JP2018090767A - Micro- or mesoporous fine-particle porous molded body, enzyme-supporting carrier, enzyme complex thereof, and production method thereof - Google Patents
Micro- or mesoporous fine-particle porous molded body, enzyme-supporting carrier, enzyme complex thereof, and production method thereof Download PDFInfo
- Publication number
- JP2018090767A JP2018090767A JP2017152336A JP2017152336A JP2018090767A JP 2018090767 A JP2018090767 A JP 2018090767A JP 2017152336 A JP2017152336 A JP 2017152336A JP 2017152336 A JP2017152336 A JP 2017152336A JP 2018090767 A JP2018090767 A JP 2018090767A
- Authority
- JP
- Japan
- Prior art keywords
- enzyme
- molded body
- fine particles
- mesoporous
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010419 fine particle Substances 0.000 title claims abstract description 296
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 49
- 102000004190 Enzymes Human genes 0.000 title claims description 160
- 108090000790 Enzymes Proteins 0.000 title claims description 160
- 239000002245 particle Substances 0.000 claims abstract description 216
- 239000002994 raw material Substances 0.000 claims abstract description 162
- 239000011148 porous material Substances 0.000 claims abstract description 125
- 229920000620 organic polymer Polymers 0.000 claims abstract description 114
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 73
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 44
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 43
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910000323 aluminium silicate Inorganic materials 0.000 claims abstract description 19
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000006243 chemical reaction Methods 0.000 claims description 120
- 239000002002 slurry Substances 0.000 claims description 97
- 238000000034 method Methods 0.000 claims description 83
- 239000012510 hollow fiber Substances 0.000 claims description 72
- 238000006911 enzymatic reaction Methods 0.000 claims description 70
- 239000004695 Polyether sulfone Substances 0.000 claims description 55
- 229920006393 polyether sulfone Polymers 0.000 claims description 55
- 238000000465 moulding Methods 0.000 claims description 52
- 238000005406 washing Methods 0.000 claims description 49
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 claims description 48
- 239000000758 substrate Substances 0.000 claims description 46
- 238000003756 stirring Methods 0.000 claims description 45
- 239000002904 solvent Substances 0.000 claims description 44
- 239000002131 composite material Substances 0.000 claims description 43
- 239000004715 ethylene vinyl alcohol Substances 0.000 claims description 41
- 229920005989 resin Polymers 0.000 claims description 37
- 239000011347 resin Substances 0.000 claims description 37
- 238000001179 sorption measurement Methods 0.000 claims description 32
- 108090000623 proteins and genes Proteins 0.000 claims description 30
- 102000004169 proteins and genes Human genes 0.000 claims description 30
- 239000000126 substance Substances 0.000 claims description 29
- 239000000243 solution Substances 0.000 claims description 27
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 25
- 239000007853 buffer solution Substances 0.000 claims description 21
- 239000000872 buffer Substances 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 19
- 230000008859 change Effects 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 18
- 230000003100 immobilizing effect Effects 0.000 claims description 16
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 15
- 230000002829 reductive effect Effects 0.000 claims description 15
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 13
- 239000004962 Polyamide-imide Substances 0.000 claims description 11
- 229920002492 poly(sulfone) Polymers 0.000 claims description 11
- 229920002312 polyamide-imide Polymers 0.000 claims description 11
- UFRKOOWSQGXVKV-UHFFFAOYSA-N ethene;ethenol Chemical compound C=C.OC=C UFRKOOWSQGXVKV-UHFFFAOYSA-N 0.000 claims description 10
- 239000003960 organic solvent Substances 0.000 claims description 10
- 239000007864 aqueous solution Substances 0.000 claims description 9
- -1 eliminase Proteins 0.000 claims description 9
- 239000006185 dispersion Substances 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 238000006460 hydrolysis reaction Methods 0.000 claims description 7
- 238000006116 polymerization reaction Methods 0.000 claims description 7
- 238000012360 testing method Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 238000003786 synthesis reaction Methods 0.000 claims description 5
- 239000003344 environmental pollutant Substances 0.000 claims description 4
- 102000004157 Hydrolases Human genes 0.000 claims description 3
- 108090000604 Hydrolases Proteins 0.000 claims description 3
- 102000004195 Isomerases Human genes 0.000 claims description 3
- 108090000769 Isomerases Proteins 0.000 claims description 3
- 102000004316 Oxidoreductases Human genes 0.000 claims description 3
- 108090000854 Oxidoreductases Proteins 0.000 claims description 3
- 102000004357 Transferases Human genes 0.000 claims description 3
- 108090000992 Transferases Proteins 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 238000003379 elimination reaction Methods 0.000 claims description 3
- 238000006317 isomerization reaction Methods 0.000 claims description 3
- 238000006479 redox reaction Methods 0.000 claims description 3
- 238000006276 transfer reaction Methods 0.000 claims description 3
- 239000012229 microporous material Substances 0.000 claims 1
- 230000000717 retained effect Effects 0.000 abstract description 9
- 230000009257 reactivity Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 189
- 239000000843 powder Substances 0.000 description 131
- 239000008188 pellet Substances 0.000 description 105
- 239000000377 silicon dioxide Substances 0.000 description 84
- 230000000694 effects Effects 0.000 description 51
- 108010066657 azoreductase Proteins 0.000 description 50
- 102100022365 NAD(P)H dehydrogenase [quinone] 1 Human genes 0.000 description 49
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 48
- 239000000047 product Substances 0.000 description 46
- 108010050375 Glucose 1-Dehydrogenase Proteins 0.000 description 38
- CEQFOVLGLXCDCX-WUKNDPDISA-N methyl red Chemical compound C1=CC(N(C)C)=CC=C1\N=N\C1=CC=CC=C1C(O)=O CEQFOVLGLXCDCX-WUKNDPDISA-N 0.000 description 35
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 34
- 238000005119 centrifugation Methods 0.000 description 34
- 108091005804 Peptidases Proteins 0.000 description 33
- 239000004365 Protease Substances 0.000 description 33
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 33
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 32
- 108090001060 Lipase Proteins 0.000 description 32
- 239000004367 Lipase Substances 0.000 description 32
- 102000004882 Lipase Human genes 0.000 description 32
- 235000019421 lipase Nutrition 0.000 description 32
- 229910021536 Zeolite Inorganic materials 0.000 description 31
- 239000010457 zeolite Substances 0.000 description 31
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 30
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 30
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 29
- 238000002076 thermal analysis method Methods 0.000 description 28
- 238000000354 decomposition reaction Methods 0.000 description 27
- 239000012528 membrane Substances 0.000 description 27
- 230000000052 comparative effect Effects 0.000 description 24
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 21
- 238000006731 degradation reaction Methods 0.000 description 20
- 238000001035 drying Methods 0.000 description 20
- 230000015556 catabolic process Effects 0.000 description 19
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 19
- 229910052753 mercury Inorganic materials 0.000 description 19
- 239000006228 supernatant Substances 0.000 description 19
- 230000004580 weight loss Effects 0.000 description 18
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 17
- 108010093096 Immobilized Enzymes Proteins 0.000 description 17
- 238000002156 mixing Methods 0.000 description 17
- 229910052757 nitrogen Inorganic materials 0.000 description 17
- 238000009826 distribution Methods 0.000 description 16
- 108010010803 Gelatin Proteins 0.000 description 15
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 15
- 230000006870 function Effects 0.000 description 15
- 239000008273 gelatin Substances 0.000 description 15
- 229920000159 gelatin Polymers 0.000 description 15
- 235000019322 gelatine Nutrition 0.000 description 15
- 235000011852 gelatine desserts Nutrition 0.000 description 15
- 239000007788 liquid Substances 0.000 description 15
- 239000011859 microparticle Substances 0.000 description 13
- 238000002835 absorbance Methods 0.000 description 12
- 239000011230 binding agent Substances 0.000 description 12
- 239000010408 film Substances 0.000 description 12
- 238000002429 nitrogen sorption measurement Methods 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 11
- 238000002459 porosimetry Methods 0.000 description 11
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 11
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 10
- 239000011534 wash buffer Substances 0.000 description 10
- 230000000704 physical effect Effects 0.000 description 9
- 239000000945 filler Substances 0.000 description 8
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 8
- 238000004042 decolorization Methods 0.000 description 7
- 239000013335 mesoporous material Substances 0.000 description 7
- 238000005191 phase separation Methods 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 6
- 239000010954 inorganic particle Substances 0.000 description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 239000000987 azo dye Substances 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000004342 Benzoyl peroxide Substances 0.000 description 4
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000003463 adsorbent Substances 0.000 description 4
- 235000019400 benzoyl peroxide Nutrition 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000001471 micro-filtration Methods 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 235000013339 cereals Nutrition 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229920006026 co-polymeric resin Polymers 0.000 description 3
- 239000005515 coenzyme Substances 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000000578 dry spinning Methods 0.000 description 3
- FVTCRASFADXXNN-SCRDCRAPSA-N flavin mononucleotide Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O FVTCRASFADXXNN-SCRDCRAPSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 150000004760 silicates Chemical class 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- CSRCBLMBBOJYEX-UHFFFAOYSA-M sodium;2-morpholin-4-ylethanesulfonic acid;hydroxide Chemical compound [OH-].[Na+].OS(=O)(=O)CCN1CCOCC1 CSRCBLMBBOJYEX-UHFFFAOYSA-M 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- 238000002166 wet spinning Methods 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 239000005909 Kieselgur Substances 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 241000194110 Bacillus sp. (in: Bacteria) Species 0.000 description 1
- 206010007269 Carcinogenicity Diseases 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 239000004803 Di-2ethylhexylphthalate Substances 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- 241000134731 Phycomyces nitens Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000007670 carcinogenicity Effects 0.000 description 1
- 231100000260 carcinogenicity Toxicity 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 125000005313 fatty acid group Chemical group 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000001891 gel spinning Methods 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000009775 high-speed stirring Methods 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010952 in-situ formation Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 238000003541 multi-stage reaction Methods 0.000 description 1
- 239000002101 nanobubble Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000037332 pore function Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108010043393 protease N Proteins 0.000 description 1
- 125000005581 pyrene group Chemical group 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 230000034655 secondary growth Effects 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229950011008 tetrachloroethylene Drugs 0.000 description 1
- 238000002145 thermally induced phase separation Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Landscapes
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
【課題】ミクロ孔やミクロないしメソ孔を有する多孔質シリケートや、これと類似した表面性状を有する機能性微粒子の特性を保持しながら、同時に高い耐水性や濾過性、反応性を有する多元多孔質成形体及びその製造方法を提供する。【解決手段】ミクロないしメソポーラス微粒子の多孔質成形体は、細孔直径が0.3nm〜50nmのミクロないしメソ孔を有する、シリケート、アルミノシリケート、アルミナ又はチタニアを主成分とし、粒径が0.01μm〜200μmである機能性微粒子と、有機高分子とを含む多孔質成形体であって、細孔直径が50nm〜100μmのマクロ孔を有し、空隙率が34%以上の多孔体であり、成形体中の機能性微粒子の含有率が46質量%以上であり、機能性微粒子の表面の少なくとも一部が成形体から表出しており、ミクロないしメソ孔の細孔容積が、原料機能性微粒子の40%以上保持されている。【選択図】図1PROBLEM TO BE SOLVED: To maintain the characteristics of a porous silicate having micropores and micro or mesopores and functional fine particles having similar surface properties, and at the same time, to have high water resistance, filterability and reactivity. A molded product and a method for producing the same are provided. SOLUTION: A porous molded body of micro or mesoporous fine particles is mainly composed of silicate, aluminosilicate, alumina or titania having micro or meso pores having a pore diameter of 0.3 nm to 50 nm, and has a particle size of 0. A porous molded body containing functional fine particles having a size of 01 μm to 200 μm and an organic polymer, which has macropores having a pore diameter of 50 nm to 100 μm and a porosity of 34% or more. The content of the functional fine particles in the molded body is 46% by mass or more, at least a part of the surface of the functional fine particles is exposed from the molded body, and the pore volume of the micro or mesopores is the raw material functional fine particles. 40% or more of the particles are retained. [Selection diagram] Fig. 1
Description
本発明は、ミクロないしメソポーラス微粒子の多孔質成形体、酵素担持用担体、その酵素複合体及びこれらの製造方法に関するものである。 The present invention relates to a porous molded body of micro to mesoporous fine particles, an enzyme-supporting carrier, an enzyme complex thereof, and a production method thereof.
無機の高機能性材料としては、古くから粘土やゼオライト、珪藻土、活性炭など天然のミクロないしメソ孔を有する微粒子が知られている。これらの微粒子は、その分子オーダーの規則的な細孔や、特定の分子やイオンに対する吸着性、構造から生じる触媒能などの特性から、分子篩、吸着剤、反応触媒などとして、工業プロセスのみでなく、一般の生活の中でも様々に利用されてきた。 As inorganic highly functional materials, fine particles having natural micro to mesopores such as clay, zeolite, diatomaceous earth, activated carbon and the like have been known for a long time. These fine particles are not only used in industrial processes as molecular sieves, adsorbents, reaction catalysts, etc. due to their characteristics such as regular pores in the molecular order, adsorptivity to specific molecules and ions, and catalytic ability resulting from the structure. It has been used in various ways in general life.
ゼオライトの利用例として、特許文献1には、液体混合物の分離膜として、通気性を有する支持体上にゼオライトが固定されてなる分離膜が開示されている。さらに、支持体が、織物、編物、組物、又はセラミック、金属、若しくは合成樹脂よりなる連続発泡体よりなることも開示されている。 As an example of the use of zeolite, Patent Document 1 discloses a separation membrane in which zeolite is fixed on a support having air permeability as a separation membrane for a liquid mixture. Furthermore, it is also disclosed that the support is made of a woven fabric, a knitted fabric, a braid, or a continuous foam made of ceramic, metal, or synthetic resin.
また、特許文献2には、超高分子量ポリエチレン樹脂と、耐熱性を有する微細フィラーとを含有してなる、有機溶剤又は有機洗浄剤用フィルタ濾材が開示されている。さらに、微細フィラーが、ゼオライト、チタン酸カリウム、酸化チタン、セピオライト、活性炭から選ばれた1種又は2種以上であることも開示されている。 Patent Document 2 discloses a filter medium for an organic solvent or an organic detergent, which contains an ultrahigh molecular weight polyethylene resin and a heat-resistant fine filler. Furthermore, it is also disclosed that the fine filler is one or more selected from zeolite, potassium titanate, titanium oxide, sepiolite, and activated carbon.
また、特許文献3には、ポリアミド樹脂にて構成された中空糸膜について開示されている。さらに、ポリアミド樹脂がフィラー粒子を樹脂の質量に対して5〜100質量%、すなわち中空糸膜中に約4.7〜50質量%含むものであることも開示されている。 Patent Document 3 discloses a hollow fiber membrane made of a polyamide resin. Furthermore, it is also disclosed that the polyamide resin contains filler particles in an amount of 5 to 100% by mass based on the mass of the resin, that is, about 4.7 to 50% by mass in the hollow fiber membrane.
また、本発明者らは、特許文献4において、天然ゼオライト中空糸多孔体、ゼオライト膜複合多孔体及びその製造方法について報告した。この天然ゼオライト中空糸多孔体は、天然ゼオライト粉末と、3−50重量%の有機高分子によって構成される、湿式紡糸された中空糸多孔体であって、細孔径が0.01−100ミクロンの範囲に複数の径の細孔が分布する多元多孔体であり、浸水可能な耐水性を有し、乾燥処理後も、含水状態にすることによって、可逆的にフレキシビリティ性能を示すことを特徴とする。 In addition, in the patent document 4, the present inventors reported on a natural zeolite hollow fiber porous body, a zeolite membrane composite porous body, and a production method thereof. This natural zeolite hollow fiber porous body is a wet-spun hollow fiber porous body composed of natural zeolite powder and 3 to 50% by weight of an organic polymer, and has a pore diameter of 0.01 to 100 microns. It is a multi-element porous body in which pores with a plurality of diameters are distributed in the range, has water resistance that can be submerged, and exhibits reversible flexibility performance by making it water-containing even after drying treatment. To do.
メソ孔を有する合成微粒子としては、メソポーラスシリカ等のメソポーラス物質が知られている。このメソポーラス物質の利用法としては、例えば、これらの規則性のメソ孔に、生体触媒である酵素やタンパク質を固定化して固定化支持体としての利用法が挙げられる。例えば非特許文献1は、酵素を利用した医薬品等の機能性化学品の生産プロセスにおいて、生成物と酵素の分離、酵素の再利用等に向けた酵素の固定化支持体としてのメソポーラスシリカ微粒子の利用法を開示する。 As synthetic fine particles having mesopores, mesoporous materials such as mesoporous silica are known. Examples of the method of using the mesoporous material include a method of using the mesoporous material as an immobilization support by immobilizing a biocatalyst enzyme or protein in these regular mesopores. For example, Non-Patent Document 1 discloses that in the production process of functional chemicals such as pharmaceuticals using an enzyme, mesoporous silica fine particles as a support for immobilizing an enzyme for separation of the product and the enzyme, reuse of the enzyme, etc. Disclose usage.
また、近年、利用し易くするためにメソポーラスシリカを成型体に加工する方法が報告されている。例えば非特許文献2は、メソポーラスシリカ微粒子粉末を用いた中空糸状成型法を開示する。また、非特許文献3は、ペレット状成型法を開示する。 In recent years, a method for processing mesoporous silica into a molded body has been reported for easy use. For example, Non-Patent Document 2 discloses a hollow fiber molding method using mesoporous silica fine particle powder. Non-Patent Document 3 discloses a pellet molding method.
ゼオライトは、規則的に配列したミクロ孔を有し、その骨格構造中の主成分であるSiの一部がAlに置換したアルミノシリケートであり、このSi/Alの比率が、ゼオライトの触媒としての強度や機能に影響するだけでなく、ゼオライト自体の吸着分子、反応分子、反応溶媒との親和性を左右する。ゼオライト中の細孔は3〜10Å程度の3次元規則細孔であるのに対し、粘土は2次元の層状構造、珪藻土はナノサイズから数ミクロンサイズにわたる比較的大きな細孔を有している。また、これら、主にシリカによる骨格を有するものの他、活性炭はカーボンが主成分で2nm〜10nm程度のサイズの細孔を有している。 Zeolite is an aluminosilicate having regularly arranged micropores, and a part of Si as a main component in the skeleton structure is substituted with Al, and this Si / Al ratio is used as a catalyst of zeolite. Not only affects the strength and function, but also affects the affinity of the zeolite itself with adsorbed molecules, reactive molecules, and reaction solvents. The pores in zeolite are three-dimensional regular pores of about 3 to 10 mm, whereas clay has a two-dimensional layered structure, and diatomaceous earth has relatively large pores ranging from nano size to several microns. Further, in addition to those having a skeleton mainly composed of silica, activated carbon has carbon as a main component and pores having a size of about 2 nm to 10 nm.
このような天然に産出する多孔体の他に、天然にはなかなか得られない1nm以上の規則細孔を有したシリケートであるメソポーラスシリカや、シリカの代わりにチタニアを骨格とするメソポーラス酸化チタン、カーボンによるメソポーラスカーボン、陰イオンの吸着が可能な層状化合物であるハイドロタルサイト等、天然では得られない機能や細孔サイズを有する機能性材料が、近年様々に開発されてきている。これらの微粒子の機能は、粒子の表面で反応対象と接触することによって発現するため、機能の向上を目指して、より高い表面積を有する微粒子化が進められてきている。 In addition to such naturally occurring porous materials, mesoporous silica, which is a silicate having regular pores of 1 nm or more, which is not easily obtained in nature, mesoporous titanium oxide having a titania skeleton instead of silica, carbon In recent years, various functional materials having functions and pore sizes that cannot be obtained in nature have been developed, such as mesoporous carbon produced by Hf and hydrotalcite, which is a layered compound capable of adsorbing anions. Since the function of these fine particles is expressed by contacting the reaction target on the surface of the particles, fine particles having a higher surface area have been promoted with the aim of improving the functions.
メソポーラスシリカをはじめとするメソポーラス物質は、ゼオライトが1nm以下の規則細孔を有するのに対して、1〜50nm程度の規則細孔を有する多孔体粒子群である。層状シリケートを原料に4級アルキルアミンをテンプレートにしてメソポーラスシリカが合成されたのを初めとして、この中のシリカの一部をアルミナに置き換えたアルミノシリケート、シリカの代わりにアルミナやチタニアを原料にした、メソポーラス酸化アルミニウム、メソポーラス酸化チタン、カーボンによるメソポーラスカーボンなどが合成されてきている。 Mesoporous materials such as mesoporous silica are a group of porous particles having regular pores of about 1 to 50 nm, whereas zeolite has regular pores of 1 nm or less. Starting with the synthesis of mesoporous silica using quaternary alkylamine as a template with layered silicate as a raw material, aluminosilicate in which a part of the silica was replaced with alumina, and using alumina and titania instead of silica as raw materials Mesoporous aluminum oxide, mesoporous titanium oxide, mesoporous carbon using carbon, and the like have been synthesized.
これらのメソポーラス物質はいずれも有機物を鋳型とした合成品で、規則孔にタンパクや酵素などの様々な有機物を固定化することが可能であることから、様々な分野での利用が期待されているが、非常に高価であり、またサブミクロン大の微粒子が多く、分離精製が難しいことが産業上での利用法の課題になっている。 These mesoporous materials are all synthetic products using organic substances as templates, and various organic substances such as proteins and enzymes can be immobilized in the regular pores, so they are expected to be used in various fields. However, it is very expensive, and there are many submicron-sized fine particles, so that separation and purification are difficult, which is a problem in industrial use.
一方、新規に合成された微粒子の多くは、1次粒子のままでは分散性が低く、また分散性を高めた後は分離回収が困難になるという欠点を有している。工業的にこれらの機能性微粒子を利用するためには、もとの表面積を極力維持した状態での成形・部材化又は分離手法が必須になってくる。例えば、ゼオライトは自己焼結性に乏しいため、一般的には、無機や有機のバインダーを介してのペレット成形が行なわれるが、いずれの手法に於いても、バインダー量が少ないと強度や耐水性が下がり、バインダー量が多いと微粒子表面をバインダーがつぶしてしまい、本来の機能が充分に発現されないという問題が生じ、特に薄膜状への成形を試みた場合、この問題は大きい。 On the other hand, many of the newly synthesized fine particles have the disadvantage that the primary particles remain as dispersible and the separation and recovery become difficult after the dispersibility is improved. In order to use these functional fine particles industrially, a molding / membering or separation method with the original surface area maintained as much as possible is essential. For example, since zeolite has poor self-sintering properties, pellet molding is generally performed via an inorganic or organic binder. However, in any method, if the amount of the binder is small, strength and water resistance are reduced. When the amount of the binder is large, the binder is crushed on the surface of the fine particles, so that the original function is not sufficiently developed, and this problem is particularly serious when trying to form a thin film.
成形手法として、特許文献1には、ゼオライトが固定されてなる分離膜の製膜化手法のひとつとして、水熱合成などの合成の段階から、基板上などに2次成長させるなどの成形手法が記載されているが、この手法は、得られるものの可塑性が低くなりがちであり、また熱水合成が可能な特定の微粒子の場合の成形でなければ採用できない。 As a forming method, Patent Document 1 discloses a forming method such as secondary growth on a substrate or the like from a synthesis stage such as hydrothermal synthesis as one of methods for forming a separation membrane in which zeolite is fixed. Although described, this technique tends to be less plastic but can only be molded in the case of specific particulates capable of hydrothermal synthesis.
一方、有機高分子の成形体に無機微粒子をフィラーとして複合化することによって、有機高分子膜の強度を向上させたり、光学的性質や耐熱性・耐火性等の機能を付与させることができる。これらでは、有機高分子とフィラーとの親和性やフィラー粒子の配向性が、複合体の性質に大きく影響すると考えられ、フィラー粒子や樹脂側を表面修飾して親和性を高めることが盛んにおこなわれている。 On the other hand, by combining inorganic fine particles as fillers with an organic polymer molded body, the strength of the organic polymer film can be improved, and functions such as optical properties, heat resistance, and fire resistance can be imparted. In these, the affinity between the organic polymer and the filler and the orientation of the filler particles are thought to greatly affect the properties of the composite, and the surface of the filler particles and the resin side is modified to increase the affinity. It is.
特許文献2には、洗浄用有機溶媒のフィルタ濾材として、高分子量ポリエチレン樹脂に耐熱性を有する繊維状の無機フィラーを配合することによって得られた、平均孔径0.01〜5μmの貫通孔を有し、膜厚が25〜300μmである多孔質膜が開示されている。しかし、特許文献2に記載されている有機高分子膜の溶融成形の手法は、有機高分子の高温加熱溶融・混練・押出成形を行うため、これらの成形過程に耐性を有する微粒子以外には使用することができない。また、溶融混練中に無機粒子の表面が潰れてしまうため、可塑剤及び細孔の形成剤として多量の鉱物オイルやフタル酸ジ−2−エチルヘキシルを使用せねばならず、更にこの可塑剤を抽出除去するための抽出剤として、多量のヘキサン、ヘプタン、オクタン、ノナン、デカン等の飽和炭化水素系や、発がん性の高いトリクロロエチレン、テトラクロロエチレン等のハロゲン化炭化水素系の有機溶剤を用いなければならない。 Patent Document 2 has through-holes having an average pore diameter of 0.01 to 5 μm obtained by blending a high-molecular-weight polyethylene resin with a fibrous inorganic filler having heat resistance as a filter medium for a cleaning organic solvent. And the porous membrane whose film thickness is 25-300 micrometers is disclosed. However, the method of melt molding of the organic polymer film described in Patent Document 2 performs high-temperature heating melting, kneading, and extrusion molding of the organic polymer, so that it can be used in addition to fine particles having resistance to these molding processes. Can not do it. In addition, since the surface of the inorganic particles is crushed during melt-kneading, a large amount of mineral oil or di-2-ethylhexyl phthalate must be used as a plasticizer and pore-forming agent, and this plasticizer is further extracted. As an extractant for removal, a large amount of a saturated hydrocarbon-based organic solvent such as hexane, heptane, octane, nonane, decane or the like, or a halogenated hydrocarbon-based organic solvent such as trichloroethylene or tetrachloroethylene having high carcinogenicity must be used.
このような溶融成形手法の他に、有機高分子の成形手法として相分離法が考えられる。相分離法は、溶媒中に有機高分子を溶解してスラリーとし、これを非溶媒又は貧溶媒の侵入や温度変化等で凝集させて成形する手法である。特許文献3には、ポリアミド中空糸膜とその製造方法として、熱誘起相分離法での製膜方法が開示されている。しかし、この手法では有機高分子スラリーを170℃以上に加熱して作製せねばならず、100℃以下に温度低下させることによって製膜し、且つフィラーを樹脂に対して100重量%まで、つまり構成物の50重量%以上担持させると強度が得られない恐れがある。このように、この相分離法は、有機高分子膜の性質に主眼を置いた製膜方法として用いられており、上述のような強度の問題から、機能性微粒子を主原料として多孔体化する製膜方法といては適していない。 In addition to such a melt molding method, a phase separation method can be considered as a method for molding an organic polymer. The phase separation method is a technique in which an organic polymer is dissolved in a solvent to form a slurry, which is aggregated by invasion of a non-solvent or a poor solvent, temperature change, or the like. Patent Document 3 discloses a polyamide hollow fiber membrane and a method for producing the membrane by a thermally induced phase separation method as its production method. However, in this method, the organic polymer slurry must be produced by heating to 170 ° C. or more, and the film is formed by lowering the temperature to 100 ° C. or less, and the filler is made up to 100% by weight with respect to the resin. If 50% by weight or more of the product is supported, the strength may not be obtained. As described above, this phase separation method is used as a film forming method with an emphasis on the properties of the organic polymer film. From the above-mentioned problems of strength, the functional fine particles are made porous as the main raw material. It is not suitable as a film forming method.
特許文献4では、貧溶媒中での相分離を利用して、無機吸着体と有機高分子の複合体の成形を行なっている。この手法に依れば無機吸着体を主原料として50重量%以上含む多孔性成形体を製造することが可能であり、且つこの成形体は水溶液中で数年にわたって安定であり、粉落ちなしに濾過膜として使用できる強度を有している。 In Patent Document 4, a composite of an inorganic adsorbent and an organic polymer is formed using phase separation in a poor solvent. According to this method, it is possible to produce a porous molded body containing 50% by weight or more of an inorganic adsorbent as a main raw material, and this molded body is stable in an aqueous solution for several years without causing powder falling. It has the strength that can be used as a filtration membrane.
しかしながら、特許文献4では、成形用スラリーを作成するにあたって無機微粒子を高分散させるためとして、無機粒子をスラリー用の良溶媒中で粉砕しながら分散させることが特徴となっている。しかし、特許文献4の手法に従い、先にシリカ/アルミナ比の高い合成ゼオライトを溶媒に分散した状態で有機高分子としてポリサルホンを混入すると、溶媒と微粒子の相互作用や親和性のバランスによってポリサルホンの溶媒中への溶解が阻害され、無機粒子が均一に分散したスラリーが得られないケースや成形体からの粉落ちが多くなってしまうケースがあった。また、このような問題を避けるため、無機粒子との親和性の高い有機高分子を用いた場合、無機粒子の表面のみでなく細孔内部まで有機高分子が浸入して、成型時に無機粒子のミクロ孔が塞がり潰れてしまい易いことが判明した。このように、従来技術では、種々のサイズの細孔をもち、天然ゼオライトとは親疎水性の異なる表面を有する多孔質シリケート微粒子を成形する際に、粉落ちを防止できる構造の緻密性と液透過性や細孔機能を保持する多孔性を両立することが難しいという問題があった。 However, Patent Document 4 is characterized in that the inorganic particles are dispersed while being pulverized in a good solvent for the slurry in order to highly disperse the inorganic fine particles in forming the molding slurry. However, when polysulfone is mixed as an organic polymer in a state where a synthetic zeolite having a high silica / alumina ratio is dispersed in a solvent in accordance with the technique of Patent Document 4, the solvent of polysulfone is balanced by the interaction and affinity balance between the solvent and fine particles. There were cases where dissolution into the inside was hindered and a slurry in which inorganic particles were uniformly dispersed could not be obtained, and there were cases where powder fall off from the molded body increased. In addition, in order to avoid such problems, when an organic polymer having high affinity with inorganic particles is used, the organic polymer penetrates not only into the surface of the inorganic particles but also into the pores, and the inorganic particles It has been found that the micropores are easily clogged. As described above, in the prior art, when forming porous silicate microparticles having pores of various sizes and having a surface different in hydrophilicity / hydrophobicity from that of natural zeolite, the fineness and liquid permeability of the structure can prevent powder falling. There has been a problem that it is difficult to achieve both the porosity and the porosity maintaining the pore function.
また、非特許文献1が提案するような、従来のメソポーラスシリカ微粒子を利用した固定化酵素に関する基礎研究では、主に粉末の状態の「メソポーラスシリカ微粒子粉末」が使用されており、一般にも微粒子粉末状で使用されることが多いが、特にバイオリアクターなどの装置、器具の一部としてメソポーラスシリカ微粒子粉末を利用する場合には、微粒子粉末の微粉化、粉落ちといった問題があった。 In addition, in basic research on immobilized enzymes using conventional mesoporous silica fine particles as proposed by Non-Patent Document 1, “mesoporous silica fine particle powder” in a powder state is mainly used, and generally fine particle powders are used. In particular, when mesoporous silica fine particle powder is used as a part of a device or instrument such as a bioreactor, there is a problem that the fine particle powder is pulverized and powdered off.
また、非特許文献2が開示する有機高分子をバインダーとして得られた成形体は、有機高分子の影響によって、メソポーラスシリカ本来の細孔径や表面積を維持することが困難になることがあるといった問題があった。 Further, the molded body obtained using the organic polymer disclosed in Non-Patent Document 2 as a binder may be difficult to maintain the original pore diameter and surface area of mesoporous silica due to the influence of the organic polymer. was there.
また、非特許文献3が開示する焼結により得られた成形体は、焼結温度の影響によって、メソポーラスシリカ本来の細孔径や表面積を維持することが困難になることがあるといった問題があった。 Further, the molded body obtained by sintering disclosed in Non-Patent Document 3 has a problem that it may be difficult to maintain the original pore diameter and surface area of mesoporous silica due to the influence of the sintering temperature. .
したがって、本発明の課題は、天然ゼオライト粒子に限定されず、合成ハイシリカゼオライトのような表面の親水性が低くより小さな粒子のミクロ孔やメソポーラスシリカ、メソポーラス酸化アルミ、メソポーラス酸化チタンのようなミクロないしメソ孔を有する多孔質シリケート、また、これと類似した表面性状を有する機能性微粒子の特性を保持しながら、同時に高い耐水性や濾過性、反応性を有する多元多孔質成形体及びこれを作製できる新規な手法を提供することである。また、この手法によって、ポリサルホンやポリエーテルサルホンに限定されず、用途に応じ、耐候性が高いポリアミドイミド、より安価なEVOHやPMMAといった親水性樹脂をバインダーとして使用しても良好な結果が得られる。 Therefore, the problem of the present invention is not limited to natural zeolite particles, but the surface has low hydrophilicity such as synthetic high silica zeolite, and microparticles such as mesoporous silica, mesoporous aluminum oxide, and mesoporous titanium oxide. Or porous silicate with mesopores, and multi-component porous molded body having high water resistance, filterability and reactivity while maintaining the characteristics of functional fine particles with similar surface properties It is to provide a new technique that can be done. In addition, this method is not limited to polysulfone or polyethersulfone, and good results can be obtained even if polyamide imide with high weather resistance or cheaper hydrophilic resin such as EVOH or PMMA is used as a binder depending on the application. It is done.
