[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018001106A - Electrodeionization device and method for operating the same - Google Patents

Electrodeionization device and method for operating the same Download PDF

Info

Publication number
JP2018001106A
JP2018001106A JP2016132516A JP2016132516A JP2018001106A JP 2018001106 A JP2018001106 A JP 2018001106A JP 2016132516 A JP2016132516 A JP 2016132516A JP 2016132516 A JP2016132516 A JP 2016132516A JP 2018001106 A JP2018001106 A JP 2018001106A
Authority
JP
Japan
Prior art keywords
exchange resin
chamber
water
cation exchange
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016132516A
Other languages
Japanese (ja)
Other versions
JP6848231B2 (en
Inventor
佐藤 伸
Shin Sato
伸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2016132516A priority Critical patent/JP6848231B2/en
Publication of JP2018001106A publication Critical patent/JP2018001106A/en
Application granted granted Critical
Publication of JP6848231B2 publication Critical patent/JP6848231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrodeionization device having reduced increase of voltage even if being operated at a high current density of 500 mA/dm, capable of improving a boron removal rate, and further capable of preventing the reduction of the device life.SOLUTION: Provided is an electrodeionization device 1 in which the ratio between the anion exchange resin and the cation exchange resin in an ion exchange resin filled into a desalination chamber 7 is (80:20) to (60:40). In the ion exchange resin, at least, as the cation exchange resin, the one beforehand subjected to conditioning (cleaning) so as to control a TOC elution amount to 1 ppb or lower is used. Further, in an anion exchange membrane 4 and a cation exchange membrane 5, at least as the anion exchange membrane 4, a heterogeneous membrane is adopted.SELECTED DRAWING: Figure 1

Description

本発明は、電気脱イオン装置及びその運転方法に関し、特にホウ素除去率を向上させるとともに装置の耐用年数を向上しうる電気脱イオン装置及びその運転方法に関する。   The present invention relates to an electrodeionization apparatus and an operation method thereof, and more particularly to an electrodeionization apparatus and an operation method thereof that can improve the boron removal rate and improve the service life of the apparatus.

従来、半導体等の電子産業分野で用いられている超純水は、前処理システム、一次純水システム及び一次純水を処理するサブシステムで構成される超純水製造装置で原水を処理することにより製造されている。特に電子産業分野用の超純水では、ホウ素濃度を0.1ppt以下にまで抑制することが要求されることもあり、一次純水システムにおいて処理水のホウ素濃度を低減するのが望ましい。   Conventionally, ultrapure water used in the field of electronic industries such as semiconductors is processed raw water with an ultrapure water production system composed of a pretreatment system, a primary pure water system, and a subsystem for processing primary pure water. It is manufactured by. In particular, in ultrapure water for the electronics industry, it may be required to suppress the boron concentration to 0.1 ppt or less, and it is desirable to reduce the boron concentration of treated water in the primary pure water system.

この一次純水システムは、前述したような超純水の用途に限らず、サブシステムを伴うことなく、医薬用や食品用などの純水製造装置としても利用可能な汎用的なシステムであり、そのシステム構成としては、1段又は2段構成の逆浸透膜(RO膜)装置と電気脱イオン装置とからなるものが一般的である。この一次純水システムでは、RO膜装置はシリカや塩類を除去すると共に、イオン性やコロイド性のTOCを除去する。さらに電気脱イオン交換装置でその他の各種無機あるいは有機性のアニオン及びカチオンの除去を行う。したがって、一次純水のホウ素濃度を低下させるには電気脱イオン装置におけるホウ素の除去率を高くすることが重要である。   This primary pure water system is not limited to the use of ultrapure water as described above, and is a general-purpose system that can be used as a pure water production apparatus for pharmaceuticals and foods without using a subsystem. As the system configuration, a system composed of a reverse osmosis membrane (RO membrane) device and an electrodeionization device having a one-stage or two-stage structure is generally used. In this primary pure water system, the RO membrane device removes silica and salts, and removes ionic and colloidal TOC. Furthermore, various other inorganic or organic anions and cations are removed with an electrodeionization exchanger. Therefore, in order to reduce the boron concentration of primary pure water, it is important to increase the boron removal rate in the electrodeionization apparatus.

ここで、電気脱イオン装置は、一般に陰極及び陽極間にカチオン交換膜とアニオン交換膜とを交互に配置し、これらカチオン交換膜及びアニオン交換膜により区画形成することで脱塩室及び濃縮室を形成し、この脱塩室及び前記濃縮室にイオン交換樹脂を充填したものである。   Here, the electrodeionization apparatus generally arranges a cation exchange membrane and an anion exchange membrane alternately between a cathode and an anode, and forms a partition by the cation exchange membrane and the anion exchange membrane, thereby forming a demineralization chamber and a concentration chamber. The desalting chamber and the concentrating chamber are filled with an ion exchange resin.

そして、この電気脱イオン装置では、脱塩室に被処理水を通過させるとともに濃縮室に濃縮水を通過させ、この状態で陰極及び陽極間に電流を流すと、脱塩室からイオン交換樹脂を介してアニオン交換膜及びカチオン交換膜を通って濃縮室へと被処理水中のイオンが移動することで、脱塩室から脱イオン水(処理水)を得る。また、濃縮室を流れるイオンが濃縮された濃縮排水は廃棄されるか、あるいは部分的にリサイクルされる。   In this electrodeionization apparatus, when water to be treated is passed through the desalting chamber and concentrated water is passed through the concentrating chamber, and an electric current is passed between the cathode and the anode in this state, the ion exchange resin is removed from the desalting chamber. Through the anion exchange membrane and the cation exchange membrane, ions in the water to be treated move to the concentration chamber, whereby deionized water (treated water) is obtained from the desalting chamber. Further, the concentrated drainage in which the ions flowing through the concentration chamber are concentrated is discarded or partially recycled.

上述したような電気脱イオン装置におけるホウ素除去率は、被処理水中のホウ素濃度にもよるが、例えば栗田工業(株)製「KCDI−UPz」(商品名)のような高性能な電気脱イオン装置でも電流密度300mA/dm以下の通常の運転条件では99%程度である。そこで、電気脱イオン装置のホウ素除去率を向上させることを目的として、電気脱イオン装置に供給する電流を多く(電流密度を高く)することでイオンの除去率を向上させる運転方法が行われており、例えば、電気脱イオン装置に供給する電流の電流密度を500mA/dm以上にすることにより、ホウ素を99.95%以上、更には99.99%以上除去することが可能である。 The boron removal rate in the electrodeionization apparatus as described above depends on the boron concentration in the water to be treated. For example, high-performance electrodeionization such as “KCDI-UPz” (trade name) manufactured by Kurita Kogyo Co., Ltd. Even in the apparatus, it is about 99% under normal operating conditions with a current density of 300 mA / dm 2 or less. Therefore, for the purpose of improving the boron removal rate of the electrodeionization apparatus, there has been an operation method for improving the ion removal rate by increasing the current supplied to the electrodeionization apparatus (increasing the current density). For example, by setting the current density of the current supplied to the electrodeionization apparatus to 500 mA / dm 2 or more, boron can be removed by 99.95% or more, further 99.99% or more.

