[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018019034A - Organic photoelectric conversion element, solid-state imaging element, and electronic device - Google Patents

Organic photoelectric conversion element, solid-state imaging element, and electronic device Download PDF

Info

Publication number
JP2018019034A
JP2018019034A JP2016150253A JP2016150253A JP2018019034A JP 2018019034 A JP2018019034 A JP 2018019034A JP 2016150253 A JP2016150253 A JP 2016150253A JP 2016150253 A JP2016150253 A JP 2016150253A JP 2018019034 A JP2018019034 A JP 2018019034A
Authority
JP
Japan
Prior art keywords
organic
photoelectric conversion
crystal
layer
semiconductor material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016150253A
Other languages
Japanese (ja)
Inventor
和行 篠原
Kazuyuki Shinohara
和行 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2016150253A priority Critical patent/JP2018019034A/en
Priority to PCT/JP2017/024826 priority patent/WO2018020977A1/en
Publication of JP2018019034A publication Critical patent/JP2018019034A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】画質や信頼性を更に向上させることを実現できる有機光電変換素子を提供すること。【解決手段】第1電極と、第1バッファ層と、光電変換層と、第2バッファ層と、第2電極とが、この順で積層され、第1バッファ層が第1有機半導体材料を含み、光電変換層が第2有機半導体材料を含み、第1有機半導体材料が第1有機結晶を有し、第2有機半導体材料が第2有機結晶を有し、第1有機結晶の面間隔と第2有機結晶の面間隔との比が、0.55:1〜1:0.55であり、第1有機結晶の方位と第2有機結晶の方位とが略一致している、有機光電変換素子。【選択図】なしAn organic photoelectric conversion element capable of further improving image quality and reliability is provided. A first electrode, a first buffer layer, a photoelectric conversion layer, a second buffer layer, and a second electrode are stacked in this order, and the first buffer layer includes a first organic semiconductor material. The photoelectric conversion layer includes the second organic semiconductor material, the first organic semiconductor material has the first organic crystal, the second organic semiconductor material has the second organic crystal, and the interplanar spacing of the first organic crystal The ratio between the two organic crystals is 0.55: 1 to 1: 0.55, and the orientation of the first organic crystal and the orientation of the second organic crystal substantially coincide with each other. . [Selection figure] None

Description

本技術は、有機光電変換素子、固体撮像素子及び電子装置に関する。   The present technology relates to an organic photoelectric conversion element, a solid-state imaging element, and an electronic device.

近年、デジタルカメラ、ビデオカムコーダに止まらず、スマートフォン用カメラ、監視向けカメラ、自動車用のバックモニター、衝突安全防止用センサとしても撮像素子の応用が拡がり、注目されている。様々な用途に対応するために、有機光電変換素子の性能の向上、機能の多様化が図られ、また、進化を続けている。   In recent years, not only digital cameras and video camcorders, but also applications for imaging devices have been attracting attention as smartphone cameras, surveillance cameras, automobile back monitors, and collision safety prevention sensors. In order to respond to various applications, the performance of organic photoelectric conversion elements has been improved and functions have been diversified.

例えば、有機光電変換素子に備えられてなる有機光電変換層の成膜方法であって、基板を用意し、該基板を真空蒸着室内に設置する基板設置工程と、該設置された基板の温度が5℃以上15℃以下の温度範囲となるように制御しながら、前記有機光電変換層を構成するn型有機半導体とp型有機半導体とを前記基板上に共蒸着して第1の光電変換層を成膜する第1の光電変換層形成工程と、前記制御をやめ、前記第1の光電変換層上に前記共蒸着を実施して第2の光電変換層を成膜する第2の光電変換層形成工程を有する有機光電変換層の成膜方法が提案されている(特許文献1を参照)。この技術によれば、成膜装置によって変化しやすく、かつ、残像特性に直接影響を及ぼす膜特性が良好なバルクヘテロ層を安定して製造することができる。   For example, a method for forming an organic photoelectric conversion layer provided in an organic photoelectric conversion element, in which a substrate is prepared and the substrate is installed in a vacuum deposition chamber, and the temperature of the installed substrate is The first photoelectric conversion layer is formed by co-evaporating an n-type organic semiconductor and a p-type organic semiconductor constituting the organic photoelectric conversion layer on the substrate while controlling the temperature range to be 5 ° C. or higher and 15 ° C. or lower. The first photoelectric conversion layer forming step of forming a film, and the second photoelectric conversion in which the control is stopped and the second photoelectric conversion layer is formed by performing the co-evaporation on the first photoelectric conversion layer. A method of forming an organic photoelectric conversion layer having a layer forming step has been proposed (see Patent Document 1). According to this technique, it is possible to stably manufacture a bulk hetero layer that is easily changed by a film forming apparatus and has good film characteristics that directly affect afterimage characteristics.

特開2015−15415号公報JP2015-15415A

しかしながら、特許文献1で提案された技術では、画質の更なる向上や、信頼性の更なる向上が図れないおそれがある。   However, the technique proposed in Patent Document 1 may not be able to further improve image quality and reliability.

そこで、本技術は、このような状況に鑑みてなされたものであり、画質を更に向上させることや、信頼性を更に向上させることを実現できる有機光電変換素子、固体撮像素子及び電子装置を提供することを主目的とする。   Therefore, the present technology has been made in view of such a situation, and provides an organic photoelectric conversion element, a solid-state imaging element, and an electronic apparatus that can realize further improvement in image quality and further improvement in reliability. The main purpose is to do.

本発明者は、上述の目的を解決するために鋭意研究を行った結果、驚くべきことに、画質や信頼性を飛躍的に向上させることに成功し、本技術を完成するに至った。   As a result of intensive studies to solve the above-mentioned object, the present inventor has surprisingly succeeded in dramatically improving the image quality and reliability, and has completed the present technology.

すなわち、本技術では、まず、第1電極と、第1バッファ層と、光電変換層と、第2バッファ層と、第2電極とが、この順で積層され、該第1バッファ層が第1有機半導体材料を含み、該光電変換層が第2有機半導体材料を含み、該第1有機半導体材料が第1有機結晶を有し、該第2有機半導体材料が第2有機結晶を有し、該第1有機結晶の面間隔と該第2有機結晶の面間隔との比が、0.55:1〜1:0.55であり、該第1有機結晶の方位と該第2有機結晶の方位とが略一致している、有機光電変換素子を提供する。   That is, in the present technology, first, the first electrode, the first buffer layer, the photoelectric conversion layer, the second buffer layer, and the second electrode are stacked in this order, and the first buffer layer is the first buffer layer. An organic semiconductor material, the photoelectric conversion layer includes a second organic semiconductor material, the first organic semiconductor material includes a first organic crystal, the second organic semiconductor material includes a second organic crystal, The ratio between the face spacing of the first organic crystal and the face spacing of the second organic crystal is 0.55: 1 to 1: 0.55, and the orientation of the first organic crystal and the orientation of the second organic crystal And an organic photoelectric conversion element substantially matching the above.

本技術に係る有機光電変換素子において、前記第1有機結晶に含まれる有機分子の少なくとも1部が、前記第1電極又は前記第2電極の方向に向かってππスタッキングしてよい。
本技術に係る有機光電変換素子において、前記ππスタッキングが、前記第1電極又は前記第2電極の主面に対して30°以上の角度で形成されてよい。
In the organic photoelectric conversion element according to the present technology, at least a part of the organic molecules included in the first organic crystal may be ππ stacked in the direction of the first electrode or the second electrode.
In the organic photoelectric conversion element according to the present technology, the ππ stacking may be formed at an angle of 30 ° or more with respect to the main surface of the first electrode or the second electrode.

本技術に係る有機光電変換素子において、前記第1有機結晶に含まれる有機分子の少なくとも一部が、前記第1電極又は前記第2電極の方向に向かってππスタッキングし、前記第1バッファ層が、該有機分子の長軸の長さの4倍以上の膜厚を有してよい。   In the organic photoelectric conversion element according to the present technology, at least a part of the organic molecules contained in the first organic crystal is ππ stacked in the direction of the first electrode or the second electrode, and the first buffer layer is The film thickness may be 4 times or more the length of the major axis of the organic molecule.

本技術に係る有機光電変換素子において、前記第1バッファ層が、前記第1有機結晶に含まれる有機分子の長軸の長さの4倍未満の膜厚を有してよく、該有機分子の長軸方向が、前記第1電極又は前記第2電極の主面に対して45°以上の角度でよい。   In the organic photoelectric conversion element according to the present technology, the first buffer layer may have a film thickness that is less than four times the length of the long axis of the organic molecule contained in the first organic crystal. The major axis direction may be an angle of 45 ° or more with respect to the main surface of the first electrode or the second electrode.

本技術に係る有機光電変換素子において、前記第1バッファ層が高移動度材料を更に含んでよい。   In the organic photoelectric conversion element according to the present technology, the first buffer layer may further include a high mobility material.

本技術に係る有機光電変換素子は有機結晶調整層を更に含んでよく、該有機結晶調整層が前記光電変換層と前記第1バッファ層との間に配されてよい。   The organic photoelectric conversion element according to the present technology may further include an organic crystal adjustment layer, and the organic crystal adjustment layer may be disposed between the photoelectric conversion layer and the first buffer layer.

本技術に係る有機光電変換素子は有機結晶調整層を更に含んでよく、該有機結晶調整層が前記光電変換層と前記第1バッファ層との間に配されてよく、該有機結晶調整層が前記第2有機半導体材料を含んでよく、前記第2有機半導体材料が前記第2有機結晶を有してよく、前記第1有機結晶の面間隔と前記第2有機結晶の面間隔との比が、0.55:1〜1:0.55でよい。
前記有機結晶調整層が第3有機半導体材料を更に含んでよく、該第3有機半導体材料が第3有機結晶を有し、前記第1有機結晶の面間隔と該第3有機結晶の面間隔との比が、0.55:1〜1:0.55でよく、前記第2有機結晶の面間隔と該第3有機結晶の面間隔との比が、0.55:1〜1:0.55でよい。
The organic photoelectric conversion element according to the present technology may further include an organic crystal adjustment layer, the organic crystal adjustment layer may be disposed between the photoelectric conversion layer and the first buffer layer, and the organic crystal adjustment layer includes The second organic semiconductor material may include the second organic semiconductor material, and the second organic semiconductor material may include the second organic crystal, and a ratio between a face spacing of the first organic crystal and a face spacing of the second organic crystal is 0.55: 1 to 1: 0.55.
The organic crystal adjustment layer may further include a third organic semiconductor material, and the third organic semiconductor material includes a third organic crystal, and a face spacing of the first organic crystal and a face spacing of the third organic crystal. The ratio of the interplanar spacing of the second organic crystal to the interplanar spacing of the third organic crystal may be 0.55: 1 to 1: 0. 55 may be sufficient.

本技術に係る有機光電変換素子は有機結晶調整層を更に含んでよく、該有機結晶調整層が前記光電変換層と前記第1バッファ層との間に配されてよく、前記有機結晶調整層が第3有機半導体材料を含んでよく、該第3有機半導体材料が第3有機結晶を有してよく、前記第1有機結晶の面間隔と前記第3有機結晶の面間隔との比が、0.55:1〜1:0.55でよい。   The organic photoelectric conversion element according to the present technology may further include an organic crystal adjustment layer, the organic crystal adjustment layer may be disposed between the photoelectric conversion layer and the first buffer layer, and the organic crystal adjustment layer includes A third organic semiconductor material may be included, and the third organic semiconductor material may include a third organic crystal, and a ratio of a face spacing of the first organic crystal to a face spacing of the third organic crystal is 0. .55: 1 to 1: 0.55.

また、本技術では、1次元又は2次元に配列された複数の画素毎に、少なくとも、本技術に係る有機光電変換素子と、半導体基板とが積層された、固体撮像素子を提供する。   The present technology also provides a solid-state imaging device in which at least an organic photoelectric conversion device according to the present technology and a semiconductor substrate are stacked for each of a plurality of pixels arranged one-dimensionally or two-dimensionally.

さらに、本技術では、本技術に係る固体撮像素子を備える、電子装置を提供する。   Furthermore, the present technology provides an electronic device including the solid-state imaging device according to the present technology.

本技術によれば、画質や信頼性を向上させることができる。なお、ここに記載された効果は、必ずしも限定されるものではなく、本技術中に記載されたいずれかの効果であってもよい。   According to the present technology, image quality and reliability can be improved. In addition, the effect described here is not necessarily limited, and may be any effect described in the present technology.