また、本発明の課題は、メソポーラスシリカ等のメソポーラス物質の微粒子粉末を用途に合わせて中空糸状又はペレット状などの適宜の形状に成形して用いても安定で機械的強度が高く、粉末状のメソポーラスシリカ微粒子と同様の物性を維持し、更に、酵素の固定化支持体として粉末と同様の効果を発揮できる、メソポーラス微粒子の多孔質成形体、その酵素複合体及びそれらの製造方法を提供することである。 In addition, the problem of the present invention is that the fine powder of mesoporous material such as mesoporous silica is stable and has high mechanical strength even if it is molded into an appropriate shape such as a hollow fiber shape or a pellet shape according to the use, and the powdery To provide a porous molded body of mesoporous fine particles, an enzyme complex thereof, and a method for producing them, which can maintain the same physical properties as mesoporous silica fine particles and can further exhibit the same effect as powder as an enzyme immobilization support. It is.
本発明者らは、前記課題を達成すべく鋭意検討を行った結果、多孔質粒子の成形手法としては、有機高分子との混合スラリーを貧溶媒中で相分離する方法が、貧溶媒の浸入経路が貫通孔となって成形体の反応性を高め、多孔質微粒子の表面を一部表出させるという観点から好ましいが、細孔表面を塞ぐことなく保持するためには、スラリー調製の際に、良溶媒に溶解した有機高分子が多孔質粒子の細孔に侵入して重合、又は、多孔質粒子の表面を完全に覆って、成形体の貫通孔から微粒子の表面を遮蔽してしまうことを、避けることに留意することが大切であるという見解に至った。 As a result of intensive studies to achieve the above-mentioned problems, the inventors of the present invention have adopted a method of phase separation of a mixed slurry with an organic polymer in a poor solvent as a method for forming porous particles. It is preferable from the viewpoint that the route becomes a through hole to increase the reactivity of the molded body and partially expose the surface of the porous fine particles. , Organic polymer dissolved in a good solvent penetrates into the pores of the porous particles, polymerizes, or completely covers the surface of the porous particles and shields the surface of the fine particles from the through holes of the molded body It came to the view that it is important to keep in mind.
その観点から、
1.多孔質粒子の成形用スラリーの調製は、先に有機高分子を良溶媒中に入れて充分に溶解できる温度で溶解してから、微粒子が反応を起こさず、有機高分子が粘性スラリー状を保てる温度で高速攪拌しながら、微粒子を少しずつ投入するといった手順で行うことが好ましく、
2.また、粉落ちを防止するためには構造中にシリケート表面に形成されるシラノールとの親和性が高い官能基を有する親水性の有機高分子をバインダーとすることが有効であるが、親水性有機高分子でも低分子の状態であったり、粘性が低く細孔内部へと侵入し易いものは避けることが好ましいという知見を得た。更に、これらの親水性の有機高分子は疎水性有機高分子に比べて水中で緻密な凝集構造を取り易いので、サブミクロンサイズの微粒子間に入り込んで成形体が緻密になり易いが、本発明の手法に依り、微粒子との混合スラリー作製にあたり、先に有機高分子を溶解した粘性スラリーに微粒子を添加した際に微粒子の含む気体や粘性スラリーの高速攪拌によって生じるナノサイズであって欠陥にならない程度に極微小な気泡を意図的に混入させることができ、成形後の粒子間に空隙が生じ易く、濾過性や柔軟性が向上することを見い出した。更に、親水性有機高分子が貧溶媒と微粒子との親和性のバランスから、微粒子を完全に包埋する凝集構造をとってしまう場合、成形体形成後の後処理によって、成形体構造を大きく破壊することなく、また強度低下を招くことなく微粒子へのアクセシビリティーを上げることができることを見出した。
From that perspective,
1. Preparation of slurry for forming porous particles can be performed by first dissolving the organic polymer in a good solvent at a temperature at which it can be sufficiently dissolved, and then the fine particles do not react and the organic polymer can maintain a viscous slurry. It is preferable to carry out the procedure of adding fine particles little by little while stirring at high speed at a temperature,
2. In order to prevent powder falling, it is effective to use a hydrophilic organic polymer having a functional group having a high affinity for silanol formed on the silicate surface in the structure as a binder. It has been found that it is preferable to avoid polymers that are in a low molecular state or that have low viscosity and easily enter the pores. Furthermore, since these hydrophilic organic polymers tend to have a dense aggregate structure in water compared to hydrophobic organic polymers, the molded product tends to become dense by entering between fine particles of submicron size. In the preparation of slurry mixed with fine particles, when adding fine particles to a viscous slurry in which organic polymer is dissolved, the nano-size generated by high-speed stirring of the gas containing the fine particles and the viscous slurry does not become a defect. It has been found that extremely fine bubbles can be intentionally mixed to such a degree that voids are easily generated between the formed particles, and the filterability and flexibility are improved. Furthermore, if the hydrophilic organic polymer has an agglomeration structure that completely embeds the fine particles due to the balance of the affinity between the poor solvent and the fine particles, the post-treatment after the formation of the molded product will greatly destroy the molded product structure. It has been found that the accessibility to the fine particles can be increased without degrading and without causing a decrease in strength.
本発明者らは、これらの知見に基づき本発明を完成するに至った。 Based on these findings, the present inventors have completed the present invention.
すなわち本発明は、以下の態様を含む。
(1)細孔直径が0.3nm〜50nmのミクロないしメソ孔を有する、シリケート、アルミノシリケート、アルミナ又はチタニアを主成分とし、粒径が0.01μm〜200μmである機能性微粒子と、有機高分子とを含む多孔質成形体であって、
細孔直径が50nm〜100μmのマクロ孔を有し、
空隙率が34%以上の多孔体であり、
前記成形体中の前記機能性微粒子の含有率が46質量%以上であり、
前記機能性微粒子の表面の少なくとも一部が前記成形体から表出しており、
前記機能性微粒子の前記ミクロないしメソ孔の細孔容積が、原料機能性微粒子の40%以上保持されている、
ことを特徴とするミクロないしメソポーラス微粒子の多孔質成形体。
That is, the present invention includes the following aspects.
(1) Functional fine particles having a microparticle or mesopore with a pore diameter of 0.3 nm to 50 nm, mainly composed of silicate, aluminosilicate, alumina, or titania and having a particle diameter of 0.01 μm to 200 μm; A porous molded body containing molecules,
Macropores with a pore diameter of 50 nm to 100 μm,
A porous body having a porosity of 34% or more;
The content of the functional fine particles in the molded body is 46% by mass or more,
At least part of the surface of the functional fine particles is exposed from the molded body,
The micro volume or mesopore volume of the functional fine particles is maintained at 40% or more of the raw material functional fine particles,
A porous molded body of micro or mesoporous fine particles characterized by the above.
(2)水中で24時間以上連続攪拌した時の前記多孔質成形体の攪拌前後での重量変化が1%以下であることを特徴とする、前記(1)に記載のミクロないしメソポーラス微粒子の多孔質成形体。 (2) The micro or mesoporous fine particles according to (1) above, wherein the weight change before and after stirring of the porous molded body when continuously stirred in water for 24 hours or more is 1% or less. Quality molded body.
(3)前記多孔質成形体の形状が、粒状、中空粒子状又は中空糸状であることを特徴とする、前記(1)又は(2)に記載のミクロないしメソポーラス微粒子の多孔質成形体。 (3) The porous molded body of micro to mesoporous fine particles according to (1) or (2) above, wherein the shape of the porous molded body is granular, hollow particle, or hollow fiber.
(4)前記機能性微粒子及び/又は前記有機高分子が複数種による混合体であることを特徴とする、前記(1)〜(3)のいずれか1つに記載のミクロないしメソポーラス微粒子の多孔質成形体。 (4) The micro or mesoporous fine particles according to any one of (1) to (3), wherein the functional fine particles and / or the organic polymer is a mixture of a plurality of types. Quality molded body.
(5)前記機能性微粒子の原料機能性微粒子の機能が、吸着性能であり、多孔質成形体の成形後に前記機能の特性発現が保持されていることを特徴とする、前記(1)〜(4)のいずれか1つに記載のミクロないしメソポーラス微粒子の多孔質成形体。 (5) The function of the functional fine particles as a raw material functional fine particle is an adsorption performance, and the characteristic expression of the function is maintained after the formation of the porous molded body. 4) A porous molded body of micro or mesoporous fine particles according to any one of 4).
(6)数ミクロンサイズの粒子を分散液中から加圧濾過できることを特徴とする、前記(1)〜(5)のいずれか1つに記載のミクロないしメソポーラス微粒子の多孔質成形体。 (6) The porous molded body of micro to mesoporous fine particles according to any one of (1) to (5) above, wherein particles having a size of several microns can be filtered under pressure from the dispersion.
(7)前記有機高分子がポリエーテルサルホン、ポリサルホン、EVOH樹脂、PMMA樹脂又はポリアミドイミド樹脂であることを特徴とする、前記(1)〜(6)のいずれか1つに記載のミクロないしメソポーラス微粒子の多孔質成形体。 (7) The micro or thru | or as described in any one of said (1)-(6) characterized by the said organic polymer being polyether sulfone, polysulfone, EVOH resin, PMMA resin, or polyamide-imide resin. A porous molded body of mesoporous fine particles.
(8)前記有機高分子を予め溶解させた有機溶媒中にミクロないしメソ孔を有するシリケート、アルミノシリケート、アルミナ又はチタニアを主成分とする機能性微粒子を分散させて原料スラリーを得る工程と、
非溶媒中に前記原料スラリーを射出することによって成形する工程と、を含むことを特徴とする前記(1)〜(7)のいずれか1つに記載のミクロないしメソポーラス微粒子の多孔質成形体の製造方法。
(8) A step of obtaining a raw material slurry by dispersing functional fine particles mainly composed of silicate, aluminosilicate, alumina or titania having micro to mesopores in an organic solvent in which the organic polymer is previously dissolved;
A step of molding by injecting the raw material slurry into a non-solvent, the porous molded body of micro to mesoporous fine particles according to any one of (1) to (7), Production method.
(9)前記有機高分子が親水基を有する、前記(8)に記載のミクロないしメソポーラス微粒子の多孔質成形体の製造方法。 (9) The method for producing a porous molded body of micro to mesoporous fine particles according to (8), wherein the organic polymer has a hydrophilic group.
(10)前記有機高分子がPMMA樹脂又はポリアミドイミド樹脂であり、成形後に重合促進剤又は硬化促進剤で処理する工程、を更に含むことを特徴とする前記(8)又は(9)に記載のミクロないしメソポーラス微粒子の多孔質成形体の製造方法。 (10) The organic polymer is a PMMA resin or a polyamide-imide resin, and further comprises a step of treating with a polymerization accelerator or a curing accelerator after molding, according to (8) or (9), A method for producing a micro- or mesoporous fine-particle porous molded body.
(11)前記ミクロないしメソポーラス微粒子の多孔質成形体を、減圧下のエタノール中又は良溶媒の低濃度水溶液中において低温加熱処理する工程、を更に含むことを特徴とする前記(8)〜(10)のいずれか1つに記載のミクロないしメソポーラス微粒子の多孔質成形体の製造方法。 (11) The step (8) to (10), further comprising a step of subjecting the porous molded body of micro to mesoporous fine particles to low-temperature heat treatment in ethanol under reduced pressure or in a low concentration aqueous solution of a good solvent. The method for producing a porous molded body of micro or mesoporous fine particles according to any one of the above.
(12)前記機能性微粒子は、細孔直径が2nm〜50nmのメソ孔を有し、粒径が0.01μm〜200μmであるメソポーラス微粒子であり、原料機能性微粒子の機能が、1種類又は2種類以上の酵素及び/又はタンパク質の固定化能を含み、前記成形体中の前記機能性微粒子の含有率が46質量%以上である、前記(1)〜(7)のいずれか1つに記載の多孔質成形体である酵素担持用担体。 (12) The functional fine particles are mesoporous fine particles having mesopores having a pore diameter of 2 nm to 50 nm and a particle diameter of 0.01 μm to 200 μm. It contains the immobilization ability of more than one kind of enzyme and / or protein, and the content of the functional fine particles in the molded body is 46% by mass or more. An enzyme-supporting carrier, which is a porous molded body.
(13)前記(12)に記載の酵素担持用担体と酵素との複合体。 (13) A complex of the enzyme-supporting carrier according to (12) and an enzyme.
(14)前記酵素は、酸化還元酵素、加水分解酵素、転移酵素、脱離酵素、異性化酵素、及び/又は合成酵素である、前記(13)に記載の複合体。 (14) The complex according to (13), wherein the enzyme is an oxidoreductase, a hydrolase, a transferase, a dehydrogenase, an isomerase, and / or a synthase.
(15)前記酵素の酵素反応は、酸化還元反応、加水分解反応、転移反応、脱離反応、異性化反応、及び/又は合成反応である、前記(13)又は(14)に記載の複合体。 (15) The complex according to (13) or (14), wherein the enzyme reaction of the enzyme is an oxidation-reduction reaction, hydrolysis reaction, transfer reaction, elimination reaction, isomerization reaction, and / or synthesis reaction .
(16)前記酵素の酵素反応に関わる1種類又は2種類以上の酵素及び/又はタンパク質のそれぞれが細孔直径2nm〜50nmのメソ孔に固定化された前記(13)〜(15)のいずれか1つに記載の複合体を製造する方法であって、
前記酵素及び/又はタンパク質を、pH3〜11に調整した緩衝液中でメソポーラス微粒子の多孔質成形体に固定化させる固定化工程を含む、製造方法。
(16) Any one of (13) to (15), wherein each of one or more enzymes and / or proteins involved in the enzyme reaction of the enzyme is immobilized in a mesopore having a pore diameter of 2 nm to 50 nm. A method for producing the composite according to one,
A production method comprising an immobilization step of immobilizing the enzyme and / or protein on a porous molded body of mesoporous fine particles in a buffer adjusted to pH 3-11.
(17)さらに、固定化終了後のメソポーラス微粒子の多孔質成形体をpH3〜11に調整した緩衝液で複数回洗浄する洗浄工程を含む、前記(16)に記載の製造方法。 (17) The production method according to (16), further including a washing step of washing the porous molded body of mesoporous fine particles after completion of immobilization multiple times with a buffer adjusted to pH 3-11.
(18)前記酵素反応に関わる1種類又は2種類以上の酵素及び/又はタンパク質のそれぞれがメソポーラス微粒子の多孔質成形体に固定化された、前記(13)〜(15)のいずれか1つに記載の複合体を用いた酵素反応方法であって、
前記酵素及び/又はタンパク質をメソポーラス微粒子の多孔質成形体にpH3〜11に調整した緩衝液中で固定化する固定化工程、
前記固定化工程で得られたメソポーラス微粒子の多孔質成形体と酵素との複合体を含むpH3〜11の緩衝液中に、反応基質を添加するか、又は
前記固定化工程で得られたメソポーラス微粒子の多孔質成形体と酵素との複合体を、反応基質を含むpH3〜11の緩衝液中に添加して前記酵素及び/又はタンパク質が関わる酵素反応を行う酵素反応工程、含む酵素反応方法。
(18) In any one of the above (13) to (15), each of one or more enzymes and / or proteins involved in the enzyme reaction is immobilized on a porous molded body of mesoporous fine particles. An enzyme reaction method using the described complex,
An immobilization step of immobilizing the enzyme and / or protein on a porous molded body of mesoporous fine particles in a buffer adjusted to pH 3-11;
A reaction substrate is added to a buffer solution having a pH of 3 to 11 containing a complex of a porous compact of mesoporous fine particles obtained in the immobilization step and an enzyme, or mesoporous fine particles obtained in the immobilization step An enzyme reaction method comprising an enzyme reaction step in which a complex of the porous molded body and the enzyme is added to a pH 3 to 11 buffer solution containing a reaction substrate to perform an enzyme reaction involving the enzyme and / or protein.
(19)前記酵素反応に関わる1種類又は2種類以上の酵素及び/又はタンパク質のそれぞれがメソポーラス微粒子の多孔質成形体に固定化された、前記(13)〜(15)のいずれか1項に記載の複合体を用いた酵素反応方法であって、
前記酵素及び/又はタンパク質をメソポーラス微粒子の多孔質成形体にpH3〜11に調整した緩衝液中で固定化する固定化工程、
前記固定化工程で得られたメソポーラス微粒子の多孔質成形体と酵素との複合体をpH3〜11の緩衝液で洗浄する洗浄工程、
前記洗浄工程で得られた洗浄後のメソポーラス微粒子の多孔質成形体と酵素との複合体を、反応基質を含む反応液中で、前記酵素及び/又はタンパク質が関わる酵素反応を行う酵素反応工程、含む酵素反応方法。
(20)前記酵素反応が、反応基質から機能性の有用物質を製造する方法である、前記(18)又は(19)に記載の酵素反応方法。
(21)前記酵素反応が、環境中に存在する反応基質となる環境汚染物質を分解する方法である、前記(18)又は(19)に記載の酵素反応方法。
(22)前記酵素反応方法が、被検試料中に存在するか又は存在する可能性のある反応基質を検出又は定量する方法である、前記(18)又は(19)に記載の酵素反応方法。
(23)前記(13)〜(15)のいずれか1つに記載の複合体を含む、前記酵素及び/又はタンパク質が関わる酵素反応用キット、センサー又は装置。
(19) In any one of (13) to (15) above, each of one or more enzymes and / or proteins involved in the enzyme reaction is immobilized on a porous molded body of mesoporous fine particles. An enzyme reaction method using the described complex,
An immobilization step of immobilizing the enzyme and / or protein on a porous molded body of mesoporous fine particles in a buffer adjusted to pH 3-11;
A washing step of washing a complex of a porous molded body of mesoporous fine particles obtained in the immobilization step and an enzyme with a buffer solution having a pH of 3 to 11;
An enzyme reaction step of performing an enzyme reaction involving the enzyme and / or protein in a reaction solution containing a reaction substrate, a complex of a porous molded body of mesoporous fine particles obtained after the washing step and the enzyme obtained in the washing step; Enzymatic reaction method comprising.
(20) The enzyme reaction method according to (18) or (19), wherein the enzyme reaction is a method for producing a functional useful substance from a reaction substrate.
(21) The enzyme reaction method according to (18) or (19), wherein the enzyme reaction is a method for decomposing an environmental pollutant serving as a reaction substrate present in the environment.
(22) The enzyme reaction method according to (18) or (19), wherein the enzyme reaction method is a method for detecting or quantifying a reaction substrate present or possibly present in a test sample.
(23) An enzyme reaction kit, sensor, or apparatus involving the enzyme and / or protein, comprising the complex according to any one of (13) to (15).
本発明により、天然ゼオライト粒子に限定されず、合成ハイシリカゼオライトのような表面の親水性が低くより小さな粒子のミクロ孔やメソポーラスシリカ、メソポーラス酸化アルミ、メソポーラス酸化チタンのようなミクロないしメソ孔を有する多孔質シリケート、また、これと類似した表面性状を有する機能性微粒子の特性を保持しながら、同時に高い耐水性や濾過性、反応性を有する多元多孔質成形体及びこれを作製できる新規な手法が提供される。また、この手法によって、ポリサルホンやポリエーテルサルホンに限定されず、用途に応じ、耐候性が高いポリアミドイミド、より安価なEVOHやPMMAといった親水性樹脂をバインダーとして使用しても良好な結果が得られる。 According to the present invention, not limited to natural zeolite particles, the surface has low surface hydrophilicity such as synthetic high silica zeolite and microparticles such as mesoporous silica, mesoporous aluminum oxide, and mesoporous titanium oxide. Multi-porous molded body having high water resistance, filterability, and reactivity while maintaining the characteristics of porous silicate having functional fine particles having surface properties similar to the above, and a novel method capable of producing the same Is provided. In addition, this method is not limited to polysulfone or polyethersulfone, and good results can be obtained even if polyamide imide with high weather resistance or cheaper hydrophilic resin such as EVOH or PMMA is used as a binder depending on the application. It is done.
また、本発明により、メソポーラスシリカ等のメソポーラス物質の微粒子粉末を用途に合わせて中空糸状又はペレット状などの適宜の形状に成形して用いても安定で機械的強度が高く、粉末状のメソポーラスシリカ微粒子と同様の物性を維持し、更に、酵素の固定化支持体として粉末と同様の効果を発揮できる、メソポーラス微粒子の多孔質成形体、その酵素複合体及びそれらの製造方法が提供される。 In addition, according to the present invention, powdered mesoporous silica is stable and has high mechanical strength even if fine particles of mesoporous material such as mesoporous silica are molded into an appropriate shape such as a hollow fiber shape or a pellet shape according to the application. Provided are a porous molded body of mesoporous fine particles, an enzyme complex thereof, and a method for producing them, which can maintain the same physical properties as fine particles and can exhibit the same effect as a powder as an enzyme immobilization support.
次に、本発明の好適な実施の形態を説明する。なお、本発明において、数値範囲の記載は、両端値のみならず、その中に含まれる全ての任意の中間値を含むものである。 Next, a preferred embodiment of the present invention will be described. In the present invention, the description of the numerical range includes not only both end values but also all arbitrary intermediate values included therein.
本発明の、ミクロないしメソポーラス微粒子の多孔質成形体は、機能性微粒子と有機高分子とを含む多孔質成形体である(以下、本発明の、ミクロないしメソポーラス微粒子の多孔質成形体を、本発明の多孔質成形体と称することがある)。 The porous molded body of micro to mesoporous particles of the present invention is a porous molded body containing functional fine particles and an organic polymer (hereinafter, the porous molded body of micro to mesoporous particles of the present invention is It may be referred to as a porous molded body of the invention).
本発明に係る機能性微粒子は、細孔直径が0.3nm〜50nmのミクロないしメソ孔を有する、シリケート、アルミノシリケート、アルミナ又はチタニアを主成分とする。 The functional fine particles according to the present invention are mainly composed of silicate, aluminosilicate, alumina or titania having micro to mesopores having a pore diameter of 0.3 nm to 50 nm.
ここで、ミクロ孔とは、マイクロ孔やマイクロポアとも呼ばれ、細孔直径が1nm未満の細孔をいう。メソ孔とは、ミクロ孔より大きく、細孔直径が1nm以上50nm以下の細孔をいう。従って、細孔直径が0.3nm〜50nmのミクロないしメソ孔を有するとは、細孔直径が0.3nm〜50nmの細孔を有するとの意味である。 Here, the micropore is also called a micropore or a micropore, and refers to a pore having a pore diameter of less than 1 nm. Mesopores are pores larger than micropores and having a pore diameter of 1 nm to 50 nm. Therefore, having a micro or mesopore having a pore diameter of 0.3 nm to 50 nm means having a pore having a pore diameter of 0.3 nm to 50 nm.
本発明に係る機能性粒子の細孔直径は、0.3nm〜50nmであり、好ましくは0.3nm〜10nm、より好ましくは0.5nm〜5nmである。 The pore diameter of the functional particles according to the present invention is 0.3 nm to 50 nm, preferably 0.3 nm to 10 nm, more preferably 0.5 nm to 5 nm.
また、シリケート、アルミノシリケート、アルミナ又はチタニアは、純粋なシリケート、アルミノシリケート、アルミナ又はチタニアのほか、他の金属元素がシリケートやアルミノシリケート又はチタニア構造の骨格中の欠陥部に導入されたもの、シリケートやアルミノシリケートの構造中のシリコンやアルミニウム元素の一部が他の金属に置換したもの(金属置換体)を含む。 In addition, silicate, aluminosilicate, alumina or titania is pure silicate, aluminosilicate, alumina or titania, and other metal elements introduced into defects in the skeleton of silicate, aluminosilicate or titania structure, silicate In addition, silicon (aluminum silicate) in which a part of silicon or aluminum element in the structure of aluminosilicate is replaced with another metal is included.
また、シリケート、アルミノシリケート、アルミナ又はチタニアを主成分とするとは、機能性微粒子がこれらの純相のもの、又はこれらの質量割合が、通常50%以上、好ましくは90%以上の混合物であることをいう。 In addition, silicate, aluminosilicate, alumina or titania is the main component, the functional fine particles are those of these pure phases, or the mass ratio thereof is usually 50% or more, preferably 90% or more. Say.
また、機能性微粒子の機能は、特に限定されないが、例えば吸着性能や除去能が挙げられる。これらの機能は、多孔質成形体の成形後に特性発現が保持されていると好ましい。 Further, the function of the functional fine particles is not particularly limited, and examples thereof include adsorption performance and removal ability. These functions are preferably maintained after the formation of the porous molded body.
本発明に係るシリケート、アルミナ、アルミノシリケート、アルミナ及びチタニアの種類や構造、結晶性は、特に限定されない。 The kind, structure, and crystallinity of the silicate, alumina, aluminosilicate, alumina, and titania according to the present invention are not particularly limited.
また、本発明に係る機能性微粒子の粒径は、0.01μm〜200μmであり、好ましくは0.01μm〜10μmであり、より好ましくは0.1μm〜5μmである。ここで粒径とは、凝集粒子のサイズを意味する。結晶粒子径がこの範囲より小さい粒子が凝集塊を形成して分離していないものを含むことができる。後述する原料スラリーの調整の際には、前記の範囲の粒径を有する機能性微粒子は、そのままの粒径で分散し、又は、凝集粒子がほぐれてより微細な粒径となって分散する。本発明の多孔質成形体が中空糸状もしくは微細粒状である場合、多孔質成形体、原料スラリー、又は溶媒中では、機能性微粒子は、好ましくは粒径0.01μm〜10μmの範囲で分散し、より好ましくは0.1μm〜5μmの範囲で分散する。粒径は、例えば、透過型電子顕微鏡観察による20〜30個の粒子の直径の平均値として求めることができる。 The particle diameter of the functional fine particles according to the present invention is 0.01 μm to 200 μm, preferably 0.01 μm to 10 μm, more preferably 0.1 μm to 5 μm. Here, the particle size means the size of the aggregated particles. Particles having a crystal particle size smaller than this range may include agglomerates that are not separated. When adjusting the raw material slurry to be described later, the functional fine particles having a particle size in the above range are dispersed with the same particle size, or the aggregated particles are loosened to become a finer particle size. When the porous molded body of the present invention is in the form of hollow fibers or fine particles, the functional fine particles are preferably dispersed in a particle size range of 0.01 μm to 10 μm in the porous molded body, raw material slurry, or solvent. More preferably, it disperses in the range of 0.1 μm to 5 μm. The particle diameter can be obtained, for example, as an average value of the diameters of 20 to 30 particles by observation with a transmission electron microscope.
本発明に係る機能性微粒子は、スラリー溶媒中に有機高分子と共に安定に分散できるように化学修飾又は処理された改質機能性微粒子とすることができる。機能性微粒子の化学修飾又は処理としては、例えば、シラノール基末端の有機鎖修飾などが挙げられる。 The functional fine particles according to the present invention can be modified functional fine particles that have been chemically modified or treated so as to be stably dispersed together with the organic polymer in the slurry solvent. Examples of the chemical modification or treatment of the functional fine particles include silanol group terminal organic chain modification.
本発明に係る機能性微粒子は、単独であっても複数種であってもよいが、複数種による混合体であると、一つの成形体で同時に複数の反応対象を選択的に吸着又は除去できるなど、複数の機能を付与できる点で好ましい。 The functional fine particles according to the present invention may be single or plural types, but when the functional fine particles are a mixture of plural types, a plurality of reaction targets can be selectively adsorbed or removed simultaneously with one molded body. It is preferable at the point which can provide a some function.
本発明の多孔質成形体の機能性粒子の含有率は、46質量%以上であり、好ましくは50質量%以上であり、より好ましくは60質量%以上、さらに好ましくは67質量%以上である。 The content of the functional particles in the porous molded body of the present invention is 46% by mass or more, preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 67% by mass or more.
本発明に係る有機高分子は、特に限定されないが、本発明の多孔質成形体中の多孔体とする、ミクロないしメソ孔を有する、シリケート、アルミナ、アルミノシリケート又はチタニアを主成分とする機能性微粒子との親和性が高い官能基(例えばヒドロキシル基、スルホニル基、カルボキシル基などの親水基)を有すると好ましく、比較的低温でジメチルスルホキシドをはじめとする両親媒性の汎用的な有機溶剤に対して、重量に関し、7〜20重量%程度以上溶解可能であり、これらを分散した際に均一なスラリーを調製可能で、更にそのスラリーを非溶媒もしくは貧溶媒中で凝集させて成形できるものであるとより好ましい。より具体的には、熱可塑性樹脂の中で、比較的親水性の高いポリエーテルサルホン、ポリサルホン、OH基を有するポリエチレン−ポリビニルアルコール共重合樹脂(EVOH樹脂)、ポリエチレン−酢酸ビニル共重合樹脂のケン化物、アクリル樹脂(PMMA樹脂)、ポリアミドイミド樹脂などが好ましい。さらに好ましくはポリエーテルサルホンやポリエチレンモル比44%以上のポリエチレン−ポリビニルアルコール共重合樹脂、ポリアミドイミド樹脂である。 The organic polymer according to the present invention is not particularly limited, but is a porous body in the porous molded body of the present invention, which has micro to mesopores, silicate, alumina, aluminosilicate or titania as a main component. It preferably has a functional group (for example, a hydrophilic group such as hydroxyl group, sulfonyl group, carboxyl group, etc.) having a high affinity for fine particles, and it is suitable for amphiphilic general-purpose organic solvents such as dimethyl sulfoxide at a relatively low temperature. In terms of weight, it is possible to dissolve about 7 to 20% by weight or more, and when these are dispersed, a uniform slurry can be prepared, and further, the slurry can be aggregated in a non-solvent or a poor solvent and molded. And more preferred. More specifically, among thermoplastic resins, polyether sulfone, polysulfone, polyethylene-polyvinyl alcohol copolymer resin (EVOH resin) having an OH group, and polyethylene-vinyl acetate copolymer resin having relatively high hydrophilicity are used. Saponified materials, acrylic resins (PMMA resins), polyamideimide resins and the like are preferable. More preferred are polyethersulfone, polyethylene-polyvinyl alcohol copolymer resin having a polyethylene molar ratio of 44% or more, and polyamideimide resin.
本発明に係る有機高分子は、単独であっても複数種であってもよいが、成形体の強度などの物理的性質、耐薬品性、耐熱性などの化学的性質は有機高分子の性質に依存するところが大きいため、複数種による混合体とすることによってこれらの成形体の性質を制御することも可能である。 The organic polymer according to the present invention may be a single type or a plurality of types, but physical properties such as strength of the molded body, chemical properties such as chemical resistance and heat resistance are properties of the organic polymer. Therefore, it is also possible to control the properties of these molded products by using a mixture of a plurality of types.
本発明に係る有機高分子は、化学修飾又は処理された改質機能性微粒子であると好ましい。有機高分子の化学修飾又は処理としては、例えば、ポリエーテルサルホンへのヒドロキシル基の付与やポリエチレン−酢酸ビニル共重合樹脂のケン化処理などが挙げられる。 The organic polymer according to the present invention is preferably a modified functional fine particle that has been chemically modified or treated. Examples of the chemical modification or treatment of the organic polymer include imparting a hydroxyl group to polyethersulfone and saponification treatment of a polyethylene-vinyl acetate copolymer resin.
本発明に係る有機高分子の親水基の含有比は特に限定されないが、70モル%未満であると好ましく、56モル%未満であるとより好ましい。親水基の含有比が低いと親水性が高くなり過ぎず、凝固用の貧溶媒表面でフィルム状に広がらずに任意形状の成形が容易になる傾向にある。 The content ratio of the hydrophilic group of the organic polymer according to the present invention is not particularly limited, but is preferably less than 70 mol%, and more preferably less than 56 mol%. If the content ratio of the hydrophilic group is low, the hydrophilicity does not become too high, and it tends to be easy to form an arbitrary shape without spreading into a film on the surface of the poor solvent for coagulation.
また、本発明に係る有機高分子のポリエチレン含有率は特に限定されないが、70モル%未満であると好ましく、48モル%以下であるとより好ましい。ポリエチレン含有率が低いと溶媒に溶け、微粒子との親和性も上昇する傾向にある。 Moreover, the polyethylene content of the organic polymer according to the present invention is not particularly limited, but is preferably less than 70 mol%, and more preferably 48 mol% or less. When the polyethylene content is low, it is soluble in a solvent and the affinity with fine particles tends to increase.
本発明の多孔質成形体における、有機高分子の含有率は、成形体の形状や、機能性微粒子の種類により適宜選択されるが、多孔質成形体の全重量に対して通常5〜50重量%、好ましくは15〜40重量%前後である。有機高分子の含有率がこの範囲にあると、成形体が機械的に安定であり、機能性微粒子の粒子間隙が塞がれずにミクロないしメソ孔が機能する傾向にある。 The content of the organic polymer in the porous molded body of the present invention is appropriately selected depending on the shape of the molded body and the type of functional fine particles, but is usually 5 to 50 weights with respect to the total weight of the porous molded body. %, Preferably 15 to 40% by weight. When the content of the organic polymer is within this range, the molded body is mechanically stable, and the micro or mesopores tend to function without closing the particle gaps of the functional fine particles.
本発明の多孔質成形体は、その製造方法によっては限定されないが、例えば、有機高分子を予め溶解させた有機溶媒中にミクロないしメソ孔を有するシリケート、アルミノシリケート、アルミナ又はチタニアを主成分とする機能性微粒子を分散させて原料スラリーを得る工程と、非溶媒中に前記原料スラリーを射出することによって成形する工程と、を含む方法により製造できる。 The porous molded body of the present invention is not limited depending on the production method thereof.For example, the silicate, aluminosilicate, alumina or titania having micro to mesopores in an organic solvent in which an organic polymer is dissolved in advance is a main component. It can be manufactured by a method comprising a step of obtaining a raw material slurry by dispersing functional fine particles and a step of forming the raw material slurry by injecting the raw material slurry into a non-solvent.