しかしながら、電気脱イオン装置を電流密度500mA/dm以上(特に800mA/dm以上、さらには1000mA/dm以上)で運転すると、電気脱イオン装置の電気抵抗値が上昇する傾向が激しくなる。すなわち必要な電流を流すための電圧値が上がってきてしまい、運転限界(600V)に達してしまうと、その後の電流が確保できなくなるという問題がある。また、高電流密度で運転すると、例えば運転時の電流密度が500mA/dmでは寿命が4年以下、800mA/dmでは2年以下、1000mA/dmでは1年以下となってしまうという問題がある。一方、電気脱イオン装置の耐用年数を5年以上の寿命とするためには電流密度420mA/dm程度以下で運転する必要があるが、この電流密度で電気脱イオン装置を運転してもホウ素除去率99.95%程度にしかならない、という問題がある。 However, the electrodeionization apparatus current density 500mA / dm 2 or more (in particular 800 mA / dm 2 or more, further 1000 mA / dm 2 or more) When operating at the tendency of the electrical resistance of the electrodeionization apparatus is increased is intensified. That is, there is a problem that if the voltage value for flowing a necessary current increases and reaches the operation limit (600 V), the subsequent current cannot be secured. Furthermore, when operating at high current density, for example less current density is 500mA / dm 2 in life 4 years during operation, 800 mA / dm In 2 2 years or less, a problem that becomes less 1000 mA / dm 2 in 1 year There is. On the other hand, in order to make the service life of the electrodeionization apparatus 5 years or longer, it is necessary to operate at a current density of about 420 mA / dm 2 or less. There is a problem that the removal rate is only about 99.95%.

本発明は上記課題に鑑みてなされたものであり、500mA/dm以上の高い電流密度で運転しても電圧の上昇が少なくホウ素除去率を向上させることができるとともに装置寿命の低下を防止しうる電気脱イオン装置及びその運転方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and even when operated at a high current density of 500 mA / dm 2 or more, the voltage increase is small and the boron removal rate can be improved and the lifetime of the apparatus is prevented from decreasing. It is an object of the present invention to provide an electrodeionization apparatus and a method for operating the same.

上記目的を達成するために第一に本発明は、陰極及び陽極と、該陰極及び陽極の間に配置されたカチオン交換膜及びアニオン交換膜と、これらカチオン交換膜及びアニオン交換膜により区画形成された脱塩室及び濃縮室とを備え、前記脱塩室及び前記濃縮室にイオン交換樹脂が充填されていて、該濃縮室に濃縮水を通水する濃縮水通水手段と前記脱塩室に被処理水を通水して脱イオン水を取り出す手段とを有し、前記濃縮水通水手段が前記脱塩室を通水した脱イオン水を濃縮水として通水する電気脱イオン装置であって、前記カチオン交換膜及びアニオン交換膜の少なくともカチオン交換膜が不均質膜であり、前記脱塩室に充填されるイオン交換樹脂がアニオン交換樹脂:カチオン交換樹脂の体積比が80:20〜60:40であり、該イオン交換樹脂のうち少なくともカチオン交換樹脂がTOC溶出量1ppb以下(SV=50/hの通水条件)となるようにあらかじめ洗浄したものである電気脱イオン装置を提供する(発明1)。   In order to achieve the above object, first, the present invention is partitioned by a cathode and an anode, a cation exchange membrane and an anion exchange membrane disposed between the cathode and the anode, and these cation exchange membrane and anion exchange membrane. A desalting chamber and a concentrating chamber, wherein the desalting chamber and the concentrating chamber are filled with an ion exchange resin, and the concentrated water passing means for passing concentrated water through the concentrating chamber and the desalting chamber An electric deionization device for passing deionized water that has passed through the demineralization chamber as concentrated water. At least the cation exchange membrane of the cation exchange membrane and the anion exchange membrane is a heterogeneous membrane, and the ion exchange resin filled in the desalting chamber has an anion exchange resin: cation exchange resin volume ratio of 80: 20-60. : 40 At least the cation exchange resin of the exchange resin to provide electrodeionization apparatus is obtained by pre-washed to be equal to or less than TOC elution amount 1 ppb (water flow conditions SV = 50 / h) (invention 1).

かかる発明(発明1)によれば、電気脱イオン装置に供給する電流(電流密度)を大きくしても電圧の上昇を抑制することができ、ホウ素除去率を高くすることができる。これは以下のような理由によるものと考えられる。すなわち、電気脱イオン装置の運転時にはアニオン交換樹脂とカチオン交換樹脂の界面、またはアニオン交換膜とカチオン交換樹脂との界面において水の解離(HO→H+OH)が発生するが、電流密度が高いほどその水解離は盛んになり、この水解離が盛んになるほど、カチオン交換樹脂からのPSA(ポリスチレンスルホン酸)成分の溶出が多くなる。そして、PSA成分のうち比較的分子量の大きい成分が、イオン交換膜に少しずつ付着・蓄積することに起因して、電気脱イオン装置の電気抵抗が上昇すると推測される。このため電気脱イオン装置の運転時の電流密度が高くなるほど電気抵抗が増加し、必要な電流を流すための電圧が高くなるのである。 According to this invention (invention 1), even if the current (current density) supplied to the electrodeionization apparatus is increased, the increase in voltage can be suppressed and the boron removal rate can be increased. This is thought to be due to the following reasons. That is, dissociation of water (H 2 O → H + + OH ) occurs at the interface between the anion exchange resin and the cation exchange resin or at the interface between the anion exchange membrane and the cation exchange resin when the electrodeionization apparatus is operated. The higher the density, the more active the water dissociation. The more active the water dissociation, the more elution of the PSA (polystyrene sulfonic acid) component from the cation exchange resin. And it is estimated that the electrical resistance of an electrodeionization apparatus rises because the component with comparatively large molecular weight adheres and accumulates in an ion exchange membrane little by little among PSA components. For this reason, as the current density during operation of the electrodeionization device increases, the electrical resistance increases, and the voltage for flowing the necessary current increases.

そこで、本発明者は、電計抵抗の増大(電圧の上昇)の抑制方法について種々検討した結果、以下の三つの手段が有効であることがわかった。(1)イオン交換樹脂、特にカチオン交換樹脂からの有機物の溶出量と、PSAの溶出量とは相関関係があり、有機物の溶出量が少ないほどPSAの溶出量も少ない傾向にあることから、イオン交換樹脂、少なくともカチオン交換樹脂としてPSAの溶出性が少ないものを用いることが効果的であり、具体的にはイオン交換樹脂をあらかじめ洗浄することによりTOC溶出量を1ppb以下(SV=50/hの通水条件)に低減させたものを用いる。(2)電気脱イオン装置に充填するイオン交換樹脂(混合樹脂)におけるカチオン交換樹脂とアニオン交換樹脂の比率はPSA成分溶出の点からはアニオン交換樹脂の比率が多いほど少なくなる一方、アニオン交換樹脂が増えすぎるとカチオン成分の除去率が低下するため、アニオン交換樹脂比率を80〜60%にする。さらに、(3)イオン交換膜には一般に均質膜と不均質膜とがあるが、両者の違いによっても電気脱イオン装置の電気抵抗の増加に差異があり、均質膜は表面が均質でありPSA成分は膜の中を通過していかなければいけないため、比較的大きな分子量のPSA成分が通過しにくく蓄積しやすい一方、不均質膜は基材に粉砕状のイオン交換樹脂を埋め込んだ構造であるので、イオン交換樹脂の中を通過しなくても、イオン交換樹脂の面を通じて基材との界面近くを通過することが可能になり、PSAの蓄積が起こりにくい。このため、イオン交換膜、少なくともカチオン交換膜を不均質膜とすると、電気抵抗の増加を抑制することができる。そして、これら三つの手段を兼ね備えることにより、電気脱イオン装置を500mA/dm以上の高い電流密度で運転してホウ素除去率を向上させても、経時的な電圧の上昇が少なく電気脱イオン装置の耐用年数を5年以上と長く設定できることが確認された。これらに基づき本発明(発明1)に想到した。 Thus, as a result of various studies on methods for suppressing an increase in electric resistance (voltage increase), the present inventor has found that the following three means are effective. (1) The elution amount of organic substances from ion exchange resins, particularly cation exchange resins, and PSA elution quantities have a correlation, and the smaller the elution quantity of organic substances, the smaller the elution quantity of PSA. It is effective to use an exchange resin, at least a cation exchange resin having a low PSA elution, and specifically, by washing the ion exchange resin in advance, the TOC elution amount is 1 ppb or less (SV = 50 / h). Reduced water flow conditions). (2) The ratio of the cation exchange resin and the anion exchange resin in the ion exchange resin (mixed resin) filled in the electrodeionization apparatus decreases from the point of elution of the PSA component as the ratio of the anion exchange resin increases. If the amount is too large, the removal rate of the cation component decreases, so the anion exchange resin ratio is set to 80 to 60%. In addition, (3) ion exchange membranes are generally classified into homogeneous membranes and heterogeneous membranes, but there is a difference in the increase in electrical resistance of the electrodeionization apparatus due to the difference between the two, and the homogeneous membrane has a uniform surface and PSA. Since the components must pass through the membrane, the PSA component having a relatively large molecular weight is difficult to pass through and tends to accumulate, while the heterogeneous membrane has a structure in which a pulverized ion exchange resin is embedded in the base material. Therefore, even if it does not pass through the ion exchange resin, it can pass near the interface with the base material through the surface of the ion exchange resin, and PSA is unlikely to accumulate. For this reason, when an ion exchange membrane, at least a cation exchange membrane is a heterogeneous membrane, an increase in electrical resistance can be suppressed. By combining these three means, the electrodeionization apparatus can be operated with a high current density of 500 mA / dm 2 or more to improve the boron removal rate, and the voltage increase with time is small. It was confirmed that the service life of can be set as long as 5 years or more. Based on these, the present invention (Invention 1) was conceived.