図1は、本技術を適用した第1の実施形態の有機光電変換素子の構成例を示す断面図のTEM像である。FIG. 1 is a TEM image of a cross-sectional view illustrating a configuration example of the organic photoelectric conversion element according to the first embodiment to which the present technology is applied. 図2は、本技術を適用した第1の実施形態の有機光電変換素子を構成する、第1有機結晶及び第2有機結晶についてのTEM像及び断面模式図である。FIG. 2 is a TEM image and a cross-sectional schematic diagram of the first organic crystal and the second organic crystal that constitute the organic photoelectric conversion element of the first embodiment to which the present technology is applied. 図3は、本技術を適用した第1の実施形態の有機光電変換素子に適用することができる、ペンタセンを含む層のTEM像である。FIG. 3 is a TEM image of a layer containing pentacene that can be applied to the organic photoelectric conversion element of the first embodiment to which the present technology is applied. 図4は、本技術を適用した第2の実施形態の固体撮像素子の構成例を示す断面図である。FIG. 4 is a cross-sectional view illustrating a configuration example of the solid-state imaging device according to the second embodiment to which the present technology is applied. 図5は、本技術を適用した第2の実施形態の固体撮像素子の使用例を示す図である。FIG. 5 is a diagram illustrating a usage example of the solid-state imaging device according to the second embodiment to which the present technology is applied.

以下、本技術を実施するための好適な形態について説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。   Hereinafter, preferred embodiments for carrying out the present technology will be described. The embodiment described below shows an example of a typical embodiment of the present technology, and the scope of the present technology is not interpreted narrowly.

なお、説明は以下の順序で行う。
1.第1の実施形態(有機光電変換素子の例)
1−1.有機光電変換素子
1−2.第1バッファ層
1−3.光電変換層
1−4.第2バッファ層
1−5.第1電極及び第2電極
1−6.有機結晶調整層
1−7.高移動度材料
1−8.有機光電変換素子用の基板
1−9.有機光電変換素子の製造方法
2.第2の実施形態(固体撮像素子の例)
2−1.固体撮像素子
2−2.裏面照射型の固体撮像素子
2−3.表面照射型の固体撮像素子
3.第3の実施形態(電子装置の例)
4.本技術を適用した固体撮像素子の使用例
The description will be given in the following order.
1. 1st Embodiment (example of an organic photoelectric conversion element)
1-1. Organic photoelectric conversion element 1-2. First buffer layer 1-3. Photoelectric conversion layer 1-4. Second buffer layer 1-5. First electrode and second electrode 1-6. Organic crystal adjustment layer 1-7. High mobility material 1-8. Substrate for organic photoelectric conversion element 1-9. 1. Manufacturing method of organic photoelectric conversion element Second Embodiment (Example of Solid-State Image Sensor)
2-1. Solid-state image sensor 2-2. Back-illuminated solid-state imaging device 2-3. 2. Surface irradiation type solid-state imaging device Third Embodiment (Example of Electronic Device)
4). Usage example of solid-state image sensor to which this technology is applied

<1.第1の実施形態(有機光電変換素子の例)>
[1−1.有機光電変換素子]
本技術に係る第1の実施形態の有機光電変換素子は、第1電極と、第1バッファ層と、光電変換層と、第2バッファ層と、第2電極とが、この順で積層され、第1バッファ層が第1有機半導体材料を含み、光電変換層が第2有機半導体材料を含み、第1有機半導体材料が第1有機結晶を有し、第2有機半導体材料が第2有機結晶を有し、第1有機結晶の面間隔と第2有機結晶の面間隔との比が、0.55:1〜1:0.55であり、第1有機結晶の方位と該第2有機結晶の方位とが略一致している、有機光電変換素子である。
<1. First Embodiment (Example of Organic Photoelectric Conversion Element)>
[1-1. Organic photoelectric conversion element]
In the organic photoelectric conversion element according to the first embodiment of the present technology, the first electrode, the first buffer layer, the photoelectric conversion layer, the second buffer layer, and the second electrode are stacked in this order, The first buffer layer includes a first organic semiconductor material, the photoelectric conversion layer includes a second organic semiconductor material, the first organic semiconductor material includes a first organic crystal, and the second organic semiconductor material includes a second organic crystal. The ratio of the face spacing of the first organic crystal to the face spacing of the second organic crystal is 0.55: 1 to 1: 0.55, and the orientation of the first organic crystal and the second organic crystal It is an organic photoelectric conversion element whose orientation substantially matches.

本技術に係る第1の実施形態の有機光電変換素子では、例えばバルクヘテロ構造を有する光電変換層で発生したキャリアは電極に到達したのち、電圧へと変換され画像出力される。このとき、有機モジュールとその周辺構造の電気容量が大きい場合、電圧変化が小さくなるため、S/N比が低下してしまうことがある。電気容量を低下させるためには、光電変換層を厚膜化し、電極間距離を大きくする必要があるが、光電変換層を厚膜化するには、量子効率の低下や残像の悪化を招くため、膜厚を大きくするには制約がある。   In the organic photoelectric conversion element according to the first embodiment of the present technology, for example, carriers generated in a photoelectric conversion layer having a bulk hetero structure reach an electrode, and then are converted into a voltage and output as an image. At this time, when the electric capacity of the organic module and its peripheral structure is large, the voltage change is small, and the S / N ratio may be lowered. In order to reduce the electric capacity, it is necessary to increase the thickness of the photoelectric conversion layer and increase the distance between the electrodes. However, increasing the thickness of the photoelectric conversion layer causes a decrease in quantum efficiency and an afterimage. There are restrictions on increasing the film thickness.

本技術に係る第1の実施形態の有機光電変換素子では、第1電極に対してππスタッキングしたp型又はn型の第1バッファ層に、光電変換層を積層することで、光電変換層に含まれる有機分子を第1バッファ層上にエピタキシャルに成長させることができる。これによって、転送効率が向上し、量子効率の低下や残像の悪化がなく、電気容量を低下させることができる。   In the organic photoelectric conversion element of the first embodiment according to the present technology, a photoelectric conversion layer is stacked on a p-type or n-type first buffer layer that is ππ-stacked with respect to the first electrode. The contained organic molecules can be epitaxially grown on the first buffer layer. As a result, the transfer efficiency is improved, the quantum efficiency is not lowered and the afterimage is not deteriorated, and the electric capacity can be reduced.

図1は、本技術に係る第1の実施形態の有機光電変換素子1の断面図を、TEM(透過電子顕微鏡:Transmission Electron Microscopy)の像で示したものである。TEM像は、機種名:日本電子製のJEM−4000FXを用いて、加速電圧:400kV、及び露光時間:3秒で撮影したものである。   FIG. 1 is a cross-sectional view of the organic photoelectric conversion element 1 according to the first embodiment of the present technology, which is shown by an image of a transmission electron microscope (TEM). The TEM image was taken using a model name: JEM-4000FX manufactured by JEOL Ltd. with an acceleration voltage of 400 kV and an exposure time of 3 seconds.

有機光電変換素子1は、第1電極11と、第1バッファ層12と、光電変換層13と、第2バッファ層14と、第2電極15とが、この順で積層されている。第1バッファ層12が第1有機半導体材料を含み、光電変換層13が第2有機半導体材料を含む。そして、第1有機半導体材料は第1有機結晶を有し、第2有機半導体材料は第2有機結晶を有する。   As for the organic photoelectric conversion element 1, the 1st electrode 11, the 1st buffer layer 12, the photoelectric converting layer 13, the 2nd buffer layer 14, and the 2nd electrode 15 are laminated | stacked in this order. The first buffer layer 12 includes a first organic semiconductor material, and the photoelectric conversion layer 13 includes a second organic semiconductor material. The first organic semiconductor material has a first organic crystal, and the second organic semiconductor material has a second organic crystal.

図1に示されるように、第1有機結晶に含まれる有機分子が上下電極(すなわち、第1電極11及び第2電極15)に向けて、略縦方向(図1中の上下方向)に結晶格子縞を形成し、ππスタッキングしている。ππスタッキングとは、2つの芳香環が積み重ねたような配置で安定している状態として定義をすることができる。有機分子間でππスタッキングした場合、有機分子間距離が短くなる性質があるため、移動度は高くなり、光電変換層13で生成された電荷を効率良く電極へ輸送することができる。また、ππ相互作用とも呼ばれる。   As shown in FIG. 1, organic molecules contained in the first organic crystal are crystallized in a substantially vertical direction (vertical direction in FIG. 1) toward the upper and lower electrodes (that is, the first electrode 11 and the second electrode 15). Lattice fringes are formed and ππ stacking is performed. ππ stacking can be defined as a stable state in which two aromatic rings are stacked. When ππ stacking is performed between organic molecules, the distance between the organic molecules is shortened. Therefore, the mobility is increased, and the charge generated in the photoelectric conversion layer 13 can be efficiently transported to the electrode. Also called ππ interaction.

ππスタッキングすることで形成される結晶格子縞は、上下電極(第1電極11及び第2電極15)の主面に対して30°以上の角度で形成されることが好ましく、図1では、結晶格子縞と、上下電極(第1電極11及び第2電極15)の主面とのなす角度は約83°である。   The crystal lattice fringes formed by ππ stacking are preferably formed at an angle of 30 ° or more with respect to the main surfaces of the upper and lower electrodes (first electrode 11 and second electrode 15). In FIG. And the angle formed by the main surfaces of the upper and lower electrodes (the first electrode 11 and the second electrode 15) is about 83 °.

図2(a)は、本技術を適用した第1の実施形態の有機光電変換素子を構成する、第1有機結晶及び第2有機結晶についてのTEM(透過電子顕微鏡:Transmission Electron Microscopy)の像である。TEM像は、機種名:日本電子製のJEM−4000FXを用いて、加速電圧:400kV、及び露光時間:3秒で撮影したものである。   FIG. 2A is a transmission electron microscope (TEM) image of the first organic crystal and the second organic crystal constituting the organic photoelectric conversion element of the first embodiment to which the present technology is applied. is there. The TEM image was taken using a model name: JEM-4000FX manufactured by JEOL Ltd. with an acceleration voltage of 400 kV and an exposure time of 3 seconds.

図2(b)は、本技術を適用した第1の実施形態の有機光電変換素子を構成する、第1有機結晶と第2有機結晶との上記TEM像に対応する断面模式図である。   FIG. 2B is a schematic cross-sectional view corresponding to the TEM image of the first organic crystal and the second organic crystal constituting the organic photoelectric conversion element of the first embodiment to which the present technology is applied.

光電変換層を厚膜化したとき、光電変換層と第1バッファ層とは格子整合しない。また、第1バッファ層のみ厚膜化した場合、膜厚が上昇すると量子効率が低下する。図1、並びに図2(a)(TEM像)及び図2(b)(断面模式図)に示されるように、第1バッファ層12に含まれる第1有機結晶に対して、光電変換層13(例えばバルクヘテロ層)に含まれる第2有機結晶を格子整合させた構造では、転送効率の低下を抑制できる。また、光電変換層13(バルクヘテロ層)に含まれる結晶粒と第1バッファ層12との間で、ランダム粒界の形成を抑制することで、キャリアが粒界にトラップされることも抑制でき、残像の悪化や量子効率の低下を減じることができる。   When the photoelectric conversion layer is thickened, the photoelectric conversion layer and the first buffer layer are not lattice matched. Further, when only the first buffer layer is thickened, the quantum efficiency decreases as the film thickness increases. As shown in FIG. 1 and FIG. 2A (TEM image) and FIG. 2B (cross-sectional schematic diagram), the photoelectric conversion layer 13 is formed on the first organic crystal contained in the first buffer layer 12. In the structure in which the second organic crystal contained in (for example, the bulk hetero layer) is lattice-matched, a decrease in transfer efficiency can be suppressed. In addition, by suppressing the formation of random grain boundaries between the crystal grains contained in the photoelectric conversion layer 13 (bulk hetero layer) and the first buffer layer 12, it is possible to suppress carriers from being trapped in the grain boundaries, It is possible to reduce deterioration of afterimages and reduction of quantum efficiency.