また、本発明の多孔質成形体の有機高分子がPMMA樹脂又はポリアミドイミド樹脂である場合は、成形後に重合促進剤又は硬化促進剤で処理する工程を更に含む方法により製造できる。 Moreover, when the organic polymer of the porous molded body of the present invention is a PMMA resin or a polyamideimide resin, it can be produced by a method further comprising a step of treating with a polymerization accelerator or a curing accelerator after molding.
この製造方法は、機能性微粒子と有機高分子を含む原料スラリーから相分離法によって、成形体を得る方法である。 This manufacturing method is a method of obtaining a molded body from a raw material slurry containing functional fine particles and an organic polymer by a phase separation method.
有機高分子は、機能性微粒子のバインダーとして機能する他、マクロ孔を形成することによって機能性微粒子間の間隙が多孔体形成後の使用時にも潰れないように保持する役目を担う。有機高分子は、特に限定されず、前述の成形体に係る有機高分子として例示したものが挙げられるが、室温では揮発しにくい種類の有機溶媒に比較的低温で可溶であり、機能性微粒子との親和性が高いものが適宜選択される。シリケートやアルミノシリケートとの親和性から親水基を有するものが好ましい。また、原料スラリー中において、ミクロないしメソ孔への浸入を防ぐ観点、成形に際して、低濃度で十分な粘性と成形性が得られる観点、成型後の成形体の構造や強度の観点から、ポリスチレン換算の重量平均分子量(Mw)が50,000以上の比較的分子量の高いものが好ましい。原料スラリーへの有機高分子の添加量は、成形体の形状や、機能性微粒子の種類により適宜選択されるが、得られる乾燥後の成形体の全重量に対して通常5〜50重量%、好ましくは15〜40重量%前後である。有機高分子の添加率が少なすぎると安定な成形体の形成が困難となり、多過ぎると原料機能性微粒子の粒子間隙が塞がれてしまい、ミクロないしメソ孔が機能しなくなる傾向にある。また、PMMA樹脂などを用いると、成形後に再重合処理を行うことで、成形体の強度を高められる。 In addition to functioning as a binder for the functional fine particles, the organic polymer plays a role of maintaining macroscopic pores so that the gaps between the functional fine particles are not crushed during use after the formation of the porous body. The organic polymer is not particularly limited, and examples thereof include those exemplified as the organic polymer according to the above-mentioned molded body. However, the organic polymer is soluble at a relatively low temperature in a kind of organic solvent that hardly volatilizes at room temperature, and functional fine particles. Are selected as appropriate. Those having a hydrophilic group are preferred because of their affinity with silicates and aluminosilicates. From the viewpoint of preventing entry into micro or mesopores in the raw slurry, from the viewpoint of obtaining sufficient viscosity and moldability at a low concentration during molding, from the viewpoint of the structure and strength of the molded body after molding, in terms of polystyrene Those having a relatively high molecular weight and a weight average molecular weight (Mw) of 50,000 or more are preferred. The amount of the organic polymer added to the raw slurry is appropriately selected depending on the shape of the molded body and the type of functional fine particles, but is usually 5 to 50% by weight with respect to the total weight of the molded body after drying, Preferably, it is around 15 to 40% by weight. If the addition rate of the organic polymer is too small, it becomes difficult to form a stable molded product, and if it is too much, the particle gaps of the raw material functional fine particles are blocked and the micro or mesopores tend not to function. Moreover, when PMMA resin etc. are used, the intensity | strength of a molded object can be raised by performing a repolymerization process after shaping | molding.
有機高分子を溶解させる溶剤としては、前述のように、有機高分子を比較的低温で溶剤の重量に対して6〜20重量%程度以上溶解可能であり、樹脂を凝固させるための非溶媒・貧溶媒と相溶性があるものであり、且つ、多孔体とするミクロないしメソ孔を有するシリケート、アルミノシリケート、アルミナ又はチタニアを主成分とする機能性微粒子を、それと化学的又は物理的反応を起こすことなく、均一に分散させることが可能な溶媒であることが好ましい。そのような溶媒として、例えば、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドンが挙げられる。 As described above, the solvent for dissolving the organic polymer can dissolve about 6 to 20% by weight or more of the organic polymer with respect to the weight of the solvent at a relatively low temperature. Functional fine particles that are compatible with poor solvents and have micro or mesopores as porous materials, mainly composed of silicates, aluminosilicates, alumina, or titania, cause chemical or physical reaction with them. It is preferable that the solvent is capable of being uniformly dispersed. Examples of such a solvent include dimethyl sulfoxide, dimethylformamide, dimethylacetamide, and n-methylpyrrolidone.
本発明において、機能性微粒子を、有機高分子を溶解させた有機溶媒に分散させた、原料スラリーの調製は、ミクロないしメソ孔を有するシリケート、アルミノシリケート又はチタニアを主成分とする機能性微粒子を前述のバインダーとなる有機高分子と共に前述の溶媒に加えて攪拌することで行うことができる。 In the present invention, the functional fine particles are dispersed in an organic solvent in which an organic polymer is dissolved, and the preparation of the raw material slurry is performed using functional fine particles mainly composed of silicate, aluminosilicate or titania having micro to mesopores. It can carry out by stirring in addition to the above-mentioned solvent with the organic polymer used as the above-mentioned binder.
原料の機能性微粒子は、添加前に十分乾燥させておくと、原料スラリー中での有機高分子の成形前の局部的な重合を防ぎ、成形後の複合体の強度の低下を防ぐ点で好ましい。乾燥温度は、特に限定されないが、原料微粒子の性質変化が起きない範囲で脱湿される温度が好ましい。原料スラリー中の機能性微粒子濃度は、特に限定されないが、機能性微粒子の種類やサイズによる粘性の違い、成形体や有機高分子の種類によって適宜選択される。中空糸膜成形に関しては、原料スラリー中の機能性微粒子濃度は、好ましくは6〜40重量%(質量%)である。この濃度が低くなると成形が困難になる、又は成形体中の多孔性が低くなり、濃度が高くなると成形体中でのバインダーとなる有機物との分布が不均一になり易く、柔軟性や耐圧性が得られない恐れがある。 It is preferable that the functional fine particles of the raw material are sufficiently dried before the addition in order to prevent local polymerization before molding of the organic polymer in the raw material slurry and to prevent a decrease in strength of the composite after molding. . The drying temperature is not particularly limited, but is preferably a temperature at which dehumidification is performed within a range where the property change of the raw material fine particles does not occur. The concentration of the functional fine particles in the raw slurry is not particularly limited, but is appropriately selected depending on the difference in viscosity depending on the type and size of the functional fine particles, and the type of the molded body and organic polymer. Regarding hollow fiber membrane molding, the concentration of functional fine particles in the raw slurry is preferably 6 to 40% by weight (mass%). When this concentration is low, molding becomes difficult, or the porosity in the molded body becomes low, and when the concentration is high, the distribution with the organic substance serving as the binder in the molded body tends to be uneven, and flexibility and pressure resistance May not be obtained.
原料スラリー調製時の機能性微粒子、有機高分子の添加の順番は特に限定されないが、予め加温した溶媒へ有機高分子を十分に溶解させた粘性スラリーを高速攪拌している状態で、乾燥した状態の原料粉末を少量ずつ添加投入して、分散させる方法であると、比較的低温で短時間に均一で粘性が高いスラリーを得やすく、更にナノバブルの発生をより効果的にできるので好ましい。有機高分子を後から添加する手法では、微粒子と溶媒との親和性のバランスから、添加濃度によって、有機高分子の溶解が阻害され、結果、安定なスラリーが得にくい場合がある。 The order of addition of the functional fine particles and the organic polymer at the time of preparing the raw slurry is not particularly limited, but the viscous slurry in which the organic polymer is sufficiently dissolved in a preheated solvent is rapidly stirred and dried. A method of adding and dispersing small amounts of the raw material powder in a state is preferable because it is easy to obtain a slurry having a uniform and high viscosity at a relatively low temperature in a short time, and more effectively generating nanobubbles. In the method of adding the organic polymer later, dissolution of the organic polymer is inhibited depending on the concentration of addition due to the balance of the affinity between the fine particles and the solvent, and as a result, it may be difficult to obtain a stable slurry.
原料スラリー調製時の撹拌速度は、特に限定されないが、気相中で200rpm以上であることが好ましい。攪拌速度がこの範囲にあるとマクロ孔が形成され易くなる。 The stirring speed at the time of preparing the raw slurry is not particularly limited, but is preferably 200 rpm or more in the gas phase. When the stirring speed is within this range, macropores are easily formed.
本発明のミクロないしメソポーラス微粒子の多孔質成形体の製造方法においては、上記によって調整した原料スラリーを非溶媒中に射出することによって凝固させて成形することができるが、原料スラリーを貧溶媒中で凝固させて成形することもできる。これにより、数オングストロームから数十ミクロン径の細孔径分布を有する自立性の耐水性複合多孔体材料を得ることができる。
非溶媒としては、例えば水アルコールなどが挙げられる。貧溶媒としては、原料スラリーに用いる溶媒の水溶液などが挙げられる。
In the method for producing a porous molded body of micro to mesoporous fine particles of the present invention, the raw material slurry prepared as described above can be solidified by injection into a non-solvent, and the raw material slurry can be formed in a poor solvent. It can also be solidified and molded. Thereby, a self-supporting water-resistant composite porous material having a pore size distribution of several angstroms to several tens of microns can be obtained.
Examples of the non-solvent include hydroalcohol. Examples of the poor solvent include an aqueous solution of a solvent used for the raw material slurry.
本発明のミクロないしメソポーラス微粒子の多孔質成形体の製造方法においては、前記ミクロないしメソポーラス微粒子の多孔質成形体を、減圧下のエタノール中又は良溶媒の低濃度水溶液中において低温加熱処理する工程、を更に含むことができる。 In the method for producing a porous molded body of micro to mesoporous fine particles of the present invention, the step of heat-treating the porous molded body of micro to mesoporous fine particles in ethanol under a reduced pressure or a low concentration aqueous solution of a good solvent, Can further be included.
成形の方法は、多孔質成形体の種類によって、それに適した型などを用いることができ、例えば成形体の形状が中空糸である場合には、ノズル等を用い、既存の手法で成形することができる。 Depending on the type of porous molded body, a mold suitable for the molding method can be used. For example, when the shape of the molded body is a hollow fiber, molding is performed using an existing method using a nozzle or the like. Can do.
本発明の多孔質成形体は、50nm〜100μm径の範囲にマクロ孔を有し、空隙率が34%以上の多孔体であり、機能性微粒子の表面の少なくとも一部が前記成形体から表出しており、前記機能性微粒子の前記ミクロないしメソ孔の細孔容積が、原料機能性微粒子の40%以上保持されている。 The porous molded body of the present invention is a porous body having macropores in a diameter range of 50 nm to 100 μm and a porosity of 34% or more, and at least a part of the surface of the functional fine particles is exposed from the molded body. In addition, the pore volume of the micro or mesopores of the functional fine particles is maintained at 40% or more of the raw material functional fine particles.
本明細書において、多孔質成形体が50nm〜100μm径の範囲にマクロ孔を有するとは、多孔質成形体作製の際に凝固液である貧溶媒の原料スラリー側への進入路、つまり接触界面で、原料の凝固が起きることによって、多孔質成形体の外側から内部に通じるマクロスコピックな細孔が形成されていることを意味している。このマクロ孔のサイズはポロシメーター等で測定した際に細孔径分布曲線の当範囲にピークを有していることで確認でき、原料粒子の特性である微細孔とその粒子がバインダーの有機高分子と形成するマクロスコピックな細孔が共存しているということを意味する。また、この貧溶媒の進入路は同時に原料スラリー中の微粒子間の隙間に相当するため、このマクロ孔に原料粒子の表面が表出し易い。 In the present specification, the porous molded body has macropores in the diameter range of 50 nm to 100 μm means that the poor solvent, which is a coagulating liquid, enters the raw material slurry side, that is, the contact interface when the porous molded body is produced. Thus, the solidification of the raw material means that macroscopic pores leading from the outside to the inside of the porous molded body are formed. The size of the macropores can be confirmed by having a peak in this range of the pore diameter distribution curve when measured with a porosimeter or the like, and the micropores that are the characteristics of the raw material particles and the organic polymer as the binder It means that the macroscopic pores to be formed coexist. Moreover, since the poor solvent entry path corresponds to a gap between the fine particles in the raw material slurry at the same time, the surface of the raw material particles is easily exposed to the macropores.
また、本発明の多孔質成形体は、成形後にエタノール中、又は低温の良溶媒中などにて、短時間減圧脱気処理することによって、マクロ孔の壁にできる緻密層に微小孔を設けることによって、マクロ孔に原料粒子の表面が表出するように改質することが可能である。 In addition, the porous molded body of the present invention provides micropores in a dense layer formed on the wall of the macropores by performing vacuum degassing for a short time in ethanol or in a low-temperature good solvent after molding. Thus, the surface of the raw material particles can be modified so as to be exposed in the macropores.
本発明の多孔質成形体は、このような特性を有するので、通常の成形体と比較して吸着又は除去や反応対象となる物質が成形体中を拡散し、内包する原料粒子の表面と接触し易く、結果として反応速度や反応効率が高くなるという点で優れる。 Since the porous molded body of the present invention has such characteristics, the substance to be adsorbed or removed or reacted in the molded body diffuses in contact with the surface of the encapsulated raw material particles as compared with a normal molded body. It is excellent in that the reaction rate and reaction efficiency are increased as a result.
また、本発明の多孔質成形体は、耐熱性、耐水性及び調湿性の他に、イオン交換性、吸着性等ミクロないしメソポーラス微粒子の特性を有する。 In addition to heat resistance, water resistance and humidity control properties, the porous molded body of the present invention has characteristics of micro to mesoporous fine particles such as ion exchange properties and adsorbability.
本発明の多孔質成形体は、水中で24時間以上連続攪拌した時の攪拌前後での重量変化が1%以下であると好ましい。ここで重量変化があるということは、多孔質成形体中から微粒子が外れて水中に落ちる、又は微粒子や有機高分子の性質が変化するということを意味する。重量変化がこの範囲にあると、成形体を水中において使用した際に、この劣化による微粒子流失が殆ど起きていないと考えられる観点で好ましい。 The porous molded body of the present invention preferably has a weight change of 1% or less before and after stirring when continuously stirred in water for 24 hours or more. Here, the weight change means that the fine particles are removed from the porous molded body and fall into water, or the properties of the fine particles and the organic polymer are changed. When the weight change is within this range, it is preferable from the viewpoint that when the molded body is used in water, the loss of fine particles due to this deterioration hardly occurs.
本発明の多孔質成形体は、60℃以下などでの低温乾燥後は、アルコール類への浸漬によって柔軟性を取り戻すことが可能である。150℃以上での加熱は、多孔質成形体の柔軟性が失われる傾向にあるため、150℃未満で、保存や加工をすることが好ましい。 The porous molded body of the present invention can regain flexibility by being immersed in alcohols after low-temperature drying at 60 ° C. or lower. Since heating at 150 ° C. or higher tends to lose the flexibility of the porous molded body, it is preferable to store or process the material at a temperature lower than 150 ° C.
本発明の多孔質成形体の形状は特に限定されないが、粒状、中空粒子状又は中空糸状であると好ましい。特に形状が中空粒子状又は中空糸状であると、中空構造が無い場合に比べて、たとえば吸着対象や除去対象物質などの反応対象物質が多孔質成形体中に拡散し易くなり、反応速度や反応効率の向上が得られるという点、モジュールなどへのスケールアップが行ない易いという点、また多孔質成形体の内側と外側から物質を供給して表面で反応させるなど原料粒子や中空構造が無い成形体にはできない反応への応用が広がるという点など様々な点での優位性が期待できる。 The shape of the porous molded body of the present invention is not particularly limited, but is preferably in the form of particles, hollow particles, or hollow fibers. In particular, when the shape is a hollow particle shape or hollow fiber shape, the reaction target substance such as the adsorption target or the removal target substance is easily diffused into the porous molded body, compared with the case where there is no hollow structure. A compact that does not have raw material particles or a hollow structure, such as improved efficiency, easy scale-up to modules, etc., and a reaction by supplying substances from the inside and outside of the porous molded body It can be expected to be superior in various respects such as the application to reactions that cannot be achieved.
また、本発明の多孔質成形体は、中空糸膜やペレット状などの成形体として、水の濾過や浄化などに用いることができる精密濾過膜、水溶液中での反応物質の担体などとして使用可能である。この精密濾過膜は、耐水性の精密濾過膜でありながら、ミクロないしメソポーラス微粒子の細孔特性や反応性を併せ持つ。 In addition, the porous molded body of the present invention can be used as a molded body such as a hollow fiber membrane or a pellet, as a microfiltration membrane that can be used for water filtration or purification, as a carrier of a reactant in an aqueous solution, etc. It is. Although this microfiltration membrane is a water-resistant microfiltration membrane, it has the pore characteristics and reactivity of micro to mesoporous fine particles.
本発明の多孔質成形体から作製した複合膜は、有害物質の吸着除去作用、陽イオンを含有する水溶液のイオン交換作用を有し、かつ耐水性で自立複合膜とすることができる。この複合膜は、例えば、食品工業用排水の処理剤として好適に使用することができる。 The composite membrane produced from the porous molded body of the present invention has an action of adsorbing and removing harmful substances, an ion exchange effect of an aqueous solution containing cations, and is water-resistant and can be a self-supporting composite membrane. This composite membrane can be suitably used, for example, as a treatment agent for wastewater for food industry.
本発明の多孔質成形体は、数ミクロンサイズの粒子を分散液中から加圧濾過できるものであると、膜材料などに使用する場合、微生物など原料粒子では除去不能な大きいサイズの中性粒子も同時に除去できるなどの点で好ましい。 When the porous molded body of the present invention is capable of pressure filtration of particles having a size of several microns from a dispersion, neutral particles having a large size that cannot be removed by raw material particles such as microorganisms when used as a membrane material. Is preferable because it can be removed at the same time.
本発明の成形体の成形後の保管については、乾燥せずにそのまま水中又はアルコール中で、保管すれば、フレキシビリティを保ったまま使用することが可能である。また、本発明の成形体は、液相中でも安定な成形体でありながら、成形後も成形前の機能性多孔質微粒子の細孔特性、吸着特性、反応性等を保持することができる。 Regarding storage after molding of the molded article of the present invention, if it is stored as it is in water or alcohol without being dried, it can be used while maintaining flexibility. In addition, the molded article of the present invention is a stable molded article even in the liquid phase, and can retain the pore characteristics, adsorption characteristics, reactivity, etc. of the functional porous fine particles before molding even after molding.
本発明の成形体は、酵素担持用担体として用いることができる。本発明の成形体は、酵素担持用担体として、酵素と複合体を形成することができる。特に本発明の成形体のうち、機能性微粒子が、細孔直径が2nm〜50nmのメソ孔を有し、粒径が0.01μm〜200μmであるメソポーラス微粒子であり、成形体中の機能性微粒子の含有率が46質量%以上である成形体は、酵素担持用担体として好適である。また、本発明の成形体を構成する機能性微粒子の原料である機能性微粒子の機能が、1種類又は2種類以上の酵素及び/又はタンパク質の固定化能を含むと、酵素担持用担体として好適である。 The molded product of the present invention can be used as an enzyme-supporting carrier. The molded body of the present invention can form a complex with an enzyme as an enzyme-supporting carrier. In particular, among the molded articles of the present invention, the functional fine particles are mesoporous fine particles having mesopores having a pore diameter of 2 nm to 50 nm and a particle diameter of 0.01 μm to 200 μm, and the functional fine particles in the molded article. A molded product having a content of 46% by mass or more is suitable as an enzyme-supporting carrier. Moreover, when the function of the functional fine particles which are the raw materials of the functional fine particles constituting the molded article of the present invention includes the ability to immobilize one or more kinds of enzymes and / or proteins, it is suitable as an enzyme-supporting carrier. It is.
この酵素は、特に限定されないが、酸化還元酵素、加水分解酵素、転移酵素、脱離酵素、異性化酵素、及び/又は合成酵素であると好ましい。酵素としては、具体的には、例えば、アゾ還元酵素、リパーゼ、グルコース脱水素酵素、プロテアーゼが挙げられる。
この酵素は、酸化還元反応、加水分解反応、転移反応、脱離反応、異性化反応、及び/又は合成反応の酵素反応に用いることができる。
Although this enzyme is not specifically limited, It is preferable in it being an oxidoreductase, a hydrolase, a transferase, a detachment enzyme, an isomerase, and / or a synthetic enzyme. Specific examples of the enzyme include azo reductase, lipase, glucose dehydrogenase, and protease.
This enzyme can be used for enzyme reaction of oxidation-reduction reaction, hydrolysis reaction, transfer reaction, elimination reaction, isomerization reaction, and / or synthesis reaction.
複合体を製造する方法は、特に限定されないが、例えば、前記酵素の酵素反応に関わる1種類又は2種類以上の酵素及び/又はタンパク質を、pH3〜11に調整した緩衝液中でメソポーラス微粒子の多孔質成形体に固定化させる固定化工程を含むことができる。また、さらに、固定化終了後のメソポーラス微粒子の多孔質成形体をpH3〜11に調整した緩衝液で複数回洗浄する洗浄工程を含むと更に好ましい。 The method for producing the complex is not particularly limited. For example, the porous mesoporous microparticles in a buffer solution in which one or two or more enzymes and / or proteins involved in the enzyme reaction of the enzyme are adjusted to pH 3-11. An immobilization step of immobilizing the molded product may be included. Furthermore, it is further preferable to include a washing step of washing the porous molded body of mesoporous fine particles after completion of immobilization multiple times with a buffer adjusted to pH 3-11.
本発明の複合体を用いた酵素反応方法は特に限定されないが、例えば、1)酵素及び/又はタンパク質をメソポーラス微粒子の多孔質成形体にpH3〜11に調整した緩衝液中で固定化する固定化工程、2)前記固定化工程で得られたメソポーラス微粒子の多孔質成形体と酵素との複合体を含むpH3〜11の緩衝液中に、反応基質を添加するか、又は3)前記固定化工程で得られたメソポーラス微粒子の多孔質成形体と酵素との複合体を、反応基質を含むpH3〜11の緩衝液中に添加して前記の酵素及び/又はタンパク質が関わる酵素反応を行う酵素反応工程、含む方法が挙げられる。また、その他の酵素反応方法としては、1)酵素及び/又はタンパク質をメソポーラス微粒子の多孔質成形体にpH3〜11に調整した緩衝液中で固定化する固定化工程、2)前記固定化工程で得られたメソポーラス微粒子の多孔質成形体と酵素との複合体をpH3〜11の緩衝液で洗浄する洗浄工程、3)前記洗浄工程で得られた洗浄後のメソポーラス微粒子の多孔質成形体と酵素との複合体を、反応基質を含む反応液中で、前記の酵素及び/又はタンパク質が関わる酵素反応を行う酵素反応工程、含む方法が挙げられる。 The enzyme reaction method using the complex of the present invention is not particularly limited. For example, 1) Immobilization in which an enzyme and / or protein is immobilized on a porous molded body of mesoporous fine particles in a buffer adjusted to pH 3-11. Step 2) A reaction substrate is added to a buffer solution having a pH of 3 to 11 containing a complex of a porous molded body of mesoporous fine particles obtained in the immobilization step and an enzyme, or 3) the immobilization step. Enzyme reaction step in which the complex of mesoporous fine particles obtained in step 1 and a complex of an enzyme is added to a pH 3 to 11 buffer containing a reaction substrate to perform an enzyme reaction involving the enzyme and / or protein. The method of including is mentioned. Other enzyme reaction methods include 1) an immobilization step in which the enzyme and / or protein is immobilized on a porous molded body of mesoporous fine particles in a buffer adjusted to pH 3 to 11, and 2) in the immobilization step. Washing step of washing the obtained mesoporous fine particle porous compact and enzyme complex with a buffer solution having a pH of 3 to 11, and 3) the washed mesoporous fine particle porous compact and enzyme obtained in the washing step. And an enzyme reaction step in which an enzyme reaction involving the enzyme and / or protein is performed in a reaction solution containing a reaction substrate.
これらの酵素反応は、特に限定されないが、例えば、反応基質から機能性の有用物質を製造する方法、環境中に存在する反応基質となる環境汚染物質を分解する方法、被検試料中に存在するか又は存在する可能性のある反応基質を検出又は定量する方法などが挙げられる。 These enzyme reactions are not particularly limited. For example, a method for producing a functional useful substance from a reaction substrate, a method for decomposing an environmental pollutant serving as a reaction substrate present in the environment, or a sample present in a test sample. Or a method for detecting or quantifying a reaction substrate that may be present.
本発明の多孔質成形体と酵素との複合体は、前記の酵素及び/又はタンパク質が関わる酵素反応用キット、センサー又は装置に用いることができる。この酵素反応用キット、センサー又は装置の用途は特に限定されないが、反応基質から機能性の有用物質を製造するためのもの、環境中に存在する反応基質となる環境汚染物質を分解するためのもの、被検試料中に存在する可能性のある反応基質又は酵素反応後の産物を検出又は定量するためのものとすることができる。 The composite of the porous molded body and the enzyme of the present invention can be used in an enzyme reaction kit, sensor, or apparatus involving the enzyme and / or protein. The use of the enzyme reaction kit, sensor, or device is not particularly limited, but for producing functional useful substances from reaction substrates, and for decomposing environmental pollutants that become reaction substrates present in the environment. The reaction substrate or the product after the enzymatic reaction that may be present in the test sample may be used for detection or quantification.
(実施例)
次に、実施例に基づいて本発明をさらに詳細に説明するが、本発明は以下の実施例等によって何ら限定されるものではない。本発明に係る多孔質成形体の空隙率及び細孔径分布は水銀ポロシメトリなどの測定手法で評価が可能である。また、原料微粒子のミクロないしメソ孔の細孔容積の保持率は、ガス吸着や蒸気吸着測定結果を原料粒子の測定値と比較することによって評価が可能である。
(Example)
EXAMPLES Next, although this invention is demonstrated further in detail based on an Example, this invention is not limited at all by the following Examples etc. The porosity and pore size distribution of the porous molded body according to the present invention can be evaluated by a measuring technique such as mercury porosimetry. Further, the retention rate of the micro volume or the mesopore volume of the raw material fine particles can be evaluated by comparing the gas adsorption and vapor adsorption measurement results with the measured values of the raw material particles.
尚、実施例で用いた微粒子の物性については表1及び表6に、得られた成形体の物性については表2〜表4及び表7に一覧として示した。 The physical properties of the fine particles used in the examples are shown in Tables 1 and 6, and the physical properties of the obtained molded products are listed in Tables 2 to 4 and Table 7.
(実施例1)
有機高分子としてのエチレン含有量(モル比)48mol%のエチレン−ビニルアルコール共重合樹脂(エバールG156B、(株)クラレ)9.98gをジメチルスルホキシド(和光純薬工業(株)、特級)102.88gに混合し、40℃にて200rpmで一晩攪拌して溶解させた。これを加温攪拌したまま、粒子径0.2μm〜2μm、細孔径2nm〜3nmのMCM41タイプの合成メソポーラスシリカ(SiO2、シグマアルドリッチ No.643653)(原料粒子A)19.99gを添加して、多孔体成形用のスラリーを調製した。この時のスラリー中の粒子の濃度は15重量%、エチレン−ビニルアルコール共重合樹脂の添加量は7.5重量%で、成形体に対するMCM粒子の仕込量は67重量%あった。一晩攪拌したのち、乾湿式紡糸装置にて、スラリー用吐出口径3mmφ、芯液用吐出口径0.7mmφの2重口ノズルを用い、得られたスラリーをシリンダーポンプに入れて20.5ml/minで、37℃の湯浴に射出しながら、芯液として29℃のお湯を7ml/minで流して中空糸状に製膜した。
Example 1
Ethylene-vinyl alcohol copolymer resin (Eval G156B, Kuraray Co., Ltd.) with an ethylene content (molar ratio) of 48 mol% as an organic polymer was added to 9.98 g of dimethyl sulfoxide (Wako Pure Chemical Industries, Ltd., special grade). The mixture was mixed with 88 g, and dissolved by stirring overnight at 200 rpm at 40 ° C. While this was heated and stirred, 19.99 g of MCM41 type synthetic mesoporous silica (SiO 2 , Sigma-Aldrich No. 643653) (raw material particle A) having a particle size of 0.2 μm to 2 μm and a pore size of 2 nm to 3 nm was added. A slurry for forming a porous body was prepared. At this time, the concentration of particles in the slurry was 15% by weight, the amount of ethylene-vinyl alcohol copolymer resin added was 7.5% by weight, and the amount of MCM particles charged to the molded body was 67% by weight. After stirring overnight, in a dry / wet spinning device, using a double-port nozzle with a slurry discharge port diameter of 3 mmφ and a core liquid discharge port diameter of 0.7 mmφ, the resulting slurry was placed in a cylinder pump at 20.5 ml / min. Then, while injecting into a 37 ° C. hot water bath, 29 ° C. hot water was poured as a core solution at 7 ml / min to form a hollow fiber film.
作製した中空糸膜は外径1.2mm、内径0.7mm(図1参照)で、60℃で一晩乾燥した後に水銀ポロシメーターで測定すると空隙率が62%前後であり、細孔径分布曲線によるとMCM41由来の4nm〜10nm径のナノポア及び0.1μm−1μmのマクロポアを有する多元多孔質成形体であった(図2参照)。この中空糸状成形体の60℃乾燥物0.0299gを3mlの蒸留水中に入れ、100rpmで36時間以上連続的に浸透し、再度60℃乾燥して重量測定を行うと、0.0297gであり、重量変化は1%以内であり、殆ど粉落ちはないと考えられる。熱分析によると600℃まで加温した時200℃以上で有機高分子が分解し、この分解による減量は34重量%であることから、成形体中のMCM41粒子の含量は66重量%であると考えられる。また、窒素吸着等温線によると成形体と原料粒子の等温線のヒステリシスの相対圧(P/Po)域は一致し、原料粒子のメソ細孔のサイズは、ほぼ保たれていると考えられる。更に成形体中細孔容積は0.28cm3/gであり、原料のMCM41粉末粒子のメソ孔容積は0.59cm3/gであったことから、成形体の細孔容積を含有されるMCM粒子の量で換算すると粉末試料の細孔容積の71%が保持されていると考えられる(図3参照)。また、図4に、実施例1の成形体と原料粒子Aとの室温での窒素吸着等温線を示す。なお、60℃24時間減圧条件にて前処理を行い、粒子含有量で換算した。 The produced hollow fiber membrane has an outer diameter of 1.2 mm, an inner diameter of 0.7 mm (see FIG. 1), and after drying overnight at 60 ° C., the porosity is around 62% as measured by a mercury porosimeter. And MCM41-derived multi-porous material having nanopores with a diameter of 4 nm to 10 nm and macropores of 0.1 μm to 1 μm (see FIG. 2). When 0.0299 g of a 60 ° C. dry product of this hollow fiber-shaped molded product is placed in 3 ml of distilled water, continuously infiltrated at 100 rpm for 36 hours or more, dried again at 60 ° C. and weighed, it is 0.0297 g. The weight change is within 1%, and it is considered that there is almost no powder falling. According to thermal analysis, when heated to 600 ° C., the organic polymer is decomposed at 200 ° C. or more, and the weight loss due to this decomposition is 34% by weight. Therefore, the content of MCM41 particles in the molded body is 66% by weight. Conceivable. Further, according to the nitrogen adsorption isotherm, it is considered that the relative pressure (P / Po) region of the hysteresis of the isotherm of the compact and the raw material particles coincides, and the size of the mesopores of the raw material particles is almost maintained. Furthermore, since the pore volume in the compact was 0.28 cm 3 / g and the mesopore volume of the raw material MCM41 powder particles was 0.59 cm 3 / g, MCM containing the pore volume of the compact was included. In terms of the amount of particles, it is considered that 71% of the pore volume of the powder sample is retained (see FIG. 3). FIG. 4 shows a nitrogen adsorption isotherm at room temperature between the molded body of Example 1 and the raw material particles A. In addition, it pre-processed on 60 degreeC 24 hours pressure reduction conditions, and converted by particle content.
(実施例2)
有機高分子としてのポリエーテルサルホン(Veradel PES 3000P、ソルベイアドバンストポリマーズ(株)、重量平均分子量(Mw)=57,000)0.54gをジメチルスルホキシド(和光特級)5.50gに50℃で完全に溶解し、これに実施例1で用いた合成メソポーラスシリカ(原料粒子A)0.55gを混合して、スラリーを調製した。この時のスラリー中の粒子の濃度は8.3重量%、ポリエーテルサルホンの添加量は8.2重量%で、成形体に対するMCM粒子の仕込量は50重量%あった。このスラリーを約32℃のお湯を入れたビーカーに滴下して2時間以上凝固させ、60℃で乾燥、更に、室温で25時間以上白濁が無くなるまで攪拌洗浄して、MCM−PESペレットを成形した。
(Example 2)
Polyethersulfone as organic polymer (Veradel PES 3000P, Solvay Advanced Polymers Co., Ltd.) 0.54 g of weight average molecular weight (Mw) = 57,000 was completely added to 5.50 g of dimethyl sulfoxide (Wako special grade) at 50 ° C. The slurry was mixed with 0.55 g of synthetic mesoporous silica (raw material particles A) used in Example 1 to prepare a slurry. At this time, the concentration of particles in the slurry was 8.3% by weight, the amount of polyethersulfone added was 8.2% by weight, and the amount of MCM particles charged to the compact was 50% by weight. The slurry was dropped into a beaker containing hot water of about 32 ° C., solidified for 2 hours or more, dried at 60 ° C., and further stirred and washed at room temperature for 25 hours or more until no turbidity was observed, to form MCM-PES pellets. .