上記発明(発明1)においては、前記濃縮水通水手段が、前記脱塩室を通水した脱イオン水の一部を対向流で濃縮水として通水するものであることが好ましい(発明2)。   In the said invention (invention 1), it is preferable that the said concentrated water flow means is a part which flows a part of deionized water which flowed through the said demineralization chamber as concentrated water by counterflow (invention 2). ).

かかる発明(発明2)によれば、電気脱イオン装置の脱塩室と濃縮室におけるイオンの濃度勾配の格差を緩和することができるので、ホウ素除去率をさらに向上させることができる。   According to this invention (invention 2), the difference in the concentration gradient of ions in the demineralization chamber and the concentration chamber of the electrodeionization apparatus can be alleviated, so that the boron removal rate can be further improved.

上記発明(発明1,2)においては、前記カチオン交換膜及びアニオン交換膜の両方が不均質膜であり、前記脱塩室に充填されるアニオン交換樹脂及びカチオン交換樹脂の両方がTOC溶出量1ppb以下(SV=50/hの通水条件)となるようにあらかじめ洗浄したものであることが好ましい(発明3)。   In the above inventions (Inventions 1 and 2), both the cation exchange membrane and the anion exchange membrane are heterogeneous membranes, and both the anion exchange resin and the cation exchange resin filled in the desalting chamber have a TOC elution amount of 1 ppb. It is preferably washed in advance so as to satisfy the following conditions (SV = 50 / h water flow condition) (Invention 3).

かかる発明(発明3)によれば、カチオン交換膜及びアニオン交換膜の両方を不均質膜とするとともにアニオン交換樹脂及びカチオン交換樹脂の両方を高度に洗浄した樹脂とすることにより、電計抵抗の増大(電圧の上昇)の抑制の効果を最大限に発揮することができる。   According to this invention (Invention 3), by making both the cation exchange membrane and the anion exchange membrane heterogeneous and making both the anion exchange resin and the cation exchange resin highly washed resin, The effect of suppressing the increase (voltage increase) can be maximized.

また、第二に本発明は、陰極及び陽極と、該陰極及び陽極の間に配置されたカチオン交換膜及びアニオン交換膜と、これらカチオン交換膜及びアニオン交換膜により区画形成された脱塩室及び濃縮室とを備え、前記脱塩室及び前記濃縮室にイオン交換樹脂が充填されていて、該濃縮室に濃縮水を通水する濃縮水通水手段と前記脱塩室に被処理水を通水して脱イオン水を取り出す手段とを有し、前記濃縮水通水手段が前記脱塩室を通水した脱イオン水を濃縮水として通水し、前記カチオン交換膜及びアニオン交換膜の少なくともカチオン交換膜が不均質膜であり、前記脱塩室に充填されるイオン交換樹脂のアニオン交換樹脂:カチオン交換樹脂の体積比が80:20〜60:40であり、該イオン交換樹脂のうち少なくともカチオン交換樹脂がTOC溶出量1ppb以下(SV=50/hの通水条件)となるようにあらかじめ洗浄したものである電気脱イオン装置の運転方法であって、前記電気脱イオン装置に供給する電流を500mA/dm以上の電流密度として前記脱塩室に通水処理する電気脱イオン装置の運転方法を提供する(発明4)。 In addition, secondly, the present invention provides a cathode and an anode, a cation exchange membrane and an anion exchange membrane disposed between the cathode and the anode, a desalting chamber partitioned by the cation exchange membrane and the anion exchange membrane, and A concentrating chamber, wherein the desalting chamber and the concentrating chamber are filled with an ion exchange resin, and the concentrated water passing means for passing the condensate through the concentrating chamber and the water to be treated are passed through the desalting chamber. Means for removing deionized water by water, and passing the deionized water that has passed through the demineralization chamber as the concentrated water by the concentrated water passing means, and at least of the cation exchange membrane and the anion exchange membrane. The cation exchange membrane is a heterogeneous membrane, and the volume ratio of anion exchange resin: cation exchange resin of the ion exchange resin filled in the desalting chamber is 80: 20-60: 40, and at least of the ion exchange resins Cation exchange resin OC elution amount 1ppb following method of operating a (SV = 50 / h of water flow conditions) and a way prewashed those were electrodeionization apparatus, the current supplied to the electrodeionization apparatus 500mA / dm Provided is a method for operating an electrodeionization apparatus for passing water through the desalting chamber at a current density of 2 or more (Invention 4).

かかる発明(発明4)によれば、上述したような構成の電気脱イオン装置であれば、500mA/dm以上の電流密度で運転してホウ素除去率を高く維持しても電圧の上昇を抑制することができる。 According to this invention (Invention 4), with the electrodeionization apparatus configured as described above, even if the boron removal rate is kept high by operating at a current density of 500 mA / dm 2 or more, the increase in voltage is suppressed. can do.

上記発明(発明4)においては、前記濃縮水通水手段が、前記脱塩室を通水した脱イオン水の一部を対向流で濃縮水として通水するものであることが好ましい(発明5)。   In the said invention (invention 4), it is preferable that the said concentrated water flow means is a part which flows a part of deionized water which flowed through the said demineralization chamber as concentrated water by counterflow (invention 5). ).

かかる発明(発明5)によれば、電気脱イオン装置の脱塩室と濃縮室におけるイオンの濃度勾配の格差を緩和することができるので、ホウ素除去率をさらに向上させることができる。   According to this invention (invention 5), the difference in ion concentration gradient between the demineralization chamber and the concentration chamber of the electrodeionization apparatus can be alleviated, so that the boron removal rate can be further improved.

上記発明(発明4,5)においては、前記カチオン交換膜及びアニオン交換膜の両方が不均質膜であり、前記脱塩室に充填されるアニオン交換樹脂及びカチオン交換樹脂の両方がTOC溶出量1ppb以下(SV=50/hの通水条件)となるようにあらかじめ洗浄したものであることが好ましい(発明6)。   In the above inventions (Inventions 4 and 5), both the cation exchange membrane and the anion exchange membrane are heterogeneous membranes, and both the anion exchange resin and the cation exchange resin filled in the desalting chamber have a TOC elution amount of 1 ppb. It is preferable that the substrate is washed in advance so as to satisfy the following condition (SV = 50 / h water flow condition) (Invention 6).

