴムスペーサー25のシース56のずれ方向への移動を鍔部で規制できるため、ゴムスペーサー25によりシース56の軸方向のずれを効果的に抑制し易い。この鍔部は、ゴムスペーサー25の他方の端部の外周縁にも形成されていてもよい。   It is preferable that the rubber spacer 25 has a flange portion formed at least on the outer peripheral edge on the front end side of the power cable 50 among both ends in the length direction. If it does so, since the movement to the shift | offset | difference direction of the sheath 56 of the rubber spacer 25 can be controlled by a collar part, the shift | offset | difference of the axial direction of the sheath 56 is easily suppressed effectively by the rubber spacer 25. This flange may also be formed on the outer peripheral edge of the other end of the rubber spacer 25.

[用途]
実施形態5に係る電力ケーブルの接続用部品2は、電力ケーブルの端末接続部を構築するゴムスペーサーとブラケットとを備える電力ケーブルの接続用部品に好適に利用できる。
[Usage]
The power cable connection part 2 according to the fifth embodiment can be suitably used as a power cable connection part including a rubber spacer and a bracket for constructing a terminal connection part of the power cable.

〔作用効果〕
実施形態2に係る電力ケーブルの接続用部品2によれば、滑り止め機構20はゴムモールド部品10とずれて配置されていてゴムモールド部品10のようにシース56の端部を直接覆わなくても、シース56の端部に近い箇所に設けられる。そのため、実施形態1に係るゴムモールド部品1と同様に、電力ケーブル50における遮蔽層55のシース56(ゴムモールド部品10)からの露出を抑制できる。
[Function and effect]
According to the power cable connecting component 2 according to the second embodiment, the anti-slip mechanism 20 is arranged so as to be displaced from the rubber mold component 10 and does not directly cover the end of the sheath 56 unlike the rubber mold component 10. , Provided near the end of the sheath 56. Therefore, the exposure from the sheath 56 (rubber mold component 10) of the shielding layer 55 in the power cable 50 can be suppressed as in the rubber mold component 1 according to the first embodiment.

これに対して、従来、電力ケーブルの端部におけるシースの外周にゴムモールド部品とずれて装着されるゴムスペーサーとそのゴムスペーサーの外周に装着されるブラケットとでは、熱影響によるシースのその長手方向の収縮を抑制できず、遮蔽層のシース(ゴムモールド部品)からの露出を抑制できない。従来のゴムスペーサーとブラケットとでは、本形態のようにゴムスペーサー25とシース56との間に作用する摩擦力を高められないからである。従来のゴムスペーサーは、電力ケーブルをブラケットに支持する際に、電力ケーブルとブラケットとの隙間を埋めるためのものであって、本形態のゴムスペーサー25のように高摩擦抵抗部25aを有さない。従来のブラケットは、電力ケーブルを支持するためのものであって、本形態のブラケット21のようにゴムスペーサー25を介してシース56に所定の面圧を付加するものではない。従来のゴムスペーサーは、少なくとも電力ケーブルの先端側に鍔部が設けられ、その鍔がブラケットに引っかることで、ブラケットに対して鍔部で掛け止めした状態となる。そのためブラケットでスペーサーを圧縮して電力ケーブルに面圧を付加させなくても、ゴムスペーサーがブラケットから脱落することがない。   On the other hand, conventionally, a rubber spacer that is attached to the outer periphery of the sheath at the end of the power cable with a deviation from the rubber mold component and a bracket that is attached to the outer periphery of the rubber spacer, the longitudinal direction of the sheath due to thermal effects Cannot be suppressed, and exposure from the sheath (rubber mold component) of the shielding layer cannot be suppressed. This is because the conventional rubber spacer and bracket cannot increase the frictional force acting between the rubber spacer 25 and the sheath 56 as in this embodiment. The conventional rubber spacer is for filling the gap between the power cable and the bracket when the power cable is supported on the bracket, and does not have the high friction resistance portion 25a unlike the rubber spacer 25 of the present embodiment. . The conventional bracket is for supporting the power cable, and does not apply a predetermined surface pressure to the sheath 56 via the rubber spacer 25 unlike the bracket 21 of the present embodiment. The conventional rubber spacer is provided with a hook part at least on the front end side of the power cable, and the hook is hooked to the bracket so that the hook is hooked to the bracket with the hook part. Therefore, the rubber spacer does not fall off the bracket without compressing the spacer with the bracket and applying a surface pressure to the power cable.

