[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018002928A - Coating composition - Google Patents

Coating composition Download PDF

Info

Publication number
JP2018002928A
JP2018002928A JP2016133459A JP2016133459A JP2018002928A JP 2018002928 A JP2018002928 A JP 2018002928A JP 2016133459 A JP2016133459 A JP 2016133459A JP 2016133459 A JP2016133459 A JP 2016133459A JP 2018002928 A JP2018002928 A JP 2018002928A
Authority
JP
Japan
Prior art keywords
zeolite
coating composition
mol
type
odor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016133459A
Other languages
Japanese (ja)
Other versions
JP6799401B2 (en
Inventor
麻由佳 石川
Mayuka Ishikawa
麻由佳 石川
重人 今
Shigeto Kon
重人 今
佐藤 弘一
Koichi Sato
弘一 佐藤
晋也 川上
Shinya Kawakami
晋也 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP2016133459A priority Critical patent/JP6799401B2/en
Priority to PCT/JP2017/023618 priority patent/WO2018008479A1/en
Publication of JP2018002928A publication Critical patent/JP2018002928A/en
Application granted granted Critical
Publication of JP6799401B2 publication Critical patent/JP6799401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/22Type X
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • C01B39/40Type ZSM-5 using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coating composition which has a high effect of suppressing odor emitted from the coating composition itself than conventional one.SOLUTION: A coating composition contains a resin emulsion composition (a) and an inorganic porous pigment (b) formed of zeolite, where a ratio of silica/alumina (mol/mol) in the zeolite is 15 or more, and a content of the zeolite to 100 pts.mass of a solid content in the resin emulsion composition (a) is 0.1-500 pts.mass.SELECTED DRAWING: None

Description

本発明は、塗料組成物に関する。より詳しくは、従来よりも塗料組成物自体が発する臭気が低減できる塗料組成物に関する。   The present invention relates to a coating composition. More specifically, the present invention relates to a coating composition that can reduce the odor emitted by the coating composition itself as compared with the conventional case.

近年、VOCの配合量や毒性の低減に関する環境規制が厳しくなってきた観点や、省資源の観点から、有機溶剤を溶媒として配合した溶剤型塗料から水を配合した水性塗料への転換が急速になされつつある。その代表的な塗料として水性エマルション樹脂塗料組成物を挙げることができる。特に屋外に比べて居住空間等の内装塗装は施主や塗装作業者に対する観点から無臭であることが望まれるため、水性エマルション樹脂塗料組成物が使用される。しかし、従来の水性エマルション樹脂塗料組成物に含まれるエマルション樹脂組成物由来の未反応モノマー等や、造膜助剤中に含まれる高沸点の揮発性有機化合物及び、微量の揮発成分は、液体状態の水性エマルション樹脂塗料組成物から、あるいは、塗装後の該塗料組成物が乾燥塗膜を形成する過程で空気中に揮散することにより臭気を発するため、施主や塗装作業者にとって快適な状態ではない。そこで、塗料組成物自体が発する臭気の低減が求められている。   In recent years, from the viewpoint of stricter environmental regulations regarding the reduction of VOC content and toxicity, and from the viewpoint of resource saving, a rapid shift from solvent-based paints formulated with organic solvents to water-based paints formulated with water It is being made. A typical example of the paint is an aqueous emulsion resin paint composition. In particular, the interior coating of a living space or the like is desired to be odorless from the viewpoint of the owner and the painter as compared with the outdoors, and therefore, an aqueous emulsion resin coating composition is used. However, the unreacted monomer derived from the emulsion resin composition contained in the conventional aqueous emulsion resin coating composition, the high boiling point volatile organic compound contained in the film-forming aid, and the trace amount of volatile components are in a liquid state. Because it emits odor from the water-based emulsion resin coating composition or when the coating composition after coating volatilizes in the air in the process of forming a dry coating film, it is not in a comfortable state for the owner or the painter . Therefore, reduction of the odor emitted from the coating composition itself is demanded.

そこで、塗料組成物自体から発生する臭気を低減する方法として、造膜助剤中の揮発性有機化合物の量を低減する方法が知られている(例えば、特許文献1参照)。また、居住空間内に漂うアンモニア等の臭気を低減する方法として、水性塗料用樹脂組成物中に無機多孔質材料を添加し、この多孔質材料に臭気を吸着させる方法が知られている(例えば、特許文献2参照)。   Therefore, as a method for reducing the odor generated from the coating composition itself, a method for reducing the amount of volatile organic compounds in the film-forming aid is known (for example, see Patent Document 1). In addition, as a method for reducing the odor of ammonia or the like drifting in the living space, a method of adding an inorganic porous material to the aqueous paint resin composition and adsorbing the odor to the porous material is known (for example, , See Patent Document 2).

特開2002−256202号公報JP 2002-256202 A 特開2004−149686号公報JP 2004-149686 A

しかしながら、特許文献1の水性塗料用樹脂組成物からは、臭気の原因となる未反応モノマー等を完全に除去することができず、臭気の低減は十分ではなかった。また、特許文献2の水性塗料組成物は、居住空間中に漂うアンモニアやホルムアルデヒドの吸着のみを目的としており、水性塗料組成物自体が発する臭気の低減を課題としていない。   However, from the resin composition for water-based paints of Patent Document 1, unreacted monomers and the like that cause odors cannot be completely removed, and odor reduction is not sufficient. Moreover, the water-based coating composition of patent document 2 is only intended for adsorption of ammonia and formaldehyde drifting in the living space, and does not have a problem of reducing the odor emitted by the water-based coating composition itself.

本発明は、上記課題に鑑みてなされたものであり、従来よりも塗料組成物自体が発する臭気を低減できる塗料組成物を提供することにある。   This invention is made | formed in view of the said subject, and is providing the coating composition which can reduce the odor which coating composition itself emits compared with the past.

本発明は、樹脂エマルション組成物(a)と、ゼオライトからなる無機多孔質顔料(b)と、を含む塗料組成物であって、ゼオライト中におけるシリカ/アルミナ(mol/mol)比が15以上であり、樹脂エマルション組成物(a)の固形分100質量部に対するゼオライトの含有量が0.1〜500質量部である塗料組成物を提供する。   The present invention is a coating composition comprising a resin emulsion composition (a) and an inorganic porous pigment (b) made of zeolite, wherein the silica / alumina (mol / mol) ratio in the zeolite is 15 or more. And a coating composition having a zeolite content of 0.1 to 500 parts by mass with respect to 100 parts by mass of the solid content of the resin emulsion composition (a).

また、本発明は、ゼオライト中におけるシリカ/アルミナ(mol/mol)比が30以上であることが好ましい。   In the present invention, the silica / alumina (mol / mol) ratio in the zeolite is preferably 30 or more.