かかる発明(発明6)によれば、カチオン交換膜及びアニオン交換膜の両方を不均質膜とするとともにアニオン交換樹脂及びカチオン交換樹脂の両方を高度に洗浄した樹脂とすることにより、電計抵抗の増大(電圧の上昇)の抑制の効果を最大限に発揮することができる。   According to this invention (Invention 6), by making both the cation exchange membrane and the anion exchange membrane a heterogeneous membrane and making both the anion exchange resin and the cation exchange resin highly washed resin, The effect of suppressing the increase (voltage increase) can be maximized.

本発明によれば、電気脱イオン装置の脱塩室に充填するイオン交換樹脂として高度に洗浄したものを採用するとともに、アニオン交換樹脂をカチオン交換樹脂よりも多く配合し、さらにイオン交換膜として不均質膜を用いているので、ホウ素除去率を高く維持するために高い電流密度で運転しても電圧の上昇を抑制することができ、電気脱イオン装置の耐用年数の長期化を図ることができる。   According to the present invention, a highly washed ion exchange resin to be filled in the demineralization chamber of the electrodeionization apparatus is adopted, and more anion exchange resin is blended than cation exchange resin, and the ion exchange resin is not used as an ion exchange membrane. Since a homogeneous film is used, voltage rise can be suppressed even when operating at a high current density in order to maintain a high boron removal rate, and the service life of the electrodeionization apparatus can be prolonged. .

本発明の一実施形態による電気脱イオン装置の構成を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the electrodeionization apparatus by one Embodiment of this invention. 図1の電気脱イオン装置を示す系統図である。It is a systematic diagram which shows the electrodeionization apparatus of FIG.

以下、本発明の一実施形態による電気脱イオン装置について添付図面を参照して説明する。   Hereinafter, an electrodeionization apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.

図1は本発明の一実施形態による電気脱イオン装置の構成を示す概略図である。図1において、電気脱イオン装置1は、電極(陽極2、陰極3)の間に複数のアニオン交換膜4及びカチオン交換膜5を交互に配列して濃縮室6と脱塩室7とを交互に形成したものであり、脱塩室7にはイオン交換樹脂(アニオン交換樹脂及びカチオン交換樹脂)が混合もしくは複層状に充填されている。また、濃縮室6と、陽極室8及び陰極室9にもイオン交換樹脂が充填されている。   FIG. 1 is a schematic diagram showing the configuration of an electrodeionization apparatus according to an embodiment of the present invention. In FIG. 1, an electrodeionization apparatus 1 includes a plurality of anion exchange membranes 4 and cation exchange membranes 5 arranged alternately between electrodes (anode 2 and cathode 3), and alternately a concentration chamber 6 and a demineralization chamber 7. The desalting chamber 7 is filled with ion exchange resins (anion exchange resin and cation exchange resin) in a mixed or multi-layered manner. The concentration chamber 6, the anode chamber 8, and the cathode chamber 9 are also filled with ion exchange resin.

この電気脱イオン装置1には、脱塩室7に被処理水Wを通水して処理水(脱イオン水)W1取り出す通水手段(図示せず)と、濃縮室6に濃縮水W2を通水する濃縮水通水手段(図示せず)とが設けられていて、本実施形態においては濃縮水W2を脱塩室7の処理水W1の取り出し口に近い側から濃縮室6内に導入すると共に、脱塩室7の入口に近い側から流出する、すなわち脱塩室7における被処理水Wの流通方向と反対方向から濃縮水W2を濃縮室6に導入して濃縮排水W3を吐出する構成となっている。   In the electrodeionization apparatus 1, water passing means (not shown) for passing the treated water W through the demineralization chamber 7 and taking out the treated water (deionized water) W <b> 1, and the concentrated water W <b> 2 in the concentration chamber 6. Concentrated water passage means (not shown) for passing water is provided, and in this embodiment, the concentrated water W2 is introduced into the concentration chamber 6 from the side of the desalting chamber 7 close to the outlet of the treated water W1. At the same time, the concentrated water W2 flows out from the side close to the inlet of the desalting chamber 7, that is, the concentrated water W2 is introduced into the concentrating chamber 6 from the direction opposite to the flow direction of the treated water W in the desalting chamber 7, and the concentrated waste water W3 is discharged. It has a configuration.

具体的には、図2に示すように脱塩室7から得られる処理水W1の一部を濃縮室6及び陽極室8に導入する。このように濃縮水W2として処理水W1を用いてイオン濃度が低減された濃縮水W2を流通させる。   Specifically, as shown in FIG. 2, part of the treated water W <b> 1 obtained from the desalting chamber 7 is introduced into the concentration chamber 6 and the anode chamber 8. In this way, the concentrated water W2 having a reduced ion concentration is circulated using the treated water W1 as the concentrated water W2.

このような電気脱イオン装置において、脱塩室7に充填されるイオン交換樹脂のアニオン交換樹脂:カチオン交換樹脂の比率は体積比で80:20〜60:40、好ましくは80:20〜70:30である。アニオン交換樹脂の割合が体積比で80%を超えるとカチオン交換樹脂に由来するPSA成分の溶出は少なくなるものの処理水W1中のカチオン成分の除去率が低下する。一方、アニオン交換樹脂の割合が体積比で60%未満では、カチオン交換樹脂に由来するPSA成分溶出が増加し、電気脱イオン装置の電気抵抗が上昇し、運転に必要な電圧が大きくなり、もって電気脱イオン装置1の耐用年数が短期化しやすくなる。なお、このイオン交換樹脂の割合は脱塩室7の上側(入口側)と下側(出口側)とで異ならせても良く、この場合には、上記割合の範疇で上側(入口側)のアニオン交換樹脂の割合を高くすることが好ましい。   In such an electrodeionization apparatus, the ratio of anion exchange resin: cation exchange resin of the ion exchange resin filled in the desalting chamber 7 is 80: 20-60: 40, preferably 80: 20-70: 30. When the proportion of the anion exchange resin exceeds 80% by volume, the elution of the PSA component derived from the cation exchange resin is reduced, but the removal rate of the cation component in the treated water W1 is lowered. On the other hand, when the proportion of the anion exchange resin is less than 60% by volume, the elution of the PSA component derived from the cation exchange resin increases, the electric resistance of the electrodeionization apparatus increases, and the voltage required for operation increases. The service life of the electrodeionization apparatus 1 is easily shortened. In addition, the ratio of the ion exchange resin may be different between the upper side (inlet side) and the lower side (outlet side) of the desalting chamber 7, and in this case, the upper side (inlet side) within the above ratio range. It is preferable to increase the ratio of the anion exchange resin.