有機分子間でππスタッキングした場合、分子間距離が短くなる性質があるため、移動度は高くなり、光電変換層13で生成された電荷を効率良く第1電極11へ輸送できる。本技術にて、第1電極11に対して、ππスタッキングした有機分子を含む第1有機結晶を含む第1バッファ層に、光電変換層13(例えば、バルクヘテロ層)を積層することで、光電変換層13に含まれる第2有機結晶に含まれる有機分子を第1バッファ層12上にエピタキシャルに成長させることができる。これによって、転送効率が向上し、量子効率の低下や残像の悪化がなく、電気容量を低下させることができる。本技術に係る第1の実施形態の有機光電変換素子は、例えば、裏面照射型及び表面照射型の固体撮像素子等に適用することができる。   When ππ stacking is performed between organic molecules, the intermolecular distance is shortened. Therefore, the mobility is increased, and the charge generated in the photoelectric conversion layer 13 can be efficiently transported to the first electrode 11. In the present technology, photoelectric conversion is performed by laminating the photoelectric conversion layer 13 (for example, a bulk hetero layer) on the first buffer layer including the first organic crystal including the organic molecules subjected to ππ stacking with respect to the first electrode 11. Organic molecules contained in the second organic crystal contained in the layer 13 can be epitaxially grown on the first buffer layer 12. As a result, the transfer efficiency is improved, the quantum efficiency is not lowered and the afterimage is not deteriorated, and the electric capacity can be reduced. The organic photoelectric conversion element of the first embodiment according to the present technology can be applied to, for example, a backside illumination type and a frontside illumination type solid-state imaging element.

図2(b)に示されるように、第1バッファ層12に含まれる第1有機結晶の有機分子がππスタッキングし、光電変換層13に含まれる第2有機結晶の方位と第1有機結晶の方位とが略一致して、第2有機結晶の有機分子が、第1バッファ層12上に、エピタキシャルに成長している。また、図2(b)には、第1有機結晶の面間隔Xと第2有機結晶の面間隔Yが示されている。第1有機結晶の面間隔Xと第2有機結晶の面間隔Yとの比が、1:0.55であるので、第2有機結晶の有機分子が、第1バッファ層12上に、エピタキシャルに成長することができる。なお、第1有機結晶の面間隔Xと第2有機結晶の面間隔Yとの比が、0.55:1〜1:0.55であれば、ππスタッキングした有機分子を含む第1バッファ層12上に、第2有機結晶の有機分子が、エピタキシャルに成長することができる。   As shown in FIG. 2B, the organic molecules of the first organic crystal contained in the first buffer layer 12 are ππ stacked, and the orientation of the second organic crystal contained in the photoelectric conversion layer 13 and the first organic crystal The organic molecules of the second organic crystal are epitaxially grown on the first buffer layer 12 with the orientation substantially coincident. FIG. 2B shows the interplanar spacing X of the first organic crystal and the interplanar spacing Y of the second organic crystal. Since the ratio between the interplanar spacing X of the first organic crystal and the interplanar spacing Y of the second organic crystal is 1: 0.55, the organic molecules of the second organic crystal are epitaxially deposited on the first buffer layer 12. Can grow. If the ratio of the interplanar spacing X of the first organic crystal to the interplanar spacing Y of the second organic crystal is 0.55: 1 to 1: 0.55, the first buffer layer containing ππ-stacked organic molecules On 12, the organic molecules of the second organic crystal can grow epitaxially.

第1有機結晶の面間隔Xと第2有機結晶の面間隔Yとの比が、0.55:1〜1:0.55であれば、第1有機結晶に含まれる有機分子と第2有機結晶に含まれる有機分子とは同一であっても異なっていてもよいが、第1有機結晶に含まれる有機分子と第2有機結晶に含まれる有機分子とが同一であれば、第1有機結晶の面間隔Xと第2有機結晶の面間隔Yとの比は、1:1となる。図2(b)に示される、第1有機結晶に含まれる有機分子と第2有機結晶に含まれる有機分子とは互いに異なる有機分子であるので、2つの有機分子が同一の場合とは異なる例である。   When the ratio of the interplanar spacing X of the first organic crystal to the interplanar spacing Y of the second organic crystal is 0.55: 1 to 1: 0.55, the organic molecules and the second organic contained in the first organic crystal The organic molecules contained in the crystal may be the same or different, but if the organic molecules contained in the first organic crystal and the organic molecules contained in the second organic crystal are the same, the first organic crystal The ratio of the interplanar spacing X to the interplanar spacing Y of the second organic crystal is 1: 1. The organic molecule contained in the first organic crystal and the organic molecule contained in the second organic crystal shown in FIG. 2 (b) are different from each other, so that the two organic molecules are different from the same case. It is.

図2(a)及び(b)に示されるように、面間隔Xは、第1有機結晶の結晶格子縞の縞間隔に対応し、面間隔Yは、第2有機結晶の結晶格子縞の縞間隔に対応する。また、図2(b)に示されるように、面間隔Xは、第1有機結晶の有機分子の1分子の長軸の長さに略一致し、面間隔Yは、第2有機結晶の有機分子の1分子の長軸の長さに略一致する。   As shown in FIGS. 2A and 2B, the face spacing X corresponds to the fringe spacing of the crystal lattice fringes of the first organic crystal, and the face spacing Y corresponds to the fringe spacing of the crystal lattice fringes of the second organic crystal. Correspond. Further, as shown in FIG. 2 (b), the face spacing X substantially matches the length of one major axis of the organic molecules of the first organic crystal, and the face spacing Y is the organic spacing of the second organic crystal. It approximately corresponds to the length of the long axis of one molecule.

図3は、本技術に係る第1の実施形態の有機光電変換素子に適用することができる、ペンタセンを含む層100のTEM像である。図3を参照すると、約30nmの膜厚を有するペンタセンを含む層100は、SiO(145nm)/Si(不図示)の基板上に形成されている。 FIG. 3 is a TEM image of the layer 100 containing pentacene, which can be applied to the organic photoelectric conversion element of the first embodiment according to the present technology. Referring to FIG. 3, a layer 100 containing pentacene having a thickness of about 30 nm is formed on a substrate of SiO 2 (145 nm) / Si (not shown).

図3により、ペンタセンを含む層100と基板との界面と略平行(図3中の左右方向)であるペンタセン結晶の結晶格子縞を確認することができる。結晶格子縞は、ペンタセン結晶の(001)格子面に対応する。したがって、ペンタセン分子のπ平面のスタック方向は、ペンタセンを含む層100と基板との界面と略平行(図3中の左右方向)である。   From FIG. 3, it is possible to confirm the crystal lattice fringes of the pentacene crystal that is substantially parallel to the interface between the layer 100 containing pentacene and the substrate (the horizontal direction in FIG. 3). Crystal lattice fringes correspond to the (001) lattice plane of the pentacene crystal. Therefore, the stack direction of the π plane of the pentacene molecule is substantially parallel to the interface between the pentacene-containing layer 100 and the substrate (the left-right direction in FIG. 3).

そして、π平面のスタック方向でπ共役の重なりは大きくなり、ペンタセンを含む層100は、ペンタセンを含む層100と基板との界面と略平行(図3中の左右方向)方向で信号電荷の流れ(受け渡し)が良好となり、転送効率が向上し、量子効率の低下や残像の悪化を防ぐことができる。   Then, the overlap of π conjugation increases in the stack direction of the π plane, and the layer 100 containing pentacene has a signal charge flow in a direction substantially parallel to the interface between the layer 100 containing pentacene and the substrate (the left-right direction in FIG. 3). (Transfer) is improved, transfer efficiency is improved, and a decrease in quantum efficiency and an afterimage can be prevented.

[1−2.第1バッファ層]
第1バッファ層12について詳細に説明をする。
第1バッファ層12は第1有機半導体材料を含み、第1有機半導体材料は第1有機結晶を有する。第1有機半導体材料はp型有機半導体材料又はn型有機半導体材料である。第1バッファ層12に、p型有機半導体材料が用いられた場合は、電子注入バリア層(電子ブロッキング層)として作用し、n型半導体材料が用いられた場合は、正孔(ホール)注入バリア層(正孔ブロッキング層)として作用する。
[1-2. First buffer layer]
The first buffer layer 12 will be described in detail.
The first buffer layer 12 includes a first organic semiconductor material, and the first organic semiconductor material has a first organic crystal. The first organic semiconductor material is a p-type organic semiconductor material or an n-type organic semiconductor material. When a p-type organic semiconductor material is used for the first buffer layer 12, it acts as an electron injection barrier layer (electron blocking layer), and when an n-type semiconductor material is used, a hole injection barrier is used. Acts as a layer (hole blocking layer).

p型有機半導体材料(化合物)は、ドナー性有機半導体材料(化合物)であり、主に正孔輸送性有機化合物に代表され、電子を供与しやすい性質がある有機化合物をいう。更に詳しくは2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物をいう。したがって、ドナー性有機化合物は、電子供与性のある有機化合物であればいずれの有機化合物も使用可能である。   The p-type organic semiconductor material (compound) is a donor-type organic semiconductor material (compound), which is mainly represented by a hole-transporting organic compound and refers to an organic compound having a property of easily donating electrons. More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Therefore, any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound.

第1バッファ層12に使われるp型有機半導体母核としては、縮合多環芳香族化合物が挙げられる。たとえば、オリゴチオフェン、オリゴパラフェニレン、フルオレン、カルバゾール、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、チエノチオフェン、ベンゾジチオフェン、シクロペンタジチオフェン、ジチエノピロール、ジチエノシロール、ジチエノナフタレン、ベンゾチオフェノベンゾチオフェン、アントラジチオフェン、チエノピラジン、ベンゾチアジアゾール、ジケトピロロピロール、ピラゾロトリアゾール等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)−テトラシアノキノジメタン(TCNQ)、ビスエチレンジチアテトラチアフルバレン(BEDTTTF)、チエノ[3,2−b]チオフェン構造を持つ化合物、及びこれらの誘導体、キナクリドン誘導体等を挙げることができる。また、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物等挙げられるが、上記の限りではない。   Examples of the p-type organic semiconductor mother nucleus used in the first buffer layer 12 include condensed polycyclic aromatic compounds. For example, oligothiophene, oligoparaphenylene, fluorene, carbazole, anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovarene, circumcamanthracene, bisanthene, zeslen, Heptazesulene, pyranthrene, violanthene, isoviolanthene, cirabiphenyl, thienothiophene, benzodithiophene, cyclopentadithiophene, dithienopyrrole, dithienosilole, dithienonaphthalene, benzothiophenobenzothiophene, anthradithiophene, thienopyrazine, benzothiadiazole, di Compounds such as ketopyrrolopyrrole and pyrazolotriazole, porphyrin and copper phthalocyanine Tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ), bisethylenedithiatetrathiafulvalene (BEDTTTF), compounds having a thieno [3,2-b] thiophene structure, derivatives thereof, quinacridone derivatives, etc. Can be mentioned. Also, triarylamine compounds, benzidine compounds, pyrazoline compounds, styrylamine compounds, hydrazone compounds, triphenylmethane compounds, carbazole compounds, polysilane compounds, thiophene compounds, phthalocyanine compounds, cyanine compounds, merocyanine compounds, oxonol compounds, polyamine compounds, indoles A compound, a pyrrole compound, a pyrazole compound, a polyarylene compound and the like can be mentioned, but not limited thereto.

n型有機半導体材料(化合物)は、アクセプター性有機半導体材料であり、主に電子輸送性の優れた有機化合物に代表され、p型有機半導体材料に比べて、相対的に電子を受容しやすい性質がある有機化合物をいう。   An n-type organic semiconductor material (compound) is an acceptor-type organic semiconductor material, which is typified by an organic compound having mainly excellent electron transport properties, and has a property of accepting electrons relatively more easily than a p-type organic semiconductor material. Refers to an organic compound.