また、本発明のゼオライトは、X型、ベータ型、MFI型、フェリエライト型、モルデナイト型、L型及びY型からなる群より選ばれる少なくとも1種の結晶構造を有する請求項1又は2に記載の塗料組成物。   The zeolite of the present invention has at least one crystal structure selected from the group consisting of X-type, beta-type, MFI-type, ferrierite-type, mordenite-type, L-type and Y-type. Paint composition.

また、本発明のゼオライトは、プロトン又はアルカリ金属以外の金属イオンとイオン交換されたイオン交換型ゼオライトであることが好ましい。   The zeolite of the present invention is preferably an ion exchange type zeolite ion-exchanged with a metal ion other than proton or alkali metal.

本発明によれば、従来よりも塗料組成物自体が発する臭気を低減できる塗料組成物を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the coating composition which can reduce the odor which coating composition itself emits than before can be provided.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.

<塗料組成物>
本実施形態に係る塗料組成物は、樹脂エマルション組成物(a)と、無機多孔質顔料(b)とを含む。
<Coating composition>
The coating composition according to the present embodiment includes a resin emulsion composition (a) and an inorganic porous pigment (b).

[樹脂エマルション組成物(a)]
本実施形態に係る樹脂エマルション組成物(a)は、結合剤として働く成分である。具体的には、酢酸ビニル樹脂エマルション、塩化ビニル樹脂エマルション、エポキシ樹脂エマルション、アクリル樹脂エマルション、ウレタン樹脂エマルション、アクリルシリコン樹脂エマルション、フッ素樹脂エマルション、あるいはこれらの複合系等の樹脂成分からなる合成樹脂エマルションが使用できる。本実施形態に係る樹脂エマルション組成物(a)は、特に限定されるものではないが、アクリル樹脂エマルションが好ましく用いられる。
[Resin emulsion composition (a)]
The resin emulsion composition (a) according to this embodiment is a component that functions as a binder. Specifically, a synthetic resin emulsion comprising a resin component such as a vinyl acetate resin emulsion, a vinyl chloride resin emulsion, an epoxy resin emulsion, an acrylic resin emulsion, a urethane resin emulsion, an acrylic silicon resin emulsion, a fluororesin emulsion, or a composite system thereof. Can be used. The resin emulsion composition (a) according to this embodiment is not particularly limited, but an acrylic resin emulsion is preferably used.

本実施形態に係るアクリル樹脂エマルションは、(メタ)アクリル酸エステル系のモノマーを、水を媒体とする乳化重合法等の公知の重合方法によって得ることができる。また、樹脂エマルション組成物(a)の形態は特に限定されず、1液型、2液型の何れであってもよい。   The acrylic resin emulsion according to the present embodiment can be obtained by a known polymerization method such as an emulsion polymerization method using a (meth) acrylic acid ester monomer as a medium. Moreover, the form of the resin emulsion composition (a) is not particularly limited, and may be either a one-component type or a two-component type.

本実施形態に係る(メタ)アクリル酸エステル系モノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸−n−プロピル、(メタ)アクリル酸−i−ブチル、(メタ)アクリル酸−n−ブチル、(メタ)アクリル酸−t−ブチル、(メタ)アクリル酸−sec−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸−n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ミリスチル、(メタ)アクリル酸パルミチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸トリフルオロエチル、(メタ)アクリル酸n一アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸オキチル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ドデセニル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸−4−tert−ブチルシクロヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸−2−フェニルエチル、(メタ)アクリル酸−2−メトキシエチル、(メタ)アクリル酸−4−メトキシブチル等が挙げられる。
なお、これらのモノマーには、適宣、ヒドロキシル基、カルボニル基、エポキシ基、アミド基、アミノ基、メチロール基、イソシアネート基等の反応基を付与したものも、用いることができる。
Examples of the (meth) acrylic acid ester monomer according to this embodiment include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, (meth) acrylate-n-propyl, ( (Meth) acrylic acid-i-butyl, (meth) acrylic acid-n-butyl, (meth) acrylic acid-t-butyl, (meth) acrylic acid-sec-butyl, (meth) acrylic acid isobutyl, (meth) acrylic 2-ethylhexyl acid, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, myristyl (meth) acrylate , Palmitic acid (meth) acrylate, glycidyl (meth) acrylate, trifluoroethyl (meth) acrylate N amyl (meth) acrylate, isoamyl (meth) acrylate, octyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, dodecenyl (meth) acrylate, (meth) acryl Octadecyl acid, cyclohexyl (meth) acrylate, (meth) acrylic acid-4-tert-butylcyclohexyl, phenyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, (meth) acrylic acid Examples include 2-phenylethyl, 2-methoxyethyl (meth) acrylate, and 4-methoxybutyl (meth) acrylate.
As these monomers, those provided with a reactive group such as a hydroxyl group, a carbonyl group, an epoxy group, an amide group, an amino group, a methylol group, or an isocyanate group can be used.

樹脂エマルション組成物(a)のガラス転移温度(Tg)は、塗膜物性の観点から、−50〜50℃であることが好ましい。エマルション樹脂のガラス転移温度(Tg)が−50〜50℃の範囲であれば、建築物の内装面等を塗装する際の室温環境下において、良好な塗膜形成を行うことができる。   The glass transition temperature (Tg) of the resin emulsion composition (a) is preferably −50 to 50 ° C. from the viewpoint of physical properties of the coating film. When the glass transition temperature (Tg) of the emulsion resin is in the range of −50 to 50 ° C., a favorable coating film can be formed in a room temperature environment when coating the interior surface of a building.

樹脂エマルション組成物(a)の酸価は、5〜25が好ましく、10〜20がより好ましい。5未満では塗膜の十分な硬化が得られない恐れがあり、また25を超えると、貯蔵安定性が悪くなる恐れがあるためである。   5-25 are preferable and, as for the acid value of a resin emulsion composition (a), 10-20 are more preferable. If it is less than 5, sufficient curing of the coating film may not be obtained, and if it exceeds 25, storage stability may be deteriorated.

樹脂エマルション組成物(a)のpHは、安定性の観点から、必要に応じて塩基で中和することによりpHが5〜10の範囲内で用いられることが好ましい。中和は、アンモニア、ジメチルエタノールアミン等のアミン類、水酸化ナトリウム、水酸化カリウム等を添加することにより行われる。   The pH of the resin emulsion composition (a) is preferably used within the range of 5 to 10 by neutralizing with a base as necessary from the viewpoint of stability. Neutralization is performed by adding amines such as ammonia and dimethylethanolamine, sodium hydroxide, potassium hydroxide and the like.