また、脱塩室7に充填されるイオン交換樹脂のうち少なくともカチオン交換樹脂は、TOC溶出量が1ppb以下となるようにあらかじめコンディショニング(洗浄)を施したものである。カチオン交換樹脂のTOC溶出量が1ppbを超えると、イオン交換樹脂に起因するPSAの溶出量が増加し、電気脱イオン装置の電気抵抗が上昇し、運転に必要な電圧が大きくなり、もって電気脱イオン装置1の耐用年数が短期化しやすくなる。本明細書中において、TOC溶出量とは2Lのイオン交換樹脂量に対し、SV=50/hで超純水を120分通水した後のTOC濃度をTOC計(アナテルA−1000)で測定したときのTOCの溶出量(増加量)をいう。このコンディショニングは、例えば酸洗浄工程、超純水による酸の押し出し工程、温超純水による温水洗浄工程、超純水による仕上げ工程などをTOC溶出量が1ppb以下となるようにそれぞれ適当な条件(濃度、時間及び流速)で順次を行えばよい。なお、アニオン交換樹脂もコンディショニング(洗浄)を施すことにより、TOC溶出量が1ppb以下となるようにあらかじめコンディショニング(洗浄)を施したものを用いることが好ましい。   In addition, at least the cation exchange resin among the ion exchange resins filled in the desalting chamber 7 is previously conditioned (washed) so that the TOC elution amount is 1 ppb or less. When the TOC elution amount of the cation exchange resin exceeds 1 ppb, the elution amount of PSA resulting from the ion exchange resin increases, the electric resistance of the electrodeionization apparatus increases, the voltage required for operation increases, and thus the electrodeionization rate increases. The service life of the ion device 1 is easily shortened. In the present specification, the TOC elution amount is measured with a TOC meter (Anatel A-1000) after passing ultrapure water for 120 minutes at SV = 50 / h with respect to the amount of 2 L of ion exchange resin. This is the amount of TOC elution (increase). In this conditioning, for example, an acid cleaning process, an acid extrusion process using ultrapure water, a warm water cleaning process using warm ultrapure water, a finishing process using ultrapure water, and the like under appropriate conditions (concentration, concentration, etc.) so that the TOC elution amount is 1 ppb or less. Time and flow rate) may be performed sequentially. Note that it is preferable to use an anion exchange resin that has been conditioned (washed) in advance so that the TOC elution amount is 1 ppb or less by conditioning (washing).

また、濃縮室6に充填するイオン交換樹脂のアニオン交換樹脂とカチオン交換樹脂の比率は特に制限はなく、両者を当量とするかあるいはカチオン交換樹脂をある程度多くするのが好ましく、アニオン交換樹脂:カチオン交換樹脂の比率を体積比で60:40〜50:50とすればよい。さらに濃縮室6に充填するイオン交換樹脂も上述したようなコンディショニングを施したものを用いることが好ましい。   Further, the ratio of the anion exchange resin and the cation exchange resin in the ion exchange resin to be filled in the concentration chamber 6 is not particularly limited, and it is preferable that both are equivalent or the cation exchange resin is increased to some extent. The ratio of the exchange resin may be 60:40 to 50:50 in volume ratio. Furthermore, it is preferable to use the ion-exchange resin filled in the concentrating chamber 6 after conditioning as described above.

さらに、イオン交換膜としてのアニオン交換膜4及びカチオン交換膜5のうち少なくともアニオン交換膜4は不均質膜を用いる。ここで不均質膜とは、例えばイオン交換樹脂(ここではアニオン交換樹脂)の微粒子の懸濁物をバインダーと組み合わせ、キャスティング法により製膜されるイオン交換膜のことである。この不均質膜は基材に粉砕状のアニオン交換樹脂を埋め込んだ構造であるので、アニオン交換樹脂の中を通過しなくても、アニオン交換樹脂の面を通じて基材との界面近くを通過することが可能になり、PSAの蓄積が起こりにくく、電気抵抗の増加を抑制することができる。なお、カチオン交換膜5については、均質膜であってもよいが、同様に不均質膜を用いるのが好ましい。   Furthermore, at least the anion exchange membrane 4 of the anion exchange membrane 4 and the cation exchange membrane 5 as an ion exchange membrane uses a heterogeneous membrane. Here, the heterogeneous membrane refers to an ion exchange membrane formed by casting, for example, by combining a suspension of fine particles of an ion exchange resin (here, anion exchange resin) with a binder. Since this heterogeneous membrane has a structure in which a pulverized anion exchange resin is embedded in the base material, it passes through the anion exchange resin surface near the interface with the base material without passing through the anion exchange resin. Therefore, PSA accumulation is unlikely to occur, and an increase in electrical resistance can be suppressed. The cation exchange membrane 5 may be a homogeneous membrane, but similarly, a heterogeneous membrane is preferably used.

次に上述したような構成を有する電気脱イオン装置1の運転方法について説明する。まず、RO処理水などの被処理水Wを電気脱イオン装置1で処理する。このとき、電気脱イオン装置1を電流密度500mA/dm以上で運転する。電流密度500mA/dm未満では、十分なホウ素除去率の向上効果が得られない。好ましくは電流密度800mA/dm以上で運転する。電流密度が800mA/dmで未満では99.95%を超えるホウ素除去率とするのが困難となる。特に電流密度1000mA/dm以上で運転することにより、ホウ素除去率99.99%を達成することができる。一方電気脱イオン装置1を1500mA/dmを超える電流密度で運転するのは、それ以上のホウ素除去率の向上効果が得られないばかりか、電気抵抗値が上昇し、これに伴い電気脱イオン装置1にかかる電圧が増大しすぎ、装置寿命の低下を招くため好ましくない。なお、電気脱イオン装置1の脱塩室7における被処理水Wの通水速度はLV=50〜200m/hで、空間速度はSV=50〜200/hが好ましい。さらに電気脱イオン装置1は水回収率80〜90%で運転することが好ましい。 Next, an operation method of the electrodeionization apparatus 1 having the above-described configuration will be described. First, the water to be treated W such as RO treated water is treated by the electrodeionization apparatus 1. At this time, the electrodeionization apparatus 1 is operated at a current density of 500 mA / dm 2 or more. When the current density is less than 500 mA / dm 2 , a sufficient effect of improving the boron removal rate cannot be obtained. The operation is preferably performed at a current density of 800 mA / dm 2 or more. If the current density is less than 800 mA / dm 2 , it is difficult to obtain a boron removal rate exceeding 99.95%. In particular, by operating at a current density of 1000 mA / dm 2 or more, a boron removal rate of 99.99% can be achieved. On the other hand, operating the electrodeionization apparatus 1 at a current density exceeding 1500 mA / dm 2 not only provides an effect of improving the boron removal rate beyond that, but also increases the electric resistance value. This is not preferable because the voltage applied to the device 1 increases excessively and the life of the device is reduced. In addition, as for the water flow rate of the to-be-processed water W in the demineralization chamber 7 of the electrodeionization apparatus 1, LV = 50-200 m / h is preferable, and space velocity is SV = 50-200 / h. Furthermore, the electrodeionization apparatus 1 is preferably operated at a water recovery rate of 80 to 90%.

これにより被処理水Wが脱塩室7に導入され、脱塩室7から処理水(脱イオン水)W1が得られる。本実施形態においては、この処理水W1の一部を濃縮水W2として濃縮室6に脱塩室7の通水方向とは逆方向に向流一過式で通水し、濃縮室6から濃縮排水W3を系外へ排出する。すなわち、本実施形態では、濃縮室6と脱塩室7とが交互に並設され、脱塩室7の処理水W1の取り出し側に濃縮室6の流入口となっているとともに脱塩室7の原水流入側に濃縮室6の流出口となっている。なお、処理水(脱イオン水)W1の一部は陽極室8の入口側に送給され、そして、陽極室8の流出水は、陰極室9の入口側へ送給され、陰極室9の流出水は排水として系外へ排出される。   Thereby, the to-be-processed water W is introduce | transduced into the desalting chamber 7, and the treated water (deionized water) W1 is obtained from the desalting chamber 7. FIG. In the present embodiment, a part of the treated water W1 is concentrated water W2 and is passed through the concentration chamber 6 in a counter-current transient manner in a direction opposite to the flow direction of the desalting chamber 7, and concentrated from the concentration chamber 6. Waste water W3 is discharged out of the system. That is, in this embodiment, the concentrating chamber 6 and the desalting chamber 7 are alternately arranged in parallel, and serves as an inlet of the concentrating chamber 6 on the extraction side of the treated water W1 in the desalting chamber 7 and the desalting chamber 7. The outlet of the concentrating chamber 6 is on the raw water inflow side. A part of the treated water (deionized water) W 1 is fed to the inlet side of the anode chamber 8, and the outflow water of the anode chamber 8 is fed to the inlet side of the cathode chamber 9. The effluent is discharged out of the system as wastewater.