《試験例》
図1を参照して説明した滑り止め部15を有するゴムモールド部品1を用いて、シース内部の遮蔽層の露出状態を目視にて観察した。
《Test example》
The exposed state of the shielding layer inside the sheath was visually observed using the rubber mold component 1 having the anti-slip portion 15 described with reference to FIG.

この試験例では、滑り止め部は、滑り止め部とシースとの間の静摩擦係数μが3.6の筒状の合成ゴムで構成した。滑り止め部の長さは、30mmとし、滑り止め部の厚さは、3.0mmとした。本体部の材質は、本体部とシースとの間の静摩擦係数μが1.7の合成ゴムで構成した。シースの材質は、ポリエチレンとした。 In this test example, the anti-slip part was composed of a cylindrical synthetic rubber having a static friction coefficient μ 1 between the anti-slip part and the sheath of 3.6. The length of the anti-slip part was 30 mm, and the thickness of the anti-slip part was 3.0 mm. The material of the main body was made of synthetic rubber having a static friction coefficient μ 2 between the main body and the sheath of 1.7. The material of the sheath was polyethylene.

遮蔽層の露出状態の観察は、電力ケーブルをその軸方向を鉛直方向に沿って配置し、シースに対して10kgの重りを付加して、目視により確認することで行った。その結果、滑り止め部を有するゴムモールド部品を用いた場合、遮蔽層は露出しなかった。比較として、滑り止め部を有していないゴムモールド部品を用いて、同じ試験を行った結果、遮蔽層の一部が露出した。   Observation of the exposed state of the shielding layer was performed by arranging the power cable along the vertical direction in the vertical direction, adding a 10 kg weight to the sheath, and visually confirming it. As a result, the shielding layer was not exposed when a rubber mold part having a non-slip portion was used. For comparison, a part of the shielding layer was exposed as a result of performing the same test using a rubber mold part having no anti-slip part.

本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The present invention is not limited to these exemplifications, but is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.

1、10 ゴムモールド部品
11 本体部
12 目印 12a 突起
13 電界緩和層
15 滑り止め部 15a 高摩擦抵抗部
2 電力ケーブルの接続用部品
20 滑り止め機構
21 ブラケット
22 本体 22a 湾曲部 22b フランジ部 22c 固定台
23 押え部材 23a 湾曲部 23b フランジ部
24 締付部材
25 ゴムスペーサー 25a 高摩擦抵抗部
26 収納孔
27 切欠部
50 電力ケーブル
53 絶縁体 55 遮蔽層 56 シース
DESCRIPTION OF SYMBOLS 1, 10 Rubber mold part 11 Main body part 12 Mark 12a Protrusion 13 Electric field relaxation layer 15 Non-slip part 15a High friction resistance part 2 Power cable connection part 20 Non-slip mechanism 21 Bracket 22 Main body 22a Curved part 22b Flange part 22c Fixing base 23 Holding member 23a Bending portion 23b Flange portion 24 Tightening member 25 Rubber spacer 25a High friction resistance portion 26 Storage hole 27 Notch portion 50 Power cable 53 Insulator 55 Shielding layer 56 Sheath

Claims (11)