樹脂エマルション組成物(a)を含む塗料固形分は1〜90質量%であることが好ましい。塗料固形分がこの範囲内であることにより、塗装後の乾燥工程における塗膜収縮に伴う、塗膜の欠損を防ぐことができる。より好ましい塗料固形分は、10〜50質量%である。   The solid content of the paint containing the resin emulsion composition (a) is preferably 1 to 90% by mass. When the solid content of the coating is within this range, it is possible to prevent the coating film from being lost due to the contraction of the coating film in the drying process after coating. A more preferable paint solid content is 10 to 50% by mass.

樹脂エマルション組成物(a)の粘度は50〜10,000mPa・sであることが好ましく、より好ましくは、同条件下における粘度が300〜8,000mPa・sである。なお、上記粘度は、例えば、E型粘度計を用いて測定した値を意味する。   The viscosity of the resin emulsion composition (a) is preferably 50 to 10,000 mPa · s, and more preferably 300 to 8,000 mPa · s under the same conditions. In addition, the said viscosity means the value measured using the E-type viscosity meter, for example.

[無機多孔質原料(b)]
本実施形態に係る無機多孔質顔料(b)は、臭気成分等を多孔質部分に保持することが可能な空隙を有する無機化合物としては、例えば、活性炭、活性アルミナ、シリカゲル、ヒドロキシアパタイト、リン酸ジルコニウム、リン酸チタン、チタン酸カリウム、含水酸化ビスマス、含水酸化ジルコニウム、ハイドロタルサイト等が挙げられる。本実施形態では、ゼオライトが使用される。
無機多孔質顔料(b)は、塗料組成物中に含まれる未反応モノマーや造膜助剤中に含まれる揮発性有機化合物が揮散することによる塗料組成物自体の臭気や、塗装後の吸着サイトの未充填量に応じて、空気中のアンモニアやホルムアルデヒドを吸着できる。無機多孔質顔料(b)は、塗料組成物中に所定重量添加されることにより、塗装前後の臭気を吸着し、臭気の抑制効果の高い塗料組成物を提供することができる。
[Inorganic porous material (b)]
The inorganic porous pigment (b) according to the present embodiment includes, for example, activated carbon, activated alumina, silica gel, hydroxyapatite, phosphoric acid as an inorganic compound having voids that can hold an odor component or the like in the porous portion. Zirconium, titanium phosphate, potassium titanate, hydrous bismuth, hydrous zirconium, hydrotalcite and the like can be mentioned. In this embodiment, zeolite is used.
The inorganic porous pigment (b) is an odor of the coating composition itself due to volatilization of the unreacted monomer contained in the coating composition and the volatile organic compound contained in the film-forming aid, and the adsorption site after coating. Ammonia and formaldehyde in the air can be adsorbed according to the unfilled amount. When the inorganic porous pigment (b) is added to the coating composition at a predetermined weight, it can adsorb the odor before and after coating and provide a coating composition having a high odor control effect.

本実施形態に係るゼオライトは、天然ゼオライト及び人工的に製造される合成ゼオライトの何れも利用することが可能であり、特に、イオン交換の容易さ等に鑑み、合成ゼオライトを用いることが好ましい。   As the zeolite according to the present embodiment, both natural zeolite and artificially produced synthetic zeolite can be used. In particular, in view of ease of ion exchange and the like, it is preferable to use synthetic zeolite.

本実施形態に係るゼオライトは、X型、ベータ型、MFI型、フェリエライト型、モルデナイト型、L型及びY型からなる群より選ばれる少なくとも1種の結晶構造を有するゼオライトが好ましく用いられる。
上記ゼオライトは、結晶構造の違いにより吸着可能な臭気成分が変わる。そのため、上記の結晶構造のうち、2種以上の結晶構造が選択されることがより好ましい。
As the zeolite according to this embodiment, a zeolite having at least one crystal structure selected from the group consisting of X-type, beta-type, MFI-type, ferrierite-type, mordenite-type, L-type and Y-type is preferably used.
The zeolite has different adsorbable odor components depending on the crystal structure. Therefore, it is more preferable that two or more kinds of crystal structures are selected from the above crystal structures.

本実施形態に係るゼオライトには、市販品を使用することも可能である。例えば、X型ゼオライトには東ソー株式会社製:F9シリーズ、ベータ型ゼオライトには東ソー株式会社製:HSZ900シリーズ、MFI型ゼオライトには東ソー株式会社製:HSZ800シリーズ、フェリエライト型には東ソー株式会社製:HSZ700シリーズ、モルデナイト型には東ソー株式会社製:HSZ600シリーズ、L型ゼオライトには東ソー株式会社製:HSZ500シリーズ、Y型ゼオライトにはHSZ300シリーズを、それぞれ使用することが可能である。   A commercial product can also be used for the zeolite according to the present embodiment. For example, X type zeolite is manufactured by Tosoh Corporation: F9 series, beta type zeolite is manufactured by Tosoh Corporation: HSZ900 series, MFI type zeolite is manufactured by Tosoh Corporation: HSZ800 series, and ferrilite type is manufactured by Tosoh Corporation. : HSZ700 series, mordenite type manufactured by Tosoh Corporation: HSZ600 series, L type zeolite manufactured by Tosoh Corporation: HSZ500 series, Y type zeolite can be used HSZ300 series.

合成によりゼオライトを製造する場合、従来公知の方法であればいずれも適用できる。例えば、シリカ源、アルミナ源、4級アンモニウム塩、アルカリ源及び水を含む組成物を結晶化することにより、合成ゼオライトを得る方法が知られている。具体的には、純水、水酸化ナトリウム、ゼオライト及び種結晶のゼオライトを35%4級アンモニウム塩水溶液に添加し、150℃で8日間攪拌することにより原料組成物を結晶化させ後、この結晶を固液分離及び純水洗浄した後に回収し、110℃で乾燥することにより合成ゼオライトを得ることができる。   In the case of producing zeolite by synthesis, any conventionally known method can be applied. For example, a method of obtaining a synthetic zeolite by crystallizing a composition containing a silica source, an alumina source, a quaternary ammonium salt, an alkali source and water is known. Specifically, pure water, sodium hydroxide, zeolite and seed crystal zeolite are added to a 35% quaternary ammonium salt aqueous solution, and the raw material composition is crystallized by stirring at 150 ° C. for 8 days. Is recovered after solid-liquid separation and pure water washing, and dried at 110 ° C. to obtain a synthetic zeolite.

また、上述の天然ゼオライトや合成ゼオライトの基本骨格は負に帯電していることから、イオン交換サイトには、アルカリ金属イオンを有する場合がある。そこで、臭気の抑制という観点から、このイオン交換サイトには、プロトン及びCuイオン、Agイオン、Auイオン等のアルカリ金属以外の金属イオンからなる群より選択される少なくとも1種のイオン交換種を含むことが好ましい。特に、臭気を抑制するという観点から、臭気成分の吸着や臭気成分の分解が可能なCu、Ag及びAu等の金属イオンに置換されたゼオライトがより好ましい。イオン交換は公知の方法で行うことができる。   In addition, since the basic skeletons of the natural zeolite and synthetic zeolite described above are negatively charged, the ion exchange site may have alkali metal ions. Therefore, from the viewpoint of suppressing odor, this ion exchange site contains at least one ion exchange species selected from the group consisting of protons and metal ions other than alkali metals such as Cu ions, Ag ions, and Au ions. It is preferable. In particular, from the viewpoint of suppressing odor, zeolite substituted with metal ions such as Cu, Ag and Au capable of adsorbing odor components and decomposing odor components is more preferable. Ion exchange can be performed by a known method.