白濁が無くなるまで攪拌洗浄した後のペレット0.0288gを3mLの水中で室温72時間以上攪拌し、乾燥重量を測定すると殆ど重量変化は認められなかった。これを熱分析で600℃まで加温した時、有機高分子は450℃以上で分解し、分解による減量は47%であったことから、ペレット中のMCM粒子の含有量は53%程度であると考えられる。(120℃前後に原料粒子及び有機高分子にはない可逆的な吸熱ピーク及び減量が認められ、成形に由来する新たな吸着サイトが生じたと考えられる。)水銀ポロシメーターで測定すると空隙率が78%前後であり、細孔径分布曲線によるとMCM41由来の4nm〜10nm径のナノポア及び0.1μm〜1μmのマクロポアを有する多元多孔体であった。また、窒素吸着等温線によると成形体の細孔容積は0.50cm3/gであり、同条件で測定した粉末試料の細孔容積が0.59cm3/gであったことから、成形体に含有されるMCM41粒子の量で換算すると成形体中のMCM41のメソ孔容積はほぼ全て保持されていると考えられる。 When 0.0288 g of the pellet after stirring and washing until the cloudiness disappeared was stirred in 3 mL of water at room temperature for 72 hours or more and the dry weight was measured, almost no change in weight was observed. When this was heated to 600 ° C. by thermal analysis, the organic polymer was decomposed at 450 ° C. or higher, and the weight loss due to decomposition was 47%. Therefore, the content of MCM particles in the pellet is about 53%. it is conceivable that. (It is considered that a reversible endothermic peak and weight loss not found in the raw material particles and the organic polymer were observed around 120 ° C., and that a new adsorption site derived from molding was generated.) When measured with a mercury porosimeter, the porosity was 78%. According to the pore size distribution curve, it was a multi-element porous body having 4 nm to 10 nm diameter nanopores derived from MCM41 and 0.1 μm to 1 μm macropores. Further, according to the nitrogen adsorption isotherm, the pore volume of the compact was 0.50 cm 3 / g, and the pore volume of the powder sample measured under the same conditions was 0.59 cm 3 / g. It is considered that almost all the mesopore volume of MCM41 in the molded body is retained in terms of the amount of MCM41 particles contained in the compact.
(実施例3)
有機高分子としてメタクリル酸メチル樹脂(PMMA polymer CASNo.9011−14−7、東京化成工業(株)、M0088、Mw=135,000〜140,000)0.60gをジメチルホルムアミド(和光特級)7.0gに50℃で完全に溶解し、これに実施例1で用いた合成メソポーラスシリカ(原料粒子A)0.60gを混合して、スラリーを調製した。このスラリーを約32℃のお湯を入れたビーカーに滴下して2時間以上凝固させ、60℃で一晩乾燥させて、MCM−アクリルペレットを成形した。このペレットは機械的強度が非常に低かったため、このペレット0.20gを過酸化ベンゾイル(バイオラッド)0.051gと共にエタノール(和光特級)4.98gにいれて、ゆっくりと昇温し、最終的に60℃で4時間加温して取り出した。取り出したペレットはゴムのように柔軟で割れにくい性質に変化していた。更にこれを60℃で乾燥させると、圧縮強度1.4MPa程度のペレットが得られた。
(Example 3)
6. 0.60 g of methyl methacrylate resin (PMMA polymer CAS No. 9011-14-7, Tokyo Chemical Industry Co., Ltd., M0088, Mw = 135,000 to 140,000) as an organic polymer was added to dimethylformamide (Wako Special Grade). The resultant was completely dissolved in 0 g at 50 ° C., and 0.60 g of the synthetic mesoporous silica (raw material particles A) used in Example 1 was mixed therewith to prepare a slurry. This slurry was dropped into a beaker containing hot water of about 32 ° C., solidified for 2 hours or more, and dried at 60 ° C. overnight to form MCM-acrylic pellets. Since the mechanical strength of this pellet was very low, 0.20 g of this pellet was put together with 0.051 g of benzoyl peroxide (Bio-Rad) in 4.98 g of ethanol (Wako Special Grade), and the temperature was raised slowly. The mixture was heated at 60 ° C. for 4 hours and taken out. The removed pellets were changed to be flexible and hard to break like rubber. When this was further dried at 60 ° C., pellets having a compressive strength of about 1.4 MPa were obtained.
この重合及び硬化後のペレットについて、これを熱分析で600℃まで加温した時、有機高分子は400℃前後で分解し、分解による減量は50%であったことから、ペレット中のMCM粒子の含有量は50%程度であると考えられる。また、窒素吸着等温線によると成形体中細孔容積は0.30cm3/gであり、原料のMCM41粉末粒子のメソ孔容積は0.96cm3/gであったことから、成形体の細孔容積を含有されるMCM粒子の量で換算すると粉末試料の細孔容積の63%が保持されていると考えられる。 With respect to the pellets after polymerization and curing, when this was heated to 600 ° C. by thermal analysis, the organic polymer was decomposed around 400 ° C., and the weight loss due to decomposition was 50%. The content of is considered to be about 50%. Further, according to the nitrogen adsorption isotherm, the pore volume in the compact was 0.30 cm 3 / g, and the mesopore volume of the raw material MCM41 powder particles was 0.96 cm 3 / g. When converted to the amount of MCM particles containing the pore volume, it is considered that 63% of the pore volume of the powder sample is retained.
(実施例4)
実施例1で用いた有機高分子0.10gをジメチルスルホキシド(和光特級)0.7mLに入れ、加熱攪拌して溶解し、これに粒子径10〜100nm、平均細孔径4.2nmのメソポーラス酸化チタン(Alfa Aesar No.43250)(原料粒子B)0.20gを混合して、スラリーを調製した。このスラリー室温水を入れたビーカーに滴下して凝固させ、60℃で乾燥して、メソポーラスTiO2−EVOHペレットを成形した。
Example 4
0.10 g of the organic polymer used in Example 1 was put into 0.7 mL of dimethyl sulfoxide (Wako Special Grade), dissolved by heating and stirring, and mesoporous titanium oxide having a particle size of 10 to 100 nm and an average pore size of 4.2 nm. (Alfa Aesar No. 43250) (Raw material particles B) 0.20 g was mixed to prepare a slurry. This slurry was dripped into a beaker containing room temperature water and solidified, and dried at 60 ° C. to form mesoporous TiO 2 —EVOH pellets.
熱分析によると600℃まで加温した時の有機高分子の分解による減量は47%であり、原料粒子を加熱したときの減量は18%であることから、ペレット中の粒子の含有量は65%程度であると考えられる。また、100℃で前処理し窒素吸着測定結果によって計算した成形体中の細孔容積を、含有されるメソポーラス酸化チタン粒子の量で換算すると成形体中のメソポーラス酸化チタンのメソ孔容積は64%程度保持されていると考えられる。 According to the thermal analysis, the weight loss due to decomposition of the organic polymer when heated to 600 ° C. is 47%, and the weight loss when the raw material particles are heated is 18%. Therefore, the particle content in the pellet is 65%. %. Further, when the pore volume in the molded body pretreated at 100 ° C. and calculated by the nitrogen adsorption measurement result is converted into the amount of mesoporous titanium oxide particles contained, the mesoporous volume of mesoporous titanium oxide in the molded body is 64%. It is thought that the degree is maintained.
(実施例5)
原料粒子として平均細孔径が5.7nmサイズのMSU−Xタイプの合成メソポーラス酸化アルミ(Al2O3、シグマアルドリッチ No.517747)(原料粒子C)を使用する他は、実施例2と同様にしてメソポーラスアルミナ−PESペレットを成形した。熱分析によると、ペレット中の粒子の含有量は50%程度であった。
(Example 5)
Example 2 is the same as Example 2 except that MSU-X type synthetic mesoporous aluminum oxide (Al 2 O 3 , Sigma-Aldrich No. 517747) (raw material particles C) having an average pore size of 5.7 nm is used as the raw material particles. Thus, mesoporous alumina-PES pellets were formed. According to the thermal analysis, the content of particles in the pellet was about 50%.
(実施例6)
原料粒子として細孔径が8nmサイズのFSM22タイプの合成メソポーラスシリカ(原料粒子D)を使用する他は、実施例2と同様にしてFSM22−PESペレットを成形した。熱分析によると、ペレット中の粒子の含有量は55%程度であった。
(Example 6)
FSM22-PES pellets were formed in the same manner as in Example 2 except that FSM22 type synthetic mesoporous silica (raw material particles D) having a pore size of 8 nm was used as the raw material particles. According to the thermal analysis, the content of particles in the pellet was about 55%.
(実施例7)
有機高分子としてエチレン含有量44mol%のエチレン−ビニルアルコール共重合樹脂(ソアノールA4412、日本合成化学工業(株))を実施例1で用いたジメチルスルホキシドに溶解し、原料粒子として粒子径が2−3μmで、結晶粒子径1μm以下、細孔径0.90nmの合成ハイシリカゼオライト(SiO2/Al2O3=100)(原料粒子E)を使用する他は、実施例2と同様にしてハイシリカゼオライト−EVOHペレットを成形した。60℃で一晩乾燥した後、水銀ポロシメーターで測定すると空隙率が62%であった。60℃で乾燥後のペレットの熱分析によると600℃まで加温した時の減量は50重量%であり、成型体中のゼオライト粒子の含量は50重量%であると考えられる。また、窒素吸着等温線によると成形体中の全細孔容積はゼオライト粒子量換算で、粉末試料の80%以上であった。
(Example 7)
An ethylene-vinyl alcohol copolymer resin (Soarnol A4412, Nippon Synthetic Chemical Industry Co., Ltd.) having an ethylene content of 44 mol% as an organic polymer is dissolved in the dimethyl sulfoxide used in Example 1, and the particle size of 2- High silica was used in the same manner as in Example 2 except that synthetic high silica zeolite (SiO 2 / Al 2 O 3 = 100) (raw material particles E) having a particle diameter of 3 μm, a crystal particle diameter of 1 μm or less and a pore diameter of 0.90 nm was used. Zeolite-EVOH pellets were molded. After drying overnight at 60 ° C., the porosity was 62% as measured with a mercury porosimeter. According to the thermal analysis of the pellets dried at 60 ° C., the weight loss when heated to 600 ° C. is 50% by weight, and the content of zeolite particles in the molded body is considered to be 50% by weight. Further, according to the nitrogen adsorption isotherm, the total pore volume in the compact was 80% or more of the powder sample in terms of the amount of zeolite particles.
(実施例8)
有機高分子として実施例1で用いたエチレン含有量48mol%のエチレン−ビニルアルコール共重合樹脂34.5gを実施例1で用いたジメチルスルホキシド181.71gに混合し、48℃にて200rpmで一晩攪拌して溶解させた。これを加温攪拌したまま、実施例7で用いた合成ハイシリカゼオライト(原料粒子E)68.01gを添加して、多孔体成形用のスラリーを調製した。この時のスラリー中のゼオライト粒子の濃度は22.0重量%で、成形体に対するゼオライト粒子の仕込量は67重量%であった。一晩攪拌したのち、スラリー用吐出口径6mmφ、芯液用吐出口径2.5mmφの2重口ノズルを用い、得られたスラリーをシリンダーポンプに入れて40.0ml/minで、34℃の水浴に射出しながら、芯液として25℃の水を70.0ml/minで流して中空糸状に製膜した。
(Example 8)
As an organic polymer, 34.5 g of ethylene-vinyl alcohol copolymer resin having an ethylene content of 48 mol% used in Example 1 was mixed with 181.71 g of dimethyl sulfoxide used in Example 1, and overnight at 48 ° C. and 200 rpm. Stir to dissolve. While the mixture was heated and stirred, 68.01 g of the synthetic high silica zeolite (raw material particles E) used in Example 7 was added to prepare a slurry for forming a porous body. At this time, the concentration of the zeolite particles in the slurry was 22.0% by weight, and the amount of the zeolite particles charged to the compact was 67% by weight. After stirring overnight, using a double-mouth nozzle with a slurry discharge port diameter of 6 mmφ and a core liquid discharge port diameter of 2.5 mmφ, the resulting slurry was placed in a cylinder pump and placed in a 34 ° C. water bath at 40.0 ml / min. While injecting, 25 ° C. water was flowed at 70.0 ml / min as a core solution to form a hollow fiber.
作製した中空糸膜は外径4.8mm、内径3.0mmであった。熱分析によると600℃まで加温した時の減量は36重量%であり、成形体中のゼオライト粒子の含量は64重量%であると考えられる。水銀ポロシメトリによると60℃で一晩乾燥した後の空隙率は40%、更に150℃で2時間加温してEVOHを結晶化させた後は、空隙率が37%であり、細孔径分布曲線によると0.28μmのマクロポアを有する多孔体であった。窒素吸着測定によると60℃乾燥処理後の成形体中の全細孔容積はゼオライト粒子量換算で、粉末試料の89%以上であった。 The produced hollow fiber membrane had an outer diameter of 4.8 mm and an inner diameter of 3.0 mm. According to thermal analysis, the weight loss when heated to 600 ° C. is 36% by weight, and the content of zeolite particles in the compact is considered to be 64% by weight. According to mercury porosimetry, the porosity after drying at 60 ° C. overnight is 40%, and after heating at 150 ° C. for 2 hours to crystallize EVOH, the porosity is 37%, and the pore size distribution curve According to this, it was a porous body having a macropore of 0.28 μm. According to the nitrogen adsorption measurement, the total pore volume in the molded body after the 60 ° C. drying treatment was 89% or more of the powder sample in terms of the amount of zeolite particles.
(実施例9)
有機高分子として実施例1で用いた樹脂35.03gを実施例1で用いたジメチルスルホキシド181.29gに混合し、50℃にて202rpmで一晩攪拌して溶解させた。これを加温攪拌したまま、粒子径10μm、結晶粒子径2μm−4μm、細孔径0.58nmの合成ハイシリカゼオライト(SiO2/Al2O3=40)(原料粒子F)60.20gを添加して、多孔体成形用のスラリーを調製した。この時のスラリー中の粒子の濃度は21.8重量%で成形体に対するゼオライト粒子の仕込量は63重量%あった。一晩攪拌したのち、乾湿式紡糸装置にて、2重口ノズルを用い、得られたスラリーをシリンダーポンプに入れて22.3ml/minで、25℃の水浴に射出しながら、芯液として25℃の水を11.7ml/minで流して中空糸状に製膜した。
Example 9
35.03 g of the resin used in Example 1 as an organic polymer was mixed with 181.29 g of dimethyl sulfoxide used in Example 1, and dissolved by stirring overnight at 202 rpm at 50 ° C. While heating and stirring this, 60.20 g of synthetic high silica zeolite (SiO 2 / Al 2 O 3 = 40) (raw material particle F) having a particle size of 10 μm, a crystal particle size of 2 μm to 4 μm, and a pore size of 0.58 nm was added. Thus, a slurry for forming a porous body was prepared. At this time, the concentration of the particles in the slurry was 21.8% by weight, and the charged amount of zeolite particles to the compact was 63% by weight. After stirring overnight, the resulting slurry was put into a cylinder pump at 22.3 ml / min using a double-mouth nozzle in a dry-wet spinning device, and injected into a 25 ° C. water bath as a core solution. Water at 1 ° C. was flowed at 11.7 ml / min to form a hollow fiber.
作製した中空糸膜は外径2.4mm、内径1.4mmであった。熱分析によると600℃まで加温した時の減量は36重量%であり、成形体中のゼオライト粒子の含量は64重量%であると考えられる。60℃で一晩乾燥し、更に150℃で2時間加熱した後、水銀ポロシメーターで測定すると空隙率が40%であり、細孔径分布曲線によると0.43μmのマクロポアを有する多孔体であった。また、窒素吸着測定によると60℃乾燥処理後の成形体中の全細孔容積はゼオライト粒子量換算で、粉末試料の100%以上、そのうちゼオライト孔に起因する低圧部(相対圧P/Po<0.12)の窒素吸着量は粉末試料の64%以上であった。 The produced hollow fiber membrane had an outer diameter of 2.4 mm and an inner diameter of 1.4 mm. According to thermal analysis, the weight loss when heated to 600 ° C. is 36% by weight, and the content of zeolite particles in the compact is considered to be 64% by weight. After drying at 60 ° C. overnight and further heating at 150 ° C. for 2 hours, the porosity was 40% as measured with a mercury porosimeter, and according to the pore size distribution curve, the porous body had a macropore of 0.43 μm. Further, according to the nitrogen adsorption measurement, the total pore volume in the compact after drying at 60 ° C. is 100% or more of the powder sample in terms of the amount of zeolite particles, of which the low pressure part (relative pressure P / Po << The nitrogen adsorption amount of 0.12) was 64% or more of the powder sample.
(実施例10)
有機高分子としてポリサルホン(Udel PSF p−1700、ソルベイアドバンストポリマーズ(株))を用い、スラリー用の良溶媒として実施例3のジメチルホルムアミドを使用する他は、実施例9と同様に有機高分子を先に溶解させた溶媒を攪拌しながら原料粒子Fを投入しての成形用スラリーを調製し、実施例9と同じノズルを用い、同条件で中空糸の紡糸を行なった。
(Example 10)
The organic polymer was used in the same manner as in Example 9, except that polysulfone (Udel PSF p-1700, Solvay Advanced Polymers Co., Ltd.) was used as the organic polymer, and dimethylformamide of Example 3 was used as a good solvent for the slurry. A slurry for molding was prepared by adding the raw material particles F while stirring the previously dissolved solvent, and using the same nozzle as in Example 9, spinning of the hollow fiber was performed under the same conditions.
作製した中空糸膜は外径1.8mm、内径1.0mmであった。熱分析による成形体中のゼオライト粒子の含量は59重量%であり、紡糸に際して仕込比に対して4−5%の微粒子のロスがあったと考えられる。60℃で一晩乾燥し、水銀ポロシメーターで測定すると空隙率が66%で、細孔径分布曲線によると0.22μmと1.43μmのマクロポアを有する多元多孔体であった。また、窒素吸着測定によると60℃乾燥処理後の成形体中の全細孔容積はゼオライト粒子量換算で、粉末試料の85%、そのうちゼオライト孔に起因する低圧部(相対圧P/Po<0.12)の窒素吸着量は粉末試料の77%以上であった。 The produced hollow fiber membrane had an outer diameter of 1.8 mm and an inner diameter of 1.0 mm. The content of zeolite particles in the compact by thermal analysis was 59% by weight, and it is considered that there was a loss of fine particles of 4-5% with respect to the charging ratio during spinning. It was dried at 60 ° C. overnight and measured with a mercury porosimeter. The porosity was 66%. According to the pore size distribution curve, it was a multi-element porous body having macropores of 0.22 μm and 1.43 μm. Further, according to the nitrogen adsorption measurement, the total pore volume in the compact after drying at 60 ° C. is 85% of the powder sample in terms of the amount of zeolite particles, of which the low pressure part (relative pressure P / Po <0 .12) was 77% or more of the powder sample.
(実施例11)
実施例3で用いたジメチルホルムアミド203.50gを加温攪拌した状態で有機高分子として実施例3で用いたメタクリル酸メチル樹脂20.24gを徐々に混合し、50℃にて330rpmで一晩攪拌して溶解させた。これを加温攪拌したまま、実施例9で用いた合成ハイシリカゼオライト(原料粒子F)40.22gを添加して、更に4−5時間攪拌を続けて、多孔体成形用のスラリーを調製した。この時のスラリー中のゼオライト粒子の濃度は15.0重量%で、成形体に対するゼオライト粒子の仕込量は67重量%であった。5時間攪拌したのち、実施例1で用いた2重口ノズルを用い、得られたスラリーをシリンダーポンプに入れて20.6ml/minで、30℃の湯浴に射出しながら、芯液として25℃の水を7.6ml/minで流して中空糸状に製膜した。
(Example 11)
In a state where 203.50 g of dimethylformamide used in Example 3 was heated and stirred, 20.24 g of the methyl methacrylate resin used in Example 3 was gradually mixed as an organic polymer and stirred overnight at 330 rpm at 50 ° C. And dissolved. While the mixture was heated and stirred, 40.22 g of the synthetic high silica zeolite (raw material particles F) used in Example 9 was added, and stirring was further continued for 4 to 5 hours to prepare a slurry for forming a porous body. . At this time, the concentration of the zeolite particles in the slurry was 15.0% by weight, and the charged amount of the zeolite particles to the compact was 67% by weight. After stirring for 5 hours, using the double-neck nozzle used in Example 1, the obtained slurry was put into a cylinder pump at 20.6 ml / min and injected into a 30 ° C. hot water bath, and the core liquid was 25. A film was formed into a hollow fiber shape by flowing water at 7.6 ml / min.
作製した中空糸膜は外径2.2mm、内径1.0mmであった。熱分析によると600℃まで加温した時の減量は39重量%であり、成形体中のゼオライト粒子の含量は61重量%であると考えられる。水銀ポロシメトリによると60℃で一晩乾燥した後の空隙率は55%であった。細孔径分布曲線によると、2.5μm径と6μm径のマクロ孔を有する多元多孔体であった。窒素吸着測定によると60℃乾燥処理後の成形体中の全細孔容積はゼオライト粒子量換算で、粉末試料の82%、そのうちゼオライト孔に起因する低圧部(相対圧P/Po<0.12)の窒素吸着量は粉末試料の64%以上であった。 The produced hollow fiber membrane had an outer diameter of 2.2 mm and an inner diameter of 1.0 mm. According to the thermal analysis, the weight loss when heated to 600 ° C. is 39% by weight, and the content of zeolite particles in the compact is considered to be 61% by weight. According to mercury porosimetry, the porosity after drying overnight at 60 ° C. was 55%. According to the pore diameter distribution curve, it was a multi-element porous body having macropores of 2.5 μm diameter and 6 μm diameter. According to the nitrogen adsorption measurement, the total pore volume in the compact after drying at 60 ° C. was 82% of the powder sample in terms of the amount of zeolite particles, of which the low pressure part (relative pressure P / Po <0.12) due to the zeolite pores. ) Was 64% or more of the powder sample.
(実施例12)
実施例11で得られた中空糸について、強度及び柔軟性を改善するために実施例3と同様に、エタノール(和光特級99.5%)396.2gに過酸化ベンゾイル4gを入れて溶解させた容器に室温で一晩乾燥した後の中空糸を入れて、2時間40−50℃で加温し、再重合処理を行なった。更に洗浄して室温乾燥した後、再度エタノール中にて減圧下で加熱処理を2時間行なった。水銀ポロシメトリによると空隙率は、重合処理のため、40%と処理前に比べて減少し、細孔径分布曲線によると0.43、1.3、2.5μm径にマクロ孔が生じていた。窒素吸着測定によると150℃24時間の真空乾燥処理後の成形体中の全細孔容積は微粒子含有量換算で、粉末試料の97%、そのうちミクロ孔に起因する低圧部(相対圧P/Po<0.12)の窒素吸着量は粉末試料の77%以上と、処理前の中空糸に比べて細孔保持率も増加した。また、この中空糸の60℃乾燥物0.3087gを30mlの蒸留水中に入れ、120rpmで30時間以上連続的に浸透し、再度60℃で一晩乾燥して重量測定を行ったところ、粉落ちも減量も認められなかった。
(Example 12)
In order to improve the strength and flexibility of the hollow fiber obtained in Example 11, 4 g of benzoyl peroxide was dissolved in 396.2 g of ethanol (Wako Special Grade 99.5%) in the same manner as in Example 3. The hollow fiber after drying overnight at room temperature was put into the container, and it heated at 40-50 degreeC for 2 hours, and repolymerized. After further washing and drying at room temperature, heat treatment was performed again in ethanol under reduced pressure for 2 hours. According to mercury porosimetry, the porosity was 40% due to the polymerization treatment, which was reduced from that before the treatment, and macropores were generated at 0.43, 1.3 and 2.5 μm diameters according to the pore size distribution curve. According to the nitrogen adsorption measurement, the total pore volume in the compact after vacuum drying at 150 ° C. for 24 hours was 97% of the powder sample in terms of fine particle content, of which the low pressure part (relative pressure P / Po) due to the micropores. The nitrogen adsorption amount of <0.12) was 77% or more of the powder sample, and the pore retention rate also increased compared to the hollow fiber before treatment. In addition, 0.3087 g of this hollow fiber 60 ° C. dried product was placed in 30 ml of distilled water, continuously infiltrated at 120 rpm for 30 hours or more, dried again at 60 ° C. overnight, and weighed. No weight loss was observed.
(実施例13)
有機高分子としてポリアミドイミド樹脂を14重量%含有したノルマルメチルピロリドン溶液(バイロマックスHR−16NN、東洋紡(株))110.95gを45℃、335rpmで加温攪拌した状態で、実施例9−12で用いた合成ハイシリカゼオライト(原料粒子F)31.19gを添加し、一晩攪拌を続けて、多孔体成形用のスラリーを調製した。この時のスラリー中のゼオライト粒子の濃度は22重量%で、成形体に対するゼオライト粒子の仕込量は67重量%であった。5時間攪拌したのち、実施例1で用いた2重口ノズルを用い、得られたスラリーをシリンダーポンプに入れて21.4ml/minで、30℃の湯浴に射出しながら、芯液として25℃の水を10.4ml/minで流して中空糸状に製膜した。
(Example 13)
In a state where 110.95 g of a normal methylpyrrolidone solution (Vilomax HR-16NN, Toyobo Co., Ltd.) containing 14% by weight of a polyamideimide resin as an organic polymer was heated and stirred at 45 ° C. and 335 rpm, Examples 9-12 31.19 g of the synthetic high silica zeolite (raw material particles F) used in 1 was added, and stirring was continued overnight to prepare a slurry for forming a porous body. At this time, the concentration of the zeolite particles in the slurry was 22% by weight, and the amount of the zeolite particles charged to the compact was 67% by weight. After stirring for 5 hours, using the double-neck nozzle used in Example 1, the obtained slurry was put into a cylinder pump and injected into a 30 ° C. hot water bath at 21.4 ml / min. Water at 10.degree. C. was flowed at 10.4 ml / min to form a hollow fiber film.
作製した中空糸膜は外径2.6mm、内径1.0mmで、曲げ強度は4−5MPa程度であった。熱分析によると成形体中のゼオライト粒子の含量は65重量%前後であった。水銀ポロシメトリによると60℃で一晩乾燥した後の空隙率は50%であった。細孔径分布曲線によると、20nm径以下のメソ孔と0.2μm前後の径のマクロ孔を有する多元多孔体であった。窒素吸着測定によると60℃乾燥処理後の成形体中の全細孔容積はゼオライト粒子量換算で、粉末試料の98%以上となったが、ゼオライト孔に起因する低圧部(相対圧P/Po<0.12)の窒素吸着量は粉末試料の24%以下とメソ孔の細孔容積は大きいがミクロ孔がかなり潰れた状態であった。 The produced hollow fiber membrane had an outer diameter of 2.6 mm, an inner diameter of 1.0 mm, and a bending strength of about 4-5 MPa. According to thermal analysis, the content of zeolite particles in the compact was around 65% by weight. According to mercury porosimetry, the porosity after drying overnight at 60 ° C. was 50%. According to the pore diameter distribution curve, it was a multi-element porous body having mesopores having a diameter of 20 nm or less and macropores having a diameter of about 0.2 μm. According to the nitrogen adsorption measurement, the total pore volume in the compact after the drying treatment at 60 ° C. was 98% or more of the powder sample in terms of the amount of zeolite particles, but the low pressure part (relative pressure P / Po) due to the zeolite pores. The nitrogen adsorption amount of <0.12) was 24% or less of the powder sample and the pore volume of the mesopores was large, but the micropores were considerably crushed.
(実施例14)
実施例13で得られたポリアミドイミド中空糸について、ミクロ孔機能を改善するために、実施例12と同様に、室温乾燥後の中空糸について、減圧下のエタノール中で加熱処理を40−50℃で2時間行なった。熱分析によるとゼオライトの含有量については65重量%と変化は認められなかった。水銀ポロシメトリによると空隙率は59%と処理前に比べて増加し、細孔径分布曲線によると0.2μm径の代わりに0.43μm径にマクロ孔が生じていた。窒素吸着測定によると150℃24時間の真空乾燥処理後の成形体中の全細孔容積は0.17cm3/gと原料粒子の1.4倍となり、そのうちミクロ孔に起因する低圧部(相対圧P/Po<0.12)の窒素吸着量は粉末試料の84%以上と、処理前の中空糸に比べて細孔保持率も大幅に増加した。また、この中空糸について強度測定を行なったところ、曲げ強度は4−6MPaと、処理前と比較して強度の低下は認められなかった。図5に、実施例13と実施例14(実施例13の改質物)の原料粒子Fに対する室温での窒素吸着等温線比較を示す。なお、150℃24時間減圧条件にて前処理し、粒子Fの含有量による換算である。
(Example 14)
For the polyamideimide hollow fiber obtained in Example 13, in order to improve the micropore function, in the same manner as in Example 12, the hollow fiber after drying at room temperature was subjected to heat treatment in ethanol under reduced pressure at 40-50 ° C. For 2 hours. According to the thermal analysis, the zeolite content was not changed to 65% by weight. According to mercury porosimetry, the porosity increased to 59% compared to before the treatment, and according to the pore size distribution curve, macropores were generated with a diameter of 0.43 μm instead of 0.2 μm. According to the nitrogen adsorption measurement, the total pore volume in the compact after vacuum drying at 150 ° C. for 24 hours was 0.17 cm 3 / g, 1.4 times that of the raw material particles, of which the low-pressure part (relative The amount of nitrogen adsorbed at a pressure P / Po <0.12) was 84% or more of the powder sample, and the pore retention rate was significantly increased compared to the hollow fiber before treatment. Further, when the strength of this hollow fiber was measured, the bending strength was 4-6 MPa, and no decrease in strength was observed compared to before the treatment. FIG. 5 shows a comparison of nitrogen adsorption isotherms at room temperature for the raw material particles F of Example 13 and Example 14 (modified product of Example 13). In addition, it pre-processes on 150 degreeC 24 hours pressure reduction conditions, and is conversion by content of particle | grains F.
(実施例15)
原料粒子として粒子径0.5−1μm、結晶粒子径50nm、細孔径0.58nmの合成ハイシリカゼオライト(SiO2/Al2O3=52)(原料粒子G)20.10gを実施例2で用いたジメチルスルホキシド50.10gに予め混合し、47℃にて200rpmで加温攪拌しながら、有機高分子として実施例2で用いた樹脂9.98gを添加した。200rpm−300rpmで4時間攪拌した後、加温攪拌を続けながら50℃に加温したジメチルスルホキシドを20.07g添加して更に3時間攪拌を続けて、多孔体成形用のスラリーを調製した。この時のスラリー中の粒子の濃度は20重量%で成形体に対するゼオライト粒子の仕込量は67重量%あった。実施例1で用いた2重口ノズルを用い、空走距離5cm湯浴27℃の条件で、スラリーを19〜22.5mL/min流しながら、中空糸の紡糸を試みたが、芯液を0−2mL/min流すとスラリーの射出が途切れて断続的になり、中空糸成形はできず、代わりにペレット状の成形体が得られた。
(Example 15)
In Example 2, 20.10 g of synthetic high silica zeolite (SiO 2 / Al 2 O 3 = 52) (raw material particles G) having a particle size of 0.5-1 μm, a crystal particle size of 50 nm, and a pore size of 0.58 nm was used as the raw material particles. The mixture was previously mixed with 50.10 g of dimethyl sulfoxide used, and 9.98 g of the resin used in Example 2 was added as an organic polymer while stirring with heating at 200 rpm at 47 ° C. After stirring at 200 rpm-300 rpm for 4 hours, 20.07 g of dimethyl sulfoxide heated to 50 ° C. was added while continuing the heating and stirring, and stirring was further continued for 3 hours to prepare a slurry for forming a porous body. At this time, the concentration of the particles in the slurry was 20% by weight, and the amount of the zeolite particles charged to the compact was 67% by weight. Using the double-neck nozzle used in Example 1, spinning of the hollow fiber was attempted while flowing the slurry at 19 to 22.5 mL / min under the condition of an idle running distance of 5 cm and a hot water bath of 27 ° C. When flowing at -2 mL / min, the injection of the slurry was interrupted and became intermittent, so that hollow fiber molding could not be performed, and a pellet-shaped molded body was obtained instead.
洗浄乾燥後のペレット状成形体を水銀ポロシメーターで測定すると空隙率が69%前後であった。熱分析から見積もられる粒子含有量は67%で仕込比通りであった。窒素吸着測定によると成形体中の全細孔容積はゼオライト粒子量換算で、粉末試料の56%、ゼオライト孔に起因する低圧部(相対圧P/Po<0.12)の窒素吸着量は粉末試料の57%であった。 When the pellet-shaped molded body after washing and drying was measured with a mercury porosimeter, the porosity was about 69%. The particle content estimated from the thermal analysis was 67%, which was as charged. According to the nitrogen adsorption measurement, the total pore volume in the compact is 56% of the powder sample in terms of zeolite particle amount, and the nitrogen adsorption amount in the low pressure part (relative pressure P / Po <0.12) due to the zeolite pores is powder. It was 57% of the sample.