n型有機半導体としては特に制限なく、例えば、フラーレン、オクタアザポルフィリン等、p型有機半導体の母核の水素原子をフッ素原子に置換したパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。また、フラーレン誘導体としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC80、フラーレンC82、フラーレンC84、フラーレンC90、フラーレンC96、フラーレンC240、フラーレン540、ミックスドフラーレン、フラーレンナノチューブ等が挙げられる。また、フラーレンに置換基が付加された化合物としては、フラーレン誘導体の置換基として、アルキル基、アリール基、又は複素環基である。アルキル基として更に好ましくは、炭素数1〜12までのアルキル基であり、アリール基、及び複素環基として好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フルオレン環、トリフェニレン環、ナフタセン環、ビフェニル環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イソベンゾフラン環、ベンズイミダゾール環、イミダゾピリジン環、キノリジン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キノキサゾリン環、イソキノリン環、カルバゾール環、フェナントリジン環、アクリジン環、フェナントロリン環、チアントレン環、クロメン環、キサンテン環、フェノキサチイン環、フェノチアジン環、またはフェナジン環であり、さらに好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピリジン環、イミダゾール環、オキサゾール環、またはチアゾール環であり、特に好ましくはベンゼン環、ナフタレン環、またはピリジン環である。これらはさらに置換基を有していてもよく、その置換基は可能な限り結合して環を形成してもよい。なお、複数の置換基を有しても良く、それらは同一であっても異なっていてもよい。また、複数の置換基は可能な限り結合して環を形成してもよい。   The n-type organic semiconductor is not particularly limited. For example, fullerene, octaazaporphyrin, and the like, perfluoro compounds in which the hydrogen atom of the nucleus of the p-type organic semiconductor is replaced with a fluorine atom (perfluoropentacene, perfluorophthalocyanine, etc.), naphthalene Examples thereof include aromatic carboxylic acid anhydrides such as tetracarboxylic acid anhydride, naphthalene tetracarboxylic acid diimide, perylene tetracarboxylic acid anhydride, and perylene tetracarboxylic acid diimide, and polymer compounds containing the imidized product thereof as a skeleton. Examples of fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C80, fullerene C82, fullerene C84, fullerene C90, fullerene C96, fullerene C240, fullerene 540, mixed fullerene, fullerene nanotubes and the like. . The compound in which a substituent is added to fullerene is an alkyl group, an aryl group, or a heterocyclic group as a substituent of the fullerene derivative. More preferably, the alkyl group is an alkyl group having 1 to 12 carbon atoms, and the aryl group and the heterocyclic group are preferably a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, fluorene ring, triphenylene ring, naphthacene ring. , Biphenyl ring, pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, indolizine ring, indole ring, benzofuran ring, benzothiophene ring, isobenzofuran Ring, benzimidazole ring, imidazopyridine ring, quinolidine ring, quinoline ring, phthalazine ring, naphthyridine ring, quinoxaline ring, quinoxazoline ring, isoquinoline ring, carbazole ring, phenanthridine ring, acridine ring, phenanthroline , Thianthrene ring, chromene ring, xanthene ring, phenoxathiin ring, phenothiazine ring, or phenazine ring, more preferably a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, pyridine ring, imidazole ring, oxazole ring, or A thiazole ring, particularly preferably a benzene ring, a naphthalene ring, or a pyridine ring. These may further have a substituent, and the substituents may be bonded as much as possible to form a ring. In addition, you may have a some substituent and they may be the same or different. A plurality of substituents may be combined as much as possible to form a ring.

第1バッファ層12は、第1有機結晶に含まれる有機分子の長軸の長さの4倍以上の膜厚を有することが好ましい。したがって、第1バッファ層12の膜厚は、用いられる有機分子の種類によって有機分子の長軸の長さが異なるので変動するが、6nm〜150nmであることが好ましい。この好ましい態様により、転送効率が更に向上し、量子効率の低下や残像の悪化がなく、電気容量を低下させることができる。   The first buffer layer 12 preferably has a film thickness that is at least four times the length of the major axis of the organic molecules contained in the first organic crystal. Accordingly, the film thickness of the first buffer layer 12 varies depending on the type of organic molecules used, since the major axis length of the organic molecules varies, but is preferably 6 nm to 150 nm. According to this preferred embodiment, the transfer efficiency is further improved, the quantum efficiency is not lowered, and the afterimage is not deteriorated, and the electric capacity can be lowered.

第1バッファ層12は、第1有機結晶に含まれる有機分子の長軸の長さの4倍未満の膜厚を有してもよい。したがって、第1バッファ層12の膜厚は、用いられる有機分子の種類によって有機分子の長軸の長さが異なるので変動するが、1.5nm〜12nmであることが好ましい。この場合、有機分子の長軸方向は、第1電極11又は第2電極15の主面に対して45°以上の角度である。この態様により、転送効率が更に向上し、量子効率の低下や残像の悪化がなく、電気容量を低下させることができる。   The first buffer layer 12 may have a film thickness that is less than four times the length of the major axis of the organic molecules contained in the first organic crystal. Accordingly, the film thickness of the first buffer layer 12 varies depending on the type of organic molecule used, since the length of the major axis of the organic molecule varies, but is preferably 1.5 nm to 12 nm. In this case, the major axis direction of the organic molecule is an angle of 45 ° or more with respect to the main surface of the first electrode 11 or the second electrode 15. According to this aspect, the transfer efficiency is further improved, the quantum efficiency is not lowered and the afterimage is not deteriorated, and the electric capacity can be reduced.

[1−3.光電変換層]
光電変換層13について詳細に説明をする。
光電変換層13は、第2有機半導体材料を含み、第2有機半導体材料は第2有機結晶を有する。第2有機半導体材料はp型有機半導体材料又はn型有機半導体材料である。第1バッファ層12にp型有機半導体材料が用いられた場合は、第2有機半導体材料はp型有機半導体材料であり、第1バッファ層12にn型半導体材料が用いられた場合は、第2有機半導体材料はn型有機半導体材料である。p型有機半導体材料及びn型有機半導体材料の具体例等については上記のとおりである。
[1-3. Photoelectric conversion layer]
The photoelectric conversion layer 13 will be described in detail.
The photoelectric conversion layer 13 includes a second organic semiconductor material, and the second organic semiconductor material has a second organic crystal. The second organic semiconductor material is a p-type organic semiconductor material or an n-type organic semiconductor material. When a p-type organic semiconductor material is used for the first buffer layer 12, the second organic semiconductor material is a p-type organic semiconductor material, and when an n-type semiconductor material is used for the first buffer layer 12, The two organic semiconductor material is an n-type organic semiconductor material. Specific examples of the p-type organic semiconductor material and the n-type organic semiconductor material are as described above.

光電変換層13は、p型有機半導体層/n型有機半導体層の積層構造から構成することもできるし、p型有機半導体層/p型有機半導体とn型有機半導体との混合層(バルクヘテロ層)/n型有機半導体層の積層構造から構成することもできるし、p型有機半導体層/p型有機半導体とn型有機半導体との混合層(バルクヘテロ層)の積層構造から構成することもできるし、n型有機半導体層/p型有機半導体とn型有機半導体との混合層(バルクヘテロ層)の積層構造から構成することもできるし、p型有機半導体とn型有機半導体の混合(バルクヘテロ層)からも構成することができる。   The photoelectric conversion layer 13 can also be comprised from the laminated structure of a p-type organic-semiconductor layer / n-type organic-semiconductor layer, and the mixed layer (bulk heterolayer of p-type organic-semiconductor layer / p-type organic semiconductor and n-type organic semiconductor) ) / N-type organic semiconductor layer, or p-type organic semiconductor layer / p-type organic semiconductor / n-type organic semiconductor mixed layer (bulk heterolayer). In addition, it can be configured by a laminated structure of an n-type organic semiconductor layer / a mixed layer (bulk heterolayer) of a p-type organic semiconductor and an n-type organic semiconductor, or a mixed (bulk heterolayer) of a p-type organic semiconductor and an n-type organic semiconductor. ).

また、光電変換層13は、p型有機半導体から構成することもできるし、n型有機半導体から構成することもできる。   Moreover, the photoelectric converting layer 13 can also be comprised from a p-type organic semiconductor, and can also be comprised from an n-type organic semiconductor.

なお、p型有機半導体材料及びn型有機半導体材料を、同一のバルクヘテロ層に1種ずつ含ませてもよいし、2種以上ずつ含ませてもよいし、また、p型有機半導体材料及びn型有機半導体材料のどちらか一方を1種で、他方を2種以上でもよい。p型有機半導体層は、p型有機半導体材料を少なくとも1種で含めばよく、n型有機半導体層は、n型有機半導体材料を少なくとも1種で含めばよい。   The p-type organic semiconductor material and the n-type organic semiconductor material may be included in the same bulk hetero layer one by one, or may be included in two or more types, or the p-type organic semiconductor material and n One of the type organic semiconductor materials may be one type and the other may be two or more types. The p-type organic semiconductor layer may include at least one p-type organic semiconductor material, and the n-type organic semiconductor layer may include at least one n-type organic semiconductor material.

[1−4.第2バッファ層]
第2バッファ層14について詳細に説明をする。
第2バッファ層14に、p型有機半導体材料が用いられた場合は、電子注入バリア層(電子ブロッキング層)として作用し、n型半導体材料が用いられた場合は、ホール注入バリア層(正孔ブロッキング層)として作用する。第1バッファ層12にp型有機半導体材料が用いられた場合は、第2バッファ層14にはn型有機半導体材料が用いられ、第1バッファ層12にn型有機半導体材料が用いられた場合は、第2バッファ層14にはp型有機半導体材料が用いられる。p型有機半導体材料又はn型有機半導体材料の具体例等については上記のとおりである。
[1-4. Second buffer layer]
The second buffer layer 14 will be described in detail.
When a p-type organic semiconductor material is used for the second buffer layer 14, it acts as an electron injection barrier layer (electron blocking layer), and when an n-type semiconductor material is used, a hole injection barrier layer (hole Acts as a blocking layer). When a p-type organic semiconductor material is used for the first buffer layer 12, an n-type organic semiconductor material is used for the second buffer layer 14, and an n-type organic semiconductor material is used for the first buffer layer 12. The second buffer layer 14 is made of a p-type organic semiconductor material. Specific examples of the p-type organic semiconductor material or the n-type organic semiconductor material are as described above.

[1−5.第1電極及び第2電極]
第1電極11及び第2電極15について詳細に説明をする。
第1バッファ層12に含まれる第1有機半導体材料がp型有機半導体材料であって、第2バッファ層14がn型有機半導体材料を含む場合は、第1電極11は正孔(信号電荷)を取り出すものであり、第2電極15は電子を取り出すものである。第1バッファ層12に含まれる第1有機半導体材料がn型有機半導体材料であって、第2バッファ層14がp型有機半導体材料を含む場合は、第1電極11は電子(信号電荷)を取り出すものであり、第2電極15は正孔を取り出すものである。
[1-5. First electrode and second electrode]
The first electrode 11 and the second electrode 15 will be described in detail.
When the first organic semiconductor material included in the first buffer layer 12 is a p-type organic semiconductor material and the second buffer layer 14 includes an n-type organic semiconductor material, the first electrode 11 has holes (signal charges). The second electrode 15 takes out electrons. When the first organic semiconductor material included in the first buffer layer 12 is an n-type organic semiconductor material and the second buffer layer 14 includes a p-type organic semiconductor material, the first electrode 11 receives electrons (signal charges). The second electrode 15 is for extracting holes.

第1電極11は、例えば、光透過性の導電材料、具体的にはITO(Indium−Tin−Oxide)により構成される。第1電極11は、酸化スズ(SnO)系材料又は酸化亜鉛(ZnO)系材料により構成するようにしてもよい。酸化スズ系材料とは酸化スズにドーパントを添加したものであり、酸化亜鉛系材料とは例えば、酸化亜鉛にドーパントとしてアルミニウム(Al)を添加したアルミニウム亜鉛酸化物(AZO)、酸化亜鉛にドーパントとしてガリウム(Ga)を添加したガリウム亜鉛酸化物(GZO)及び酸化亜鉛にドーパントとしてインジウム(In)を添加したインジウム亜鉛酸化物(IZO)等である。この他、IGZO,CuI,InSbO4,ZnMgO,CuInO2,MgIn24,CdO及びZnSnO3等を用いることも可能である。第1電極11の厚みは、任意の厚みでよいが、例えば50nm〜500nmである。 The first electrode 11 is made of, for example, a light transmissive conductive material, specifically, ITO (Indium-Tin-Oxide). The first electrode 11 may be made of a tin oxide (SnO 2 ) -based material or a zinc oxide (ZnO) -based material. The tin oxide-based material is a tin oxide added with a dopant, and the zinc oxide-based material is, for example, aluminum zinc oxide (AZO) obtained by adding aluminum (Al) as a dopant to zinc oxide, and zinc oxide as a dopant. Examples thereof include gallium zinc oxide (GZO) to which gallium (Ga) is added, indium zinc oxide (IZO) to which zinc oxide is added with indium (In) as a dopant. In addition, IGZO, CuI, InSbO 4 , ZnMgO, CuInO 2 , MgIn 2 O 4 , CdO, ZnSnO 3, or the like can be used. Although the thickness of the 1st electrode 11 may be arbitrary thickness, they are 50 nm-500 nm, for example.

第2電極15は、例えば、金(Au),銀(Ag),銅(Cu)、アルミニウム(Al)等の導電材料により構成されていてよい。第1電極11と同様に、透明導電材料により第2電極15を構成するようにしてもよい。第2電極15の厚みは、任意の厚みでよいが、例えば、0.5nm〜100nmである。   The second electrode 15 may be made of a conductive material such as gold (Au), silver (Ag), copper (Cu), and aluminum (Al). Similar to the first electrode 11, the second electrode 15 may be made of a transparent conductive material. Although the thickness of the 2nd electrode 15 may be arbitrary thickness, they are 0.5 nm-100 nm, for example.