本実施形態のゼオライト中のイオン交換は、従来公知の方法であればいずれも適用できる。例えば、Y型ゼオライトのイオン交換サイトにプロトン(H)を付加する場合、一度、Y型ゼオライトを塩化アンモニウム水溶液に混合、攪拌し、アンモニアでイオン交換した後、これを焼成することにより、プロトン型のY型ゼオライトが得られる。また、Cu等の金属イオンにイオン交換する場合、塩化銅水溶液等のCu溶液とY型ゼオライトを接触させた後、イオン交換水で洗浄し、その後乾燥させる。これにより、イオン交換サイトにCuイオンが存在するY型ゼオライトが得られる。 Any conventionally known method can be applied to the ion exchange in the zeolite of the present embodiment. For example, when adding protons (H + ) to the ion exchange site of Y-type zeolite, once the Y-type zeolite is mixed and stirred in an ammonium chloride aqueous solution and ion-exchanged with ammonia, the proton is calcined. Type Y zeolite is obtained. Moreover, when ion-exchanged to metal ions, such as Cu, after making Cu solution, such as copper chloride aqueous solution, and Y-type zeolite contact, it wash | cleans with ion-exchange water, and is made to dry after that. Thereby, Y type zeolite in which Cu ions are present at the ion exchange site is obtained.

また、塗料組成物から放出される臭気成分には有機溶剤由来のものが含まれており、これらの臭気成分の吸着性の観点から、ゼオライトのシリカ/アルミナ(mol/mol)比は、15以上に調整される。シリカ/アルミナ(mol/mol)比が高くなるにつれ、ゼオライト自体の性質が疎水性になる。それにより、ゼオライト中の吸着点には、水分子よりも臭気成分多く吸着させることができるようになる。そのため、ゼオライトのシリカ/アルミナ(mol/mol)比は、30以上に調整されることがより好ましい。また、シリカ/アルミナ比が5000以上に調整すると、ゼオライト中の臭気成分の吸着点が極端に減少し、吸着量が減少してしまう。このことからシリカ/アルミナ比は5000以下が好ましい。   The odor components released from the coating composition include those derived from organic solvents. From the viewpoint of the adsorptivity of these odor components, the silica / alumina (mol / mol) ratio of zeolite is 15 or more. Adjusted to As the silica / alumina (mol / mol) ratio increases, the nature of the zeolite itself becomes hydrophobic. Thereby, it becomes possible to adsorb more odor components than water molecules at the adsorption point in the zeolite. Therefore, the silica / alumina (mol / mol) ratio of zeolite is more preferably adjusted to 30 or more. Further, when the silica / alumina ratio is adjusted to 5000 or more, the adsorption point of the odor component in the zeolite is extremely reduced, and the adsorption amount is reduced. For this reason, the silica / alumina ratio is preferably 5000 or less.

ゼオライトのシリカ/アルミナ(mol/mol)比の調整は、例えば、上述の製造段階の場合、ゼオライトの原料組成物の混合比率を調整により行うことができ、製品化後の場合、ゼオライトに対して水熱処理等により行うことができる。例えば、製品化後のゼオライトであれば、水熱処理法、鉱酸処理法、珪素置換法やEDTA処理により、アルミニウムイオンを取り除き、シリカ/アルミナ(mol/mol)比を高める方法等が知られている。また、シリカ/アルミナ(mol/mol)比を下げる場合は、ゼオライトをアルミニウム源に接触させた後、イオン交換水で洗浄し、乾燥させる方法等が知られている。本実施形態では、シリカ/アルミナ(mol/mol)比の調整は、これらに限定されず公知の方法であればいずれも適用できる。   The adjustment of the silica / alumina (mol / mol) ratio of the zeolite can be carried out, for example, by adjusting the mixing ratio of the raw material composition of the zeolite in the above-mentioned production stage. It can be performed by hydrothermal treatment or the like. For example, in the case of zeolite after commercialization, there are known methods such as hydrothermal treatment method, mineral acid treatment method, silicon substitution method and EDTA treatment to remove aluminum ions and increase the silica / alumina (mol / mol) ratio. Yes. In order to reduce the silica / alumina (mol / mol) ratio, a method is known in which zeolite is brought into contact with an aluminum source, washed with ion-exchanged water, and dried. In the present embodiment, the adjustment of the silica / alumina (mol / mol) ratio is not limited to these, and any known method can be applied.

ゼオライトの分散粒度は、0.1〜100μmの範囲であることが好ましい。ゼオライトは粒状の物質であるため分散粒度が100μmよりも大きいと、塗膜にゼオライトに基づく凹凸の外観が現れ、塗膜の意匠性が悪化する。また、ゼオライトの分散粒度が、0.1μmよりも小さいと、塗膜内に埋没し、ゼオライトの細孔が塗膜表面に露出されない場合がある。   The dispersed particle size of the zeolite is preferably in the range of 0.1 to 100 μm. Since zeolite is a granular substance, when the dispersed particle size is larger than 100 μm, the appearance of irregularities based on zeolite appears in the coating film, and the design of the coating film deteriorates. On the other hand, when the dispersed particle size of the zeolite is smaller than 0.1 μm, the zeolite is buried in the coating film, and the pores of the zeolite may not be exposed on the coating film surface.

本実施形態に係る無機多孔質顔料(b)の含有量は、樹脂エマルション組成物(a)の固形分100質量部に対して、無機多孔質顔料(b)の含有量が0.1質量部〜500質量部である。無機多孔質顔料(b)の含有量が0.1質量部未満である場合、形成される塗膜について、好ましい臭気の抑制効果が得られない。また、無機多孔質顔料(b)の含有量が500質量部を超えた場合、塗料組成物の粘度が高くなりすぎて、塗膜が形成され難くなる。また、必要量以上の無機多孔質顔料(b)の添加は無用なコスト増にもつながる。そのため、無機多孔質顔料(b)の含有量が1質量部〜500質量部であることが好ましい。   The content of the inorganic porous pigment (b) according to the present embodiment is such that the content of the inorganic porous pigment (b) is 0.1 parts by mass with respect to 100 parts by mass of the solid content of the resin emulsion composition (a). It is -500 mass parts. When content of an inorganic porous pigment (b) is less than 0.1 mass part, the preferable odor suppression effect is not acquired about the coating film formed. Moreover, when content of an inorganic porous pigment (b) exceeds 500 mass parts, the viscosity of a coating composition becomes high too much and it becomes difficult to form a coating film. Moreover, the addition of an inorganic porous pigment (b) exceeding the necessary amount leads to unnecessary cost increase. Therefore, the content of the inorganic porous pigment (b) is preferably 1 part by mass to 500 parts by mass.