(実施例16)
有機高分子として実施例2で用いたポリエーテルサルホン1.68gを11.70gのジメチルスルホキシドに50℃で溶解し、これに原料粒子Aを0.85g、原料粒子Fを1.73g添加して成形用スラリーを調製した他は、実施例2と同様にペレットを作製した。この時のスラリー中の微粒子濃度は16重量%で、成形体に対する微粒子の仕込比は原料粒子Aが20重量%、原料粒子Fが41重量%であった。得られたペレットについて、熱分析を行なうと有機物の分解による減量は大凡20%で微粒子の含有量が80%と仕込比に対して高くなった。水銀ポロシメトリによると成形体の空隙率は69%で、細孔径分布曲線によると複数のマクロポアの他に5nm前後の領域にメソポアを有する多元多孔体となっていた。更に、窒素吸着測定によると成形体中の全細孔容積は微粒子含有量換算で、粉末試料の50%程度であった。
(Example 16)
1.68 g of polyethersulfone used in Example 2 as an organic polymer was dissolved in 11.70 g of dimethyl sulfoxide at 50 ° C., and 0.85 g of raw material particles A and 1.73 g of raw material particles F were added thereto. A pellet was prepared in the same manner as in Example 2 except that the molding slurry was prepared. At this time, the fine particle concentration in the slurry was 16% by weight, and the charged ratio of the fine particles to the compact was 20% by weight for the raw material particles A and 41% by weight for the raw material particles F. When the obtained pellets were subjected to thermal analysis, the weight loss due to the decomposition of organic substances was approximately 20%, and the content of fine particles was 80%, which was higher than the charging ratio. According to mercury porosimetry, the porosity of the molded body was 69%, and according to the pore size distribution curve, it was a multi-element porous body having mesopores in a region around 5 nm in addition to a plurality of macropores. Furthermore, according to the nitrogen adsorption measurement, the total pore volume in the compact was about 50% of the powder sample in terms of the fine particle content.
(実施例17)
有機高分子としてPMMA樹脂を用いて成形し、更に過酸化ベンゾイルによる再重合処理を行なった比較例7の成形体は表2に示す通りミクロ孔の保持率が低いが、減圧下のエタノール中で40−55℃の煮沸処理を1−2時間行なったところ、表3に示すように、ミクロ孔の吸着性能試験結果に著しい改善が得られた。(実施例11及び比較例7とその改質物を用いて行なった水溶液中からのコバルト吸着試験結果を表3に示す。)
(Example 17)
The molded body of Comparative Example 7 molded using PMMA resin as an organic polymer and further subjected to repolymerization treatment with benzoyl peroxide has a low micropore retention rate as shown in Table 2, but in ethanol under reduced pressure. When the boiling treatment at 40-55 ° C. was performed for 1-2 hours, as shown in Table 3, a remarkable improvement was obtained in the results of the micropore adsorption performance test. (Table 3 shows the results of a cobalt adsorption test from an aqueous solution performed using Example 11 and Comparative Example 7 and the modified product thereof.)
(比較例1)
実施例2において原料粒子を入れず、有機高分子であるポリエーテルサルホンを倍量添加する他は、実施例2と同様にして、ポリエーテルサルホンのみのペレットを作成した。水銀ポロシメトリによるとペレットは空隙率42%の多孔体であったが、窒素吸着によるミクロ〜メソ孔の全細孔容積は0.01mL/g以下であった。
(Comparative Example 1)
In Example 2, pellets containing only polyethersulfone were prepared in the same manner as in Example 2 except that the raw material particles were not added and polyethersulfone, which is an organic polymer, was added in double amounts. According to mercury porosimetry, the pellet was a porous body having a porosity of 42%, but the total pore volume of micro to mesopores by nitrogen adsorption was 0.01 mL / g or less.
(比較例2)
有機高分子として実施例10で用いているポリサルホン1.15gを原料粒子A1.15gと同時に、実施例3、10及び11で用いているジメチルホルムアミド20.36gに入れて攪拌を行ない成形用スラリーを調製した他は、実施例2と同様にペレット成形を試みたが、成形できなかった。
(Comparative Example 2)
1.15 g of polysulfone used in Example 10 as an organic polymer is placed in 20.36 g of dimethylformamide used in Examples 3, 10 and 11 at the same time as 1.15 g of raw material particles A and stirred to form a molding slurry. Except for the preparation, pellet molding was attempted in the same manner as in Example 2, but could not be molded.
(比較例3)
有機高分子としてエチレン含有量29mol%のエチレン−ビニルアルコール共重合樹脂(ソアノールD2908、日本合成化学工業(株))を用いた他は、実施例7と同様にしてペレットの作製を試みたが、調製したスラリーが凝固用の貧溶媒の表面に膜状に広がってしまい、ペレット状の成形はできなかった。
(Comparative Example 3)
Except for using an ethylene-vinyl alcohol copolymer resin (Soarnol D2908, Nippon Synthetic Chemical Industry Co., Ltd.) having an ethylene content of 29 mol% as an organic polymer, an attempt was made to produce pellets in the same manner as in Example 7. The prepared slurry spreads in the form of a film on the surface of the poor solvent for coagulation, and pellet-like molding could not be performed.
(比較例4)
スラリー用の溶媒として、実施例3、10及び11で用いているジメチルホルムアミド95.5gとジメチルアセトアミド(和光特級)54.83gの混合溶媒を用い、これに予め原料粒子F60.12gを分散させて、加温攪拌しながら、有機高分子としてのポリサルホンを添加する他は、実施例10と同様にして多孔体成形用のスラリー調製を試みたが、ポリサルホンがスラリー中に混和せず、撹拌機を停止すると底に沈殿が生じて均一なスラリーが得られなかった。
(Comparative Example 4)
As a solvent for the slurry, a mixed solvent of 95.5 g of dimethylformamide and 54.83 g of dimethylacetamide (Wako Special Grade) used in Examples 3, 10 and 11 was used, and 60.12 g of raw material particles F were previously dispersed therein. A slurry for forming a porous body was prepared in the same manner as in Example 10 except that polysulfone as an organic polymer was added while heating and stirring, but the polysulfone was not mixed in the slurry, and a stirrer was used. When stopped, precipitation occurred at the bottom and a uniform slurry could not be obtained.
(比較例5)
有機高分子として非晶性ポリエステル樹脂(バイロン200、東洋紡(株))0.54gを実施例3、10及び11で用いているジメチルホルムアミドに溶解させた後、加温攪拌しながら原料粒子F0.54gを添加して、成形用スラリーの調製を試みたが、均一なスラリーが得られなかった。
(Comparative Example 5)
After dissolving 0.54 g of an amorphous polyester resin (Byron 200, Toyobo Co., Ltd.) as an organic polymer in dimethylformamide used in Examples 3, 10 and 11, the raw material particles F0. An attempt was made to prepare a molding slurry by adding 54 g, but a uniform slurry was not obtained.
(比較例6)
実施例15に記載の通りに、原料粒子Gを予め混合する方法で、成形用スラリーを調製したが、スラリーの射出が安定せず、中空糸の成形はできなかった。
(Comparative Example 6)
As described in Example 15, the molding slurry was prepared by the method of mixing the raw material particles G in advance, but the injection of the slurry was not stable, and the hollow fiber could not be molded.
(比較例7)
有機高分子として実施例3及び11で用いたメチルメタクリル樹脂16.23gをジメチルスルホキシド160.69gに45℃で加温攪拌して溶解した後、攪拌したまま、上愛子産天然モルデナイト粉末(新東北化学工業(株)、原料粒子H)40.0gを30メッシュのSUS金網でふるいながら添加し、成形用スラリーを調製した。この時のスラリー中の微粒子の濃度は18重量%で、成形体に対するゼオライト粒子の仕込量は71重量%であった。一晩攪拌したのち、乾湿式紡糸装置にて、実施例1で用いた2重口ノズルを用い、得られたスラリーをシリンダーポンプに入れて22.8ml/minで、40℃の湯浴に射出しながら、芯液として25℃の水を10.1ml/minで流して中空糸状に製膜した。
(Comparative Example 7)
16.23 g of the methyl methacrylic resin used in Examples 3 and 11 as an organic polymer was dissolved in 160.69 g of dimethyl sulfoxide by heating and stirring at 45 ° C., and then stirred with natural mordenite powder from Kamiaiko (New Tohoku) 40.0 g of Chemical Industry Co., Ltd., raw material particles H) was added while sieving with a 30 mesh SUS wire mesh to prepare a molding slurry. At this time, the concentration of fine particles in the slurry was 18% by weight, and the charged amount of zeolite particles in the compact was 71% by weight. After stirring overnight, using the double-mouth nozzle used in Example 1 in a dry / wet spinning device, the resulting slurry was put into a cylinder pump and injected into a 40 ° C. hot water bath at 22.8 ml / min. Then, 25 ° C. water was flowed at 10.1 ml / min as a core solution to form a hollow fiber.
作製した中空糸は外径2.2mm、内径1.0mmであった。そのままでは非常に脆いので、実施例3と同様に、エタノール(和光特級99.5%)1L791.82g)に過酸化ベンゾイル8gを入れて溶解させた容器に室温で一晩乾燥した後の中空糸を入れて、2時間40−60℃で加温し、再重合処理を行なった。処理後の中空糸を洗浄乾燥して、熱分析すると有機物の分解による減量は40重量%であり、成形体中のゼオライト粒子の含量は60重量%であったが、成形時よりも成形用スラリーへの原料添加時のロスが大きかったと考えられる。水銀ポロシメトリによると空隙率は46%であった。窒素吸着測定によると150℃24時間の真空乾燥処理後の成形体中の全細孔容積は微粒子含有量換算で、粉末試料の24%、特にミクロ孔に起因する低圧部(相対圧P/Po<0.12)の窒素吸着量は粉末試料の5%以下であり、重合処理前の中空糸について測定を行なっても同様であった。 The produced hollow fiber had an outer diameter of 2.2 mm and an inner diameter of 1.0 mm. Since it is very brittle as it is, the hollow fiber after being dried overnight at room temperature in a container in which 8 g of benzoyl peroxide was put in ethanol (Wako special grade 99.5%) 1L 791.82 g) and dissolved in the same manner as in Example 3. And heated at 40-60 ° C. for 2 hours for repolymerization. The hollow fiber after the treatment was washed and dried, and thermal analysis showed that the weight loss due to the decomposition of the organic matter was 40% by weight, and the content of zeolite particles in the molded body was 60% by weight. It is thought that the loss at the time of adding the raw material to was large. According to mercury porosimetry, the porosity was 46%. According to the nitrogen adsorption measurement, the total pore volume in the compact after vacuum drying at 150 ° C. for 24 hours is 24% of the powder sample, particularly the low pressure part (relative pressure P / Po) due to micropores in terms of fine particle content. The nitrogen adsorption amount of <0.12) was 5% or less of the powder sample, and it was the same even when the hollow fiber before the polymerization treatment was measured.
表1に、実施例及び比較例で用いた機能性微粒子の物性を示す。 Table 1 shows the physical properties of the functional fine particles used in Examples and Comparative Examples.
表2〜4に、実施例又は比較例で得られた(多孔質)成形体の物性を示す。 In Tables 2-4, the physical property of the (porous) molded object obtained by the Example or the comparative example is shown.
実施例11、比較例7及び比較例7のエタノール処理後の成形体のコバルト(CoCl2)吸着性能について、室温24時間における、バッチ試験によって、其々の原料粒子と比較を行なった。結果を表5に示す。吸着剤其々0.3gを30mLのコバルト水溶液50ppmに添加して行った。原料FとHではゼオライト中のSi/Al比が異なっている。ゼオライト粒子では構造中のSiをAlが置換することによって、イオン交換サイトが生じるため、原料HのCo吸着容量はFのそれに比べて、かなり大きくなっている。実施例11では原料FよりもPMMA樹脂による成形体へのコバルト吸着量が高くなっているが、比較例7のPMMA成形体は原料Hに比べて吸着量がかなり低くなっている。比較例7を実施例12、14のように、減圧下でエタノール中で加温処理すると、表5に示すように原料粒子相当のコバルトの吸着能が認められるようになった。 Example 11 Cobalt (CoCl 2) adsorption performance of ethanol after treatment of the molded body of Comparative Example 7 and Comparative Example 7, at room temperature for 24 hours, by a batch test, a comparison was made with其's raw material particles. The results are shown in Table 5. Each of the adsorbents was added by adding 0.3 g to 30 mL of cobalt aqueous solution 50 ppm. The raw materials F and H have different Si / Al ratios in the zeolite. In the zeolite particles, the substitution of Si in the structure with Al causes ion exchange sites, so the Co adsorption capacity of the raw material H is considerably larger than that of F. In Example 11, the amount of cobalt adsorbed on the molded body by the PMMA resin is higher than that of the raw material F, but the amount of adsorption of the PMMA molded body of Comparative Example 7 is considerably lower than that of the raw material H. When Comparative Example 7 was heat-treated in ethanol under reduced pressure as in Examples 12 and 14, the ability to adsorb cobalt corresponding to the raw material particles was recognized as shown in Table 5.
(実施例18)
有機高分子としてのエチレン含有量(モル比)48mol%のエチレン−ビニルアルコール共重合樹脂(エバールG156B、(株)クラレ)9.98gをジメチルスルホキシド(和光特級)102.88gに混合し、40℃にて200rpmで一晩攪拌して溶解させた。これを加温攪拌したまま、粒子径0.2μm〜2μm、細孔径2nm〜3nmのMCM−41タイプの合成メソポーラスシリカ(SiO2、シグマアルドリッチ No.643653)(原料粒子I)19.99gを添加して、多孔体成形用のスラリーを調製した。この時のスラリー中の粒子の濃度は15重量%、エチレン−ビニルアルコール共重合樹脂の添加量は7.5重量%で、成形体に対するMCM粒子の仕込量は67重量%あった。一晩攪拌したのち、乾湿式紡糸装置にて、スラリー用吐出口径3mmφ、芯液用吐出口径0.7mmφの2重口ノズルを用い、得られたスラリーをシリンダーポンプに入れて20.5ml/minで、37℃の湯浴に射出しながら、芯液として29℃のお湯を7ml/minで流して中空糸状に製膜して、「MCM−41−EVOH中空糸」を得た。図6に得られた成形体の外観像を示す。
(Example 18)
Ethylene-vinyl alcohol copolymer resin (Eval G156B, Kuraray Co., Ltd.) with an ethylene content (molar ratio) of 48 mol% as an organic polymer was mixed with 9.98 g of dimethyl sulfoxide (Wako special grade), and 40 ° C. And stirred at 200 rpm overnight to dissolve. While heating and stirring this, 19.99 g of MCM-41 type synthetic mesoporous silica (SiO 2 , Sigma-Aldrich No. 643653) (raw material particle I) having a particle diameter of 0.2 μm to 2 μm and a pore diameter of 2 nm to 3 nm was added. Thus, a slurry for forming a porous body was prepared. At this time, the concentration of particles in the slurry was 15% by weight, the amount of ethylene-vinyl alcohol copolymer resin added was 7.5% by weight, and the amount of MCM particles charged to the molded body was 67% by weight. After stirring overnight, in a dry / wet spinning device, using a double-port nozzle with a slurry discharge port diameter of 3 mmφ and a core liquid discharge port diameter of 0.7 mmφ, the resulting slurry was placed in a cylinder pump at 20.5 ml / min. Then, while injecting into a 37 ° C. hot water bath, hot water of 29 ° C. was poured as a core solution at 7 ml / min to form a hollow fiber to obtain “MCM-41-EVOH hollow fiber”. The external appearance image of the molded object obtained in FIG. 6 is shown.
作製した中空糸膜は外径1.2mm、内径0.7mmで、60℃で一晩乾燥した後に水銀ポロシメーターで測定すると空隙率が62%前後であり、細孔径分布曲線によるとMCM−41由来の4nm〜10nm径のナノポア及び0.1μm−1μmのマクロポアを有する多元多孔質成形体であった。この中空糸状成形体の60℃乾燥物0.0299gを3mlの蒸留水中に入れ、100rpmで36時間以上連続的に浸透し、再度60℃乾燥して重量測定を行うと、0.0297gであり、重量変化は1%以内であり、殆ど粉落ちはないと考えられる。熱分析によると600℃まで加温した時200℃以上で有機高分子が分解し、この分解による減量は34重量%であることから、成形体中のMCM−41粒子の含量は66重量%であると考えられる。また、窒素吸着等温線によると成形体と原料粒子の等温線のヒステリシスの相対圧(P/Po)域は一致し、原料粒子のメソ細孔のサイズは、ほぼ保たれていると考えられる。更に成形体中細孔容積は0.28cm3/gであり、原料のMCM−41粉末粒子のメソ孔容積は0.59cm3/gであったことから、成形体の細孔容積を含有されるMCM粒子の量で換算すると粉末試料の細孔容積の71%が保持されていると考えられる。 The produced hollow fiber membrane has an outer diameter of 1.2 mm and an inner diameter of 0.7 mm, and after drying overnight at 60 ° C., the porosity is around 62% when measured with a mercury porosimeter. According to the pore size distribution curve, it is derived from MCM-41 It was a multi-element porous molded body having nanopores having a diameter of 4 nm to 10 nm and macropores of 0.1 μm to 1 μm. When 0.0299 g of a 60 ° C. dry product of this hollow fiber-shaped molded product is placed in 3 ml of distilled water, continuously infiltrated at 100 rpm for 36 hours or more, dried again at 60 ° C. and weighed, it is 0.0297 g. The weight change is within 1%, and it is considered that there is almost no powder falling. According to the thermal analysis, when heated to 600 ° C., the organic polymer decomposes at 200 ° C. or higher, and the weight loss due to this decomposition is 34% by weight. Therefore, the content of MCM-41 particles in the molded body is 66% by weight. It is believed that there is. Further, according to the nitrogen adsorption isotherm, it is considered that the relative pressure (P / Po) region of the hysteresis of the isotherm of the compact and the raw material particles coincides, and the size of the mesopores of the raw material particles is almost maintained. Furthermore, since the pore volume in the molded body was 0.28 cm 3 / g and the mesopore volume of the raw material MCM-41 powder particles was 0.59 cm 3 / g, the pore volume of the molded body was contained. It is considered that 71% of the pore volume of the powder sample is retained in terms of the amount of MCM particles.
(実施例19)
有機高分子としてのポリエーテルサルホン(Veradel PES 3000P ソルベイアドバンストポリマー(株)、重量平均分子量(Mw)=57,000)0.54gをジメチルスルホキシド(和光特級)5.50gに50℃で完全に溶解し、これに実施例18で用いた合成メソポーラスシリカ(原料粒子I)0.55gを混合して、スラリーを調製した。この時のスラリー中の粒子の濃度は8.3重量%、ポリエーテルサルホンの添加量は8.2重量%で、成形体に対するMCM粒子の仕込量は50重量%あった。このスラリーを約32℃のお湯を入れたビーカーに滴下して2時間以上凝固させ、60℃で乾燥、更に、室温で25時間以上白濁が無くなるまで攪拌洗浄して、「MCM−41−PESペレット」を成形した。
(Example 19)
Polyethersulfone as an organic polymer (Veradel PES 3000P Solvay Advanced Polymer Co., Ltd., 0.54 g of weight average molecular weight (Mw) = 57,000) was completely added to 5.50 g of dimethyl sulfoxide (Wako special grade) at 50 ° C. Dissolved and mixed with 0.55 g of synthetic mesoporous silica (raw material particles I) used in Example 18 to prepare a slurry. At this time, the concentration of particles in the slurry was 8.3% by weight, the amount of polyethersulfone added was 8.2% by weight, and the amount of MCM particles charged to the compact was 50% by weight. This slurry was dropped into a beaker containing hot water of about 32 ° C., solidified for 2 hours or more, dried at 60 ° C., stirred and washed at room temperature for 25 hours or more until no turbidity was observed, and “MCM-41-PES pellets” Was molded.
白濁が無くなるまで攪拌洗浄した後のペレット0.0288gを3mLの水中で室温72時間以上攪拌し、乾燥重量を測定すると殆ど重量変化は認められなかった。これを熱分析で600℃まで加温した時、有機高分子は450℃以上で分解し、分解による減量は47%であったことから、ペレット中のMCM粒子の含有量は53%程度であると考えられる。(120℃前後に原料粒子及び有機高分子にはない可逆的な吸熱ピーク及び減量が認められ、成形に由来する新たな吸着サイトが生じたと考えられる。)水銀ポロシメーターで測定すると空隙率が78%前後であり、細孔径分布曲線によるとMCM−41由来の4nm〜10nm径のナノポア及び0.1μm〜1μmのマクロポアを有する多元多孔体であった。また、窒素吸着等温線によると成形体の細孔容積は0.50cm3/gであり、同条件で測定した粉末試料の細孔容積が0.59cm3/gであったことから、成形体に含有されるMCM−41粒子の量で換算すると成形体中のMCM−41のメソ孔容積はほぼ全て保持されていると考えられる。 When 0.0288 g of the pellet after stirring and washing until the cloudiness disappeared was stirred in 3 mL of water at room temperature for 72 hours or more and the dry weight was measured, almost no change in weight was observed. When this was heated to 600 ° C. by thermal analysis, the organic polymer was decomposed at 450 ° C. or higher, and the weight loss due to decomposition was 47%. Therefore, the content of MCM particles in the pellet is about 53%. it is conceivable that. (It is considered that a reversible endothermic peak and weight loss not found in the raw material particles and the organic polymer were observed around 120 ° C., and that a new adsorption site derived from molding was generated.) When measured with a mercury porosimeter, the porosity was 78%. According to the pore size distribution curve, it was a multi-element porous body having 4 nm to 10 nm diameter nanopores derived from MCM-41 and 0.1 μm to 1 μm macropores. Further, according to the nitrogen adsorption isotherm, the pore volume of the compact was 0.50 cm 3 / g, and the pore volume of the powder sample measured under the same conditions was 0.59 cm 3 / g. It is considered that almost all the mesopore volume of MCM-41 in the molded body is retained in terms of the amount of MCM-41 particles contained in the compact.
(実施例20)
原料粒子として細孔径が4.5nmサイズのFSM−22タイプの合成メソポーラスシリカ(原料粒子J)を使用した他は、実施例19と同様にして「FSM−22−4.5nm−PESペレット」を成形した。熱分析によると、ペレット中の粒子の含有量は50%程度であった。
(Example 20)
“FSM-22-4.5 nm-PES pellet” was prepared in the same manner as in Example 19 except that FSM-22 type synthetic mesoporous silica (raw material particle J) having a pore size of 4.5 nm was used as the raw material particles. Molded. According to the thermal analysis, the content of particles in the pellet was about 50%.
(実施例21)
原料粒子として細孔径が6nmサイズのFSM−22タイプの合成メソポーラスシリカ(原料粒子K)を使用した他は、実施例19と同様にして「FSM−22−6nm−PESペレット」を成形した。熱分析によると、ペレット中の粒子の含有量は52%程度であった。
(Example 21)
“FSM-22-6 nm-PES pellets” were formed in the same manner as in Example 19 except that FSM-22 type synthetic mesoporous silica (raw material particles K) having a pore size of 6 nm was used as the raw material particles. According to the thermal analysis, the content of particles in the pellet was about 52%.
(実施例22)
原料粒子として細孔径が8nmサイズのFSM−22タイプの合成メソポーラスシリカ(原料粒子L)を使用した他は、実施例19と同様にして「FSM−22−8nm−PESペレット」を成形した。熱分析によると、ペレット中の粒子の含有量は55%程度であった。
(Example 22)
“FSM-22-8 nm-PES pellets” were formed in the same manner as in Example 19 except that FSM-22 type synthetic mesoporous silica (raw material particles L) having a pore size of 8 nm was used as the raw material particles. According to the thermal analysis, the content of particles in the pellet was about 55%.
(実施例23)
原料粒子として細孔径が4nmサイズのSBA−15タイプの合成メソポーラスシリカ(原料粒子M)を使用した他は、実施例19と同様にして「SBA−15−4nm−PESペレット」を成形した。熱分析によると、ペレット中の粒子の含有量は50%程度であった。また、図7に実施例23で用いたSBA−15タイプの合成メソポーラスシリカ(原料粒子M)、得られた成形体、及び当該成形体と酵素(リパーゼ)との複合体の外観像を示す。(a)は、典型的なメソポーラスシリカ(SBA−15タイプ、原料粒子M)の粉末(10mg)であり、(b)は、成形体(20mg)であり、(c)は、当該成形体と酵素(リパーゼ)との複合体である。(a)はと(b)は白色であり、(c)は褐色である。
(Example 23)
“SBA-15-4 nm-PES pellets” were molded in the same manner as in Example 19 except that SBA-15 type synthetic mesoporous silica (raw material particles M) having a pore size of 4 nm was used as the raw material particles. According to the thermal analysis, the content of particles in the pellet was about 50%. Moreover, the external appearance image of the composite_body | complex of the SBA-15 type synthetic mesoporous silica (raw material particle | grains M) used in Example 23, the obtained molded object, and the said molded object and an enzyme (lipase) is shown in FIG. (A) is a powder (10 mg) of typical mesoporous silica (SBA-15 type, raw material particles M), (b) is a molded body (20 mg), and (c) is the molded body and It is a complex with an enzyme (lipase). (A) and (b) are white and (c) is brown.
(実施例24)
原料粒子として細孔径が6nmサイズのSBA−15タイプの合成メソポーラスシリカ(原料粒子N)を使用した他は、実施例19と同様にして「SBA−15−6nm−PESペレット」を成形した。熱分析によると、ペレット中の粒子の含有量は50%程度であった。
(Example 24)
“SBA-15-6 nm-PES pellets” were formed in the same manner as in Example 19 except that SBA-15 type synthetic mesoporous silica (raw material particles N) having a pore size of 6 nm was used as the raw material particles. According to the thermal analysis, the content of particles in the pellet was about 50%.
(実施例25)
原料粒子として細孔径が8nmサイズのSBA−15タイプの合成メソポーラスシリカ(原料粒子O)を使用した他は、実施例19と同様にして「SBA−15−8nm−PESペレット」を成形した。熱分析によると、ペレット中の粒子の含有量は50%程度であった。
(Example 25)
“SBA-15-8 nm-PES pellets” were formed in the same manner as in Example 19 except that SBA-15 type synthetic mesoporous silica (raw material particles O) having a pore size of 8 nm was used as the raw material particles. According to the thermal analysis, the content of particles in the pellet was about 50%.
(実施例26)
原料粒子として細孔径が5nmサイズのSBA−16タイプの合成メソポーラスシリカ(原料粒子P)を使用した他は、実施例19と同様にして「SBA−16−5nm−PESペレット」を成形した。熱分析によると、ペレット中の粒子の含有量は54%程度であった。
(Example 26)
“SBA-16-5 nm-PES pellets” were formed in the same manner as in Example 19 except that SBA-16 type synthetic mesoporous silica (raw material particles P) having a pore size of 5 nm was used as the raw material particles. According to the thermal analysis, the content of particles in the pellet was about 54%.
(実施例27)
実施例18で用いた有機高分子0.53gをジメチルスルホキシド(和光特級)5.55mLに入れ、加熱攪拌して溶解し、これに平均細孔径が5.8nmサイズのMSU−Xタイプの合成メソポーラス酸化アルミ(Al2O3、シグマアルドリッチ No.517747)(原料粒子Q)0.54gを混合して、スラリーを調製した。このスラリー室温水を入れたビーカーに滴下して凝固させ、60℃で乾燥して、「メソポーラスAl2O3−EVOHペレット」を成形した。
(Example 27)
0.53 g of the organic polymer used in Example 18 was put in 5.55 mL of dimethyl sulfoxide (Wako Special Grade), dissolved by heating and stirring, and an MSU-X type synthetic mesoporous having an average pore diameter of 5.8 nm. A slurry was prepared by mixing 0.54 g of aluminum oxide (Al 2 O 3 , Sigma-Aldrich No. 517747) (raw material particles Q). This slurry was dripped into a beaker containing room temperature water to be solidified and dried at 60 ° C. to form “mesoporous Al 2 O 3 -EVOH pellets”.
熱分析によると600℃まで加温した時の有機高分子の分解による減量は54%であり、ペレット中の粒子の含有量は46%程度であると考えられる。 According to thermal analysis, the weight loss due to decomposition of the organic polymer when heated to 600 ° C. is 54%, and the content of particles in the pellet is considered to be about 46%.
(実施例28)
原料粒子として平均細孔径が5.8nmサイズのMSU−Xタイプの合成メソポーラス酸化アルミ(Al2O3、シグマアルドリッチ No.517747)(原料粒子Q)を使用した他は、実施例19と同様にして「メソポーラスAl2O3−PESペレット」を成形した。熱分析によると、ペレット中の粒子の含有量は50%程度であった。
(Example 28)
Except that MSU-X type synthetic mesoporous aluminum oxide (Al 2 O 3 , Sigma-Aldrich No. 517747) (raw material particles Q) having an average pore diameter of 5.8 nm was used as the raw material particles, the same as in Example 19. Thus, “mesoporous Al 2 O 3 -PES pellets” were formed. According to the thermal analysis, the content of particles in the pellet was about 50%.
(実施例29)
実施例18で用いた有機高分子0.10gをジメチルスルホキシド(和光特級)0.7mLに入れ、加熱攪拌して溶解し、これに粒子径10〜100nm、平均細孔径4.2nmのメソポーラス酸化チタン(Alfa Aesar No.43250)(原料粒子R)0.20gを混合して、スラリーを調製した。このスラリー室温水を入れたビーカーに滴下して凝固させ、60℃で乾燥して、「メソポーラスTiO2−EVOHペレット」を成形した。
(Example 29)
0.10 g of the organic polymer used in Example 18 was placed in 0.7 mL of dimethyl sulfoxide (Wako Special Grade), dissolved by heating and stirring, and mesoporous titanium oxide having a particle size of 10 to 100 nm and an average pore size of 4.2 nm. (Alfa Aesar No. 43250) (Raw material particle R) 0.20 g was mixed to prepare a slurry. This slurry was dripped into a beaker containing room temperature water to be solidified and dried at 60 ° C. to form “mesoporous TiO 2 -EVOH pellets”.
熱分析によると600℃まで加温した時の有機高分子の分解による減量は47%であり、ペレット中の粒子の含有量は65%程度であると考えられる。また、100℃で前処理し蒸気吸着測定結果によって計算した成形体中の比表面積は、127m2/gとなり、原料粉末の細孔容積は0.29cm3/g、比表面積は235m2/gであることから、含有されるメソポーラス酸化チタン粒子の量で換算すると成形体中のメソポーラス酸化チタンのメソ孔容積はほぼ全て保持されていたと考えられる。 According to thermal analysis, the weight loss due to decomposition of the organic polymer when heated to 600 ° C. is 47%, and the content of particles in the pellet is considered to be about 65%. Moreover, the specific surface area in the molded body which was pretreated at 100 ° C. and calculated from the vapor adsorption measurement result was 127 m 2 / g, the pore volume of the raw material powder was 0.29 cm 3 / g, and the specific surface area was 235 m 2 / g. Therefore, when converted in terms of the amount of mesoporous titanium oxide particles contained, it is considered that almost all mesoporous volumes of mesoporous titanium oxide in the compact were retained.
(比較例8)
実施例19において原料粒子を入れず、有機高分子であるポリエーテルサルホンを倍量添加した他は、実施例19と同様にして、ポリエーテルサルホンのみのペレットである「PESペレット」を作製した。水銀ポロシメトリによるとペレットは空隙率42%の多孔体であったが、窒素吸着測定によると当該成形体の全細孔容積は0.01mL/g以下であった。
(Comparative Example 8)
A “PES pellet”, which is a pellet of polyethersulfone only, was prepared in the same manner as in Example 19 except that the raw material particles were not added and double the amount of polyethersulfone, which is an organic polymer, was added. did. According to mercury porosimetry, the pellet was a porous body with a porosity of 42%, but according to the nitrogen adsorption measurement, the total pore volume of the molded body was 0.01 mL / g or less.
表6に、メソポーラス微粒子の多孔質成形体の製造に用いた各種メソポーラス微粒子の物性を示す。 Table 6 shows the physical properties of various mesoporous fine particles used in the production of a porous molded body of mesoporous fine particles.
表7に、実施例18〜29で得られたメソポーラス微粒子の多孔質成形体、及び、実施例19において原料粒子を入れず、有機高分子であるポリエーテルサルホンのみを用いて製造した成形体の物性を示す。 Table 7 shows a porous molded body of mesoporous fine particles obtained in Examples 18 to 29, and a molded body manufactured using only polyether sulfone, which is an organic polymer, without using raw material particles in Example 19. The physical properties of are shown.
(実施例30:AzoR−MCM−41−EVOH中空糸複合体の製造及び酵素反応)
本実施例では、実施例18で得られた成形体(MCM−41−EVOH中空糸)に対するアゾ還元酵素(AzoR)の固定化と酵素活性の評価を行った。図8に、MCM−41−EVOH中空糸とAzoRとの複合体の製造法、アゾ染料(メチルレッド)の還元分解反応、及び、固定化酵素の再使用までの実験手順の例を示す。
(Example 30: Production of AzoR-MCM-41-EVOH hollow fiber composite and enzyme reaction)
In this example, immobilization of azo reductase (AzoR) to the molded product (MCM-41-EVOH hollow fiber) obtained in Example 18 and evaluation of enzyme activity were performed. FIG. 8 shows an example of a procedure for producing a complex of MCM-41-EVOH hollow fiber and AzoR, an azo dye (methyl red) reductive decomposition reaction, and an experimental procedure up to reuse of an immobilized enzyme.
(1−1)AzoR−MCM−41−EVOH中空糸複合体の製造方法
酵素の固定化支持体には、メソポーラス微粒子の多孔質成形体として、実施例18で得られたMCM−41−EVOH中空糸(平均細孔径:2.66nm)を使用した。また、比較のための成型前のメソポーラスシリカ微粒子として、MCM−41タイプの合成メソポーラスシリカ(原料粒子I)を使用した。また、アゾ還元酵素としては、Escherichia coli由来のAzoR(二量体、アミノ酸残基数:201、分子量(単量体):約23kD)を用いた。
(1-1) Production Method of AzoR-MCM-41-EVOH Hollow Fiber Composite The MCM-41-EVOH hollow obtained in Example 18 was used as a porous molded body of mesoporous fine particles for the enzyme immobilization support. Yarn (average pore size: 2.66 nm) was used. For comparison, MCM-41 type synthetic mesoporous silica (raw material particles I) was used as the mesoporous silica fine particles before molding. As the azo reductase, Escherichia coli-derived AzoR (dimer, amino acid residue number: 201, molecular weight (monomer): about 23 kD) was used.