[1−6.有機結晶調整層]
本技術に係る第1の実施形態の有機光電変換素子は有機結晶調整層を更に含んでよい。有機結晶調整層(図1及び図2において不図示)は光電変換層13と第1バッファ層12との間に配されてよい。本技術に係る第1の実施形態の有機光電変換素子に、有機結晶調整層が含まれることで、転送効率が更に向上し、量子効率の低下や残像の悪化がなく、電気容量を低下させることができる。
[1-6. Organic crystal adjustment layer]
The organic photoelectric conversion element of the first embodiment according to the present technology may further include an organic crystal adjustment layer. The organic crystal adjustment layer (not shown in FIGS. 1 and 2) may be disposed between the photoelectric conversion layer 13 and the first buffer layer 12. By including the organic crystal adjustment layer in the organic photoelectric conversion element of the first embodiment according to the present technology, the transfer efficiency is further improved, the quantum efficiency is not lowered, the afterimage is not lowered, and the electric capacity is lowered. Can do.

有機結晶調整層は第2有機半導体材料を含んでよく、第2有機半導体材料は第2有機結晶を有する。第1有機結晶の面間隔と第2有機結晶の面間隔との比は、0.55:1〜1:0.55である。第2有機半導体材料の詳細については、上記で述べたとおりである。   The organic crystal adjustment layer may include a second organic semiconductor material, and the second organic semiconductor material has a second organic crystal. The ratio between the face spacing of the first organic crystal and the face spacing of the second organic crystal is 0.55: 1 to 1: 0.55. The details of the second organic semiconductor material are as described above.

有機結晶調整層は、第3有機半導体材料を含んでもよい。また、有機結晶調整層は、第2有機半導体材料と第3有機半導体材料との2つの有機半導体材料を含んでもよい。有機結晶調整層が、第2有機半導体材料と第3有機半導体材料との2つの有機半導体材料を含むとき、第2有機半導体材料と第3有機半導体材料との質量%比は、任意の質量%比でよいが、好ましくは、30質量%:70質量%〜70質量%:30質量%である。   The organic crystal adjustment layer may include a third organic semiconductor material. The organic crystal adjustment layer may include two organic semiconductor materials, a second organic semiconductor material and a third organic semiconductor material. When the organic crystal adjustment layer includes two organic semiconductor materials of the second organic semiconductor material and the third organic semiconductor material, the mass% ratio of the second organic semiconductor material to the third organic semiconductor material is an arbitrary mass%. The ratio may be, but is preferably 30% by mass: 70% by mass to 70% by mass: 30% by mass.

第3有機半導体材料は第3有機結晶を有し、第1有機結晶の面間隔と第3有機結晶の面間隔との比は、0.55:1〜1:0.55であり、第2有機結晶の面間隔と第3有機結晶の面間隔との比は、0.55:1〜1:0.55である。   The third organic semiconductor material has a third organic crystal, and the ratio between the face spacing of the first organic crystal and the face spacing of the third organic crystal is 0.55: 1 to 1: 0.55, The ratio between the face spacing of the organic crystal and the face spacing of the third organic crystal is 0.55: 1 to 1: 0.55.

第3有機半導体材料は、p型有機半導体材料又はn型有機半導体材料である。第1バッファ層12にp型有機半導体材料が用いられた場合は、第3有機半導体材料はp型有機半導体材料であり、第1バッファ層12にn型有機半導体材料が用いられた場合は、第3有機半導体材料はn型有機半導体材料である。p型有機半導体材料及びn型有機半導体材料の具体例等については上記のとおりである。   The third organic semiconductor material is a p-type organic semiconductor material or an n-type organic semiconductor material. When a p-type organic semiconductor material is used for the first buffer layer 12, the third organic semiconductor material is a p-type organic semiconductor material, and when an n-type organic semiconductor material is used for the first buffer layer 12, The third organic semiconductor material is an n-type organic semiconductor material. Specific examples of the p-type organic semiconductor material and the n-type organic semiconductor material are as described above.

[1−7.高移動度材料] 第1バッファ層12に、高移動度材料が更に含まれてもよい。高移動度材料としては、例えば、P3HT(ポリ(3−ヘキシルチオフェン−2,5−ジイル))、P3OT(ポリ(3−オクチルチオフェン-2,5−ジイル))、P3DDT(ポリ(3−ドデシルチオフェン−2,5−ジイル))、PTAA(ポリ[ビス(4−フェニル)(2,4,6−トリメチルフェニル)アミン])、F8BT(ポリ[(9,9−ジ−n−オクチルフルオレニル−2,7−ジイル)-alt−(ベンゾ[2,1,3]チアジアゾール−4,8−ジイル)])、MEH−PPV、PCDTBT等のP型有機半導体ポリマーや、ポリ(2,5−ジ(3,7−ジメチルオクチルオキシ)シアノテレフタリリデン)、ポリ(5−(3,7−ジメチルオクチルオキシ)−2−メトキシ−シアノテレフタリリデン)、ポリ(5−(2−エチルヘキシルオキシ)−2−メトキシ−シアノテレフタリリデン)、ポリ(2,5−ジ(オクチルオキシ)シアノテレフタリリデン)、ポリ(2,5−ジ(ヘキシルオキシ)シアノテレフタリリデン)等のN型導電性高分子が挙げられる。   [1-7. High Mobility Material] The first buffer layer 12 may further include a high mobility material. Examples of the high mobility material include P3HT (poly (3-hexylthiophene-2,5-diyl)), P3OT (poly (3-octylthiophene-2,5-diyl)), and P3DDT (poly (3-dodecyl). Thiophene-2,5-diyl)), PTAA (poly [bis (4-phenyl) (2,4,6-trimethylphenyl) amine]), F8BT (poly [(9,9-di-n-octylfluore) Nyl-2,7-diyl) -alt- (benzo [2,1,3] thiadiazole-4,8-diyl)]), MEH-PPV, PCDTBT, and other P-type organic semiconductor polymers, poly (2,5 -Di (3,7-dimethyloctyloxy) cyanoterephthalylidene), poly (5- (3,7-dimethyloctyloxy) -2-methoxy-cyanoterephthalylidene), poly (5- (2-ethylhexyl) N-type such as (xy) -2-methoxy-cyanoterephthalylidene), poly (2,5-di (octyloxy) cyanoterephthalylidene), poly (2,5-di (hexyloxy) cyanoterephthalylidene) Examples thereof include conductive polymers.

[1−8.有機光電変換素子用の基板]
有機光電変換素子1を基板(図1及び図2において不図示)の上に形成してもよい。ここで、基板として、ポリメチルメタクリレート(ポリメタクリル酸メチル,PMMA)やポリビニルアルコール(PVA)、ポリビニルフェノール(PVP)、ポリエーテルスルホン(PES)、ポリイミド、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)に例示される有機ポリマー(高分子材料から構成された可撓性を有するプラスチック・フィルムやプラスチック・シート、プラスチック基板といった高分子材料の形態を有する)を挙げることができる。
[1-8. Substrate for organic photoelectric conversion element]
The organic photoelectric conversion element 1 may be formed on a substrate (not shown in FIGS. 1 and 2). Here, as a substrate, polymethyl methacrylate (polymethyl methacrylate, PMMA), polyvinyl alcohol (PVA), polyvinyl phenol (PVP), polyethersulfone (PES), polyimide, polycarbonate (PC), polyethylene terephthalate (PET), An organic polymer exemplified by polyethylene naphthalate (PEN) (having a form of a polymer material such as a flexible plastic film, plastic sheet, or plastic substrate made of a polymer material) can be given.

このような可撓性を有する高分子材料から構成された基板を使用すれば、例えば曲面形状を有する電子機器への撮像素子の組込みあるいは一体化が可能となる。あるいは、基板として、各種ガラス基板や、表面に絶縁膜が形成された各種ガラス基板、石英基板、表面に絶縁膜が形成された石英基板、シリコン半導体基板、表面に絶縁膜が形成されたステンレス鋼等の各種合金や各種金属から成る金属基板を挙げることができる。なお、絶縁膜として、酸化ケイ素系材料(例えば、SiOXやスピンオンガラス(SOG));窒化ケイ素(SiNY);酸窒化ケイ素(SiON);酸化アルミニウム(Al);金属酸化物や金属塩を挙げることができる。また、有機物の絶縁膜を形成することも可能である。例えば、リソグラフィー可能なポリフェノール系材料、ポリビニルフェノール系材料、ポリイミド系材料、ポリアミド系材料、ポリアミドイミド系材料、フッ素系ポリマー材料、ボラジン-珪素ポリマー材料、トルクセン系材料等が挙げられる。更に、表面にこれらの絶縁膜が形成された導電性基板(金やアルミニウム等の金属から成る基板、高配向性グラファイトから成る基板)を用いることもできる。 If a substrate composed of such a flexible polymer material is used, for example, an image sensor can be incorporated into or integrated with an electronic device having a curved shape. Alternatively, various glass substrates, various glass substrates with an insulating film formed on the surface, quartz substrates, quartz substrates with an insulating film formed on the surface, silicon semiconductor substrates, stainless steel with an insulating film formed on the surface Examples thereof include metal substrates made of various alloys such as various metals and various metals. As the insulating film, a silicon oxide-based material (for example, SiO x or spin-on glass (SOG)); silicon nitride (SiN Y ); silicon oxynitride (SiON); aluminum oxide (Al 2 O 3 ); metal oxide, Mention may be made of metal salts. It is also possible to form an organic insulating film. Examples include lithographic polyphenolic materials, polyvinylphenolic materials, polyimide materials, polyamide materials, polyamideimide materials, fluorine polymer materials, borazine-silicon polymer materials, torquesen materials, and the like. Furthermore, a conductive substrate (a substrate made of metal such as gold or aluminum, a substrate made of highly oriented graphite) having these insulating films formed on the surface can also be used.

[1−9.有機光電変換素子の製造方法]
有機光電変換素子1の製造方法について説明をする。
[1-9. Manufacturing method of organic photoelectric conversion element]
The manufacturing method of the organic photoelectric conversion element 1 will be described.

まず、第1電極11を形成する。なお、有機光電変換素子1を上述で説明をした基板上に形成する場合は、有機光電変換素子用の基板上に第1電極11を形成することができる。第1電極11は、例えば、スパッタ法によりITO膜を成膜した後、これをフォトリソグラフィー技術によりパターニングしてドライエッチング又はウェットエッチングを行うことにより形成する。   First, the first electrode 11 is formed. In addition, when forming the organic photoelectric conversion element 1 on the board | substrate demonstrated above, the 1st electrode 11 can be formed on the board | substrate for organic photoelectric conversion elements. The first electrode 11 is formed, for example, by forming an ITO film by a sputtering method, patterning the ITO film by a photolithography technique, and performing dry etching or wet etching.

次いで、第1電極11上に、第1バッファ層12を成膜する。第1バッファ層12の成膜には、蒸着法を用いることが望ましいが、塗布法(キャスト法、スピンコート法を含む)等を用いることもできる。第1バッファ層12上には、光電変換層13を成膜する。なお、光電変換層13に含まれる第2有機半導体材料の有機分子を第1バッファ層12に含まれる第1有機半導体材料の有機分子の結晶方位と一致させる手法としては、成膜時の基板温度を調整することで表面拡散を促進させる手法、又は成膜後に熱履歴を加える手法等が挙げられるが、その他の手法でもよい。有機蒸着時の温度は0℃以上であり、成膜レートは0.5A/sec〜2A/secが好ましいがこの限りではない。光電変換層13上には第2バッファ層14を成膜する。第2バッファ層14の成膜には、第1バッファ層12の成膜と同様に、蒸着法を用いることが望ましいが、塗布法(キャスト法、スピンコート法を含む)等を用いることもできる。   Next, the first buffer layer 12 is formed on the first electrode 11. For deposition of the first buffer layer 12, it is desirable to use a vapor deposition method, but a coating method (including a casting method and a spin coating method) can also be used. A photoelectric conversion layer 13 is formed on the first buffer layer 12. In addition, as a method of matching the organic molecules of the second organic semiconductor material included in the photoelectric conversion layer 13 with the crystal orientation of the organic molecules of the first organic semiconductor material included in the first buffer layer 12, a substrate temperature at the time of film formation is used. There are a method of promoting surface diffusion by adjusting the thickness, a method of adding a thermal history after film formation, and the like, but other methods may be used. The temperature during organic vapor deposition is 0 ° C. or higher, and the film formation rate is preferably 0.5 A / sec to 2 A / sec, but not limited thereto. A second buffer layer 14 is formed on the photoelectric conversion layer 13. For the film formation of the second buffer layer 14, it is desirable to use a vapor deposition method as in the case of the film formation of the first buffer layer 12, but a coating method (including a casting method and a spin coating method) can also be used. .