[その他成分]
本実施形態に係る塗料組成物は、必要に応じて、その他成分を含んでいてもよい。例えば塗料組成物は、上述の樹脂エマルション組成物(a)、無機多孔質顔料(b)以外の成分として、通常用いられる公知の着色顔料、体質顔料、骨材、繊維、可塑剤、防腐剤、防黴剤、消泡剤、粘性調整剤、レベリング剤、顔料分散剤、沈降防止剤、たれ防止剤、艶消し剤、紫外線吸収剤、光安定剤、酸化防止剤、抗菌剤、吸着剤、光触媒等を、単独あるいは併用して配合することができる。
[Other ingredients]
The coating composition which concerns on this embodiment may contain the other component as needed. For example, the coating composition is a known color pigment, extender pigment, aggregate, fiber, plasticizer, preservative, ordinarily used as a component other than the above-described resin emulsion composition (a) or inorganic porous pigment (b). Antifungal agents, antifoaming agents, viscosity modifiers, leveling agents, pigment dispersants, anti-settling agents, anti-sagging agents, matting agents, UV absorbers, light stabilizers, antioxidants, antibacterial agents, adsorbents, photocatalysts Etc. can be blended alone or in combination.

上述した着色顔料としては、酸化チタン、酸化亜鉛、カーボンブラック、ランプブラック、ボーンブラック、黒鉛、黒色酸化鉄、銅クロムブラック、コバルトブラック、銅マンガン鉄ブラック、モリブデートオレンジ、パーマネントレッド、パーマネントカーミン、アントラキノンレッド、ペリレンレッド、キナクリドンレッド、酸化第二鉄、黄色酸化鉄、チタンイエロー、ファーストイエロー、クロムグリーン、オーカー、群青、紺青、コバルトグリーン、コバルトブルー等の無機系着色顔料、アゾ系、ナフトール系、ピラゾロン系、アントラキノン系、ペリレン系、キナクリドン系、ベンゾイミダゾール系、フタロシアニン系、ジスアゾ系、イソインドリノン系、キノフタロン系等の有機系着色顔料、パール顔料、アルミニウム顔料、金属又は金属酸化物をコーティングしたガラスフレーク又は樹脂フィルム、ホログラム顔料、コレステリック結晶ポリマー顔料等の光輝性顔料、蛍光顔料、蓄光顔料等が挙げられる。なお、顔料容積濃度は、適宜設定することができる。   As the above-mentioned coloring pigments, titanium oxide, zinc oxide, carbon black, lamp black, bone black, graphite, black iron oxide, copper chrome black, cobalt black, copper manganese iron black, molybdate orange, permanent red, permanent carmine, Anthraquinone red, perylene red, quinacridone red, ferric oxide, yellow iron oxide, titanium yellow, first yellow, chrome green, ocher, ultramarine, bitumen, cobalt green, cobalt blue and other inorganic color pigments, azo, naphthol Organic color pigments such as pyrazolone, anthraquinone, perylene, quinacridone, benzimidazole, phthalocyanine, disazo, isoindolinone, quinophthalone, pearl pigment, aluminum pigment, gold Or glass flakes or a resin film coated with a metal oxide, hologram pigments, bright pigments such as cholesteric crystal polymer pigments, fluorescent pigments, phosphorescent pigments, and the like. The pigment volume concentration can be set as appropriate.

体質顔料としては、重質炭酸カルシウム、軽微性炭酸カルシウム、クレー、カオリン、タルク、炭酸バリウム、ホワイトカーボン、珪藻土、寒水石、陶土、チャイナクレー、バライト粉、硫酸バリウム、沈降性硫酸バリウム、珪砂、珪石粉、石英粉、樹脂ビーズ、ガラスビーズ、中空バルーン等が挙げられる。   Body pigments include heavy calcium carbonate, light calcium carbonate, clay, kaolin, talc, barium carbonate, white carbon, diatomaceous earth, cold water stone, china clay, barite powder, barium sulfate, precipitated barium sulfate, silica sand, Examples thereof include quartzite powder, quartz powder, resin beads, glass beads, and hollow balloons.

本実施形態に係る塗料組成物は、緻密な塗膜を形成し、初期の乾燥性、耐久性に優れ、かつ造膜性にも優れることから、用途に応じて、上塗材、中塗材、下塗材等に適用することも可能である。それにより、本実施形態に係る塗料組成物は、本発明以外の塗料組成物から放出されるアンモニアやホルムアルデヒド等の各成分を吸収することができる。   The coating composition according to the present embodiment forms a dense coating film, is excellent in initial drying properties, durability, and film-forming properties. Therefore, depending on the application, a top coating material, an intermediate coating material, an undercoat It is also possible to apply to materials. Thereby, the coating composition which concerns on this embodiment can absorb each component, such as ammonia and formaldehyde emitted from coating compositions other than this invention.

<塗料組成物の製造方法>
塗料組成物の製造方法としては、当業者において通常用いられる方法を適用することができる。樹脂エマルション組成物(a)、無機多孔質顔料(b)及びその他成分はそれぞれ、ディスパー、ボールミル、S.G.ミル、ロールミル、プラネタリーミキサー等で混合することにより調製することができる。所定量の樹脂エマルション組成物(a)、無機多孔質顔料(b)及びその他成分を混合することで、塗料組成物を調製できる。
<Method for producing coating composition>
As a method for producing the coating composition, methods usually used by those skilled in the art can be applied. The resin emulsion composition (a), the inorganic porous pigment (b), and other components are disperser, ball mill, S.P. G. It can be prepared by mixing with a mill, roll mill, planetary mixer or the like. A coating composition can be prepared by mixing a predetermined amount of the resin emulsion composition (a), the inorganic porous pigment (b) and other components.

<塗膜の形成方法>
本実施形態に係る塗料組成物により塗膜を形成する方法は、特に限定されず、例えば、浸漬、刷毛、ローラー、ロールコーター、エアースプレー、エアレススプレー、カーテンフローコーター、ローラーカーテンコーター、ダイコーター等の一般に用いられている塗装方法を挙げることができる。これらの塗装方法は塗装対象や用途に応じて適宜選択することができる。
<Formation method of coating film>
The method of forming a coating film with the coating composition according to the present embodiment is not particularly limited. For example, immersion, brush, roller, roll coater, air spray, airless spray, curtain flow coater, roller curtain coater, die coater, etc. The coating method generally used in (1) can be mentioned. These coating methods can be appropriately selected depending on the object to be coated and the application.