このように濃縮室6に処理水W1を濃縮水W2として脱塩室7に対して向流一過式で通水することにより、脱塩室7の取り出し側ほど濃縮室6内の濃縮水W2中のイオン濃度が低いものとなるので、濃度拡散による脱塩室7への影響が小さくなり、イオン除去率、特にホウ素の除去率を飛躍的に高めることができる。   In this way, the treated water W1 is passed through the concentration chamber 6 as the concentrated water W2 in a counter-current and transient manner with respect to the desalting chamber 7, so that the concentrated water W2 in the concentration chamber 6 is closer to the desalting chamber 7 on the extraction side. Since the concentration of ions therein is low, the influence on the desalting chamber 7 due to concentration diffusion is reduced, and the ion removal rate, particularly the boron removal rate, can be dramatically increased.

このようにして電気脱イオン装置1を運転することにより、ホウ素除去率を99.9%以上、特に99.95%、さらには99.99%程度にまで高めることができる。   By operating the electrodeionization apparatus 1 in this manner, the boron removal rate can be increased to 99.9% or more, particularly 99.95%, and further to about 99.99%.

以上、本発明の一実施形態について添付図面を参照して説明してきたが、本発明は、電気脱イオン装置1に上述した所定の構成を採用するとともに電流密度500mA/dm以上で運転すれば前記実施形態に限定されず、種々の変更実施が可能である。例えば、本実施形態においては最良の形態とすることにより電気脱イオン装置1の耐用年数を5年以上で、ホウ素除去率99.99%とすることができるが、要求される水質、耐用年数に応じて、運転時の電流密度やカチオン交換膜の種類、あるいはアニオン交換樹脂のコンディショニング条件を適宜設定することができる。 As mentioned above, although one Embodiment of this invention has been demonstrated with reference to an accompanying drawing, if this invention employ | adopts the predetermined structure mentioned above to the electrodeionization apparatus 1, and it drive | operates with a current density of 500 mA / dm < 2 > or more. The present invention is not limited to the above embodiment, and various modifications can be made. For example, in the present embodiment, the electrode ionization apparatus 1 can have a service life of 5 years or more and a boron removal rate of 99.99% by adopting the best mode, but the required water quality and service life can be increased. Accordingly, the current density during operation, the type of cation exchange membrane, or the conditioning conditions of the anion exchange resin can be appropriately set.

以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example.

〔実施例1〕
電気脱イオン装置1、イオン交換樹脂として以下のものを使用した。
電気脱イオン装置:KCDI−UPz(栗田工業(株)製)、図1及び図2に示すように脱塩室7を通水した脱イオン水W1の一部を対向流で濃縮水W2として濃縮室6に通水する方式を採用
イオン交換樹脂:KR−UM1(栗田工業(株)製)、TOC溶出量1ppb以下(SV=50/hの通水条件)となるようにコンディショニングを施したアニオン交換樹脂とカチオン交換樹脂との混合樹脂
[Example 1]
The following were used as the electrodeionization apparatus 1 and ion exchange resin.
Electrodeionization device: KCDI-UPz (manufactured by Kurita Kogyo Co., Ltd.), as shown in FIGS. 1 and 2, a part of deionized water W1 that has passed through the desalting chamber 7 is concentrated as concentrated water W2 in a counterflow Adopting a method of passing water through the chamber 6 Ion exchange resin: KR-UM1 (manufactured by Kurita Kogyo Co., Ltd.), an anion that has been conditioned so that the TOC elution amount is 1 ppb or less (SV = 50 / h water passing condition) Mixed resin of exchange resin and cation exchange resin

上記の電気脱イオン装置1において、コンディショニングしたイオン交換樹脂を脱塩室7の上側(入り口側)の半分の領域にはアニオン交換樹脂80容積%及びカチオン交換樹脂20容積%で下側領域ではアニオン交換樹脂60容積%及びカチオン交換樹脂40容積%となるように充填し、濃縮室6ではアニオン交換樹脂60容積%及びカチオン交換樹脂40容積%となるように充填した。さらに、アニオン交換膜4及びカチオン交換膜5として不均質膜を用いて電気脱イオン装置1を構成した。   In the electrodeionization apparatus 1 described above, the conditioned ion exchange resin is filled with 80% by volume of the anion exchange resin and 20% by volume of the cation exchange resin in the upper half (inlet side) of the desalting chamber 7, and the anion in the lower area. It filled so that it might become 60 volume% of exchange resins, and 40 volume% of cation exchange resins, and it filled so that it might become 60 volume% of anion exchange resins, and 40 volume% of cation exchange resins in the concentration chamber 6. Furthermore, the electrodeionization apparatus 1 was configured using heterogeneous membranes as the anion exchange membrane 4 and the cation exchange membrane 5.

静岡県榛原郡吉田町の市水(原水)を凝集・加圧浮上装置、ろ過装置及び活性炭塔からなる前処理システムで処理した後、2段RO膜装置により処理した。この2段RO処理水(被処理水)Wのシリカ濃度は1ppb以下であり、ホウ素濃度は1〜5ppbであった。続いて、この被処理水Wを上述した電気脱イオン装置1に(栗田工業(株)製 KCDI−UPz)に15m/hの流量で通水し、電流密度1000mA/dmで運転した。なお、この電気脱イオン装置におけるSVは100/hであり、水回収率85%とした。 The city water (raw water) in Yoshida-cho, Kashihara-gun, Shizuoka Prefecture was treated with a pretreatment system consisting of an agglomeration / pressure flotation device, a filtration device and an activated carbon tower, and then treated with a two-stage RO membrane device. The silica concentration of the two-stage RO treated water (treated water) W was 1 ppb or less, and the boron concentration was 1 to 5 ppb. Subsequently, the treated water W was passed through the above-described electrodeionization apparatus 1 (KCDI-UPz manufactured by Kurita Kogyo Co., Ltd.) at a flow rate of 15 m 3 / h and operated at a current density of 1000 mA / dm 2 . The SV in this electrodeionization apparatus was 100 / h, and the water recovery rate was 85%.

この電気脱イオン装置の運転を継続したところ、初期電圧300Vであったのに対し、5年運転相当後の電圧は500Vに上昇したが、電気脱イオン装置の処理水W1のホウ素除去率は99.99%で安定しており、実施例1の電気脱イオン装置は5年以上の耐用年数を有するものであった。   When the operation of the electrodeionization apparatus was continued, the initial voltage was 300V, whereas the voltage after five years of operation increased to 500V, but the boron removal rate of the treated water W1 of the electrodeionization apparatus was 99. The electrodeionization apparatus of Example 1 had a service life of 5 years or more.