まず、Escherichia coliの染色体DNAから増幅したAzoR遺伝子をpET100/D−TOPOベクターに挿入することによって、AzoR発現用の環状プラスミドDNAを作製した。次に、前記環状プラスミドDNAを組換え大腸菌に導入し、大腸菌タンパク発現系を利用してAzoRを製造した。 First, an AzoR gene amplified from Escherichia coli chromosomal DNA was inserted into a pET100 / D-TOPO vector to prepare a circular plasmid DNA for AzoR expression. Next, the circular plasmid DNA was introduced into recombinant E. coli, and AzoR was produced using an E. coli protein expression system.
酵素を固定化する際には、図8に記載の手順に従い、AzoR(0.387mg)を含んだ緩衝液(25mM Tris−HCl(pH 7.5))1mLと、予め5mm長に切断し、マイクロチューブに量り取り、同緩衝液を用いて平衡化しておいたMCM−41−EVOH中空糸(15又は30mg)とを、ローテーターを用いて室温で20時間穏やかに混合することによって複合化させ、遠心分離操作、及び、同緩衝液を用いた洗浄操作を2度行うことでAzoR−MCM−41−EVOH中空糸複合体を得た。なお、本発明の酵素とメソポーラス微粒子の多孔質成形体との複合体としては、未洗浄のままで用いることもできるが、本実施例及び以下の実施例31、32、及び33では、成形体への酵素の結合安定性を評価するために、以下の遠心分離工程と共に洗浄工程を行っている。 When immobilizing the enzyme, according to the procedure described in FIG. 8, 1 mL of a buffer solution (25 mM Tris-HCl (pH 7.5)) containing AzoR (0.387 mg) was cut in advance to a length of 5 mm, MCM-41-EVOH hollow fiber (15 or 30 mg) weighed into a microtube and equilibrated with the same buffer was combined by gently mixing for 20 hours at room temperature using a rotator, The AzoR-MCM-41-EVOH hollow fiber composite was obtained by performing the centrifugation operation and the washing operation using the same buffer twice. The complex of the enzyme of the present invention and the porous molded body of mesoporous fine particles can be used without being washed, but in this example and the following Examples 31, 32, and 33, the molded body is used. In order to evaluate the binding stability of the enzyme to the enzyme, a washing step is performed together with the following centrifugation step.
具体的には、前記のAzoR−MCM−41−EVOH中空糸複合体(未洗浄)の分散液に対して遠心分離(4℃、18,000G、10分間)を行い、上清を全て回収した。続いて、洗浄用緩衝液(固定化時に選択した緩衝液を使用)1mLを添加し、Vortex Mixerを用いて約5秒間室温で攪拌し、AzoRとメソポーラスシリカ成形体との複合体を再懸濁した後、遠心分離(4℃、18,000G、10分間)を行い、上清を全て回収する洗浄操作を行った。再び、前記洗浄用緩衝液1mLを用いて洗浄操作を繰り返し、最終的に、AzoR−MCM−41−EVOH中空糸複合体(洗浄済)を得た。以下、「AzoR−MCM−41−EVOH中空糸」という。
また、比較のためにMCM−41タイプの合成メソポーラスシリカ(原料粒子I)(10mg)を用いて、同様の手順により複合体を得た。以下、「AzoR−MCM−41−粉末」という。
Specifically, centrifugation (4 ° C., 18,000 G, 10 minutes) was performed on the dispersion of the AzoR-MCM-41-EVOH hollow fiber composite (not washed), and all the supernatant was collected. . Subsequently, 1 mL of a washing buffer (using the buffer selected at the time of immobilization) was added, and the mixture was stirred for about 5 seconds at room temperature using a Vortex Mixer to resuspend the complex of AzoR and the mesoporous silica compact. After that, centrifugation (4 ° C., 18,000 G, 10 minutes) was performed, and a washing operation for collecting all the supernatant was performed. Again, the washing operation was repeated using 1 mL of the washing buffer, and finally, an AzoR-MCM-41-EVOH hollow fiber composite (washed) was obtained. Hereinafter, it is referred to as “AzoR-MCM-41-EVOH hollow fiber”.
For comparison, a composite was obtained by the same procedure using MCM-41 type synthetic mesoporous silica (raw material particles I) (10 mg). Hereinafter, it is referred to as “AzoR-MCM-41-powder”.
成形体に対する酵素の固定化量及び固定化率は、固定化前の酵素量(1mL中、0.387mg)を基準とし、前記の遠心分離工程及び洗浄工程の回収液に含まれる遊離の酵素量の引き算及び割り算によって評価した。図9に、MCM−41−粉末(典型的なメソポーラスシリカ(MCM−41タイプ、原料粒子I)、又は、実施例18のMCM−41−EVOH中空糸に対するAzoRの固定化量及び固定化率を示す。 The amount of enzyme immobilized on the molded body and the immobilization rate are based on the amount of enzyme before immobilization (0.387 mg in 1 mL), and the amount of free enzyme contained in the collected liquid of the centrifugation step and the washing step. Was evaluated by subtraction and division. FIG. 9 shows the amount of AzoR immobilized on MCM-41-powder (typical mesoporous silica (MCM-41 type, raw material particle I), or MCM-41-EVOH hollow fiber of Example 18). Show.
図9より、MCM−41−EVOH中空糸に対するAzoRの固定化量及び固定化率は、成形体の量に比例して増大する傾向が認められた。実施例18より、成形体中のMCM−41粒子の含量が66重量%であることを鑑みると、MCM−41−EVOH中空糸の15mg及び30mgに含まれるMCM−41粒子は各々10mg及び20mgに相当すると考えられる。ここで、MCM−41−粉末(10mg)とMCM−41−EVOH中空糸(15mg)とを比較すると、MCM−41粒子の量が同等であるにもかかわらず、粉末よりも中空糸成形体の方が酵素の固定化量及び固定化率が低下したが、成形体においても粉末の82.5%に相当する酵素の固定化能を保持していることが判明した。 From FIG. 9, it was recognized that the amount of AzoR immobilized on the MCM-41-EVOH hollow fiber and the rate of immobilization tend to increase in proportion to the amount of the molded body. Considering that the content of MCM-41 particles in the molded body was 66% by weight from Example 18, MCM-41 particles contained in 15 mg and 30 mg of MCM-41-EVOH hollow fiber were 10 mg and 20 mg, respectively. It seems to be equivalent. Here, when MCM-41-powder (10 mg) and MCM-41-EVOH hollow fiber (15 mg) were compared, the amount of MCM-41 particles was equal but the hollow fiber molded body was more than the powder. However, it was found that the enzyme immobilization amount and the immobilization rate were reduced, but the molded body retained the enzyme immobilization ability corresponding to 82.5% of the powder.
(1−2)メチルレッドの分解活性の評価
(1−1)で得られたAzoR−MCM−41−EVOH中空糸及びAzoR−MCM−41−粉末それぞれの酵素活性を、反応基質としてのアゾ染料(メチルレッド)の分解率(脱色率)により評価した。
具体的には、図8に示したように、複合体それぞれに対して、以下の酵素反応を起こさせ、各種の反応基質(メチルレッド及び補酵素(NADH))の吸光度変化を調べることで酵素活性を評価した。
(1-2) Evaluation of methyl red degradation activity The enzyme activities of AzoR-MCM-41-EVOH hollow fiber and AzoR-MCM-41-powder obtained in (1-1) were used as azo dyes as reaction substrates. Evaluation was based on the decomposition rate (decoloration rate) of (methyl red).
Specifically, as shown in FIG. 8, the following enzyme reaction is caused for each complex, and the change in absorbance of various reaction substrates (methyl red and coenzyme (NADH)) is examined to determine the enzyme. Activity was evaluated.
酵素反応は、(1−1)で得られた、マイクロチューブ内のAzoR−MCM−41−EVOH中空糸及びAzoR−MCM−41−粉末に対して、メチルレッド、NADH等を含んだ反応基質(1mL)を添加することによって開始した。
その際、反応基質の反応組成が、「25mM Tris−HCl(pH 7.5)、0.05mM メチルレッド、0.3mM NADH、1μM FMN、反応液量:1mL」となるように調整した。また、比較のために固定化支持体を用いない遊離のAzoRについても、同様の反応基質と混合することで反応を行った。
反応条件は、ローテーターを用いて穏やかに混合しながら37℃で30分間の加温状態を保持することとした。反応終了時に遠心分離(4℃、18,000G、5分間)によって上清を回収し、マイクロプレートリーダー(SpectraMax M2e; Molecular Devices製)を用いて、回収液の340nm、又は、430nmの吸光度を測定することによって、メチルレッド分解反応における反応30分後のNADHの消費率、又は、メチルレッドの分解率(脱色率)を評価した。図10及び表8に、AzoR−MCM−41−EVOH中空糸及びAzoR−MCM−41−粉末によるメチルレッドの還元分解におけるNADHとメチルレッドの吸光度変化、又、メチルレッドの分解率を示す。図10に、AzoR−メソポーラスシリカ複合体(粉末又は成形体)によるアゾ染料(メチルレッド)の還元分解における(a)補酵素(NADH)と(b)メチルレッドの吸光度変化を示した。図10の(c)にメチルレッドの分解率を示した。
The enzyme reaction was performed on the reaction substrate (methyl red, NADH, etc.) for the AzoR-MCM-41-EVOH hollow fiber and the AzoR-MCM-41-powder obtained in (1-1). 1 mL).
At that time, the reaction composition of the reaction substrate was adjusted to be “25 mM Tris-HCl (pH 7.5), 0.05 mM methyl red, 0.3 mM NADH, 1 μM FMN, reaction volume: 1 mL”. For comparison, free AzoR that does not use an immobilized support was also reacted by mixing with the same reaction substrate.
The reaction conditions were that the temperature was maintained at 37 ° C. for 30 minutes with gentle mixing using a rotator. At the end of the reaction, the supernatant was collected by centrifugation (4 ° C., 18,000 G, 5 minutes), and the absorbance of the collected solution was measured at 340 nm or 430 nm using a microplate reader (SpectraMax M2e; manufactured by Molecular Devices). Thus, the consumption rate of NADH 30 minutes after the reaction in the methyl red decomposition reaction or the decomposition rate (decolorization rate) of methyl red was evaluated. FIG. 10 and Table 8 show the change in absorbance of NADH and methyl red in the reductive decomposition of methyl red with AzoR-MCM-41-EVOH hollow fiber and AzoR-MCM-41-powder, and the decomposition rate of methyl red. FIG. 10 shows the change in absorbance of (a) coenzyme (NADH) and (b) methyl red in the reductive degradation of azo dye (methyl red) by AzoR-mesoporous silica complex (powder or molded product). FIG. 10 (c) shows the degradation rate of methyl red.
図10(a)及び(b)より、固定化支持体を用いない遊離のAzoR、AzoR−MCM−41−粉末、又は、AzoR−MCM−41−EVOH中空糸のいずれの場合も、NADH及びメチルレッドの吸光度が著しく低下する傾向が認められた。このことは、固定化酵素においても、NADHの消費に伴ったメチルレッドの分解反応が効率良く進行していることを示している。 From FIGS. 10 (a) and (b), NADH and methyl were found in any of free AzoR, AzoR-MCM-41-powder, or AzoR-MCM-41-EVOH hollow fiber without using an immobilized support. There was a tendency for the absorbance of red to decrease significantly. This indicates that also in the immobilized enzyme, the degradation reaction of methyl red accompanying consumption of NADH proceeds efficiently.
興味深いことに、図10(a)の酵素反応後の吸光度変化に着目すると、遊離の酵素の場合と比較して、固定化酵素の場合により大きい吸光度の低下が示された。これより、NADHがより効率良く消費されたか、或いは、固定化状態の酵素とNADHが複合体を形成していることが推察される。 Interestingly, focusing on the change in absorbance after the enzyme reaction in FIG. 10 (a), a greater decrease in absorbance was shown for the immobilized enzyme compared to the free enzyme. From this, it is presumed that NADH was consumed more efficiently or that the immobilized enzyme and NADH formed a complex.
更に、酵素が無い場合のNADH及びメチルレッドの吸光度は、反応溶液そのものと比較して、MCM−41−粉末とMCM−41−EVOH中空糸いずれを用いた場合も同等の値が示された。このことより、MCM−41−粉末のメソ細孔やMCM−41−EVOH中空糸のメソ細孔及び有機高分子部分には、反応基質自身、すなわち、NADH及びメチルレッド分子はほとんど吸着しないことが示唆された。 Further, the absorbances of NADH and methyl red in the absence of enzyme showed comparable values when using either MCM-41-powder or MCM-41-EVOH hollow fiber as compared to the reaction solution itself. Therefore, the reaction substrate itself, that is, NADH and methyl red molecules are hardly adsorbed on the mesopores of the MCM-41-powder and the mesopores of the MCM-41-EVOH hollow fiber and the organic polymer part. It was suggested.
また、図10(c)より、MCM−41−粉末とMCM−41−EVOH中空糸に固定化した酵素によるメチルレッドの分解率は、未固定の遊離酵素の場合と同等であったことから、固定化状態においても本来の酵素活性を保持していることが判明した。 Also, from FIG. 10 (c), the degradation rate of methyl red by the enzyme immobilized on the MCM-41-powder and MCM-41-EVOH hollow fiber was equivalent to that of the unimmobilized free enzyme, It was found that the original enzyme activity was retained even in the immobilized state.
(実施例31:AzoRと各種多孔質成形体との複合体の製造及び酵素反応)
本実施例では、実施例18〜28で得られたメソポーラス微粒子の多孔質成形体、及び、比較例8において原料粒子を入れず、有機高分子であるポリエーテルサルホンのみを用いて製造した成形体に対するアゾ還元酵素(AzoR)の固定化と酵素活性の評価を行った。
(Example 31: Production of complex of AzoR and various porous molded bodies and enzyme reaction)
In this example, the mesoporous fine-particle porous molded body obtained in Examples 18 to 28 and the molding produced in Comparative Example 8 using only polyether sulfone, which is an organic polymer, without using raw material particles. Immobilization of azo reductase (AzoR) to the body and evaluation of enzyme activity were performed.
(1−1)AzoRと各種多孔質成形体との複合体の製造方法
AzoRの固定化支持体には、メソポーラス微粒子の多孔質成形体として、実施例18〜28により得られた11種類の成形体を使用した。また、比較のための原料粒子を含まない成形体として、比較例8により得られた「PESペレット」を使用した。更に、比較のための成型前のメソポーラスシリカ微粒子として、9種類の合成メソポーラスシリカ(原料粒子I〜Q)を使用した。
(1-1) Production Method of Composite of AzoR and Various Porous Molded Body Eleven types of moldings obtained in Examples 18 to 28 were used as a porous molded body of mesoporous fine particles on an AzoR immobilization support. Used the body. Moreover, the “PES pellet” obtained in Comparative Example 8 was used as a molded body that did not contain raw material particles for comparison. Furthermore, nine types of synthetic mesoporous silica (raw material particles I to Q) were used as mesoporous silica fine particles before molding for comparison.
酵素を固定化する際には、AzoR(0.328mg)を含んだ緩衝液(25mM MES−NaOH(pH 6))1mLと、予め96ウェルの深底タイププレートの各ウェルに量り取り、同緩衝液を用いて平衡化しておいた11種類の成形体及び「PESペレット」(20mg相当)とを、攪拌装置(TAITEC社製、Deep Well Maximizer、BioShaker M・BR−022UP)を用いて混合(25℃、1,200rpm、24時間)することによって複合化させ、遠心分離操作、及び、同緩衝液を用いた洗浄操作を2度行うことでAzoRと各種多孔質成形体との複合体を得た。なお、本発明の酵素とメソポーラス微粒子の多孔質成形体との複合体としては、未洗浄のままで用いることもできるが、本実施例では、成形体への酵素の結合安定性を評価するために、以下の遠心分離工程と共に洗浄工程を行っている。 When immobilizing the enzyme, weigh 1 mL of a buffer solution (25 mM MES-NaOH (pH 6)) containing AzoR (0.328 mg) into each well of a 96-well deep bottom type plate in advance. 11 types of molded bodies that had been equilibrated with the liquid and “PES pellets” (corresponding to 20 mg) were mixed using a stirrer (TAITEC, Deep Well Maximizer, BioShaker M • BR-022UP) (25 And a composite of AzoR and various porous molded bodies was obtained by performing the centrifugation operation and the washing operation using the same buffer twice. . The complex of the enzyme of the present invention and the porous molded body of mesoporous fine particles can be used without washing, but in this example, in order to evaluate the binding stability of the enzyme to the molded body. In addition, the washing process is performed together with the following centrifugation process.
具体的には、前記のAzoRと各種多孔質成形体との複合体(未洗浄)の分散液に対して遠心分離(25℃、4,700rpm、10分間)を行い、上清を全て回収した。続いて、洗浄用緩衝液(固定化時に選択した緩衝液を使用)1mLを添加し、前記の攪拌装置を用いて25℃で1時間、AzoRとメソポーラスシリカ成形体との複合体を攪拌した後、遠心分離(25℃、4,700rpm、10分間)を行い、上清を全て回収する洗浄操作を行った。再び、前記洗浄用緩衝液1mLを用いて洗浄操作を繰り返し、最終的に、AzoRと各種多孔質成形体との複合体(洗浄済)を得た。以下、「AzoR−メソポーラス微粒子成形体」という。 Specifically, centrifugation (25 ° C., 4,700 rpm, 10 minutes) was performed on the dispersion of the complex of AzoR and various porous molded bodies (unwashed), and the entire supernatant was collected. . Subsequently, 1 mL of a washing buffer solution (using the buffer solution selected at the time of immobilization) was added, and the composite of AzoR and the mesoporous silica molded body was stirred for 1 hour at 25 ° C. using the stirring device. Then, centrifugation (25 ° C., 4,700 rpm, 10 minutes) was performed, and a washing operation for collecting all the supernatant was performed. Again, the washing operation was repeated using 1 ml of the washing buffer solution, and finally, composites (washed) of AzoR and various porous molded bodies were obtained. Hereinafter, it is referred to as “AzoR-mesoporous fine particle compact”.
また、比較のために9種類の合成メソポーラスシリカ(原料粒子I〜Q)(10mg相当)を用いて、マイクロチューブ、ローテーター、及び、マイクロチューブ用の遠心分離機(25℃、20,000G、10分間)を使用した他は、前記成形体と同様の手順により複合体を得た。以下、「AzoR−メソポーラス微粒子粉末」という。 For comparison, nine types of synthetic mesoporous silica (raw material particles I to Q) (equivalent to 10 mg) were used to prepare a microtube, a rotator, and a microtube centrifuge (25 ° C., 20,000 G, 10 The composite was obtained by the same procedure as that of the molded body except that the minute) was used. Hereinafter, it is referred to as “AzoR-mesoporous fine particle powder”.
各種のメソポーラス微粒子の成形体及び粉末に対する酵素の固定化量は、固定化前の酵素量(1mL中、0.328mg)から、前記の遠心分離工程及び洗浄工程の回収液に含まれる遊離の酵素量を差し引くことによって算出した。図11に、メソポーラス微粒子成形体、原料粒子を含まない成形体、又は、メソポーラス微粒子粉末に対するAzoRの固定化量を示す。(a)はメソポーラス微粒子の各種成形体に対するAzoRの固定化量である。(b)は、メソポーラス微粒子の各種粉末に対するAzoRの固定化量である。 The amount of enzyme immobilized on various mesoporous fine-particle compacts and powders is determined based on the amount of enzyme before immobilization (0.328 mg in 1 mL), and the free enzyme contained in the collected liquid in the centrifugation step and washing step. Calculated by subtracting the amount. FIG. 11 shows the amount of AzoR immobilized on a mesoporous fine particle molded body, a molded body not containing raw material particles, or mesoporous fine particle powder. (A) is the amount of AzoR immobilized on various molded products of mesoporous fine particles. (B) is the amount of AzoR immobilized on various powders of mesoporous fine particles.
図11(a)及び(b)より、メソポーラスAl2O3−EVOHペレット、SBA−16−5nm−粉末、又は、メソポーラスAl2O3粉末以外の固定化支持体では、全体的に同等のAzoRの固定化量が示された。表7より、実施例18〜28により得られた11種類の成形体中のメソポーラス微粒子の含量が平均52重量%であることを鑑みると、成形体20mgに含まれるメソポーラス微粒子は10mgに相当するため、図11(a)で示されたAzoRの固定化量と図11(b)におけるメソポーラス微粒子粉末(10mg)に対するAzoRの固定化量が同等であったことは、成形体に含まれるメソポーラス微粒子が粉末と同等の酵素固定化能を保持していることを示唆している。ここで、SBA−16−5nm−粉末、又は、メソポーラスAl2O3粉末と、これらの粉末を含んだ、SBA−16−5nm−PESペレット、メソポーラスAl2O3−EVOHペレット、又は、メソポーラスAl2O3−PESペレットとを比較すると、前記の2種類の粉末にはほとんど酵素が固定しなかったにもかかわらず、前記の3種類の成形体のうち、特に、有機高分子としてポリエーテルサルホン(PES)を用いて成形した、SBA−16−5nm−PESペレット、及び、メソポーラスAl2O3−PESペレットの場合に、原料粒子を含まないPESペレットを用いた場合と同等の酵素の固定化量が示された。これより、当該酵素(AzoR)は、成形体のPES表面部分に非特異的に吸着することが判明し、有機高分子としてポリエチレンポリビニルアルコール共重合樹脂(EVOH)を用いた成形体を用いた場合には、成形体に含まれるメソ細孔部分に特異的に固定化する可能性が示唆された。従って、実施例30及び図11の結果より、AzoRの固定化には、MCM−41−EVOH中空糸のように、EVOHを用いた成形体が好適であることが明らかになった。 11 (a) and 11 (b), AzoR, which is generally equivalent to the immobilized support other than mesoporous Al 2 O 3 -EVOH pellets, SBA-16-5nm-powder, or mesoporous Al 2 O 3 powder. The amount of immobilization of was shown. From Table 7, considering that the content of mesoporous fine particles in 11 types of molded products obtained in Examples 18 to 28 is 52% by weight in average, the mesoporous fine particles contained in 20 mg of the molded product correspond to 10 mg. The immobilization amount of AzoR shown in FIG. 11 (a) is equivalent to the immobilization amount of AzoR with respect to the mesoporous fine particle powder (10mg) in FIG. 11 (b). This suggests that the enzyme immobilization ability is equivalent to that of powder. Here, SBA-16-5nm- powder, or a mesoporous Al 2 O 3 powder, containing these powders, SBA-16-5nm-PES pellets, mesoporous Al 2 O 3 EVOH pellets, or mesoporous Al In comparison with 2 O 3 -PES pellets, among the above three types of molded products, polyether salmon was particularly used as the organic polymer, although almost no enzyme was immobilized on the above two types of powders. In the case of SBA-16-5 nm-PES pellets and mesoporous Al 2 O 3 -PES pellets molded using Hong (PES), the same enzyme immobilization as in the case of using PES pellets containing no raw material particles The amount of conversion was shown. From this, it was found that the enzyme (AzoR) adsorbs nonspecifically on the PES surface portion of the molded body, and when a molded body using polyethylene polyvinyl alcohol copolymer resin (EVOH) as the organic polymer was used. Suggests the possibility of specific immobilization in the mesopores contained in the compact. Therefore, from the results of Example 30 and FIG. 11, it was revealed that a molded body using EVOH is suitable for immobilizing AzoR, such as MCM-41-EVOH hollow fiber.
(1−2)メチルレッドの分解活性の評価
(1−1)で得られた11種類のAzoR−メソポーラス微粒子成形体、AzoR−PESペレット(原料粒子なし)、及び、9種類のAzoR−メソポーラス微粒子粉末それぞれの酵素活性を、反応基質としてのアゾ染料(メチルレッド)の分解率(脱色率)により評価した。またこの際、前記複合体の繰り返し使用における耐久性(反応5回)の評価も行った。
具体的には、前記複合体それぞれに対して、以下の酵素反応を起こさせ、メチルレッドの吸光度変化を調べることで脱色率を求めた。
(1-2) Evaluation of methyl red degradation activity 11 types of AzoR-mesoporous fine particles obtained in (1-1), AzoR-PES pellets (without raw material particles), and 9 types of AzoR-mesoporous fine particles The enzyme activity of each powder was evaluated by the decomposition rate (decoloration rate) of the azo dye (methyl red) as a reaction substrate. At this time, durability (reaction 5 times) in repeated use of the composite was also evaluated.
Specifically, the following enzyme reaction was caused for each of the complexes, and the decolorization rate was determined by examining the change in absorbance of methyl red.
各種のAzoR−メソポーラス微粒子粉末は、酵素反応前に、マイクロチューブから、既にAzoR−メソポーラス微粒子成形体及びAzoR−PESペレット(原料粒子なし)が入っている96ウェルの深底タイププレートの各ウェルに移し替えた。酵素反応は、前記の96ウェルの深底タイププレートの各ウェル内のAzoR−メソポーラス微粒子成形体、AzoR−PESペレット(原料粒子なし)、及び、AzoR−メソポーラス微粒子粉末に対して、メチルレッドを含まず、NADHとFMNのみが含まれたトリス緩衝液(0.966mL)を添加し、前記の撹拌装置を用いて撹拌(30℃、1,200rpm、10分間)した後、メチルレッド溶液(0.034mL)を添加することによって開始した(反応1回目)。
その際、反応基質の反応組成が、「25mM Tris−HCl(pH 7.5)、0.05mM メチルレッド、0.2mM NADH、1μM FMN、反応液量:1mL」となるように調整した。反応2回目以降は、下記の遠心分離操作後に反応後の上清と分離されたAzoR複合体に対して、前記と同様の手順で緩衝液、基質等を添加することによって反応を開始した。
また、比較のために固定化支持体を用いない遊離のAzoRについても、同様の反応基質と混合することで反応を行った。
反応条件は、前記の撹拌装置を用いて混合(1,200rpm)しながら30℃で10分間の加温状態を保持することとした。続いて、10分経過後に加温状態での遠心分離(30℃、4,700rpm、5分間)によって上清を全て回収し、前記のマイクロプレートリーダーを用いて、回収液の430nmの吸光度を測定することによって、メチルレッドの分解率(脱色率)を評価した。図12に、各種のAzoR複合体の繰り返し使用時(反応5回)におけるメチルレッドの脱色率を示す。AzoR−メソポーラス微粒子複合体(a:成形体、b:粉末)によるメチルレッドの分解率(脱色率)及び固定化酵素の繰り返し使用における耐久性(反応5回)を示した。
Various AzoR-mesoporous fine particle powders are transferred from a microtube to each well of a 96-well deep bottom type plate that already contains AzoR-mesoporous fine particle compacts and AzoR-PES pellets (without raw material particles) before the enzyme reaction. Moved. The enzyme reaction contains methyl red against the AzoR-mesoporous particulate compact, AzoR-PES pellets (without raw material particles), and AzoR-mesoporous particulate powder in each well of the 96 well deep bottom type plate. First, Tris buffer solution (0.966 mL) containing only NADH and FMN was added, and the mixture was stirred (30 ° C., 1,200 rpm, 10 minutes) using the above stirring device, and then the methyl red solution (0. 034 mL) was added (first reaction).
At that time, the reaction composition of the reaction substrate was adjusted to “25 mM Tris-HCl (pH 7.5), 0.05 mM methyl red, 0.2 mM NADH, 1 μM FMN, reaction volume: 1 mL”. In the second and subsequent reactions, the reaction was started by adding a buffer solution, a substrate, and the like to the AzoR complex separated from the supernatant after the reaction after the following centrifugation operation in the same procedure as described above.
For comparison, free AzoR that does not use an immobilized support was also reacted by mixing with the same reaction substrate.
The reaction conditions were that the temperature was maintained at 30 ° C. for 10 minutes while mixing (1,200 rpm) using the stirring device. Subsequently, after 10 minutes, all the supernatant was recovered by centrifugation in a heated state (30 ° C., 4,700 rpm, 5 minutes), and the absorbance at 430 nm of the recovered solution was measured using the microplate reader. As a result, the decomposition rate (decolorization rate) of methyl red was evaluated. FIG. 12 shows the decolorization rate of methyl red when repeatedly using various AzoR complexes (5 reactions). The degradation rate (decoloration rate) of methyl red by the AzoR-mesoporous fine particle composite (a: molded product, b: powder) and the durability (5 reactions) in repeated use of the immobilized enzyme were shown.
図13の(a)に実施例23の成形体を、(b)にメチルレッド分解反応終了後の当該成形体とAzoRとの複合体(AzoR−SBA−15−4nm−PESペレット)を、(c)に比較例8の成形体を、(d)にメチルレッド分解反応終了後の当該成形体とAzoRとの複合体(AzoR−PESペレット(原料粒子なし))の外観の写真をそれぞれ示す。 FIG. 13 (a) shows the molded product of Example 23, and FIG. 13 (b) shows the composite of the molded product after the methyl red decomposition reaction and AzoR (AzoR-SBA-15-4nm-PES pellets). The photograph of the external appearance of the composite_body | complex (AzoR-PES pellet (without raw material particle | grains)) of the said molded object and AzoR after completion | finish of a methyl red decomposition | disassembly reaction is shown to c) for the molded object of the comparative example 8, respectively.
図12(a)及び(b)より、SBA−15−6nm−粉末以外は、図10(c)と同様に九十数%程度のメチルレッドの脱色率が示され、繰り返し利用における高い耐久性が認められた。 12 (a) and 12 (b) show a decolorization rate of about 90% of methyl red in the same manner as FIG. 10 (c) except for SBA-15-6nm-powder, and high durability in repeated use. Was recognized.
一方、図14に遊離のAzoR(酵素量:0、1、10、100μg)の酵素活性を評価した結果を示す。図14では、メチルレッドの分解率(脱色率)に与える未固定の遊離AzoR濃度の影響が示される。図14より、90%以上のメチルレッドの脱色率を可能にする最適な酵素量は、1〜10μgであり、100μgでは酵素活性が発現しないことが判明した。図11より、各種のAzoR複合体に対して100〜200μg程度の酵素が固定化されていることを鑑みると、固定化状態の酵素の一部、すなわち、1〜10μg相当の酵素が反応に関与していることが推察される。これより、高濃度酵素の利用時において、遊離の酵素では活性が著しく低下するが、固定化状態では本来の酵素活性を安定に発現できることが示唆された。 On the other hand, FIG. 14 shows the results of evaluating the enzyme activity of free AzoR (enzyme amounts: 0, 1, 10, 100 μg). FIG. 14 shows the effect of unfixed free AzoR concentration on the degradation rate (decolorization rate) of methyl red. From FIG. 14, it was found that the optimum amount of enzyme that enables a decolorization rate of methyl red of 90% or more is 1 to 10 μg, and the enzyme activity is not expressed at 100 μg. From FIG. 11, considering that about 100 to 200 μg of enzyme is immobilized on various AzoR complexes, a part of the immobilized enzyme, that is, 1 to 10 μg of enzyme is involved in the reaction. It is inferred that From this, it was suggested that when using a high concentration enzyme, the activity of the free enzyme is remarkably reduced, but the original enzyme activity can be stably expressed in the immobilized state.
興味深いことに、図12(a)での反応終了後のAzoR−メソポーラス微粒子成形体及びAzoR−PESペレット(原料粒子なし)の外観を確認したところ、前記メソポーラス微粒子成形体はピンク色を呈したが、前記PESペレット(原料粒子なし)は反応前と同じ白色を呈した(図13)。このことは、AzoR−メソポーラス微粒子成形体では、成形体中のメソ細孔においてAzoR−NADH−メチルレッドの複合体を形成していることを示唆している。一方、AzoR−PESペレット(原料粒子なし)では、図11より、相当量のAzoRが成形体のPES表面部分に非特異的に吸着していると考えられるが、吸着状態のAzoRが反応基質と複合体を形成しないことが推察される。すなわち、図12(a)で示されたAzoR−PESペレット(原料粒子なし)による高活性のメチルレッドの分解反応は、成形体から脱離した微量の遊離AzoRの寄与によるものと考えられる。従って、AzoR−メソポーラス微粒子成形体による酵素反応には、成形体中のメソ細孔に固定化されたAzoRが大きく寄与していることが示唆された。 Interestingly, when the appearance of the AzoR-mesoporous fine particle compact and the AzoR-PES pellet (without raw material particles) after the reaction in FIG. 12A was confirmed, the mesoporous fine particle compact exhibited a pink color. The PES pellets (without raw material particles) exhibited the same white color as before the reaction (FIG. 13). This suggests that, in the AzoR-mesoporous fine particle molded body, a complex of AzoR-NADH-methyl red is formed in the mesopores in the molded body. On the other hand, in AzoR-PES pellets (without raw material particles), it is considered from FIG. 11 that a considerable amount of AzoR is adsorbed nonspecifically on the PES surface portion of the molded body. It is assumed that no complex is formed. That is, it is considered that the decomposition reaction of highly active methyl red by the AzoR-PES pellet (without raw material particles) shown in FIG. 12A is due to the contribution of a small amount of free AzoR released from the molded body. Therefore, it was suggested that AzoR immobilized on mesopores in the molded product greatly contributed to the enzyme reaction by the AzoR-mesoporous fine particle molded product.