本実施形態に係る塗料組成物は、建築物の外装面や内装面に適用することが可能である。内装面としては、例えば、モルタル、コンクリート、石膏ボード、サイディングボード、押出成形板、スレート板、石綿セメント板、繊維混入セメント板、ケイ酸カルシウム板、ALC板、金属、木材、ガラス、陶磁器、焼成タイル、磁器タイル、プラスチック板、壁紙、合成樹脂等の基材、あるいは基材上に形成された塗膜等に対し、適用することができる。   The coating composition according to the present embodiment can be applied to an exterior surface or interior surface of a building. For example, mortar, concrete, gypsum board, siding board, extrusion board, slate board, asbestos cement board, fiber-mixed cement board, calcium silicate board, ALC board, metal, wood, glass, ceramics, fired The present invention can be applied to a substrate such as a tile, porcelain tile, plastic plate, wallpaper, and synthetic resin, or a coating film formed on the substrate.

次に、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれに限定されるものではない。なお、特に断りのない限り、単位は質量基準である。   Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto. Unless otherwise specified, the unit is based on mass.

[樹脂エマルション組成物(a)の調製]
従来公知の重合反応を利用して、pH:8.5、酸価AV:15、塗料固形分(NV):50質量%、粘度:2000mPa・sのアクリル樹脂エマルション(a)を得た。
[Preparation of resin emulsion composition (a)]
An acrylic resin emulsion (a) having a pH of 8.5, an acid value AV of 15, a paint solid content (NV) of 50% by mass, and a viscosity of 2000 mPa · s was obtained by using a conventionally known polymerization reaction.

[ゼオライト(b−1)の調製]
無定形アルミノケイ酸塩189g、固形水酸化ナトリウム1.4g、固形水酸化カリウム3.5g、及び水酸化テトラエチルアンモニウム20%水溶液480gを30分攪拌混合し、β型ゼオライトの原料とした。この原料に水酸化ナトリウム水溶液、塩化セシウム、水、及び種晶として東ソー株式会社製ベータ型ゼオライト(HSZ930NHA)を加え、十分に攪拌混合し、原料スラリーを得た。当該原料スラリーを150℃で96時間結晶化した。結晶化後のスラリー状混合物を固液分離し、十分量の純水で洗浄し、110℃で乾燥した。次いで乾燥粉末を空気流通下600℃で焼成した。シリカ/アルミナ(mol/mol)比が36のベータ型ゼオライトを得た。
得られたベータ型ゼオライトを、シリカ/アルミナ(mol/mol)比が30となるようにアルミニウム濃度を調整した溶剤に浸漬した後、イオン交換水で洗浄、乾燥することにより、シリカ/アルミナ(mol/mol)比を30に調整したゼオライト(b−1)を得た。
[Preparation of zeolite (b-1)]
189 g of amorphous aluminosilicate, 1.4 g of solid sodium hydroxide, 3.5 g of solid potassium hydroxide, and 480 g of 20% aqueous solution of tetraethylammonium hydroxide were stirred and mixed for 30 minutes to obtain a raw material for β-type zeolite. To this raw material was added sodium hydroxide aqueous solution, cesium chloride, water, and beta-type zeolite (HSZ930NHA) manufactured by Tosoh Corporation as a seed crystal, and sufficiently mixed with stirring to obtain a raw material slurry. The raw material slurry was crystallized at 150 ° C. for 96 hours. The slurry mixture after crystallization was subjected to solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110 ° C. The dry powder was then fired at 600 ° C. under air flow. A beta zeolite having a silica / alumina (mol / mol) ratio of 36 was obtained.
The obtained beta-type zeolite was immersed in a solvent whose aluminum concentration was adjusted so that the silica / alumina (mol / mol) ratio was 30, and then washed with ion-exchanged water and dried to obtain silica / alumina (mol / Mol) ratio (zeolite (b-1)) adjusted to 30 was obtained.

[ゼオライト(b−2)の調製]
X型ゼオライトの種晶として東ソー株式会社製X型ゼオライト(F−9:分散粒度10μm)を用いた以外は、ゼオライト(b−1)と同種の手順を用いて、X型ゼオライトを取得した。その後、シリカ/アルミナ(mol/mol)比を15に調整することにより、ゼオライト(b−2)を得た。
[Preparation of zeolite (b-2)]
X-type zeolite was obtained using the same procedure as that for zeolite (b-1) except that Tosoh Corporation X-type zeolite (F-9: dispersed particle size 10 μm) was used as a seed crystal of the X-type zeolite. Thereafter, the silica / alumina (mol / mol) ratio was adjusted to 15 to obtain zeolite (b-2).

[ゼオライト(b−3)の調製]
MFI型ゼオライトの種晶として東ソー株式会社製MFI型ゼオライト(HSZ800:分散粒度10μm)を用いた以外は、ゼオライト(b−1)と同種の手順を用いて、MFI型ゼオライトを取得した。その後、シリカ/アルミナ(mol/mol)比を100に調整することにより、ゼオライト(b−3)を得た。
[Preparation of zeolite (b-3)]
MFI-type zeolite was obtained using the same procedure as zeolite (b-1) except that MFI-type zeolite (HSZ800: dispersion particle size: 10 μm) manufactured by Tosoh Corporation was used as a seed crystal of MFI-type zeolite. Thereafter, the silica / alumina (mol / mol) ratio was adjusted to 100 to obtain zeolite (b-3).

[ゼオライト(b−4)の調製]
X型ゼオライトの種晶として東ソー株式会社製X型ゼオライト(F−9:分散粒度5μm)を用いた以外は、ゼオライト(b−1)と同種の手順を用いて、X型ゼオライトを取得した。その後、シリカ/アルミナ(mol/mol)比を100に調整し、更に、Cuへのイオン交換を行い、洗浄することにより、ゼオライト(b−4)を得た。
[Preparation of zeolite (b-4)]
X-type zeolite was obtained using the same procedure as that for zeolite (b-1) except that Tosoh Corporation X-type zeolite (F-9: dispersed particle size 5 μm) was used as the seed crystal of the X-type zeolite. Then, the silica / alumina (mol / mol) ratio was adjusted to 100, and further, ion exchange to Cu was performed and washed to obtain zeolite (b-4).

[ゼオライト(b−5)の調製]
X型ゼオライトの種晶として東ソー株式会社製X型ゼオライト(F−9:分散粒度5μm)を用いた以外は、ゼオライト(b−1)と同種の方法を用いて、X型ゼオライトを取得した。その後、シリカ/アルミナ(mol/mol)比を5に調整することにより、ゼオライト(b−5)を得た。
[Preparation of zeolite (b-5)]
X-type zeolite was obtained using the same method as zeolite (b-1) except that X-type zeolite (F-9: dispersed particle size 5 μm) manufactured by Tosoh Corporation was used as the seed crystal of the X-type zeolite. Thereafter, the silica / alumina (mol / mol) ratio was adjusted to 5 to obtain zeolite (b-5).