〔比較例1〕
実施例1において、コンディショニングを行わなかった樹脂(TOC溶出量約10ppb、以下同じ)を用い、脱塩室7及び濃縮室6にアニオン交換樹脂50容積%及びカチオン交換樹脂50容積%で充填した。さらに、アニオン交換膜4及びカチオン交換膜5として均質膜を用いて電気脱イオン装置1を構成した。この電気脱イオン装置1で実施例1同様の運転条件で被処理水Wを処理したところ、初期電圧300Vであったのに対し、1年運転相当後の電圧は600Vの運転限界に達し、比較例1の電気脱イオン装置の耐用年数は約1年であった。
[Comparative Example 1]
In Example 1, a resin that was not conditioned (TOC elution amount of about 10 ppb, hereinafter the same) was used to fill the desalting chamber 7 and the concentration chamber 6 with 50% by volume of anion exchange resin and 50% by volume of cation exchange resin. Furthermore, the electrodeionization apparatus 1 was configured using homogeneous membranes as the anion exchange membrane 4 and the cation exchange membrane 5. When the treated water W was treated with the electrodeionization apparatus 1 under the same operating conditions as in Example 1, the initial voltage was 300 V, whereas the voltage after one year of operation reached an operating limit of 600 V, which is a comparison. The service life of the electrodeionization apparatus of Example 1 was about 1 year.

〔比較例2〕
実施例1において、コンディショニングを行わなかった樹脂を用い、脱塩室7及び濃縮室6にアニオン交換樹脂50容積%及びカチオン交換樹脂50容積%で充填して、電気脱イオン装置1を構成した。この電気脱イオン装置1で実施例1同様の運転条件で被処理水Wを処理したところ、初期電圧300Vであったのに対し、2年運転相当後の電圧は600Vの運転限界に達し、比較例2の電気脱イオン装置の耐用年数は約2年であった。
[Comparative Example 2]
In Example 1, a resin that was not conditioned was used to fill the demineralization chamber 7 and the concentration chamber 6 with 50% by volume of anion exchange resin and 50% by volume of cation exchange resin, thereby configuring the electrodeionization apparatus 1. The treated water W was treated with this electrodeionization apparatus 1 under the same operating conditions as in Example 1. The initial voltage was 300V, whereas the voltage after two years of operation reached the operating limit of 600V. The service life of the electrodeionization apparatus of Example 2 was about 2 years.

〔比較例3〕
実施例1において、コンディショニングを行わなかった樹脂を用いた以外同様にして電気脱イオン装置1を構成した。この電気脱イオン装置1で実施例1同様の運転条件で被処理水Wを処理したところ、初期電圧300Vであったのに対し、3年運転相当後の電圧は600Vの運転限界に達し、比較例3の電気脱イオン装置の耐用年数は約3年であった。
[Comparative Example 3]
In Example 1, the electrodeionization apparatus 1 was comprised similarly except having used resin which was not conditioned. When the treated water W was treated with this electrodeionization apparatus 1 under the same operating conditions as in Example 1, the initial voltage was 300V, whereas the voltage after three years of operation reached an operating limit of 600V. The service life of the electrodeionization apparatus of Example 3 was about 3 years.

〔比較例4〕
実施例1において、脱塩室7及び濃縮室6にコンディショニング処理したアニオン交換樹脂50容積%及びカチオン交換樹脂50容積%で充填した以外同様にして電気脱イオン装置1を構成した。この電気脱イオン装置1で実施例1同様の運転条件で被処理水Wを処理したところ、初期電圧300Vであったのに対し、4年運転相当後の電圧は600Vの運転限界に達し、比較例4の電気脱イオン装置の耐用年数は約4年であった。
[Comparative Example 4]
In Example 1, the electrodeionization apparatus 1 was configured in the same manner except that the demineralization chamber 7 and the concentration chamber 6 were filled with 50% by volume of the anion exchange resin and 50% by volume of the cation exchange resin. When the treated water W was treated with this electrodeionization apparatus 1 under the same operating conditions as in Example 1, the initial voltage was 300V, whereas the voltage after 4 years of operation reached an operating limit of 600V. The service life of the electrodeionization apparatus of Example 4 was about 4 years.

1 電気脱イオン装置
2 陽極(電極)
3 陰極(電極)
4 アニオン交換膜(イオン交換膜)
5 カチオン交換膜(イオン交換膜)
6 濃縮室
7 脱塩室
8 陽極室
9 陰極室
W 被処理水
W1 処理水(脱イオン水)
W2 濃縮水
W3 濃縮排水
1 Electrodeionization equipment 2 Anode (electrode)
3 Cathode (electrode)
4 Anion exchange membrane (ion exchange membrane)
5 Cation exchange membrane (ion exchange membrane)
6 Concentration chamber 7 Desalination chamber 8 Anode chamber 9 Cathode chamber W Treated water W1 Treated water (deionized water)
W2 Concentrated water W3 Concentrated drainage

Claims (6)

陰極及び陽極と、該陰極及び陽極の間に配置されたカチオン交換膜及びアニオン交換膜と、これらカチオン交換膜及びアニオン交換膜により区画形成された脱塩室及び濃縮室とを備え、前記脱塩室及び前記濃縮室にイオン交換樹脂が充填されていて、該濃縮室に濃縮水を通水する濃縮水通水手段と前記脱塩室に被処理水を通水して脱イオン水を取り出す手段とを有し、前記濃縮水通水手段が前記脱塩室を通水した脱イオン水を濃縮水として通水する電気脱イオン装置であって、
前記カチオン交換膜及びアニオン交換膜の少なくともカチオン交換膜が不均質膜であり、
前記脱塩室に充填されるイオン交換樹脂がアニオン交換樹脂:カチオン交換樹脂の体積比が80:20〜60:40であり、
該イオン交換樹脂のうち少なくともカチオン交換樹脂がTOC溶出量1ppb以下(SV=50/hの通水条件)となるようにあらかじめ洗浄したものである電気脱イオン装置。
A cathode and an anode, a cation exchange membrane and an anion exchange membrane disposed between the cathode and the anode, and a desalting chamber and a concentrating chamber defined by the cation exchange membrane and the anion exchange membrane, A means for passing concentrated water through the concentration chamber, and means for extracting deionized water by passing water to be treated into the demineralization chamber. The deionized water that the deionized water that has passed through the demineralization chamber passes as concentrated water,
At least the cation exchange membrane of the cation exchange membrane and the anion exchange membrane is a heterogeneous membrane,
The ion exchange resin filled in the desalting chamber has an anion exchange resin: cation exchange resin volume ratio of 80:20 to 60:40,
An electrodeionization apparatus in which at least the cation exchange resin of the ion exchange resin is washed in advance so as to have a TOC elution amount of 1 ppb or less (SV = 50 / h water flow condition).
前記濃縮水通水手段が、前記脱塩室を通水した脱イオン水の一部を対向流で濃縮水として通水する請求項1に記載の電気脱イオン装置。   2. The electrodeionization apparatus according to claim 1, wherein the concentrated water flow means passes a part of deionized water that has passed through the demineralization chamber as concentrated water in a counterflow. 前記カチオン交換膜及びアニオン交換膜の両方が不均質膜であり、前記脱塩室に充填されるアニオン交換樹脂及びカチオン交換樹脂の両方がTOC溶出量1ppb以下(SV=50/hの通水条件)となるようにあらかじめ洗浄したものである請求項1又は2に記載の電気脱イオン装置。   Both the cation exchange membrane and the anion exchange membrane are heterogeneous membranes, and both the anion exchange resin and the cation exchange resin filled in the desalting chamber have a TOC elution amount of 1 ppb or less (SV = 50 / h water flow condition) The electrodeionization apparatus according to claim 1 or 2, which has been washed in advance so that 陰極及び陽極と、該陰極及び陽極の間に配置されたカチオン交換膜及びアニオン交換膜と、これらカチオン交換膜及びアニオン交換膜により区画形成された脱塩室及び濃縮室とを備え、前記脱塩室及び前記濃縮室にイオン交換樹脂が充填されていて、該濃縮室に濃縮水を通水する濃縮水通水手段と前記脱塩室に被処理水を通水して脱イオン水を取り出す手段とを有し、前記濃縮水通水手段が前記脱塩室を通水した脱イオン水を濃縮水として通水し、前記カチオン交換膜及びアニオン交換膜の少なくともカチオン交換膜が不均質膜であり、前記脱塩室に充填されるイオン交換樹脂のアニオン交換樹脂:カチオン交換樹脂の体積比が80:20〜60:40であり、該イオン交換樹脂のうち少なくともカチオン交換樹脂がTOC溶出量1ppb以下(SV=50/hの通水条件)となるようにあらかじめ洗浄したものである電気脱イオン装置の運転方法であって、
前記電気脱イオン装置に供給する電流を500mA/dm以上の電流密度として前記脱塩室に通水処理する電気脱イオン装置の運転方法。
A cathode and an anode, a cation exchange membrane and an anion exchange membrane disposed between the cathode and the anode, and a desalting chamber and a concentrating chamber defined by the cation exchange membrane and the anion exchange membrane, A means for passing concentrated water through the concentration chamber, and means for extracting deionized water by passing water to be treated into the demineralization chamber. The deionized water that has passed through the demineralization chamber is passed as concentrated water, and at least the cation exchange membrane and the anion exchange membrane are heterogeneous membranes. The volume ratio of the anion exchange resin to the cation exchange resin of the ion exchange resin filled in the desalting chamber is 80:20 to 60:40, and at least the cation exchange resin of the ion exchange resin has a TOC elution amount of 1 ppb or more. A (SV = 50 / water flow conditions h) and so as to method of operating an electrodeionization apparatus is obtained by pre-washed,
The operation method of the electrodeionization apparatus which water-processes to the said demineralization chamber as the electric current supplied to the said electrodeionization apparatus as a current density of 500 mA / dm < 2 > or more.
前記濃縮水通水手段が、前記脱塩室を通水した脱イオン水の一部を対向流で濃縮水として通水する請求項4に記載の電気脱イオン装置の運転方法。   The operation method of the electrodeionization apparatus according to claim 4, wherein the concentrated water flow means passes a part of deionized water that has passed through the demineralization chamber as concentrated water in a counterflow. 前記カチオン交換膜及びアニオン交換膜の両方が不均質膜であり、前記脱塩室に充填されるアニオン交換樹脂及びカチオン交換樹脂の両方がTOC溶出量1ppb以下(SV=50/hの通水条件)となるようにあらかじめ洗浄したものである請求項4又は5に記載の電気脱イオン装置の運転方法。   Both the cation exchange membrane and the anion exchange membrane are heterogeneous membranes, and both the anion exchange resin and the cation exchange resin filled in the desalting chamber have a TOC elution amount of 1 ppb or less (SV = 50 / h water flow condition) The method for operating the electrodeionization apparatus according to claim 4 or 5, wherein the electrodeionization apparatus has been previously cleaned so that
JP2016132516A 2016-07-04 2016-07-04 Electric deionizer and its operation method Active JP6848231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016132516A JP6848231B2 (en) 2016-07-04 2016-07-04 Electric deionizer and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016132516A JP6848231B2 (en) 2016-07-04 2016-07-04 Electric deionizer and its operation method