最後に、第2バッファ層14上に、第2電極15を真空蒸着法等により成膜し、有機光電変換素子1を製造する。   Finally, the second electrode 15 is formed on the second buffer layer 14 by vacuum vapor deposition or the like, and the organic photoelectric conversion element 1 is manufactured.

<2.第2の実施形態(固体撮像素子の例)>
[2−1.固体撮像素子]
本技術に係る第2の実施形態の固体撮像素子は、1次元又は2次元に配列された複数の画素毎に、少なくとも、本技術に係る第1の実施形態の有機光電変換素子(有機光電変換素子1)と、半導体基板とが積層された、固体撮像素子である。本技術に係る第2の実施形態の固体撮像素子としては、裏面照射型の固体撮像素子と表面照射型の固体撮像素子とが挙げられる。まず、裏面照射型の固体撮像素子について説明をする。なお、本技術に係る第2の実施形態の固体撮像素子に備えられる第1の実施形態の有機光電変換素子の詳細については上記のとおりである。本技術に係る第2の実施形態の固体撮像素子は、優れた画質や優れた信頼性を有する有機光電変換素子が積層されているので、カラー画像の画質等の性能の向上に寄与することができる。
<2. Second Embodiment (Example of Solid-State Image Sensor)>
[2-1. Solid-state image sensor]
The solid-state imaging device according to the second embodiment of the present technology includes at least the organic photoelectric conversion device (organic photoelectric conversion) of the first embodiment according to the present technology for each of a plurality of pixels arranged one-dimensionally or two-dimensionally. This is a solid-state imaging device in which an element 1) and a semiconductor substrate are stacked. Examples of the solid-state image sensor according to the second embodiment of the present technology include a back-illuminated solid-state image sensor and a front-illuminated solid-state image sensor. First, a backside illumination type solid-state imaging device will be described. The details of the organic photoelectric conversion device of the first embodiment provided in the solid-state imaging device of the second embodiment according to the present technology are as described above. Since the solid-state imaging device according to the second embodiment of the present technology has stacked organic photoelectric conversion devices having excellent image quality and excellent reliability, it can contribute to improvement in performance such as image quality of color images. it can.

[2−2.裏面照射型の固体撮像素子]
裏面照射型の固体撮像素子の例を、図4を用いて説明をする。図4は、裏面照射型の固体撮像素子10の1つの画素20の構成例を示す断面図である。
[2-2. Back-illuminated solid-state image sensor]
An example of a back-illuminated solid-state imaging device will be described with reference to FIG. FIG. 4 is a cross-sectional view illustrating a configuration example of one pixel 20 of the backside illumination type solid-state imaging device 10.

画素20は、1つの画素内に、深さ方向に積層した、1つの有機光電変換素子41と、pn接合を有するフォトダイオード36及びフォトダイオード37とを有して構成される。画素20は、フォトダイオード36及びフォトダイオード37が形成される半導体基板(シリコン基板)35を有し、半導体基板35の裏面側(図4中の半導体基板35の上側)に光が入射される受光面が形成され、半導体基板35の表面側に読み出し回路等を含む回路が形成される。すなわち画素20では、基板35の裏面側の受光面と、受光面とは反対側の基板表面側に形成された回路形成面とを有する。半導体基板35は、第1導電型、例えばn型の半導体基板で構成されてよい。   The pixel 20 includes a single organic photoelectric conversion element 41 stacked in the depth direction, a photodiode 36 having a pn junction, and a photodiode 37 in one pixel. The pixel 20 includes a semiconductor substrate (silicon substrate) 35 on which a photodiode 36 and a photodiode 37 are formed, and light reception is performed such that light is incident on the back side of the semiconductor substrate 35 (upper side of the semiconductor substrate 35 in FIG. 4). A surface is formed, and a circuit including a readout circuit and the like is formed on the surface side of the semiconductor substrate 35. That is, the pixel 20 has a light receiving surface on the back surface side of the substrate 35 and a circuit forming surface formed on the substrate surface side opposite to the light receiving surface. The semiconductor substrate 35 may be formed of a first conductivity type, for example, an n-type semiconductor substrate.

半導体基板35内には、裏面側から深さ方向に積層されるように、2つのpn接合を有する無機光電変換部、すなわち第1フォトダイオード36と第2フォトダイオード37が形成される。半導体基板35内では、裏面倒から深さ方向(図中、下方向)に向かつて、第1フォトダイオード36が形成され、第2フォトダイオード37が形成される。図4においては、第1フォトダイオード36が青色(B)用となり、第2フォトダイオード37が赤色(R)用となる。   In the semiconductor substrate 35, an inorganic photoelectric conversion unit having two pn junctions, that is, a first photodiode 36 and a second photodiode 37 are formed so as to be stacked in the depth direction from the back side. In the semiconductor substrate 35, the first photodiode 36 is formed and the second photodiode 37 is formed from the reverse side to the depth direction (downward in the figure). In FIG. 4, the first photodiode 36 is for blue (B), and the second photodiode 37 is for red (R).

第1フォトダイオード36及び第2フォトダイオード37が形成された領域の半導体基板35裏面の上部には、第1電極(下部電極)33と第1バッファ層47と光電変換層32と第2バッファ層46と第2電極(上部電極)31とがこの順で積層された第1色用の有機光電変換素子41が配される。図4に示される裏面照射型の固体撮像素子10の例では有機光電変換素子41が緑色(G)用となる。第2電極(上部電極)31及び第1電極(下部電極)33は、例えば、酸化インジウム錫膜、酸化インジウム亜鉛膜等の透明導電膜で形成されてよい。   A first electrode (lower electrode) 33, a first buffer layer 47, a photoelectric conversion layer 32, and a second buffer layer are formed on the back surface of the semiconductor substrate 35 in the region where the first photodiode 36 and the second photodiode 37 are formed. An organic photoelectric conversion element 41 for the first color in which 46 and the second electrode (upper electrode) 31 are stacked in this order is disposed. In the example of the backside illumination type solid-state imaging device 10 shown in FIG. 4, the organic photoelectric conversion device 41 is for green (G). For example, the second electrode (upper electrode) 31 and the first electrode (lower electrode) 33 may be formed of a transparent conductive film such as an indium tin oxide film or an indium zinc oxide film.

色の組み合わせとして、図4に示される裏面照射型の固体撮像素子10の例では、有機光電変換素子41を緑色、第1フォトダイオード36を青色、第2フォトダイオード37を赤色としたが、その他の色の組み合わせも可能である。例えば、有機光電変換素子41を赤色又は青色とし、第1フォトダイオード36及び第2フォトダイオード37を、その他の対応する色に設定することができる。この場合、色に応じて第1フォトダイオード36及び第2フォトダイオード37の深さ方向の位置が設定される。   In the example of the back-illuminated solid-state imaging device 10 shown in FIG. 4, the organic photoelectric conversion element 41 is green, the first photodiode 36 is blue, and the second photodiode 37 is red. Any combination of colors is possible. For example, the organic photoelectric conversion element 41 can be set to red or blue, and the first photodiode 36 and the second photodiode 37 can be set to other corresponding colors. In this case, the position in the depth direction of the first photodiode 36 and the second photodiode 37 is set according to the color.

また、第1フォトダイオード36及び第2フォトダイオード37を用いないで、3つの光電変換素子、すなわち、青色用の有機光電変換素子41B、緑色用の有機光電変換素子41G及び赤色用の有機光電変換素子41Rを、本技術に係る第2の実施形態の固体撮像素子(裏面照射型の固体撮像素子及び表面照射型の固体撮像素子)に適用してもよい。青の波長光で光電変換する有機光電変換素子41Bとしては、クマリン系色素、トリス−8−ヒドリキシキノリンA1(A1q3)、メラシアニン系色素等を含む有機光電変換材料を用いることができる。緑の波長光で光電変換する光電変換素子41Gとしては、例えばローダーミン系色素、メラシアニン系色素、キナクリドン等を含む有機光電変換材料を用いることができる。赤の波長光で光電変換する光電変換素子41Rとしては、フタロシアニン系色素を含む有機光電変換材料を用いることができる。   Further, without using the first photodiode 36 and the second photodiode 37, three photoelectric conversion elements, that is, an organic photoelectric conversion element 41B for blue, an organic photoelectric conversion element 41G for green, and an organic photoelectric conversion for red are used. The element 41R may be applied to the solid-state imaging device (backside illumination type solid-state imaging device and front-side illumination type solid-state imaging device) of the second embodiment according to the present technology. As the organic photoelectric conversion element 41B that performs photoelectric conversion with blue wavelength light, an organic photoelectric conversion material containing a coumarin dye, tris-8-hydroxyquinoline A1 (A1q3), a melocyanine dye, or the like can be used. As the photoelectric conversion element 41G that performs photoelectric conversion with green wavelength light, for example, an organic photoelectric conversion material containing a rhodamine dye, a melocyanine dye, quinacridone, or the like can be used. As the photoelectric conversion element 41R that performs photoelectric conversion with red wavelength light, an organic photoelectric conversion material containing a phthalocyanine dye can be used.

さらに、青色用の有機光電変換素子41B、緑色用の有機光電変換素子41G及び赤色用の有機光電変換素子41Rに加えて、紫外光用の有機光電変換素子41UV及び/又は赤外光用の有機光電変換素子41IRを、本技術に係る第2の実施形態の固体撮像素子(裏面照射型の固体撮像素子及び表面照射型の固体撮像素子)に適用してもよい。紫外光用の光電変換素子41UV及び/又は赤外光用の光電変換素子41IRを設けることで、可視光領域以外の波長の光を検出することが可能となる。   Further, in addition to the organic photoelectric conversion element 41B for blue, the organic photoelectric conversion element 41G for green, and the organic photoelectric conversion element 41R for red, the organic photoelectric conversion element 41UV for ultraviolet light and / or the organic for infrared light is used. The photoelectric conversion element 41IR may be applied to the solid-state imaging device (back-illuminated solid-state imaging device and front-illuminated solid-state imaging device) according to the second embodiment of the present technology. By providing the photoelectric conversion element 41UV for ultraviolet light and / or the photoelectric conversion element 41IR for infrared light, it becomes possible to detect light having a wavelength other than the visible light region.

有機光電変換素子41では、第1電極(下部電極)33が形成され、第1電極(下部電極)33を絶縁分離するための絶縁膜34が、第1電極(下部電極)33の図中の下部に形成される。   In the organic photoelectric conversion element 41, a first electrode (lower electrode) 33 is formed, and an insulating film 34 for insulating and isolating the first electrode (lower electrode) 33 is shown in the figure of the first electrode (lower electrode) 33. Formed at the bottom.

1つの画素20内には、第1電極(下部電極)33に接続される配線39と第2電極(上部電極)31に接続される配線(不図示)が形成される。配線39と第2電極(上部電極)31に接続される配線としては、例えば、Siとの短絡を抑制するために、SiO2又はSiN絶縁層を周辺に有するタングステン(W)プラグ、あるいは、イオン注入による半導体層等により形成することができる。図2に示される裏面照射型の固体撮像素子の例では、信号電荷を正孔(ホール)としているので、配線39は、イオン注入による半導体層で形成する場合、p型半導体層となる。第2電極(上部電極)31に接続される配線は、第2電極(上部電極)31が電子を引き抜くのでn型半導体層を用いることができる。   In one pixel 20, a wiring 39 connected to the first electrode (lower electrode) 33 and a wiring (not shown) connected to the second electrode (upper electrode) 31 are formed. As the wiring connected to the wiring 39 and the second electrode (upper electrode) 31, for example, a tungsten (W) plug having an SiO 2 or SiN insulating layer in the periphery or ion implantation to suppress a short circuit with Si. It can be formed by a semiconductor layer or the like. In the example of the back-illuminated solid-state imaging device shown in FIG. 2, since the signal charges are holes, the wiring 39 becomes a p-type semiconductor layer when formed by a semiconductor layer by ion implantation. The wiring connected to the second electrode (upper electrode) 31 can use an n-type semiconductor layer because the second electrode (upper electrode) 31 extracts electrons.

本例では、半導体基板35の表面側に電荷蓄積用のn型領域38が形成される。このn型領域38は、光電変換素子41のフローティングディフージョン部として機能する。   In this example, an n-type region 38 for charge accumulation is formed on the surface side of the semiconductor substrate 35. This n-type region 38 functions as a floating diffusion portion of the photoelectric conversion element 41.