<塗膜組成物の調整>
[実施例1〜9、比較例1〜3の調整]
上記のようにして得られたアクリル樹脂エマルション(a)200質量部に対して、表1に記載の酸化チタン200質量部、炭酸カルシウム300質量部、顔料分散剤20質量部、消包材2質量部、粘性剤10質量部、防藻防カビ材1質量部、水400質量部、及び合成樹脂エマルション(a)の固形分100質量部に対してゼオライト(b−1)50質量部となるようにそれぞれ混合し、2時間、ディスパーを使用して、十分に攪拌して実施例1の塗膜組成物を得た。
上記実施例1と同様に、アクリル樹脂エマルション(a)の固形分100質量部に対して表2に示す各ゼオライトを所定の比率で、混合し、各実施例及び比較例の塗膜組成物を得た。
<Adjustment of coating composition>
[Adjustment of Examples 1 to 9 and Comparative Examples 1 to 3]
200 parts by mass of titanium oxide shown in Table 1, 300 parts by mass of calcium carbonate, 20 parts by mass of a pigment dispersant, 2 parts by mass of a defoaming material with respect to 200 parts by mass of the acrylic resin emulsion (a) obtained as described above. Parts, 10 parts by weight of a viscosity agent, 1 part by weight of an anti-algal and anti-fungal material, 400 parts by weight of water, and 50 parts by weight of zeolite (b-1) with respect to 100 parts by weight of the solid content of the synthetic resin emulsion (a). The coating composition of Example 1 was obtained by thoroughly stirring the mixture using a disper for 2 hours.
Similarly to Example 1, each zeolite shown in Table 2 was mixed at a predetermined ratio with respect to 100 parts by mass of the solid content of the acrylic resin emulsion (a), and the coating compositions of each Example and Comparative Example were mixed. Obtained.

Figure 2018002928
Figure 2018002928

続いて、実施例1から9及び比較例1から3で得られた塗料組成物について下記の評価を行った。   Subsequently, the following evaluation was performed on the coating compositions obtained in Examples 1 to 9 and Comparative Examples 1 to 3.

<塗料組成物の臭気性の評価>
各実施例及び比較例で作製した塗料組成物の臭気を下記の評価基準で評価した。評価者は10人とし、10人の評価の平均値に基づいて、臭気を評価した。臭気評価が3であれば、臭気性は良好である。つまり臭気をほとんど感じないものと評価される。結果を表1に示した。
[評価]
3:無臭
2:非常に弱い臭いを感じる
1:若干臭いを感じる
0:臭いを感じる
<Evaluation of odor of coating composition>
The odor of the coating compositions prepared in each example and comparative example was evaluated according to the following evaluation criteria. The number of evaluators was 10, and the odor was evaluated based on the average value of the evaluations of 10 people. If the odor evaluation is 3, the odor property is good. In other words, it is evaluated as having almost no odor. The results are shown in Table 1.
[Evaluation]
3: No odor 2: Very weak odor 1: Slight odor 0: Odor

<成膜状態評価>
居住空間の内壁を想定し、成膜の可否について評価した。450mm×900mm×3mmのスレート板に対して、所定の領域に、実施例及び比較例に係る塗料組成物を厚さが0.1mm程度になるように刷毛で塗布した。成膜の有無について観察した。結果を表1に示した。
[評価]
2:塗膜が形成された。
1:塗膜が形成されなかった。
<Evaluation of film formation>
Assuming the inner wall of the living space, the possibility of film formation was evaluated. The coating composition according to the example and the comparative example was applied to a predetermined region with a brush so as to have a thickness of about 0.1 mm on a 450 mm × 900 mm × 3 mm slate plate. The presence or absence of film formation was observed. The results are shown in Table 1.
[Evaluation]
2: A coating film was formed.
1: A coating film was not formed.

Figure 2018002928
Figure 2018002928

実施例1〜9と、比較例1との比較から、塗料組成物中にシリカ/アルミナ(mol/mol)比の高いゼオライトを含む実施例1〜9の塗料組成物は、シリカ/アルミナ(mol/mol)比の低いゼオライトを含む比較例1の塗料組成物と比較して、臭気性評価試験の結果に優れることが分かった。この結果から、樹脂エマルション組成物(a)に所定のシリカ/アルミナ(mol/mol)比よりも高いゼオライトが含まれることで、臭気が抑制されることが確認された。   From the comparison between Examples 1 to 9 and Comparative Example 1, the coating compositions of Examples 1 to 9 containing zeolite with a high silica / alumina (mol / mol) ratio in the coating composition were silica / alumina (mol). It was found that the results of the odor evaluation test were superior to the coating composition of Comparative Example 1 containing zeolite with a low / mol) ratio. From this result, it was confirmed that the odor is suppressed when the resin emulsion composition (a) contains zeolite higher than a predetermined silica / alumina (mol / mol) ratio.

実施例1〜5と、比較例2との比較から、少なくとも塗料組成物中にゼオライト(b−1)を1質量部以上含む実施例1〜5の塗料組成物は、ゼオライト(b−1)が1質量部未満である比較例2の塗料組成物と比較して、臭気性評価試験の結果に優れることが分かった。この結果から、樹脂エマルション組成物(a)に1質量部以上、特に15質量部以上の無機多孔質顔料(b)が含まれることで、臭気が抑制されることが確認された。   From the comparison between Examples 1 to 5 and Comparative Example 2, at least the coating composition of Examples 1 to 5 containing 1 part by mass or more of zeolite (b-1) in the coating composition is zeolite (b-1). Compared with the coating composition of the comparative example 2 which is less than 1 mass part, it turned out that it is excellent in the result of an odor evaluation test. From this result, it was confirmed that the odor is suppressed when the resin emulsion composition (a) contains 1 part by mass or more, particularly 15 parts by mass or more of the inorganic porous pigment (b).

また、ゼオライト(b−1)を600質量部含有する比較例3の塗料組成物は塗膜が形成されなかった。樹脂エマルション組成物(a)の固形分100質量部に対して、無機多孔質顔料(b)は0.1〜500質量部の範囲内であることで、形成される塗膜の優れた臭気の抑制効果が得られ、実用的な塗料組成物を得ることができることが確認された。   Moreover, the coating film of the comparative example 3 containing 600 mass parts of zeolite (b-1) did not form a coating film. The inorganic porous pigment (b) is within the range of 0.1 to 500 parts by mass with respect to 100 parts by mass of the solid content of the resin emulsion composition (a), so that an excellent odor of the formed coating film can be obtained. It was confirmed that an inhibitory effect was obtained and a practical coating composition could be obtained.