Publications (2)

Publication Number Publication Date
JP2018001106A true JP2018001106A (en) 2018-01-11
JP6848231B2 JP6848231B2 (en) 2021-03-24

Family

ID=60947113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016132516A Active JP6848231B2 (en) 2016-07-04 2016-07-04 Electric deionizer and its operation method

Country Status (1)

Country Link
JP (1) JP6848231B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015007A (en) * 2018-07-26 2020-01-30 オルガノ株式会社 Electric deionized water production equipment
WO2024048115A1 (en) * 2022-08-31 2024-03-07 オルガノ株式会社 Water treatment system and water treatment method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113281A (en) * 1999-08-11 2001-04-24 Kurita Water Ind Ltd Electro-deionizing apparatus and pure water making apparatus
JP2003210946A (en) * 2002-01-22 2003-07-29 Kurita Water Ind Ltd Method and apparatus for electric deionization
JP2003275768A (en) * 2002-03-25 2003-09-30 Kurita Water Ind Ltd Electric deionizer and electric deionization method
JP2004034004A (en) * 2002-07-08 2004-02-05 Kurita Water Ind Ltd Electrically deionizing apparatus
JP2009240943A (en) * 2008-03-31 2009-10-22 Kurita Water Ind Ltd Conditioning method of ion-exchange resin
JP2011000576A (en) * 2009-06-22 2011-01-06 Japan Organo Co Ltd Electric deionized water producing apparatus and method for producing deionized water
JP2011110515A (en) * 2009-11-27 2011-06-09 Kurita Water Ind Ltd Method and apparatus for purifying ion exchange resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113281A (en) * 1999-08-11 2001-04-24 Kurita Water Ind Ltd Electro-deionizing apparatus and pure water making apparatus
JP2003210946A (en) * 2002-01-22 2003-07-29 Kurita Water Ind Ltd Method and apparatus for electric deionization
JP2003275768A (en) * 2002-03-25 2003-09-30 Kurita Water Ind Ltd Electric deionizer and electric deionization method
JP2004034004A (en) * 2002-07-08 2004-02-05 Kurita Water Ind Ltd Electrically deionizing apparatus
JP2009240943A (en) * 2008-03-31 2009-10-22 Kurita Water Ind Ltd Conditioning method of ion-exchange resin
JP2011000576A (en) * 2009-06-22 2011-01-06 Japan Organo Co Ltd Electric deionized water producing apparatus and method for producing deionized water
JP2011110515A (en) * 2009-11-27 2011-06-09 Kurita Water Ind Ltd Method and apparatus for purifying ion exchange resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015007A (en) * 2018-07-26 2020-01-30 オルガノ株式会社 Electric deionized water production equipment
JP7077172B2 (en) 2018-07-26 2022-05-30 オルガノ株式会社 Electric deionized water production equipment
WO2024048115A1 (en) * 2022-08-31 2024-03-07 オルガノ株式会社 Water treatment system and water treatment method

Also Published As

Publication number Publication date
JP6848231B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
KR100784438B1 (en) apparatus and method for continuous electrodeionization
KR102602540B1 (en) Ultrapure water production device and method of operating the ultrapure water production device
JP7275536B2 (en) Electrodeionization apparatus and method for producing deionized water using the same
TWI414486B (en) Pure water manufacturing apparatus and pure water manufacturing method
JP6728876B2 (en) Electric deionization device and method for producing deionized water
KR20170002047A (en) Purification system for potable water and ultra pure water
JP2011110515A (en) Method and apparatus for purifying ion exchange resin
TW201825405A (en) System for producing ultrapure water and method for producing ultrapure water
JP4748318B2 (en) Electrodeionization equipment
WO2018092395A1 (en) Electric de-ionization device and de-ionized water production method
JP2005000828A (en) Pure water production apparatus
JP2018001106A (en) Electrodeionization device and method for operating the same
JP2018001072A (en) Cleaning method of electric demineralizer
TWI756249B (en) Regenerative ion exchange device and method of operating the same
JPH10323673A (en) Deionized water-producing method
JP4552273B2 (en) Electrodeionization equipment
JP3901107B2 (en) Electrodeionization apparatus and operation method thereof
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP4624066B2 (en) Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP4300828B2 (en) Electrodeionization apparatus and operation method thereof
JP2019195755A (en) Electric deionization unit and method of producing deionized water
JP5382282B2 (en) Pure water production equipment
WO2023199759A1 (en) Deionized water production device and method
JP2021037469A (en) Electric deionizing device and manufacturing method of deionized water
US20230406734A1 (en) Electrodeionization Configuration for Enhanced Boron Removal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R150 Certificate of patent or registration of utility model

Ref document number: 6848231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250