半導体基板35の裏面上の絶縁膜34としては、負の固定電荷を有する膜を用いることができる。負の固定電荷を有する膜としては、例えば、ハフニウム酸化膜を用いることができる。すなわち、この絶縁膜34は、裏面より順次シリコン酸化膜、ハフニウム酸化膜及びシリコン酸化膜を成膜した3層構造となるように形成されてもよい。   As the insulating film 34 on the back surface of the semiconductor substrate 35, a film having a negative fixed charge can be used. As a film having a negative fixed charge, for example, a hafnium oxide film can be used. That is, the insulating film 34 may be formed to have a three-layer structure in which a silicon oxide film, a hafnium oxide film, and a silicon oxide film are sequentially formed from the back surface.

半導体基板35の表面側(図4中の下側)には配線層45が形成され、一方、半導体基板35の裏面側(図4中の上側)であって、有機光電変換素子41上には保護層44が形成され、保護層44上には平坦化層43が形成される。そして、平坦化層43上にはオンチップレンズ42が形成される。なお、図示はされていないが、裏面照射型の固体撮像素子10にカラーフィルタが形成されていてもよい。   A wiring layer 45 is formed on the front surface side (lower side in FIG. 4) of the semiconductor substrate 35, and on the other hand, on the back surface side (upper side in FIG. 4) of the semiconductor substrate 35 and on the organic photoelectric conversion element 41. A protective layer 44 is formed, and a planarizing layer 43 is formed on the protective layer 44. An on-chip lens 42 is formed on the planarization layer 43. Although not shown, a color filter may be formed on the back-illuminated solid-state imaging device 10.

[2−3.表面照射型の固体撮像素子]
本技術に係る第2の実施形態の固体撮像素子は、裏面照射型の固体撮像素子だけではなく、表面照射型の固体撮像素子にも適用することができる。表面照射型の固体撮像素子ついて説明をする。
[2-3. Surface irradiation type solid-state imaging device]
The solid-state image sensor according to the second embodiment of the present technology can be applied not only to a back-illuminated solid-state image sensor but also to a front-illuminated solid-state image sensor. A surface irradiation type solid-state imaging device will be described.

表面照射型の固体撮像素子の例は、上述した裏面照射型の固体撮像素子10に対して、半導体基板35の下部に形成されていた配線層92が、有機光電変換素子41と半導体基板35との間に配線層92が形成されるという点で異なるだけである。その他の点は上述した裏面照射型の固体撮像素子10と同様にしてよく、ここでは説明を省略する。   In the example of the front-illuminated solid-state image sensor, the wiring layer 92 formed below the semiconductor substrate 35 is different from the back-illuminated solid-state image sensor 10 described above in that the organic photoelectric conversion element 41, the semiconductor substrate 35, and the like. The only difference is that the wiring layer 92 is formed between the two. Other points may be the same as those of the back-illuminated solid-state imaging device 10 described above, and a description thereof is omitted here.

<3.第3の実施形態(電子装置の例)>
本技術に係る第3の実施形態の電子装置は、本技術に係る第2の実施形態の固体撮像素子を備える、装置である。本技術に係る第2の実施形態の固体撮像素子は上記のとおりであるので、ここでは説明を省略する。本技術に係る第3の実施形態の電子装置は、優れた画質や優れた信頼性を有する固体撮像素子を備えるので、カラー画像の画質等の性能の向上を図ることができる。
<3. Third Embodiment (Example of Electronic Device)>
The electronic device according to the third embodiment of the present technology is a device including the solid-state imaging device according to the second embodiment of the present technology. Since the solid-state imaging device according to the second embodiment of the present technology is as described above, the description thereof is omitted here. Since the electronic apparatus according to the third embodiment of the present technology includes a solid-state imaging device having excellent image quality and excellent reliability, it is possible to improve performance such as image quality of a color image.

<4.本技術を適用した固体撮像素子の使用例>
図5は、イメージセンサとしての本技術に係る第2の実施形態の固体撮像素子の使用例を示す図である。
<4. Example of use of solid-state image sensor to which this technology is applied
FIG. 5 is a diagram illustrating a usage example of the solid-state imaging device according to the second embodiment of the present technology as an image sensor.

上述した第2の実施形態の固体撮像素子は、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングするさまざまなケースに使用することができる。すなわち、図5に示すように、例えば、鑑賞の用に供される画像を撮影する鑑賞の分野、交通の分野、家電の分野、医療・ヘルスケアの分野、セキュリティの分野、美容の分野、スポーツの分野、農業の分野等において用いられる装置(例えば、上述した第3の実施形態の電子装置)に、第2の実施形態の固体撮像素子を使用することができる。   The solid-state imaging device of the second embodiment described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray as follows. That is, as shown in FIG. 5, for example, the field of appreciation for taking images for appreciation, the field of transportation, the field of home appliances, the field of medical / healthcare, the field of security, the field of beauty, sports The solid-state imaging device of the second embodiment can be used for devices (for example, the electronic device of the third embodiment described above) used in the fields of No. 1, agriculture and the like.

具体的には、鑑賞の分野においては、例えば、デジタルカメラやスマートフォン、カメラ機能付きの携帯電話機等の、鑑賞の用に供される画像を撮影するための装置に、第2の実施形態の固体撮像素子を使用することができる。   Specifically, in the field of viewing, for example, the solid-state display according to the second embodiment is applied to an apparatus for shooting an image provided for viewing, such as a digital camera, a smartphone, or a mobile phone with a camera function. An image sensor can be used.

交通の分野においては、例えば、自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置に、第2の実施形態の固体撮像素子を使用することができる。   In the field of traffic, for example, in-vehicle sensors that capture images of the front, rear, surroundings, and interior of a vehicle for safe driving such as automatic stop and recognition of the driver's condition, traveling vehicles and roads are monitored. The solid-state image sensor according to the second embodiment can be used in a device used for traffic, such as a surveillance camera that performs distance measurement between vehicles, a distance measurement sensor that performs distance measurement between vehicles, and the like.

家電の分野においては、例えば、ユーザーのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、テレピ受像機や冷蔵庫、エアーコンディショナ等の家電に供される装置で、第2の実施形態の固体撮像素子を使用することができる。   In the field of home appliances, for example, a device used for home appliances such as a television receiver, a refrigerator, an air conditioner, etc. in order to photograph a user's gesture and perform device operations in accordance with the gesture. The solid-state imaging device of the embodiment can be used.

医療・ヘルスケアの分野においては、例えば、内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置に、第2の実施形態の固体撮像素子を使用することができる。   In the medical / healthcare field, for example, the solid state of the second embodiment is applied to a device used for medical or healthcare, such as an endoscope or a device that performs angiography by receiving infrared light. An image sensor can be used.

セキュリティの分野においては、例えば、防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置に、第2の実施形態の固体撮像素子を使用することができる。   In the field of security, for example, the solid-state imaging device according to the second embodiment can be used in devices used for security, such as surveillance cameras for crime prevention and cameras for personal authentication.

美容の分野においては、例えば、肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置に、第2の実施形態の固体撮像素子を使用することができる。   In the field of beauty, for example, the solid-state image sensor according to the second embodiment may be used in a device used for beauty, such as a skin measuring device that photographs skin and a microscope that photographs the scalp. it can.

スポーツの分野において、例えば、スポーツ用途等向けのアクションカメラやウェアラプルカメラ等の、スポーツの用に供される装置に、第2の実施形態の固体撮像素子を使用することができる。   In the field of sports, for example, the solid-state imaging device according to the second embodiment can be used in devices used for sports, such as action cameras and wearable cameras for sports applications.

農業の分野においては、例えば、畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置に、第2の実施形態の固体撮像素子を使用することができる。   In the field of agriculture, for example, the solid-state imaging device of the second embodiment can be used in an apparatus used for agriculture, such as a camera for monitoring the state of fields and crops.

なお、本技術に係る実施形態は、上述した実施形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。   The embodiments according to the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.

また、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。   Moreover, the effect described in this specification is an illustration to the last, and is not limited, Moreover, there may exist another effect.

また、本技術は、以下のような構成を取ることもできる。
[1]
第1電極と、第1バッファ層と、光電変換層と、第2バッファ層と、第2電極とが、この順で積層され、
該第1バッファ層が第1有機半導体材料を含み、
該光電変換層が第2有機半導体材料を含み、
該第1有機半導体材料が第1有機結晶を有し、
該第2有機半導体材料が第2有機結晶を有し、
該第1有機結晶の面間隔と該第2有機結晶の面間隔との比が、0.55:1〜1:0.55であり、
該第1有機結晶の方位と該第2有機結晶の方位とが略一致している、有機光電変換素子。
[2]
前記第1有機結晶に含まれる有機分子の少なくとも1部が、前記第1電極又は前記第2電極の方向に向かってππスタッキングしている、[1]に記載の有機光電変換素子。
[3]
前記ππスタッキングが、前記第1電極又は前記第2電極の主面に対して30°以上の角度で形成される、[2]に記載の有機光電変換素子。
[4]
前記第1有機結晶に含まれる有機分子の少なくとも一部が、前記第1電極又は前記第2電極の方向に向かってππスタッキングし、
前記第1バッファ層が、該有機分子の長軸の長さの4倍以上の膜厚を有する、[1]から[3]のいずれか1つに記載の有機光電変換素子。
[5]
前記第1バッファ層が、前記第1有機結晶に含まれる有機分子の長軸の長さの4倍未満の膜厚を有し、該有機分子の長軸方向が、前記第1電極又は前記第2電極の主面に対して45°以上の角度である、[1]から[4]のいずれか1つに記載の有機光電変換素子。
[6]
前記第1バッファ層が高移動度材料を更に含む、[1]から[5]のいずれか1つに記載の有機光電変換素子。
[7]
有機結晶調整層を更に含み、
該有機結晶調整層が前記光電変換層と前記第1バッファ層との間に配される、[1]から[6]のいずれか1つに記載の有機光電変換素子。
[8]
有機結晶調整層を更に含み、
該有機結晶調整層が前記光電変換層と前記第1バッファ層との間に配され、
該有機結晶調整層が前記第2有機半導体材料を含み、
前記第2有機半導体材料が前記第2有機結晶を有し、
前記第1有機結晶の面間隔と前記第2有機結晶の面間隔との比が、0.55:1〜1:0.55である、[1]から[6]のいずれか1つに記載の有機光電変換素子。
[9]
前記有機結晶調整層が第3有機半導体材料を更に含み、
該第3有機半導体材料が第3有機結晶を有し、
前記第1有機結晶の面間隔と該第3有機結晶の面間隔との比が、0.55:1〜1:0.55であり、
前記第2有機結晶の面間隔と該第3有機結晶の面間隔との比が、0.55:1〜1:0.55である、[8]に記載の有機光電変換素子。
[10]
有機結晶調整層を更に含み、
該有機結晶調整層が前記光電変換層と前記第1バッファ層との間に配され、
前記有機結晶調整層が第3有機半導体材料を含み、
該第3有機半導体材料が第3有機結晶を有し、
前記第1有機結晶の面間隔と前記第3有機結晶の面間隔との比が、0.55:1〜1:0.55である、[1]から[6]のいずれか1つに記載の有機光電変換素子。
[11]
1次元又は2次元に配列された複数の画素毎に、
少なくとも、[1]から[10]のいずれか1つに記載の有機光電変換素子と、半導体基板とが積層された、固体撮像素子。
[12]
[11]に記載の固体撮像素子を備える、電子装置。
Moreover, this technique can also take the following structures.
[1]
The first electrode, the first buffer layer, the photoelectric conversion layer, the second buffer layer, and the second electrode are stacked in this order,
The first buffer layer comprises a first organic semiconductor material;
The photoelectric conversion layer includes a second organic semiconductor material;
The first organic semiconductor material has a first organic crystal;
The second organic semiconductor material has a second organic crystal;
The ratio of the spacing between the first organic crystals and the spacing between the second organic crystals is 0.55: 1 to 1: 0.55,
An organic photoelectric conversion element in which the orientation of the first organic crystal and the orientation of the second organic crystal are substantially the same.
[2]
The organic photoelectric conversion element according to [1], wherein at least a part of organic molecules contained in the first organic crystal is ππ stacking toward the first electrode or the second electrode.
[3]
The organic photoelectric conversion element according to [2], wherein the ππ stacking is formed at an angle of 30 ° or more with respect to a main surface of the first electrode or the second electrode.
[4]
At least a part of the organic molecules contained in the first organic crystal is ππ stacked toward the first electrode or the second electrode,
The organic photoelectric conversion element according to any one of [1] to [3], wherein the first buffer layer has a film thickness that is at least four times the length of the long axis of the organic molecule.
[5]
The first buffer layer has a film thickness that is less than four times the length of the major axis of the organic molecule contained in the first organic crystal, and the major axis direction of the organic molecule is the first electrode or the first The organic photoelectric conversion element according to any one of [1] to [4], which has an angle of 45 ° or more with respect to the main surface of the two electrodes.
[6]
The organic photoelectric conversion element according to any one of [1] to [5], wherein the first buffer layer further includes a high mobility material.
[7]
Further comprising an organic crystal adjustment layer,
The organic photoelectric conversion element according to any one of [1] to [6], wherein the organic crystal adjustment layer is disposed between the photoelectric conversion layer and the first buffer layer.
[8]
Further comprising an organic crystal adjustment layer,
The organic crystal adjustment layer is disposed between the photoelectric conversion layer and the first buffer layer,
The organic crystal adjustment layer includes the second organic semiconductor material;
The second organic semiconductor material has the second organic crystal;
The ratio between the face spacing of the first organic crystal and the face spacing of the second organic crystal is 0.55: 1 to 1: 0.55, and any one of [1] to [6] Organic photoelectric conversion element.
[9]
The organic crystal adjustment layer further includes a third organic semiconductor material;
The third organic semiconductor material has a third organic crystal;
The ratio of the spacing between the first organic crystals and the spacing between the third organic crystals is 0.55: 1 to 1: 0.55,
The organic photoelectric conversion device according to [8], wherein a ratio between a face spacing of the second organic crystal and a face spacing of the third organic crystal is 0.55: 1 to 1: 0.55.
[10]
Further comprising an organic crystal adjustment layer,
The organic crystal adjustment layer is disposed between the photoelectric conversion layer and the first buffer layer,
The organic crystal adjustment layer includes a third organic semiconductor material;
The third organic semiconductor material has a third organic crystal;
The ratio between the face spacing of the first organic crystal and the face spacing of the third organic crystal is 0.55: 1 to 1: 0.55, and any one of [1] to [6] Organic photoelectric conversion element.
[11]
For each of a plurality of pixels arranged in one or two dimensions,
A solid-state imaging device in which at least the organic photoelectric conversion device according to any one of [1] to [10] and a semiconductor substrate are stacked.
[12]
[11] An electronic apparatus comprising the solid-state imaging device according to [11].