実施例8により、2種のゼオライト(b−1)及びゼオライト(b−3)を含む塗料組成物は、臭気性評価試験に優れることが確認された。   From Example 8, it was confirmed that the coating composition containing two types of zeolite (b-1) and zeolite (b-3) was excellent in the odor evaluation test.

実施例9により、Cuイオンにイオン交換されたゼオライト(b−4)を含む塗料組成物は、臭気性評価試験に優れることが確認された。   From Example 9, it was confirmed that the coating composition containing zeolite (b-4) ion-exchanged with Cu ions was excellent in the odor evaluation test.

Claims (4)

樹脂エマルション組成物(a)と、
ゼオライトからなる無機多孔質顔料(b)と、を含む塗料組成物であって、
前記ゼオライト中におけるシリカ/アルミナ(mol/mol)比が15以上であり、
前記樹脂エマルション組成物(a)の固形分100質量部に対する前記ゼオライトの含有量が0.1〜500質量部である塗料組成物。
A resin emulsion composition (a);
An inorganic porous pigment (b) made of zeolite, and a coating composition comprising:
The silica / alumina (mol / mol) ratio in the zeolite is 15 or more,
The coating composition whose content of the said zeolite is 0.1-500 mass parts with respect to 100 mass parts of solid content of the said resin emulsion composition (a).
前記ゼオライト中におけるシリカ/アルミナ(mol/mol)比が30以上である請求項1に記載の塗料組成物。   The coating composition according to claim 1, wherein the silica / alumina (mol / mol) ratio in the zeolite is 30 or more. 前記ゼオライトは、X型、ベータ型、MFI型、フェリエライト型、モルデナイト型、L型及びY型からなる群より選ばれる少なくとも1種の結晶構造を有する請求項1又は2に記載の塗料組成物。   The coating composition according to claim 1 or 2, wherein the zeolite has at least one crystal structure selected from the group consisting of X-type, beta-type, MFI-type, ferrierite-type, mordenite-type, L-type and Y-type. . 前記ゼオライトは、プロトン又はアルカリ金属以外の金属イオンとイオン交換されたイオン交換型ゼオライトである請求項1〜3いずれかに記載の塗料組成物。   The coating composition according to any one of claims 1 to 3, wherein the zeolite is an ion exchange type zeolite ion-exchanged with a metal ion other than a proton or an alkali metal.
JP2016133459A 2016-07-05 2016-07-05 Paint composition Active JP6799401B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016133459A JP6799401B2 (en) 2016-07-05 2016-07-05 Paint composition
PCT/JP2017/023618 WO2018008479A1 (en) 2016-07-05 2017-06-27 Coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016133459A JP6799401B2 (en) 2016-07-05 2016-07-05 Paint composition

Publications (2)

Publication Number Publication Date
JP2018002928A true JP2018002928A (en) 2018-01-11
JP6799401B2 JP6799401B2 (en) 2020-12-16

Family

ID=60912636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016133459A Active JP6799401B2 (en) 2016-07-05 2016-07-05 Paint composition

Country Status (2)

Country Link
JP (1) JP6799401B2 (en)
WO (1) WO2018008479A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020510602A (en) * 2017-03-17 2020-04-09 アルケマ フランス Method for synthesizing zeolite crystals using seeding agent
JP2021080393A (en) * 2019-11-20 2021-05-27 東ソー・シリカ株式会社 Surface treated sedimentation silica for water paint

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3227373B2 (en) * 1996-03-18 2001-11-12 シャープ株式会社 Air purification paint using photocatalyst
WO1998012048A1 (en) * 1996-09-20 1998-03-26 Hitachi, Ltd. Thin photocatalytic film and articles provided with the same
US7540904B2 (en) * 2005-11-17 2009-06-02 Basf Catalysts Llc Hydrocarbon adsorption slurry washcoat formulation for use at low temperature
JP5570648B1 (en) * 2013-12-20 2014-08-13 株式会社池田工業 Wallpaper paint
JP6413283B2 (en) * 2014-01-08 2018-10-31 三菱ケミカル株式会社 Method for producing porous support-zeolite membrane composite

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020510602A (en) * 2017-03-17 2020-04-09 アルケマ フランス Method for synthesizing zeolite crystals using seeding agent
JP2021080393A (en) * 2019-11-20 2021-05-27 東ソー・シリカ株式会社 Surface treated sedimentation silica for water paint
WO2021100400A1 (en) * 2019-11-20 2021-05-27 東ソー・シリカ株式会社 Surface-treated precipitated silica for aqueous paint
KR20220103692A (en) * 2019-11-20 2022-07-22 토소실리카 가부시키가이샤 Surface Treatment Precipitated Silica for Waterborne Paints
JP7406354B2 (en) 2019-11-20 2023-12-27 東ソー・シリカ株式会社 Surface treatment precipitated silica for water-based paints
KR102645214B1 (en) 2019-11-20 2024-03-07 토소실리카 가부시키가이샤 Surface treatment precipitated silica for water-based paints

Also Published As

Publication number Publication date
WO2018008479A1 (en) 2018-01-11
JP6799401B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP4562388B2 (en) Water-based paint composition
CN107815215B (en) Formula of water-based stone-like coating and water-based stone-like terrace
RU2396298C2 (en) Surface coating solution
KR20190080189A (en) Ecofriendly natural paint using halloysite nano tube and the preparing process the same
JP7080592B2 (en) Paint composition
JP6895887B2 (en) Aluminosilicates and coatings made from aluminosilicates for VOC removal
KR20140119319A (en) Inorganic aqueous binder and inorganic aqueous adhesive comprising the same
JP6799401B2 (en) Paint composition
CN113122030A (en) Diatomite modified inorganic water-based paint and preparation method thereof
CN111057425A (en) Formaldehyde-removing water-based paint
JP2008038365A (en) Interior finishing wall of building, and finishing coating material therefor
JP2000095979A (en) Room pollution remedy water paint
WO2022058130A1 (en) Kit for producing a coating compound
JP7080593B2 (en) Paint composition
KR100585189B1 (en) Water-based Ceramic Photocatalyst Paint And Manufacturing Method Thereof
JP2004250908A (en) Paint material with environment improving function, its manufacturing method and coating method
JP2003247316A (en) Decorative structure of building surface
JP5072172B2 (en) Water-based coating composition and coating film forming method
JP2023115332A (en) Aqueous coating material
JP4597497B2 (en) Architectural paint composition
JP2005324186A (en) Coating finishing method
JP7112180B2 (en) building material
KR102111125B1 (en) A aqueous paint composition providing anti-condensation, heat insulation, heat reflection, heat and humidity control effect and method of manufacturing thereof
MX2011002812A (en) Paint composition comprising a basic additive.
JP7161425B2 (en) Coating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201120

R150 Certificate of patent or registration of utility model

Ref document number: 6799401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250