電力ケーブルの端部に装着されるゴムモールド部品であって、
前記電力ケーブルは、遮蔽層と前記遮蔽層の外周を覆うシースとを備え、
前記ゴムモールド部品は、
前記シースの端部を把持して前記シースに所定の面圧を付加する筒状の本体部と、
前記シースと前記本体部との間に介在されて、熱影響に伴う前記シースの前記遮蔽層に対する軸方向のずれを抑制する滑り止め部とを備え、
前記滑り止め部は、前記滑り止め部と前記シースとの間の静摩擦係数が前記本体部と前記シースとの間の静摩擦係数よりも大きい高摩擦抵抗部を有するゴムモールド部品。
It is a rubber mold part attached to the end of the power cable,
The power cable includes a shielding layer and a sheath covering an outer periphery of the shielding layer,
The rubber mold component is
A cylindrical main body that grips the end of the sheath and applies a predetermined surface pressure to the sheath;
An anti-slip portion interposed between the sheath and the main body portion to suppress axial displacement of the sheath with respect to the shielding layer due to thermal effects;
The anti-slip part is a rubber mold part having a high friction resistance part in which a static friction coefficient between the anti-slip part and the sheath is larger than a static friction coefficient between the main body part and the sheath.
前記滑り止め部の形状は、筒状である請求項1に記載のゴムモールド部品。   The rubber mold part according to claim 1, wherein the anti-slip portion has a cylindrical shape. 前記滑り止め部における前記ゴムモールド部品の軸方向に沿った長さは、30mm以上120mm以下である請求項1又は請求項2に記載のゴムモールド部品。   3. The rubber molded component according to claim 1, wherein a length along the axial direction of the rubber molded component in the anti-slip portion is 30 mm or more and 120 mm or less. 前記滑り止め部の厚みは、0.5mm以上5.0mm以下である請求項1から請求項3のいずれか1項に記載のゴムモールド部品。   The rubber mold part according to any one of claims 1 to 3, wherein the anti-slip portion has a thickness of 0.5 mm or greater and 5.0 mm or less. 前記本体部の内周面のうち前記滑り止め部のない面と、前記滑り止め部の内面とが、面一である請求項1から請求項4のいずれか1項に記載のゴムモールド部品。   The rubber mold part according to any one of claims 1 to 4, wherein a surface of the inner peripheral surface of the main body portion without the anti-slip portion is flush with an inner surface of the anti-slip portion. 前記本体部の内周面、又は前記滑り止め部の内面のいずれか一方は、前記本体部の折り返し位置を示す目印を備える請求項1から請求項5のいずれか1項に記載のゴムモールド部品。   6. The rubber molded component according to claim 1, wherein either the inner peripheral surface of the main body portion or the inner surface of the anti-slip portion includes a mark indicating a folding position of the main body portion. . 前記本体部の内周面は、前記目印を備え、
前記滑り止め部は、前記本体部における前記電力ケーブルの挿入側の開口端と前記目印との間に配置されている請求項6に記載のゴムモールド部品。
The inner peripheral surface of the main body includes the mark,
The rubber mold component according to claim 6, wherein the anti-slip portion is disposed between the opening end of the main body portion on the insertion side of the power cable and the mark.
前記本体部は、前記目印を基点に折り返されている請求項7に記載のゴムモールド部品。   The rubber molded component according to claim 7, wherein the main body is folded back with the mark as a base point. 前記本体部の内周面に一体に形成される筒状の電界緩和層を備える請求項1から請求項8のいずれか1項に記載のゴムモールド部品。   The rubber mold part according to any one of claims 1 to 8, further comprising a cylindrical electric field relaxation layer integrally formed on an inner peripheral surface of the main body. ゴムモールド部品の本体部が装着される端部を有するシースと前記シース内の遮蔽層とを有する複数の電力ケーブルの外周に、前記ゴムモールド部品とずれて配置されて、熱影響に伴う前記シースの軸方向へのずれを抑制する滑り止め機構を備え、
前記滑り止め機構は、前記各電力ケーブルの前記シースの外周面に所定の面圧を付加するように装着されて前記複数の電力ケーブルを束ねるゴムスペーサーを備え、
前記ゴムスペーサーは、前記ゴムスペーサーと前記シースとの間の静摩擦係数が前記本体部と前記シースとの間の静摩擦係数よりも大きい高摩擦抵抗部を有する電力ケーブルの接続用部品。
The sheath that is disposed on the outer periphery of a plurality of power cables having a sheath having an end portion to which a main body portion of the rubber mold component is mounted and a shielding layer in the sheath is shifted from the rubber mold component and is affected by a thermal effect. Equipped with a non-slip mechanism that suppresses the axial displacement of
The anti-slip mechanism includes a rubber spacer that is attached so as to apply a predetermined surface pressure to the outer peripheral surface of the sheath of each power cable and bundles the plurality of power cables.
The rubber spacer is a power cable connecting part having a high friction resistance portion in which a static friction coefficient between the rubber spacer and the sheath is larger than a static friction coefficient between the main body portion and the sheath.
前記滑り止め機構は、前記ゴムスペーサーの外周面に装着されて前記ゴムスペーサーを締め付けることで、前記ゴムスペーサーを介して前記シースに所定の面圧を付加するブラケットを備える請求項10に記載の電力ケーブルの接続用部品。   The electric power according to claim 10, wherein the anti-slip mechanism includes a bracket that is attached to an outer peripheral surface of the rubber spacer and tightens the rubber spacer to apply a predetermined surface pressure to the sheath via the rubber spacer. Cable connection parts.
JP2016155073A 2016-08-05 2016-08-05 Rubber mold parts Active JP6723507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016155073A JP6723507B2 (en) 2016-08-05 2016-08-05 Rubber mold parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016155073A JP6723507B2 (en) 2016-08-05 2016-08-05 Rubber mold parts

Publications (2)

Publication Number Publication Date
JP2018023264A true JP2018023264A (en) 2018-02-08
JP6723507B2 JP6723507B2 (en) 2020-07-15