(実施例32:GDHと各種多孔質成形体との複合体の製造及び酵素反応)
本実施例では、実施例18〜28で得られたメソポーラス微粒子の多孔質成形体、及び、比較例8において原料粒子を入れず、有機高分子であるポリエーテルサルホンのみを用いて製造した成形体に対するグルコース脱水素酵素(GDH:Bacillus sp.由来、和光純薬工業社)の固定化と酵素活性の評価を行った。
(Example 32: Production of complex of GDH and various porous molded bodies and enzyme reaction)
In this example, the mesoporous fine-particle porous molded body obtained in Examples 18 to 28 and the molding produced in Comparative Example 8 using only polyether sulfone, which is an organic polymer, without using raw material particles. Immobilization of glucose dehydrogenase (GDH: derived from Bacillus sp., Wako Pure Chemical Industries, Ltd.) on the body and evaluation of enzyme activity were performed.
(1−1)GDHと各種多孔質成形体との複合体の製造方法
GDHの固定化支持体には、メソポーラス微粒子の多孔質成形体として、実施例18〜28により得られた11種類の成形体を使用した。また、比較のための原料粒子を含まない成形体として、比較例8により得られた「PESペレット」を使用した。更に、比較のための成型前のメソポーラスシリカ微粒子として、9種類の合成メソポーラスシリカ(原料粒子I〜Q)を使用した。
(1-1) Production Method of Composite of GDH and Various Porous Molded Body Eleven types of moldings obtained in Examples 18 to 28 are used as a porous molded body of mesoporous fine particles on the GDH immobilization support. Used the body. Moreover, the “PES pellet” obtained in Comparative Example 8 was used as a molded body that did not contain raw material particles for comparison. Furthermore, nine types of synthetic mesoporous silica (raw material particles I to Q) were used as mesoporous silica fine particles before molding for comparison.
酵素を固定化する際には、GDH(0.363mg)を含んだ緩衝液(25mM MES−NaOH(pH 6))1mLと、予め96ウェルの深底タイププレートの各ウェルに量り取り、同緩衝液を用いて平衡化しておいた11種類の成形体及び「PESペレット」(20mg相当)とを、前記の攪拌装置を用いて混合(25℃、1,200rpm、24時間)することによって複合化させ、遠心分離操作、及び、同緩衝液を用いた洗浄操作を2度行うことでGDHと各種多孔質成形体との複合体を得た。なお、本発明の酵素とメソポーラス微粒子の多孔質成形体との複合体としては、未洗浄のままで用いることもできるが、本実施例では、成形体への酵素の結合安定性を評価するために、以下の遠心分離工程と共に洗浄工程を行っている。 When immobilizing the enzyme, weigh 1 mL of a buffer solution (25 mM MES-NaOH (pH 6)) containing GDH (0.363 mg) into each well of a 96-well deep-bottom type plate in advance. 11 types of molded bodies that had been equilibrated with the liquid and “PES pellets” (equivalent to 20 mg) were mixed by mixing (25 ° C., 1,200 rpm, 24 hours) using the above stirring device. The composite of GDH and various porous molded bodies was obtained by performing the centrifugation operation and the washing operation using the same buffer twice. The complex of the enzyme of the present invention and the porous molded body of mesoporous fine particles can be used without washing, but in this example, in order to evaluate the binding stability of the enzyme to the molded body. In addition, the washing process is performed together with the following centrifugation process.
具体的には、前記のGDHと各種多孔質成形体との複合体(未洗浄)の分散液に対して遠心分離(25℃、4,700rpm、10分間)を行い、上清を全て回収した。続いて、洗浄用緩衝液(固定化時に選択した緩衝液を使用)1mLを添加し、前記の攪拌装置を用いて25℃で1時間、GDHとメソポーラスシリカ成形体との複合体を攪拌した後、遠心分離(25℃、4,700rpm、10分間)を行い、上清を全て回収する洗浄操作を行った。再び、前記洗浄用緩衝液1mLを用いて洗浄操作を繰り返し、最終的に、GDHと各種多孔質成形体との複合体(洗浄済)を得た。以下、「GDH−メソポーラス微粒子成形体」という。 Specifically, centrifugation (25 ° C., 4,700 rpm, 10 minutes) was performed on the dispersion of the complex of GDH and various porous molded bodies (unwashed), and the entire supernatant was collected. . Subsequently, 1 mL of a washing buffer solution (using the buffer solution selected at the time of immobilization) was added, and the complex of GDH and mesoporous silica molded body was stirred at 25 ° C. for 1 hour using the stirring device. Then, centrifugation (25 ° C., 4,700 rpm, 10 minutes) was performed, and a washing operation for collecting all the supernatant was performed. Again, the washing operation was repeated using 1 mL of the washing buffer solution, and finally, a complex (washed) of GDH and various porous molded bodies was obtained. Hereinafter, it is referred to as “GDH-mesoporous fine particle compact”.
また、比較のために9種類の合成メソポーラスシリカ(原料粒子I〜Q)(10mg相当)を用いて、マイクロチューブ、ローテーター、及び、マイクロチューブ用の遠心分離機(25℃、20,000G、10分間)を使用した他は、前記成形体と同様の手順により複合体を得た。以下、「GDH−メソポーラス微粒子粉末」という。 For comparison, nine types of synthetic mesoporous silica (raw material particles I to Q) (equivalent to 10 mg) were used to prepare a microtube, a rotator, and a microtube centrifuge (25 ° C., 20,000 G, 10 The composite was obtained by the same procedure as that of the molded body except that the minute) was used. Hereinafter, it is referred to as “GDH-mesoporous fine particle powder”.
各種のメソポーラス微粒子の成形体及び粉末に対する酵素の固定化量は、固定化前の酵素量(1mL中、0.363mg)から、前記の遠心分離工程及び洗浄工程の回収液に含まれる遊離の酵素量を差し引くことによって算出した。図15に、メソポーラス微粒子成形体、原料粒子を含まない成形体、又は、メソポーラス微粒子粉末に対するGDHの固定化量を示す。図15の(a)は、各種メソポーラス微粒子の成形体に対するグルコース脱水素酵素(GDH)の固定化量を示している。(b)は、各種メソポーラス微粒子の粉末に対するグルコース脱水素酵素(GDH)の固定化量を示している。 The amount of enzyme immobilized on various mesoporous fine-particle compacts and powders is determined based on the amount of enzyme before immobilization (0.363 mg in 1 mL), and the free enzyme contained in the collected liquid in the centrifugation step and washing step. Calculated by subtracting the amount. FIG. 15 shows the amount of GDH immobilized on a mesoporous fine particle molded body, a molded body not containing raw material particles, or mesoporous fine particle powder. FIG. 15 (a) shows the amount of glucose dehydrogenase (GDH) immobilized on a molded body of various mesoporous fine particles. (B) has shown the fixed amount of glucose dehydrogenase (GDH) with respect to the powder of various mesoporous microparticles | fine-particles.
図15(a)及び(b)より、全体的には、SBA−16−5nmの成形体及び粉末、メソポーラスAl2O3の成形体及び粉末、又は、原料粒子を含まないPESペレットと比較して、MCM−41、FSM−22、又は、SBA−15タイプの合成メソポーラスシリカの成形体及び粉末を用いた場合に、より大きいGDHの固定化量が示された。MCM−41、FSM−22、又は、SBA−15タイプの合成メソポーラスシリカの成形体と粉末とを比較すると、微粒子粉末に対する固定化量の方が若干多かったものの、FSM−22、又は、SBA−15タイプの合成メソポーラスシリカに着目すれば、成形体及び粉末ともに全体的には細孔径に比例してGDHの固定化量が増大する傾向が認められた。これは、実施例31においてAzoRが飽和吸着したのと比較して、より分子サイズが大きいGDHは飽和吸着していないために、固定化量が細孔径に依存したものと考えられる。すなわち、成形体に含まれるメソポーラス微粒子が粉末と同等の酵素固定化能を保持していることを示唆している。ここで、SBA−16−5nmの成形体及び粉末、メソポーラスAl2O3の成形体及び粉末、又は、原料粒子を含まないPESペレットに対するGDHの固定化量から考察すれば、有機高分子としてEVOHを用いた成形体よりもPESを用いた成形体のPES表面部分に対してより多くのGDHが非特異的に吸着したことが推察される。それにも係わらず、MCM−41、FSM−22、又は、SBA−15タイプの合成メソポーラスシリカの成形体では、PESペレット(原料粒子なし)を用いた場合と比較して2倍以上の固定化量が示されたことより、成形体のメソ細孔部分に対して相当量のGDHが固定化されていることが判明した。 15 (a) and 15 (b), as a whole, it is compared with a molded body and powder of SBA-16-5 nm, a molded body and powder of mesoporous Al 2 O 3 , or a PES pellet containing no raw material particles. When a molded body and powder of synthetic mesoporous silica of MCM-41, FSM-22, or SBA-15 type were used, a larger amount of GDH was shown. When the molded product of MCM-41, FSM-22, or SBA-15 type synthetic mesoporous silica was compared with the powder, the amount immobilized on the fine particle powder was slightly larger, but FSM-22 or SBA- Focusing on 15 types of synthetic mesoporous silica, it was recognized that the amount of GDH immobilized was increased in proportion to the pore diameter as a whole for both the compact and the powder. This is thought to be because the amount of immobilization depended on the pore size because GDH having a larger molecular size was not saturated and adsorbed as compared with saturated adsorption of AzoR in Example 31. That is, it suggests that the mesoporous fine particles contained in the compact retain the enzyme immobilization ability equivalent to that of the powder. Here, when considering the amount of GDH immobilized on PBA pellets containing no SBA-16-5 nm molded body and powder, mesoporous Al 2 O 3 molded body and powder, or raw material particles, EVOH is used as an organic polymer. It is inferred that more GDH was adsorbed nonspecifically to the PES surface portion of the molded body using PES than to the molded body using PES. Nevertheless, the MCM-41, FSM-22, or SBA-15 type synthetic mesoporous silica molded body has an immobilization amount more than twice that of the case where PES pellets (without raw material particles) are used. From this, it was found that a considerable amount of GDH was fixed to the mesopores of the molded body.
(1−2)NADHの生成活性の評価
(1−1)で得られた11種類のGDH−メソポーラス微粒子成形体、GDH−PESペレット(原料粒子なし)、及び、9種類のGDH−メソポーラス微粒子粉末それぞれの酵素活性を、反応基質としての補酵素(酸化型NAD+)から生成される還元型NADHのモル濃度により評価した。またこの際、前記複合体の繰り返し使用における耐久性(反応5回)の評価も行った。
具体的には、前記複合体それぞれに対して、以下の酵素反応を起こさせ、NADHの吸光度変化を調べることで生成NADH濃度を求めた。
(1-2) Evaluation of NADH production activity 11 types of GDH-mesoporous fine particles, GDH-PES pellets (without raw material particles) obtained in (1-1), and 9 types of GDH-mesoporous fine particles Each enzyme activity was evaluated by the molar concentration of reduced NADH produced from a coenzyme (oxidized NAD + ) as a reaction substrate. At this time, durability (reaction 5 times) in repeated use of the composite was also evaluated.
Specifically, each of the complexes was subjected to the following enzyme reaction, and the change in absorbance of NADH was examined to determine the generated NADH concentration.
各種のGDH−メソポーラス微粒子粉末は、酵素反応前に、マイクロチューブから、既にGDH−メソポーラス微粒子成形体及びGDH−PESペレット(原料粒子なし)が入っている96ウェルの深底タイププレートの各ウェルに移し替えた。酵素反応は、前記の96ウェルの深底タイププレートの各ウェル内のGDH−メソポーラス微粒子成形体、GDH−PESペレット(原料粒子なし)、及び、GDH−メソポーラス微粒子粉末に対して、グルコースを含まず、NAD+のみが含まれたトリス緩衝液(0.967mL)を添加し、前記の撹拌装置を用いて撹拌(30℃、1,200rpm、10分間)した後、グルコース溶液(0.033mL)を添加することによって開始した(反応1回目)。 Various GDH-mesoporous fine particle powders are transferred from a microtube to each well of a 96-well deep bottom type plate that already contains GDH-mesoporous fine particle compacts and GDH-PES pellets (without raw material particles) before the enzyme reaction. Moved. The enzyme reaction does not contain glucose with respect to the GDH-mesoporous fine particle compact, GDH-PES pellet (without raw material particles), and GDH-mesoporous fine particle powder in each well of the 96-well deep bottom type plate. , Tris buffer solution (0.967 mL) containing only NAD + was added, and the mixture was stirred (30 ° C., 1,200 rpm, 10 minutes) using the above stirring device, and then the glucose solution (0.033 mL) was added. Started by addition (first reaction).
その際、反応基質の反応組成が、「25mM Tris−HCl(pH 7.5)、0.5mM NAD+、10mM グルコース、反応液量:1mL」となるように調整した。反応2回目以降は、下記の遠心分離操作後に反応後の上清と分離されたGDH複合体に対して、前記と同様の手順で緩衝液、基質等を添加することによって反応を開始した。
また、比較のために固定化支持体を用いない遊離のGDHについても、同様の反応基質と混合することで反応を行った。
At that time, the reaction composition of the reaction substrate was adjusted to “25 mM Tris-HCl (pH 7.5), 0.5 mM NAD + , 10 mM glucose, reaction volume: 1 mL”. In the second and subsequent reactions, the reaction was started by adding a buffer solution, a substrate, and the like to the GDH complex separated from the supernatant after the reaction after the following centrifugation operation in the same procedure as described above.
For comparison, free GDH without using an immobilized support was also reacted by mixing with the same reaction substrate.
反応条件は、前記の撹拌装置を用いて混合(1,200rpm)しながら30℃で10分間の加温状態を保持することとした。続いて、10分経過後に加温状態での遠心分離(30℃、4,700rpm、5分間)によって上清を全て回収し、前記のマイクロプレートリーダーを用いて、回収液の340nmの吸光度を測定することによって、NADHの生成効率(NADH濃度)を評価した。図16に、各種のGDH複合体の繰り返し使用時(反応5回)における生成NADH濃度を示す。図16の(a)はGDH−メソポーラス微粒子複合体の成形体による生成NADH濃度及び固定化酵素の繰り返し使用における耐久性(反応5回)を示す。(b)はGDH−メソポーラス微粒子複合体の粉末による生成NADH濃度及び固定化酵素の繰り返し使用における耐久性(反応5回)を示す。 The reaction conditions were that the temperature was maintained at 30 ° C. for 10 minutes while mixing (1,200 rpm) using the stirring device. Subsequently, after 10 minutes, all the supernatant was recovered by centrifugation (30 ° C., 4,700 rpm, 5 minutes) in a heated state, and the absorbance at 340 nm of the recovered solution was measured using the microplate reader. The NADH production efficiency (NADH concentration) was evaluated. FIG. 16 shows the generated NADH concentration when various GDH complexes are repeatedly used (5 reactions). FIG. 16 (a) shows the NADH concentration produced by the molded product of the GDH-mesoporous fine particle composite and the durability (5 reactions) in repeated use of the immobilized enzyme. (B) shows the NADH concentration produced by the powder of the GDH-mesoporous fine particle complex and the durability (5 reactions) in repeated use of the immobilized enzyme.
図16(a)及び(b)より、全体的には、MCM−41タイプの合成メソポーラスシリカの成形体及び粉末に固定化したGDHは低い活性に留まったものの、FSM−22、又は、SBA−15タイプの合成メソポーラスシリカの成形体及び粉末に固定化したGDHは、細孔径に比例して酵素活性が高くなる傾向を示した。また、図16(a)より、GDH−メソポーラス微粒子成形体及びGDH−PESペレット(原料粒子なし)の活性を比較すると、大半のGDH−メソポーラス微粒子成形体がGDH−PESペレット(原料粒子なし)よりも明らかに高い活性を発現しており、このことは、成形体のメソ細孔に固定化された酵素の安定性の高さを示唆している。GDH−PESペレット(原料粒子なし)では、図15より、相当量のGDHが成形体のPES表面部分に非特異的に吸着していると考えられるが、図16(a)より、吸着状態のGDHの活性が極めて低いことが判明した。以上より、GDH−メソポーラス微粒子成形体による高活性のNADHの生成反応には、成形体中のメソ細孔に固定化されたGDHが大きく寄与していることが示唆された。
また、成形体と粉末とを比較すると、成形体に固定化したGDHの場合に、反応1回目の活性が低いものの、繰り返し使用回数と共に徐々に活性が増大する傾向が認められた。このことは、反応初期においては成形体中のマクロ孔及びメソ細孔における反応基質の拡散が律速となっており、メソ細孔に固定化された酵素と反応基質との接触頻度が低い状態にあることが推察される。
16 (a) and 16 (b), the overall shape of MCM-41 type synthetic mesoporous silica and GDH immobilized on the powder remained low, but FSM-22 or SBA- 15 types of synthetic mesoporous silica compacts and GDH immobilized on powder showed a tendency for enzyme activity to increase in proportion to the pore diameter. Further, from FIG. 16 (a), comparing the activities of the GDH-mesoporous fine particle molded product and the GDH-PES pellet (without raw material particles), most of the GDH-mesoporous fine particle molded products are from GDH-PES pellets (without raw material particles). Also clearly expressed high activity, suggesting the high stability of the enzyme immobilized in the mesopores of the compact. In GDH-PES pellets (without raw material particles), it is considered from FIG. 15 that a considerable amount of GDH is adsorbed nonspecifically on the PES surface portion of the molded body, but from FIG. It was found that the activity of GDH was very low. From the above, it was suggested that GDH immobilized in the mesopores in the compact greatly contributed to the highly active NADH production reaction by the GDH-mesoporous fine particle compact.
Further, when comparing the molded body with the powder, in the case of GDH immobilized on the molded body, although the activity of the first reaction was low, a tendency was found that the activity gradually increased with the number of repeated use. This is because, in the initial stage of the reaction, diffusion of the reaction substrate in the macropores and mesopores in the molded body is rate limiting, and the contact frequency between the enzyme immobilized on the mesopores and the reaction substrate is low. It is assumed that there is.
一方、図17に遊離のGDH(酵素量:0、1、10、100μg)の酵素活性を評価した結果を示す。図17には、生成NADH濃度に与える未固定の遊離GDH濃度の影響が示される。図17より、反応収率100%(〜0.5mM NADH)を与える酵素量は10〜100μgであり、又、0.1〜0.5mMのNADHを生成するために必要な酵素量は1〜10μgの範囲であることが判明した。図16より、各種のGDH複合体による生成NADH濃度は0〜0.4mM程度であり、図15より、GDH複合体に対して100〜300μg程度の酵素が固定化されていることを鑑みると、固定化状態の酵素の一部、すなわち、1〜10μg相当の酵素が反応に関与していることが推察される。 On the other hand, FIG. 17 shows the results of evaluating the enzyme activity of free GDH (enzyme amounts: 0, 1, 10, 100 μg). FIG. 17 shows the effect of unfixed free GDH concentration on the generated NADH concentration. From FIG. 17, the amount of enzyme that gives a reaction yield of 100% (˜0.5 mM NADH) is 10 to 100 μg, and the amount of enzyme required to produce 0.1 to 0.5 mM NADH is 1 to It was found to be in the range of 10 μg. From FIG. 16, the generated NADH concentration by various GDH complexes is about 0 to 0.4 mM, and from FIG. 15, considering that about 100 to 300 μg of enzyme is immobilized on the GDH complex, It is inferred that a part of the immobilized enzyme, that is, an enzyme corresponding to 1 to 10 μg is involved in the reaction.
(実施例33:リパーゼと各種多孔質成形体との複合体の製造及び酵素反応)
本実施例では、実施例18〜28で得られたメソポーラス微粒子の多孔質成形体、及び、比較例8において原料粒子を入れず、有機高分子であるポリエーテルサルホンのみを用いて製造した成形体に対するリパーゼ(Phycomyces nitens由来、和光純薬工業社)の固定化と酵素活性の評価を行った。
(Example 33: Production of complex of lipase and various porous molded bodies and enzyme reaction)
In this example, the mesoporous fine-particle porous molded body obtained in Examples 18 to 28 and the molding produced in Comparative Example 8 using only polyether sulfone, which is an organic polymer, without using raw material particles. Immobilization of lipase (derived from Phycomyces nitens, Wako Pure Chemical Industries, Ltd.) on the body and evaluation of enzyme activity were performed.
(1−1)リパーゼと各種多孔質成形体との複合体の製造方法
リパーゼの固定化支持体には、メソポーラス微粒子の多孔質成形体として、実施例18〜28により得られた11種類の成形体を使用した。また、比較のための原料粒子を含まない成形体として、比較例8により得られた「PESペレット」を使用した。更に、比較のための成型前のメソポーラスシリカ微粒子として、9種類の合成メソポーラスシリカ(原料粒子I〜Q)を使用した。
(1-1) Manufacturing method of complex of lipase and various porous molded bodies Eleven types of moldings obtained in Examples 18 to 28 as a porous molded body of mesoporous fine particles were used as the lipase immobilization support. Used the body. Moreover, the “PES pellet” obtained in Comparative Example 8 was used as a molded body that did not contain raw material particles for comparison. Furthermore, nine types of synthetic mesoporous silica (raw material particles I to Q) were used as mesoporous silica fine particles before molding for comparison.
酵素を固定化する際には、リパーゼ(0.456mg)を含んだ緩衝液(25mM MES−NaOH(pH 6))1mLと、予め96ウェルの深底タイププレートの各ウェルに量り取り、同緩衝液を用いて平衡化しておいた11種類の成形体及び「PESペレット」(20mg相当)とを、前記の攪拌装置を用いて混合(25℃、1,200rpm、24時間)することによって複合化させ、遠心分離操作、及び、同緩衝液を用いた洗浄操作を2度行うことでリパーゼと各種多孔質成形体との複合体を得た。なお、本発明の酵素とメソポーラス微粒子の多孔質成形体との複合体としては、未洗浄のままで用いることもできるが、本実施例では、成形体への酵素の結合安定性を評価するために、以下の遠心分離工程と共に洗浄工程を行っている。 When immobilizing the enzyme, weigh 1 mL of a buffer solution (25 mM MES-NaOH (pH 6)) containing lipase (0.456 mg) in advance in each well of a 96-well deep-bottom plate, and use the same buffer. 11 types of molded bodies that had been equilibrated with the liquid and “PES pellets” (equivalent to 20 mg) were mixed by mixing (25 ° C., 1,200 rpm, 24 hours) using the above stirring device. The composite of lipase and various porous molded bodies was obtained by performing centrifugation operation and washing operation using the same buffer twice. The complex of the enzyme of the present invention and the porous molded body of mesoporous fine particles can be used without washing, but in this example, in order to evaluate the binding stability of the enzyme to the molded body. In addition, the washing process is performed together with the following centrifugation process.
具体的には、前記のリパーゼと各種多孔質成形体との複合体(未洗浄)の分散液に対して遠心分離(25℃、4,700rpm、10分間)を行い、上清を全て回収した。続いて、洗浄用緩衝液(固定化時に選択した緩衝液を使用)1mLを添加し、前記の攪拌装置を用いて25℃で1時間、リパーゼとメソポーラスシリカ成形体との複合体を攪拌した後、遠心分離(25℃、4,700rpm、10分間)を行い、上清を全て回収する洗浄操作を行った。再び、前記洗浄用緩衝液1mLを用いて洗浄操作を繰り返し、最終的に、リパーゼと各種多孔質成形体との複合体(洗浄済)を得た。以下、「リパーゼ−メソポーラス微粒子成形体」という。 Specifically, centrifugation (25 ° C., 4,700 rpm, 10 minutes) was performed on the dispersion of the complex of lipase and various porous molded bodies (unwashed), and the entire supernatant was recovered. . Subsequently, 1 mL of a washing buffer solution (using the buffer solution selected at the time of immobilization) was added, and the composite of lipase and mesoporous silica molded body was stirred at 25 ° C. for 1 hour using the above stirring device. Then, centrifugation (25 ° C., 4,700 rpm, 10 minutes) was performed, and a washing operation for collecting all the supernatant was performed. Again, the washing operation was repeated using 1 ml of the washing buffer solution, and finally a complex (washed) of lipase and various porous molded bodies was obtained. Hereinafter, it is referred to as “lipase-mesoporous fine particle molded product”.
また、比較のために9種類の合成メソポーラスシリカ(原料粒子I〜Q)(10mg相当)を用いて、マイクロチューブ、ローテーター、及び、マイクロチューブ用の遠心分離機(25℃、20,000G、10分間)を使用した他は、前記成形体と同様の手順により複合体を得た。以下、「リパーゼ−メソポーラス微粒子粉末」という。 For comparison, nine types of synthetic mesoporous silica (raw material particles I to Q) (equivalent to 10 mg) were used to prepare a microtube, a rotator, and a microtube centrifuge (25 ° C., 20,000 G, 10 The composite was obtained by the same procedure as that of the molded body except that the minute) was used. Hereinafter, it is referred to as “lipase-mesoporous fine particle powder”.
各種のメソポーラス微粒子の成形体及び粉末に対する酵素の固定化量は、固定化前の酵素量(1mL中、0.456mg)から、前記の遠心分離工程及び洗浄工程の回収液に含まれる遊離の酵素量を差し引くことによって算出した。図18に、メソポーラス微粒子成形体、原料粒子を含まない成形体、又は、メソポーラス微粒子粉末に対するリパーゼの固定化量を示す。図18の(a)は、各種メソポーラス微粒子の成形体に対するリパーゼの固定化量を示す。(b)は、各種メソポーラス微粒子の粉末に対するリパーゼの固定化量を示す。 The amount of enzyme immobilized on various mesoporous fine-particle compacts and powders is determined based on the amount of enzyme before immobilization (0.456 mg in 1 mL), and the free enzyme contained in the collected liquid in the centrifugation step and washing step. Calculated by subtracting the amount. FIG. 18 shows the amount of lipase immobilized on a mesoporous fine particle molded body, a molded body not containing raw material particles, or mesoporous fine particle powder. FIG. 18 (a) shows the amount of lipase immobilized on a molded body of various mesoporous fine particles. (B) shows the amount of lipase immobilized on various mesoporous fine particle powders.
図18(a)及び(b)より、メソポーラスAl2O3−EVOHペレットを除いた、MCM−41、FSM−22、SBA−15タイプ、SBA−16タイプ、又は、メソポーラス酸化アルミタイプの合成メソポーラスシリカの成形体と粉末とを比較すると、成形体と粉末に対するリパーゼの固定化量は同等であり、FSM−22、又は、SBA−15タイプの合成メソポーラスシリカに着目すれば、成形体及び粉末ともに全体的には細孔径に比例してリパーゼの固定化量が増大する傾向が認められた。これは、実施例32におけるGDHの固定化の傾向と類似しており、メソ細孔に対してリパーゼが飽和吸着していないために、固定化量が細孔径に依存したものと考えられる。すなわち、成形体に含まれるメソポーラス微粒子が粉末と同等の酵素固定化能を保持していることを示唆している。 From FIGS. 18 (a) and (b), a synthetic mesoporous of MCM-41, FSM-22, SBA-15 type, SBA-16 type, or mesoporous aluminum oxide type excluding mesoporous Al 2 O 3 -EVOH pellets. Comparing the molded body of the silica and the powder, the amount of lipase immobilized on the molded body and the powder is the same. If attention is paid to the synthetic mesoporous silica of the FSM-22 or SBA-15 type, both the molded body and the powder Overall, a tendency for the amount of immobilized lipase to increase in proportion to the pore diameter was observed. This is similar to the tendency of GDH immobilization in Example 32, and since the lipase is not saturatedly adsorbed to the mesopores, the immobilization amount is considered to depend on the pore diameter. That is, it suggests that the mesoporous fine particles contained in the compact retain the enzyme immobilization ability equivalent to that of the powder.
また、図18(a)より、メソポーラスAl2O3−EVOHペレットのみ、リパーゼの固定化量が低い値に留まったものの、それ以外の、MCM−41、FSM−22、SBA−15タイプ、SBA−16タイプ、又は、メソポーラス酸化アルミタイプの合成メソポーラス微粒子の成形体を用いた場合には、原料粒子を含まないPESペレットと比較して、2〜3倍程度のリパーゼの固定化量が示された。これより、成形体のメソ細孔部分に対して相当量のリパーゼが固定化されていることが判明した。 Further, from FIG. 18 (a), only the mesoporous Al 2 O 3 -EVOH pellets had a low lipase immobilization amount, but other MCM-41, FSM-22, SBA-15 type, SBA When a molded body of synthetic mesoporous fine particles of -16 type or mesoporous aluminum oxide type is used, the amount of lipase immobilized is about 2-3 times that of PES pellets that do not contain raw material particles. It was. From this, it was found that a considerable amount of lipase was immobilized on the mesopores of the molded body.
(1−2)トリグリセリドの加水分解活性の評価
(1−1)で得られた11種類のリパーゼ−メソポーラス微粒子成形体、リパーゼ−PESペレット(原料粒子なし)、及び、9種類のリパーゼ−メソポーラス微粒子粉末それぞれの酵素活性を、反応基質としての蛍光性トリグリセリドの加水分解によって生成される脂肪酸に結合した蛍光物質(ピレン)のモル濃度により評価した。またこの際、前記複合体の繰り返し使用における耐久性(反応5回)の評価も行った。
具体的には、前記複合体それぞれに対して、以下の酵素反応を起こさせ、ピレンの蛍光強度を調べることで遊離ピレン濃度を求めた。
(1-2) Evaluation of hydrolyzing activity of triglyceride 11 types of lipase-mesoporous fine particles obtained in (1-1), lipase-PES pellets (without raw material particles), and 9 types of lipase-mesoporous fine particles The enzyme activity of each powder was evaluated by the molar concentration of a fluorescent substance (pyrene) bonded to a fatty acid produced by hydrolysis of fluorescent triglyceride as a reaction substrate. At this time, durability (reaction 5 times) in repeated use of the composite was also evaluated.
Specifically, the following enzyme reaction was caused for each of the complexes, and the concentration of free pyrene was determined by examining the fluorescence intensity of pyrene.
各種のリパーゼ−メソポーラス微粒子粉末は、酵素反応前に、マイクロチューブから、既にリパーゼ−メソポーラス微粒子成形体及びリパーゼ−PESペレット(原料粒子なし)が入っている96ウェルの深底タイププレートの各ウェルに移し替えた。酵素反応は、前記の96ウェルの深底タイププレートの各ウェル内のリパーゼ−メソポーラス微粒子成形体、リパーゼ−PESペレット(原料粒子なし)、及び、リパーゼ−メソポーラス微粒子粉末に対して、リン酸緩衝液(0.9mL)を添加し、前記の撹拌装置を用いて撹拌(30℃、1,200rpm、10分間)した後、蛍光性トリグリセリド溶液(0.1mL)を添加することによって開始した(反応1回目)。 Various lipase-mesoporous fine particle powders are transferred from a microtube to each well of a 96-well deep bottom type plate that already contains a lipase-mesoporous fine particle compact and a lipase-PES pellet (without raw material particles) before the enzyme reaction. Moved. The enzyme reaction was carried out using a phosphate buffer solution for the lipase-mesoporous fine particle compact, lipase-PES pellet (without raw material particles), and lipase-mesoporous fine particle powder in each well of the 96-well deep bottom type plate. (0.9 mL) was added, and the mixture was stirred (30 ° C., 1,200 rpm, 10 minutes) using the above stirring apparatus, and then started by adding a fluorescent triglyceride solution (0.1 mL) (Reaction 1 Second time).
その際、反応基質の反応組成が、「150mM PBS(pH 8.2)、1μM 蛍光性トリグリセリド、反応液量:1mL」となるように調整した。反応2回目以降は、下記の遠心分離操作後に反応後の上清と分離されたリパーゼ複合体に対して、前記と同様の手順で緩衝液、基質等を添加することによって反応を開始した。また、比較のために固定化支持体を用いない遊離のリパーゼについても、同様の反応基質と混合することで反応を行った。 At that time, the reaction composition of the reaction substrate was adjusted to “150 mM PBS (pH 8.2), 1 μM fluorescent triglyceride, reaction volume: 1 mL”. In the second and subsequent reactions, the reaction was started by adding a buffer solution, a substrate and the like to the lipase complex separated from the supernatant after the reaction after the following centrifugation operation in the same procedure as described above. For comparison, free lipase not using an immobilized support was also reacted by mixing with a similar reaction substrate.
反応条件は、前記の撹拌装置を用いて混合(1,200rpm)しながら30℃で10分間の加温状態を保持することとした。続いて、10分経過後に加温状態での遠心分離(30℃、4,700rpm、5分間)によって上清を全て回収し、前記のマイクロプレートリーダーを用いて、回収液の蛍光強度を測定(測定波長:励起342nm/蛍光400nm)することによって、脂肪酸の生成効率(ピレン濃度)を評価した。図19に、各種のリパーゼ複合体の繰り返し使用時(反応5回)における遊離ピレン濃度を示す。図19の(a)は、リパーゼ−メソポーラス微粒子複合体の成形体によるトリグリセリド分解における遊離ピレン濃度及び固定化酵素の繰り返し使用における耐久性(反応5回)を示す。図19の(b)は、リパーゼ−メソポーラス微粒子複合体の粉末によるトリグリセリド分解における遊離ピレン濃度及び固定化酵素の繰り返し使用における耐久性(反応5回)を示す。 The reaction conditions were that the temperature was maintained at 30 ° C. for 10 minutes while mixing (1,200 rpm) using the stirring device. Subsequently, after 10 minutes, all the supernatant was collected by centrifugation in a heated state (30 ° C., 4,700 rpm, 5 minutes), and the fluorescence intensity of the collected solution was measured using the microplate reader ( (Measurement wavelength: excitation 342 nm / fluorescence 400 nm), the production efficiency (pyrene concentration) of fatty acid was evaluated. In FIG. 19, the free pyrene density | concentration at the time of the repeated use (reaction 5 times) of various lipase complexes is shown. (A) of FIG. 19 shows the free pyrene concentration in the triglyceride degradation by the molded product of the lipase-mesoporous fine particle composite and the durability (reaction 5 times) in repeated use of the immobilized enzyme. (B) of FIG. 19 shows the free pyrene concentration in triglyceride degradation by the lipase-mesoporous fine particle powder and durability in repeated use of the immobilized enzyme (5 reactions).