1…有機光電変換素子、10…裏面照射型の固体撮像素子、11…第1電極、12…第1バッファ層、13…光電変換層、14…第2バッファ層、15…第2電極
DESCRIPTION OF SYMBOLS 1 ... Organic photoelectric conversion element, 10 ... Back surface irradiation type solid-state image sensor, 11 ... 1st electrode, 12 ... 1st buffer layer, 13 ... Photoelectric conversion layer, 14 ... 2nd buffer layer, 15 ... 2nd electrode

Claims (12)

第1電極と、第1バッファ層と、光電変換層と、第2バッファ層と、第2電極とが、この順で積層され、
該第1バッファ層が第1有機半導体材料を含み、
該光電変換層が第2有機半導体材料を含み、
該第1有機半導体材料が第1有機結晶を有し、
該第2有機半導体材料が第2有機結晶を有し、
該第1有機結晶の面間隔と該第2有機結晶の面間隔との比が、0.55:1〜1:0.55であり、
該第1有機結晶の方位と該第2有機結晶の方位とが略一致している、有機光電変換素子。
The first electrode, the first buffer layer, the photoelectric conversion layer, the second buffer layer, and the second electrode are stacked in this order,
The first buffer layer comprises a first organic semiconductor material;
The photoelectric conversion layer includes a second organic semiconductor material;
The first organic semiconductor material has a first organic crystal;
The second organic semiconductor material has a second organic crystal;
The ratio of the spacing between the first organic crystals and the spacing between the second organic crystals is 0.55: 1 to 1: 0.55,
An organic photoelectric conversion element in which the orientation of the first organic crystal and the orientation of the second organic crystal are substantially the same.
前記第1有機結晶に含まれる有機分子の少なくとも1部が、前記第1電極又は前記第2電極の方向に向かってππスタッキングしている、請求項1に記載の有機光電変換素子。   2. The organic photoelectric conversion element according to claim 1, wherein at least a part of organic molecules contained in the first organic crystal is ππ-stacked toward the first electrode or the second electrode. 前記ππスタッキングが、前記第1電極又は前記第2電極の主面に対して30°以上の角度で形成される、請求項2に記載の有機光電変換素子。   The organic photoelectric conversion element according to claim 2, wherein the ππ stacking is formed at an angle of 30 ° or more with respect to a main surface of the first electrode or the second electrode. 前記第1有機結晶に含まれる有機分子の少なくとも一部が、前記第1電極又は前記第2電極の方向に向かってππスタッキングし、
前記第1バッファ層が、該有機分子の長軸の長さの4倍以上の膜厚を有する、請求項1に記載の有機光電変換素子。
At least a part of the organic molecules contained in the first organic crystal is ππ stacked toward the first electrode or the second electrode,
The organic photoelectric conversion element according to claim 1, wherein the first buffer layer has a film thickness that is at least four times the length of the major axis of the organic molecule.
前記第1バッファ層が、前記第1有機結晶に含まれる有機分子の長軸の長さの4倍未満の膜厚を有し、該有機分子の長軸方向が、前記第1電極又は前記第2電極の主面に対して45°以上の角度である、請求項1に記載の有機光電変換素子。   The first buffer layer has a film thickness that is less than four times the length of the major axis of the organic molecule contained in the first organic crystal, and the major axis direction of the organic molecule is the first electrode or the first The organic photoelectric conversion element of Claim 1 which is an angle of 45 degrees or more with respect to the main surface of 2 electrodes. 前記第1バッファ層が高移動度材料を更に含む、請求項1に記載の有機光電変換素子。   The organic photoelectric conversion element according to claim 1, wherein the first buffer layer further includes a high mobility material. 有機結晶調整層を更に含み、
該有機結晶調整層が前記光電変換層と前記第1バッファ層との間に配される、請求項1に記載の有機光電変換素子。
Further comprising an organic crystal adjustment layer,
The organic photoelectric conversion element according to claim 1, wherein the organic crystal adjustment layer is disposed between the photoelectric conversion layer and the first buffer layer.
有機結晶調整層を更に含み、
該有機結晶調整層が前記光電変換層と前記第1バッファ層との間に配され、
該有機結晶調整層が前記第2有機半導体材料を含み、
前記第2有機半導体材料が前記第2有機結晶を有し、
前記第1有機結晶の面間隔と前記第2有機結晶の面間隔との比が、0.55:1〜1:0.55である、請求項1に記載の有機光電変換素子。
Further comprising an organic crystal adjustment layer,
The organic crystal adjustment layer is disposed between the photoelectric conversion layer and the first buffer layer,
The organic crystal adjustment layer includes the second organic semiconductor material;
The second organic semiconductor material has the second organic crystal;
2. The organic photoelectric conversion element according to claim 1, wherein a ratio of a spacing between the first organic crystals and a spacing between the second organic crystals is 0.55: 1 to 1: 0.55.
前記有機結晶調整層が第3有機半導体材料を更に含み、
該第3有機半導体材料が第3有機結晶を有し、
前記第1有機結晶の面間隔と該第3有機結晶の面間隔との比が、0.55:1〜1:0.55であり、
前記第2有機結晶の面間隔と該第3有機結晶の面間隔との比が、0.55:1〜1:0.55である、請求項8に記載の有機光電変換素子。
The organic crystal adjustment layer further includes a third organic semiconductor material;
The third organic semiconductor material has a third organic crystal;
The ratio of the spacing between the first organic crystals and the spacing between the third organic crystals is 0.55: 1 to 1: 0.55,
The organic photoelectric conversion device according to claim 8, wherein a ratio of a face spacing of the second organic crystal and a face spacing of the third organic crystal is 0.55: 1 to 1: 0.55.
有機結晶調整層を更に含み、
該有機結晶調整層が前記光電変換層と前記第1バッファ層との間に配され、
前記有機結晶調整層が第3有機半導体材料を含み、
該第3有機半導体材料が第3有機結晶を有し、
前記第1有機結晶の面間隔と前記第3有機結晶の面間隔との比が、0.55:1〜1:0.55である、請求項1に記載の有機光電変換素子。
Further comprising an organic crystal adjustment layer,
The organic crystal adjustment layer is disposed between the photoelectric conversion layer and the first buffer layer,
The organic crystal adjustment layer includes a third organic semiconductor material;
The third organic semiconductor material has a third organic crystal;
2. The organic photoelectric conversion device according to claim 1, wherein a ratio of a spacing between the first organic crystals and a spacing between the third organic crystals is 0.55: 1 to 1: 0.55.
1次元又は2次元に配列された複数の画素毎に、
少なくとも、請求項1に記載の有機光電変換素子と、半導体基板とが積層された、固体撮像素子。
For each of a plurality of pixels arranged in one or two dimensions,
A solid-state imaging device in which at least the organic photoelectric conversion device according to claim 1 and a semiconductor substrate are laminated.
請求項11に記載の固体撮像素子を備える、電子装置。   An electronic apparatus comprising the solid-state imaging device according to claim 11.
JP2016150253A 2016-07-29 2016-07-29 Organic photoelectric conversion element, solid-state imaging element, and electronic device Pending JP2018019034A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016150253A JP2018019034A (en) 2016-07-29 2016-07-29 Organic photoelectric conversion element, solid-state imaging element, and electronic device
PCT/JP2017/024826 WO2018020977A1 (en) 2016-07-29 2017-07-06 Organic photoelectric conversion element, solid-state imaging element and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016150253A JP2018019034A (en) 2016-07-29 2016-07-29 Organic photoelectric conversion element, solid-state imaging element, and electronic device

Publications (1)

Publication Number Publication Date
JP2018019034A true JP2018019034A (en) 2018-02-01

Family

ID=61016863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016150253A Pending JP2018019034A (en) 2016-07-29 2016-07-29 Organic photoelectric conversion element, solid-state imaging element, and electronic device

Country Status (2)

Country Link
JP (1) JP2018019034A (en)
WO (1) WO2018020977A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3093377B1 (en) 2019-03-01 2021-02-26 Isorg COLOR AND INFRARED IMAGE SENSOR
FR3093376B1 (en) * 2019-03-01 2022-09-02 Isorg COLOR AND INFRARED IMAGE SENSOR

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5013571B2 (en) * 2005-08-22 2012-08-29 国立大学法人 筑波大学 Organic semiconductor molecule orientation control method and organic thin film solar cell
EP2438626A2 (en) * 2009-06-03 2012-04-11 The Regents Of The University Of Michigan Structural templating for organic electronic devices having an organic film with long range order

Also Published As

Publication number Publication date
WO2018020977A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
US20230354627A1 (en) Imaging element, stacked-type imaging element, imaging apparatus and electronic apparatus
CN102034933B (en) Photoelectric conversion device, photoelectric conversion device material, optical sensor and imaging device
US10636844B2 (en) Organic photoelectronic device and image sensor including selective light transmittance layer
JP2023126771A (en) Image sensor, stacked imaging device, and imaging apparatus
WO2016017350A1 (en) Photoelectric conversion element and imaging element
JP6047108B2 (en) Photoelectric conversion device, imaging device, optical sensor
JP2014120616A (en) Organic photoelectric conversion element, laminated organic image sensor and laminated organic solar cell each including the same, and method of manufacturing organic photoelectric conversion element
JP2017054939A (en) Organic photoelectric conversion element and solid state imaging device
CN206992154U (en) Image-forming component and electronic equipment
US20180366519A1 (en) Photoelectric conversion device and imaging unit
US9728586B2 (en) Organic photoelectronic device and image sensor
WO2016203925A1 (en) Photoelectric conversion element
JP6535093B2 (en) Photoelectric conversion element, imaging element, optical sensor, compound
JP2017098393A (en) Photoelectric conversion element, manufacturing method of the same, solid-state imaging device, electronic apparatus, and solar battery
JP2018019034A (en) Organic photoelectric conversion element, solid-state imaging element, and electronic device
JP7501714B2 (en) Image pickup element, stacked image pickup element, image pickup device, and electronic device
JP5352495B2 (en) Photoelectric conversion element, optical sensor, and imaging element manufacturing method
KR102338189B1 (en) Image sensor and electronic device including the same
TW202311227A (en) Material for photoelectric conversion elements for image pickup, and photoelectric conversion element for image pickup
JP2018011037A (en) Photoelectric conversion device and imaging system