Family

ID=61165988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016155073A Active JP6723507B2 (en) 2016-08-05 2016-08-05 Rubber mold parts

Country Status (1)

Country Link
JP (1) JP6723507B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019176710A (en) * 2018-03-29 2019-10-10 住電機器システム株式会社 Rubber mold component and connection part of power cable

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4632290Y1 (en) * 1967-10-03 1971-11-08
JPS56115119A (en) * 1980-02-14 1981-09-10 Nippon Telegraph & Telephone Creep resistant connector for coaxial cable
JPH09224322A (en) * 1996-02-15 1997-08-26 Fujikura Ltd Power cable joint
JPH10210644A (en) * 1997-01-24 1998-08-07 Hitachi Cable Ltd Method for forming projection for slippage prevention of cable sheath
JPH11289650A (en) * 1998-04-03 1999-10-19 Sumiden Asahi Seiko Kk Rubber molded part of power cable end
JP2011234580A (en) * 2010-04-30 2011-11-17 Inoue Mfg Inc Contraction preventing structure of cable sheath
JP2013236501A (en) * 2012-05-10 2013-11-21 Chugoku Electric Power Co Inc:The Support structure of electric power cable
JP2015073424A (en) * 2013-09-06 2015-04-16 スリーエム イノベイティブ プロパティズ カンパニー Coating treatment tool, connection structure of power cable, method for assembling connection structure of power cable, and terminal processing method
JP2015142486A (en) * 2014-01-30 2015-08-03 中部電力株式会社 End structure of high voltage cable

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4632290Y1 (en) * 1967-10-03 1971-11-08
JPS56115119A (en) * 1980-02-14 1981-09-10 Nippon Telegraph & Telephone Creep resistant connector for coaxial cable
JPH09224322A (en) * 1996-02-15 1997-08-26 Fujikura Ltd Power cable joint
JPH10210644A (en) * 1997-01-24 1998-08-07 Hitachi Cable Ltd Method for forming projection for slippage prevention of cable sheath
JPH11289650A (en) * 1998-04-03 1999-10-19 Sumiden Asahi Seiko Kk Rubber molded part of power cable end
JP2011234580A (en) * 2010-04-30 2011-11-17 Inoue Mfg Inc Contraction preventing structure of cable sheath
JP2013236501A (en) * 2012-05-10 2013-11-21 Chugoku Electric Power Co Inc:The Support structure of electric power cable
JP2015073424A (en) * 2013-09-06 2015-04-16 スリーエム イノベイティブ プロパティズ カンパニー Coating treatment tool, connection structure of power cable, method for assembling connection structure of power cable, and terminal processing method
JP2015142486A (en) * 2014-01-30 2015-08-03 中部電力株式会社 End structure of high voltage cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019176710A (en) * 2018-03-29 2019-10-10 住電機器システム株式会社 Rubber mold component and connection part of power cable

Also Published As

Publication number Publication date
JP6723507B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
KR101708072B1 (en) Splice assembly with shield sock
JP6035626B2 (en) Mounting structure of exterior member and retrofitted parts
US9865376B2 (en) Shielded conductive path
JP2017055570A (en) Prevention structure for slippage between electrically conducting path and shield member and wire harness
JP2018023264A (en) Rubber molding component and power cable connection component
WO2015034800A1 (en) Cover processing tool, power cable connection structure, power cable connection structure assembly method and terminal processing method
JP2015142486A (en) End structure of high voltage cable
CN107994359B (en) Joint assembly of built-in optical fiber cable and joint connection method
US7574086B2 (en) Installation method of optical fiber composite electric power cable and cable structure therefor
JP6566613B2 (en) Coating processing tool and coating processing method
JP6011521B2 (en) Wire Harness
JP5323760B2 (en) Cable sheath shrinkage prevention structure
JP6928846B2 (en) Rubber mold parts and power cable connections
JP2014166010A (en) Of cable connection part
US9601838B2 (en) Splice for gathering ends of electric wire bundle
JP6709596B2 (en) Wire bundle
JP5188098B2 (en) Protective cover
KR101409471B1 (en) Circumference measurement jig
US20200161021A1 (en) Electric wire bundling member and wire harness
JP6628245B2 (en) Terminal section of aluminum conductor cable
WO2023189385A1 (en) Wire harness
JP5761529B2 (en) Cold shrinkable rubber insulation cylinder for power cable connection and manufacturing method thereof
JP4455176B2 (en) Power cable connection structure
JP6278824B2 (en) Power cable connection
JP6825331B2 (en) Wire harness

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20190322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200605

R150 Certificate of patent or registration of utility model

Ref document number: 6723507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250