図19(a)及び(b)より、全体的には、リパーゼ−メソポーラス微粒子粉末と比較して、リパーゼ−メソポーラス微粒子成形体を用いた場合に遊離のピレン濃度が低くなる傾向が認められたものの、メソポーラス微粒子粉末を用いた場合のようなピレン濃度の幅広い増減は示されなかった。具体的には、MCM−41−EVOH中空糸を除いたリパーゼ−メソポーラス微粒子成形体では、5回の繰り返し反応においても、一定したピレン濃度(20〜40nM)を示した。また、図19(a)より、リパーゼ−PESペレット(原料粒子なし)は、繰り返し使用回数と共に徐々に活性が低下し、反応5回目ではほとんど活性を発現しなかった。リパーゼ−PESペレット(原料粒子なし)では、図18より、相当量のリパーゼが成形体のPES表面部分に非特異的に吸着していると考えられるが、吸着状態のリパーゼの安定性が極めて低いことが判明した。一方、大半のリパーゼ−メソポーラス微粒子成形体では、反応1〜5回において持続した酵素活性を発現しており、このことは、成形体のメソ細孔に固定化された酵素の安定性の高さを示唆している。以上より、リパーゼ−メソポーラス微粒子成形体による高活性のトリグリセリドの加水分解反応には、成形体中のメソ細孔に固定化されたリパーゼが大きく寄与していることが示唆された。
また、図20に遊離のリパーゼ(酵素量:0、1、10、100μg)の酵素活性を評価した結果を示す。図20により、トリグリセリド分解により遊離する蛍光物質(ピレン)濃度に与える未固定の遊離リパーゼ濃度の影響が示される。図20より、酵素濃度に比例してピレン濃度が増大する傾向が示された。図19(a)において示された、リパーゼ−メソポーラス微粒子成形体による生成ピレン濃度(20〜40nM)を与える酵素量は、図20より、50〜100μgの範囲であると考えられる。図18より、リパーゼ複合体に対して100〜250μg程度の酵素が固定化されていることを鑑みると、固定化状態の酵素のうちの半分程度の酵素が反応に関与していることが推察される。
As shown in FIGS. 19 (a) and (b), the overall concentration of free pyrene was found to be lower when the lipase-mesoporous fine particle compact was used as compared with the lipase-mesoporous fine particle powder. No broad increase / decrease in pyrene concentration was observed as in the case of using mesoporous fine particle powder. Specifically, the lipase-mesoporous fine particle molded product excluding the MCM-41-EVOH hollow fiber showed a constant pyrene concentration (20 to 40 nM) even in five repeated reactions. Further, from FIG. 19 (a), the activity of the lipase-PES pellets (without the raw material particles) gradually decreased with the number of repeated use, and almost no activity was expressed at the fifth reaction. In lipase-PES pellets (without raw material particles), it is considered from FIG. 18 that a considerable amount of lipase is adsorbed nonspecifically on the PES surface portion of the molded product, but the stability of the lipase in the adsorbed state is extremely low. It has been found. On the other hand, most of the lipase-mesoporous fine particle compacts exhibited sustained enzyme activity in the reaction 1 to 5 times, which means that the stability of the enzyme immobilized in the mesopores of the compacts is high. It suggests. From the above, it was suggested that the lipase immobilized in the mesopores in the molded product greatly contributed to the hydrolysis reaction of the highly active triglyceride by the lipase-mesoporous fine particle molded product.
FIG. 20 shows the results of evaluating the enzyme activity of free lipase (enzyme amounts: 0, 1, 10, 100 μg). FIG. 20 shows the effect of the unfixed free lipase concentration on the concentration of the fluorescent substance (pyrene) released by triglyceride decomposition. FIG. 20 shows that the pyrene concentration tends to increase in proportion to the enzyme concentration. The amount of enzyme that gives the concentration of pyrene produced (20 to 40 nM) by the lipase-mesoporous fine particle molded article shown in FIG. 19A is considered to be in the range of 50 to 100 μg from FIG. From FIG. 18, considering that about 100 to 250 μg of enzyme is immobilized on the lipase complex, it is inferred that about half of the immobilized enzyme is involved in the reaction. The
(実施例34:プロテアーゼと各種多孔質成形体との複合体の製造及び酵素反応)
本実施例では、実施例22及び25で得られたメソポーラス微粒子の多孔質成形体、及び、比較のための活性炭ペレット(籾殻由来、デクセリアルズ株式会社)に対するプロテアーゼN(PN:Streptomyces属由来、ナガセケムテックス株式会社)の固定化と酵素活性の評価を行った。
(Example 34: Production of complex of protease and various porous molded bodies and enzyme reaction)
In this example, porous molded bodies of mesoporous fine particles obtained in Examples 22 and 25, and protease N (PN: derived from genus Streptomyces), Nagase Chem for activated carbon pellets (derived from rice husks, Dexerials Corporation) for comparison Tex Co., Ltd.) and enzyme activity were evaluated.
(1−1)プロテアーゼと各種多孔質成形体との複合体の製造方法
プロテアーゼの固定化支持体には、メソポーラス微粒子の多孔質成形体として、実施例22及び25により得られた2種類の成形体を使用した。また、比較のための表面親和性の異なる多孔体として、従来の活性炭よりメソ孔容積の大きい「活性炭ペレット」を使用した。更に、比較のための成型前のメソポーラスシリカ微粒子として、2種類の合成メソポーラスシリカ(原料粒子L及びO)、及び「活性炭粉末」を使用した。
(1-1) Production Method of Complex of Protease and Various Porous Molded Body Two types of moldings obtained in Examples 22 and 25 were used as a porous molded body of mesoporous fine particles on the protease support. Used the body. Moreover, “activated carbon pellets” having a larger mesopore volume than conventional activated carbon were used as porous bodies having different surface affinity for comparison. Furthermore, two types of synthetic mesoporous silica (raw material particles L and O) and “activated carbon powder” were used as mesoporous silica fine particles before molding for comparison.
酵素を固定化する際には、プロテアーゼ(0.271mg)を含んだ緩衝液(100mM Tris−HCl(pH 7))1mLと、予めマイクロチューブに量り取った2種類の成形体及び「活性炭ペレット」(20mg相当)とを、ローテーターを用いて混合(4℃、15時間)することによって複合化させ、遠心分離操作、及び、同緩衝液を用いた洗浄操作を2度行うことでプロテアーゼと各種多孔質成形体との複合体を得た。なお、本発明の酵素とメソポーラス微粒子の多孔質成形体との複合体としては、未洗浄のままで用いることもできるが、本実施例では、成形体への酵素の結合安定性を評価するために、以下の遠心分離工程と共に洗浄工程を行っている。 When immobilizing the enzyme, 1 mL of a buffer solution (100 mM Tris-HCl (pH 7)) containing protease (0.271 mg), two types of molded bodies previously measured in a microtube, and “activated carbon pellet” (Equivalent to 20 mg) is mixed using a rotator (4 ° C., 15 hours), and then subjected to centrifugation and washing using the same buffer twice. A composite with a green compact was obtained. The complex of the enzyme of the present invention and the porous molded body of mesoporous fine particles can be used without washing, but in this example, in order to evaluate the binding stability of the enzyme to the molded body. In addition, the washing process is performed together with the following centrifugation process.
具体的には、前記のプロテアーゼと各種多孔質成形体(又は、活性炭ペレット)との複合体(未洗浄)の分散液に対して遠心分離(4℃、20,000G、10分間)を行い、上清を全て回収した。続いて、洗浄用緩衝液(固定化時に選択した緩衝液を使用)1mLを添加し、Vortex Mixerを用いて室温で約5秒間、プロテアーゼとメソポーラスシリカ成形体(又は、活性炭ペレット)との複合体を攪拌した後、遠心分離(4℃、20,000G、10分間)を行い、上清を全て回収する洗浄操作を行った。再び、前記洗浄用緩衝液1mLを用いて洗浄操作を繰り返し、最終的に、プロテアーゼと各種多孔質成形体(又は、活性炭ペレット)との複合体(洗浄済)を得た。以下、「プロテアーゼ−メソポーラス微粒子成形体」、又は、「プロテアーゼ−活性炭ペレット」という。 Specifically, centrifugation (4 ° C., 20,000 G, 10 minutes) is performed on a dispersion (unwashed) of a complex of the protease and various porous molded bodies (or activated carbon pellets), All supernatant was collected. Subsequently, 1 mL of a washing buffer (using the buffer selected at the time of immobilization) is added, and a complex of protease and mesoporous silica compact (or activated carbon pellet) is used at room temperature for about 5 seconds using a Vortex Mixer. After stirring, centrifugation (4 ° C., 20,000 G, 10 minutes) was performed, and a washing operation for collecting all the supernatant was performed. Again, the washing operation was repeated using 1 ml of the washing buffer solution, and finally a complex (washed) of protease and various porous molded bodies (or activated carbon pellets) was obtained. Hereinafter, it is referred to as “protease-mesoporous fine particle molded product” or “protease-activated carbon pellet”.
また、比較のために2種類の合成メソポーラスシリカ(原料粒子L及びO)、及び「活性炭粉末」(10mg相当)を用いて、前記成形体と同様の手順により複合体を得た。以下、「プロテアーゼ−メソポーラス微粒子粉末」、又は、「プロテアーゼ−活性炭粉末」という。 For comparison, two types of synthetic mesoporous silica (raw material particles L and O) and “activated carbon powder” (corresponding to 10 mg) were used to obtain a composite by the same procedure as that for the molded body. Hereinafter, it is referred to as “protease-mesoporous fine particle powder” or “protease-activated carbon powder”.
各種のメソポーラス微粒子の成形体及び粉末に対する酵素の固定化量は、固定化前の酵素量(1mL中、0.271mg)から、前記の遠心分離工程及び洗浄工程の回収液に含まれる遊離の酵素量を差し引くことによって算出した。図21に、メソポーラス微粒子成形体、又は、メソポーラス微粒子粉末に対するプロテアーゼの固定化量を示す。図21(a)は、各種メソポーラス微粒子の成形体に対するプロテアーゼの固定化量を示す。図21(b)は、各種メソポーラス微粒子の粉末に対するプロテアーゼの固定化量を示す。 The amount of enzyme immobilized on various mesoporous fine-particle compacts and powders is determined based on the amount of enzyme before immobilization (0.271 mg in 1 mL), and the free enzyme contained in the collected liquid of the centrifugation step and the washing step. Calculated by subtracting the amount. FIG. 21 shows the amount of protease immobilized on a mesoporous fine particle molded product or mesoporous fine particle powder. FIG. 21 (a) shows the amount of protease immobilized on a molded body of various mesoporous fine particles. FIG. 21B shows the amount of protease immobilized on various mesoporous fine particle powders.
図21(a)及び(b)より、FSM−22(原料粒子L)、SBA−15(原料粒子O)タイプの合成メソポーラスシリカ及び活性炭を比較すると、成形体及び粉末ともに、「活性炭 > FSM−22 > SBA−15」の順にプロテアーゼの固定化量が増大する傾向が認められた。成形体と粉末を比較すると、全体的には、成形体を用いた場合にプロテアーゼの固定化量が低い値に留まったものの、固定化支持体の違いによるプロテアーゼの固定化挙動は粉末を用いた場合の傾向と類似しており、これは、成形体に含まれるメソポーラス微粒子が粉末とおおよそ同等の酵素固定化能を保持していることを示唆している。 21 (a) and 21 (b), FSM-22 (raw material particle L), SBA-15 (raw material particle O) type synthetic mesoporous silica and activated carbon are compared. The tendency for the amount of immobilized protease to increase was observed in the order of “22> SBA-15”. Comparing the compact with the powder, overall, when the compact was used, the amount of protease immobilized was low, but the protease immobilization behavior depending on the immobilization support used powder. This suggests that the mesoporous microparticles contained in the compact retain approximately the same enzyme immobilization ability as the powder.
(1−2)ゼラチンの加水分解活性の評価
(1−1)で得られたプロテアーゼ複合体(2種類のプロテアーゼ−メソポーラス微粒子成形体、プロテアーゼ−活性炭ペレット、2種類のプロテアーゼ−メソポーラス微粒子粉末、及び、プロテアーゼ−活性炭粉末)の酵素活性を評価した。評価は、反応基質としての蛍光性ゼラチンの加水分解にともなって増大する蛍光強度を指標として、未固定の遊離酵素における蛍光強度を基準とした相対活性により行った。またこの際、前記複合体の繰り返し使用における耐久性(反応10回)の評価も行った。
具体的には、前記複合体それぞれに対して、以下の酵素反応を起こさせ、ゼラチンの分解活性を求めた。
(1-2) Evaluation of hydrolysis activity of gelatin Protease complex obtained in (1-1) (two types of protease-mesoporous fine particles, protease-activated carbon pellets, two types of protease-mesoporous fine particles, and , Protease-activated carbon powder) was evaluated for enzyme activity. The evaluation was performed based on the relative activity based on the fluorescence intensity of the unfixed free enzyme with the fluorescence intensity increasing with hydrolysis of the fluorescent gelatin as the reaction substrate as an index. At this time, durability (reaction 10 times) in repeated use of the composite was also evaluated.
Specifically, the following enzyme reaction was caused for each of the complexes to determine the degradation activity of gelatin.
酵素反応は、(1−1)で得られた各マイクロチューブ内のプロテアーゼ複合体(プロテアーゼ−メソポーラス微粒子成形体、プロテアーゼ−活性炭ペレット、プロテアーゼ−メソポーラス微粒子粉末、及び、プロテアーゼ−活性炭粉末)に対して、蛍光性ゼラチン、塩化ナトリウム、又、塩化カルシウムを含んだトリス緩衝液(0.4mL)を添加することによって開始した(反応1回目)。 The enzyme reaction is performed on the protease complex (protease-mesoporous fine particle compact, protease-activated carbon pellet, protease-mesoporous particulate powder, and protease-activated carbon powder) in each microtube obtained in (1-1). The reaction was started by adding Tris buffer (0.4 mL) containing fluorescent gelatin, sodium chloride, and calcium chloride (first reaction).
その際、反応基質の反応組成が、「45mM Tris−HCl(pH 7.6)、0.1mg/mL 蛍光性ゼラチン、135mM 塩化ナトリウム、4.5mM 塩化カルシウム」となるように調整した。反応2回目以降は、下記の遠心分離操作後に反応後の上清と分離されたプロテアーゼ複合体に対して、前記と同様の手順で反応基質を添加することによって反応を開始した。また、比較のために固定化支持体を用いない遊離のプロテアーゼについても、同様の反応基質と混合することで反応を行った。 At that time, the reaction composition of the reaction substrate was adjusted to “45 mM Tris-HCl (pH 7.6), 0.1 mg / mL fluorescent gelatin, 135 mM sodium chloride, 4.5 mM calcium chloride”. In the second and subsequent reactions, the reaction was started by adding the reaction substrate to the protease complex separated from the supernatant after the reaction after the following centrifugation operation in the same procedure as described above. For comparison, a free protease not using an immobilized support was also reacted by mixing with a similar reaction substrate.
反応条件は、ローテーターを用いて混合しながら37℃で30分間の加温状態を保持することとした。続いて、遠心分離(4℃、20,000G、5分間)によって上清を全て回収し、前記のマイクロプレートリーダーを用いて、回収液の蛍光強度を測定(測定波長:励起495nm/蛍光520nm)することによって、ゼラチンの分解効率を評価した。図22に、各種のプロテアーゼ複合体の繰り返し使用時(反応10回)における、遊離のプロテアーゼによるゼラチンの分解効率を基準とした場合の相対活性を示す。図22の(a)は、プロテアーゼ−メソポーラス微粒子複合体の成形体によるゼラチンの分解活性及び固定化酵素の繰り返し使用における耐久性(反応10回)を示す。図22の(b)は、プロテアーゼ−メソポーラス微粒子複合体の粉末によるゼラチンの分解活性及び固定化酵素の繰り返し使用における耐久性(反応10回)を示す。 The reaction conditions were that the temperature was maintained at 37 ° C. for 30 minutes while mixing using a rotator. Subsequently, all the supernatant is collected by centrifugation (4 ° C., 20,000 G, 5 minutes), and the fluorescence intensity of the collected solution is measured using the microplate reader (measurement wavelength: excitation 495 nm / fluorescence 520 nm). Thus, the degradation efficiency of gelatin was evaluated. FIG. 22 shows the relative activity based on the degradation efficiency of gelatin by free protease during repeated use of various protease complexes (10 reactions). (A) of FIG. 22 shows the degradation activity of gelatin by the molded product of the protease-mesoporous fine particle composite and the durability (reaction 10 times) in repeated use of the immobilized enzyme. FIG. 22 (b) shows the gelatin degradation activity by the protease-mesoporous fine particle powder and the durability (10 reactions) in repeated use of the immobilized enzyme.
図22(a)及び(b)より、全体的には、プロテアーゼ−メソポーラス微粒子粉末と比較して、プロテアーゼ−メソポーラス微粒子成形体を用いた場合にゼラチンの分解活性が低くなる傾向が認められたものの、成形体及び粉末ともに、活性炭(ペレット及び粉末)と比較すると、格段に優れた酵素活性の発現率と繰り返し耐久性を示した。
具体的には、反応10回目におけるゼラチンの分解活性が、プロテアーゼ−活性炭粉末を用いた場合に3.9%であったのに対して、プロテアーゼ−メソポーラス微粒子粉末を用いた場合には100%程度(FSM型:100%,SBA型:98.3%)であり、極めて高い繰り返し耐久性が示された(図22(b))。
一方、プロテアーゼ−活性炭ペレットを用いた場合では、反応10回目におけるゼラチンの分解活性が41.1%と活性炭粉末の場合よりも高い活性が示されたが、プロテアーゼ−メソポーラス微粒子成形体を用いた場合にはより高い活性(FSM型:92.4%,SBA型:84.6%)が認められた(図22(a))。
22 (a) and 22 (b), it was observed that the gelatin degradation activity tends to be lower when the protease-mesoporous fine particle compact is used as a whole, as compared with the protease-mesoporous fine particle powder. Both the molded body and the powder showed a significantly superior enzyme activity expression rate and repeated durability when compared with activated carbon (pellet and powder).
Specifically, the degradation activity of gelatin in the 10th reaction was 3.9% when protease-activated carbon powder was used, but about 100% when protease-mesoporous fine particle powder was used. (FSM type: 100%, SBA type: 98.3%), which showed extremely high repetition durability (FIG. 22B).
On the other hand, when protease-activated carbon pellets were used, gelatin degradation activity in the 10th reaction was 41.1%, which was higher than that of activated carbon powder. Was found to have higher activity (FSM type: 92.4%, SBA type: 84.6%) (FIG. 22 (a)).
図21及び図22の結果から、表面疎水性の高い活性炭(ペレット及び粉末)では、メソポーラスシリカ(成形体及び粉末)と比較して、プロテアーゼの固定化率が高いにもかかわらず、酵素活性が極めて低い値に留まったことより、本反応系におけるメソポーラスシリカ粉末およびその成形体の優位性が示された。
FSM型及びSBA型のメソポーラスシリカを比較すると、成形体及び粉末ともに、全体的には、「FSM−22 > SBA−15」の順にゼラチンの分解活性が増大する傾向が認められたが、これは、図21で示されたプロテアーゼの固定化量(FSM−22 > SBA−15)に依存した結果と考えられる。
また、図21の結果より、全体的には、粉末よりも成形体を用いた場合にプロテアーゼの固定化量が低い値(粉末の場合の70〜80%)に留まったことを鑑みると、成形体に含まれるメソポーラス微粒子が粉末と同等の酵素の活性発現能を保持していることが推察される。
From the results of FIG. 21 and FIG. 22, activated carbon (pellet and powder) having high surface hydrophobicity has an enzyme activity higher than that of mesoporous silica (molded body and powder), although the protease immobilization rate is high. The extremely low value indicated the superiority of the mesoporous silica powder and the molded product in this reaction system.
Comparing the FSM type and SBA type mesoporous silica, it was observed that the gelatin and the powder as a whole had a tendency to increase the degradation activity of gelatin in the order of “FSM-22> SBA-15”. This is considered to be a result depending on the amount of protease immobilized (FSM-22> SBA-15) shown in FIG.
Further, from the results shown in FIG. 21, in view of the fact that the amount of protease immobilized was lower (70 to 80% in the case of powder) when the molded body was used than the powder, It is presumed that the mesoporous fine particles contained in the body retain the enzyme activity expression ability equivalent to that of the powder.
以上詳述したように、本発明のミクロないしメソポーラス微粒子の多孔質成形体は、吸着性等を有する多孔質な微粒子粉末を有機高分子樹脂との混合スラリーを相分離法でハンドリングの良い多孔体へと成形することで得られる。また、本発明によれば、上記のミクロないしメソポーラス微粒子の多孔質成形体で構成される精密濾過膜を提供できる。本発明の多孔質成形体は、例えば工業用排水などの処理剤として好適に使用できる。 As described in detail above, the porous molded body of micro or mesoporous fine particles according to the present invention is a porous material that is easy to handle by mixing a porous fine particle powder having adsorbability with an organic polymer resin in a phase separation method. It can be obtained by molding into In addition, according to the present invention, a microfiltration membrane composed of a porous molded body of the above micro to mesoporous fine particles can be provided. The porous molded body of the present invention can be suitably used as a treatment agent such as industrial waste water.
Claims (23)
細孔直径が50nm〜100μmのマクロ孔を有し、
空隙率が34%以上の多孔体であり、
前記成形体中の前記機能性微粒子の含有率が46質量%以上であり、
前記機能性微粒子の表面の少なくとも一部が前記成形体から表出しており、
前記機能性微粒子の前記ミクロないしメソ孔の細孔容積が、原料機能性微粒子の40%以上保持されている、
ことを特徴とするミクロないしメソポーラス微粒子の多孔質成形体。 A functional fine particle having a pore diameter of 0.3 nm to 50 nm having micro to mesopores, mainly composed of silicate, aluminosilicate, alumina or titania and having a particle diameter of 0.01 μm to 200 μm, and an organic polymer A porous molded body comprising:
Macropores with a pore diameter of 50 nm to 100 μm,
A porous body having a porosity of 34% or more;
The content of the functional fine particles in the molded body is 46% by mass or more,
At least part of the surface of the functional fine particles is exposed from the molded body,
The micro volume or mesopore volume of the functional fine particles is maintained at 40% or more of the raw material functional fine particles,
A porous molded body of micro or mesoporous fine particles characterized by the above.
非溶媒中に前記原料スラリーを射出することによって成形する工程と、を含むことを特徴とする請求項1〜7のいずれか1項に記載のミクロないしメソポーラス微粒子の多孔質成形体の製造方法。 A step of obtaining a raw material slurry by dispersing functional fine particles mainly composed of silicate, aluminosilicate, alumina or titania having micro to mesopores in an organic solvent in which the organic polymer is previously dissolved;
The method for producing a porous molded body of micro to mesoporous fine particles according to any one of claims 1 to 7, comprising a step of molding the raw material slurry by injecting the raw material slurry into a non-solvent.
前記酵素及び/又はタンパク質を、pH3〜11に調整した緩衝液中でメソポーラス微粒子の多孔質成形体に固定化させる固定化工程を含む、製造方法。 The composite according to any one of claims 13 to 15, wherein each of one or more enzymes and / or proteins involved in the enzyme reaction of the enzyme is immobilized in a mesopore having a pore diameter of 2 nm to 50 nm. A method of manufacturing a body,
A production method comprising an immobilization step of immobilizing the enzyme and / or protein on a porous molded body of mesoporous fine particles in a buffer adjusted to pH 3-11.
前記酵素及び/又はタンパク質をメソポーラス微粒子の多孔質成形体にpH3〜11に調整した緩衝液中で固定化する固定化工程、
前記固定化工程で得られたメソポーラス微粒子の多孔質成形体と酵素との複合体を含むpH3〜11の緩衝液中に、反応基質を添加するか、又は
前記固定化工程で得られたメソポーラス微粒子の多孔質成形体と酵素との複合体を、反応基質を含むpH3〜11の緩衝液中に添加して前記の酵素及び/又はタンパク質が関わる酵素反応を行う酵素反応工程、含む酵素反応方法。 The complex according to any one of claims 13 to 15, wherein each of one or more enzymes and / or proteins involved in the enzyme reaction is immobilized on a porous molded body of mesoporous fine particles. An enzymatic reaction method,
An immobilization step of immobilizing the enzyme and / or protein on a porous molded body of mesoporous fine particles in a buffer adjusted to pH 3-11;
A reaction substrate is added to a buffer solution having a pH of 3 to 11 containing a complex of a porous compact of mesoporous fine particles obtained in the immobilization step and an enzyme, or mesoporous fine particles obtained in the immobilization step An enzyme reaction method comprising an enzyme reaction step in which a complex of a porous molded body and an enzyme is added to a buffer solution having a pH of 3 to 11 containing a reaction substrate to perform an enzyme reaction involving the enzyme and / or protein.
前記酵素及び/又はタンパク質をメソポーラス微粒子の多孔質成形体にpH3〜11に調整した緩衝液中で固定化する固定化工程、
前記固定化工程で得られたメソポーラス微粒子の多孔質成形体と酵素との複合体をpH3〜11の緩衝液で洗浄する洗浄工程、
前記洗浄工程で得られた洗浄後のメソポーラス微粒子の多孔質成形体と酵素との複合体を、反応基質を含む反応液中で、前記酵素及び/又はタンパク質が関わる酵素反応を行う酵素反応工程、含む酵素反応方法。 The complex according to any one of claims 13 to 15, wherein each of one or more enzymes and / or proteins involved in the enzyme reaction is immobilized on a porous molded body of mesoporous fine particles. An enzymatic reaction method,
An immobilization step of immobilizing the enzyme and / or protein on a porous molded body of mesoporous fine particles in a buffer adjusted to pH 3-11;
A washing step of washing a complex of a porous molded body of mesoporous fine particles obtained in the immobilization step and an enzyme with a buffer solution of pH 3-11;
An enzyme reaction step of performing an enzyme reaction involving the enzyme and / or protein in a reaction solution containing a reaction substrate, a complex of a porous molded body of mesoporous fine particles obtained after the washing step and the enzyme obtained in the washing step; Enzymatic reaction method comprising.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016205624 | 2016-10-20 | ||
JP2016205624 | 2016-10-20 | ||
JP2016230602 | 2016-11-28 | ||
JP2016230602 | 2016-11-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018090767A true JP2018090767A (en) | 2018-06-14 |
JP6990906B2 JP6990906B2 (en) | 2022-02-03 |
Family
ID=62565201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017152336A Active JP6990906B2 (en) | 2016-10-20 | 2017-08-07 | Porous molded body of mesoporous fine particles, carrier for supporting enzymes, enzyme complexes thereof, and methods for producing them. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6990906B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115692035A (en) * | 2022-11-03 | 2023-02-03 | 重庆邮电大学 | A long-life mesoporous carbon/nickel-cobalt-manganese hydrotalcite supercapacitor material and its preparation method and application |
CN116525867A (en) * | 2023-04-11 | 2023-08-01 | 东风汽车集团股份有限公司 | Microporous layer slurry, high-porosity gas diffusion layer and preparation method thereof |
CN114671515B (en) * | 2022-04-26 | 2023-09-26 | 国网河北省电力有限公司电力科学研究院 | An aerobic pool floating filler and its preparation method and application |
JP7576188B2 (en) | 2021-04-19 | 2024-10-30 | ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド | Hierarchical and nanoporous metal composites in porous polymer matrices |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002001829A (en) * | 2000-06-16 | 2002-01-08 | Shinei Techno Kk | Method for preparing composite foam |
JP2007291186A (en) * | 2006-04-21 | 2007-11-08 | Inoac Corp | Method for producing polyolefin resin foam |
JP2007320988A (en) * | 2006-05-30 | 2007-12-13 | Futamura Chemical Co Ltd | Interconnected porous structure member containing sealed material and method for producing the same |
WO2011155536A1 (en) * | 2010-06-09 | 2011-12-15 | 日揮触媒化成株式会社 | Support for protein immobilization, immobilized protein and method for producing same |
JP2012072534A (en) * | 2009-11-30 | 2012-04-12 | National Institute Of Advanced Industrial & Technology | Hollow fiber porous body of natural zeolite, zeolite membrane composite porous body and method for manufacturing the same |
-
2017
- 2017-08-07 JP JP2017152336A patent/JP6990906B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002001829A (en) * | 2000-06-16 | 2002-01-08 | Shinei Techno Kk | Method for preparing composite foam |
JP2007291186A (en) * | 2006-04-21 | 2007-11-08 | Inoac Corp | Method for producing polyolefin resin foam |
JP2007320988A (en) * | 2006-05-30 | 2007-12-13 | Futamura Chemical Co Ltd | Interconnected porous structure member containing sealed material and method for producing the same |
JP2012072534A (en) * | 2009-11-30 | 2012-04-12 | National Institute Of Advanced Industrial & Technology | Hollow fiber porous body of natural zeolite, zeolite membrane composite porous body and method for manufacturing the same |
WO2011155536A1 (en) * | 2010-06-09 | 2011-12-15 | 日揮触媒化成株式会社 | Support for protein immobilization, immobilized protein and method for producing same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7576188B2 (en) | 2021-04-19 | 2024-10-30 | ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド | Hierarchical and nanoporous metal composites in porous polymer matrices |
CN114671515B (en) * | 2022-04-26 | 2023-09-26 | 国网河北省电力有限公司电力科学研究院 | An aerobic pool floating filler and its preparation method and application |
CN115692035A (en) * | 2022-11-03 | 2023-02-03 | 重庆邮电大学 | A long-life mesoporous carbon/nickel-cobalt-manganese hydrotalcite supercapacitor material and its preparation method and application |
CN116525867A (en) * | 2023-04-11 | 2023-08-01 | 东风汽车集团股份有限公司 | Microporous layer slurry, high-porosity gas diffusion layer and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6990906B2 (en) | 2022-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ngah et al. | Adsorption of dyes and heavy metal ions by chitosan composites: A review | |
Song et al. | A low-cost biomimetic heterostructured multilayer membrane with geopolymer microparticles for broad-spectrum water purification | |
JP6990906B2 (en) | Porous molded body of mesoporous fine particles, carrier for supporting enzymes, enzyme complexes thereof, and methods for producing them. | |
Barhoum et al. | Nanocelluloses as sustainable membrane materials for separation and filtration technologies: Principles, opportunities, and challenges | |
Luo et al. | Supported growth of inorganic-organic nanoflowers on 3D hierarchically porous nanofibrous membrane for enhanced enzymatic water treatment | |
Kueasook et al. | Green and facile synthesis of hierarchically porous carbon monoliths via surface self-assembly on sugarcane bagasse scaffold: influence of mesoporosity on efficiency of dye adsorption | |
Zhang et al. | Facile fabrication of a low-cost and environmentally friendly inorganic-organic composite membrane for aquatic dye removal | |
Mavukkandy et al. | Synthesis of polydopamine coated tungsten oxide@ poly (vinylidene fluoride-co-hexafluoropropylene) electrospun nanofibers as multifunctional membranes for water applications | |
Risch et al. | A chitosan nanofiber sponge for oyster-inspired filtration of microplastics | |
JP7270993B2 (en) | Structurally controllable ion-exchange nanofiber skeleton three-dimensional separation material and its manufacturing method | |
Yu et al. | Batch and continuous fixed-bed column adsorption of tetracycline by biochar/MOFs derivative covered with κ-carrageenan/calcium alginate hydrogels | |
Jiang et al. | Development of organic–inorganic hybrid beads from sepiolite and cellulose for effective adsorption of malachite green | |
Liu et al. | Recent advances in the direct fabrication of millimeter-sized hierarchical porous materials | |
Han et al. | Encapsulating TiO 2 into polyvinyl alcohol coated polyacrylonitrile composite beads for the effective removal of methylene blue | |
Yang et al. | Preparation of a spherical biochar colloidal probe and its application in deciphering the mechanism of biochar mitigating membrane fouling | |
CN106902638A (en) | A kind of attapulgite class graphite phase carbon nitride polyvinylidene fluoride nanometer composite hyperfiltration membrane and its preparation method and application | |
Ye et al. | Preparation of 1, 8-dichloroanthraquinone/graphene oxide/poly (vinylidene fluoride)(1, 8-AQ/GO/PVDF) mediator membrane and its application to catalyzing biodegradation of azo dyes | |
Wang et al. | Synthesis of a SiO2-MgO composite material derived from yellow phosphorus slag with excellent malachite green adsorption activity | |
Bhuyan et al. | Adsorption of methylene blue by composite foams containing alkali-activated blast furnace slag and lignin | |
Verma et al. | Present state in the development of aerogel and xerogel and their applications for wastewater treatment: A review | |
Mak et al. | Porosity characteristics and pore developments of various particle sizes palm kernel shells activated carbon (PKSAC) and its potential applications | |
San et al. | Adsorption characteristics, isotherm and kinetics of a novel polyHIPE/pullulan composite for removing Congo Red dye | |
Klein et al. | Porous ceramic monoliths assembled from microbeads with high specific surface area for effective biocatalysis | |
Wang et al. | Polyethylene glycol crosslinked modified chitosan/halloysite nanotube composite aerogel microspheres for efficient adsorption of melanoidin | |
CN103071399B (en) | Composite flat membrane with regeneration capacity and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200604 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210511 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210708 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211130 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6990906 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |