[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018088356A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2018088356A
JP2018088356A JP2016231127A JP2016231127A JP2018088356A JP 2018088356 A JP2018088356 A JP 2018088356A JP 2016231127 A JP2016231127 A JP 2016231127A JP 2016231127 A JP2016231127 A JP 2016231127A JP 2018088356 A JP2018088356 A JP 2018088356A
Authority
JP
Japan
Prior art keywords
unit cell
positive electrode
assembled battery
negative electrode
arrangement direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016231127A
Other languages
Japanese (ja)
Inventor
石井 勝
Masaru Ishii
勝 石井
神谷 正人
Masato Kamiya
正人 神谷
隆行 北條
Takayuki Hojo
隆行 北條
金子 哲也
Tetsuya Kaneko
哲也 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016231127A priority Critical patent/JP2018088356A/en
Publication of JP2018088356A publication Critical patent/JP2018088356A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery pack which makes it possible to suppress an external short circuit that would be caused between unit cells to suitably suppress a rapid rise in unit cell temperature owing to a short-circuit current when a sharp conductive foreign material has stuck to the battery pack having a plurality of unit cells connected therein.SOLUTION: A battery pack 1 herein disclosed comprises a plurality of unit cells 10A to 10N arrayed in an array direction x, where positive electrode terminals 12 are connected to corresponding negative electrode terminals 14 through bus-bars 40. Out of the plurality of unit cells, the unit cell 10C having a positive electrode output terminal 12a is disposed at a position other than both ends in the array direction x; the positive electrode terminals 12 of the unit cells 10A and 10N at both ends in the array direction x are connected to the negative electrode terminals 14 of the unit cells 10B and 10M adjacent to the unit cells at both the end; and the negative electrode terminal 14 of the unit cell 10A disposed at one end is electrically connected to the positive electrode terminal 12 of the unit cell 10D separated therefrom through a bus-bar 42.SELECTED DRAWING: Figure 3

Description

本発明は、組電池に関する。詳しくは、二次電池を単電池とし、当該単電池を複数備えた組電池に関する。   The present invention relates to an assembled battery. Specifically, the present invention relates to a battery pack including a secondary battery as a single battery and a plurality of the single batteries.

リチウムイオン二次電池、ニッケル水素電池その他の二次電池あるいはキャパシタ等の蓄電素子を単電池とし、当該単電池を複数備えた組電池は、車両搭載用電源あるいはパソコンや携帯端末等の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池を単電池とした組電池は、車両搭載用の高出力電源等に好ましく用いられている。かかる組電池は、一般に、複数の角形二次電池(単電池)を隣接させて配列させ、該隣接した単電池をバスバーを介して電気的に接続することによって構成される(例えば特許文献1)。   Lithium ion secondary batteries, nickel-metal hydride batteries and other secondary batteries or capacitors and other storage elements are used as single cells, and assembled batteries with multiple such cells are important as on-vehicle power supplies or power supplies for personal computers, portable terminals, etc. The nature is increasing. In particular, an assembled battery using a lithium-ion secondary battery that is lightweight and has a high energy density as a single battery is preferably used for a high-output power source mounted on a vehicle. Such an assembled battery is generally configured by arranging a plurality of rectangular secondary batteries (unit cells) adjacent to each other and electrically connecting the adjacent unit cells via a bus bar (for example, Patent Document 1). .

かかる組電池の一例を図5に示す。この組電池100は扁平な角型の単電池110A〜110Eを複数備えており、この複数の単電池110A〜110Eは配列方向xに沿って幅広面(扁平面)が相互に隣接するように配列されている。この組電池100では、各々の単電池110A〜110Eの間で正極端子112と負極端子114とがバスバー140によって電気的に順次接続されている。そして、配列方向xの一方の端部に配置された単電池110Aの正極端子112は外部と接続可能に開放された正極出力端子112aとなっており、他方の端部に配置された単電池110Eの負極端子114は外部と接続可能に開放された負極出力端子114aとなっている。   An example of such an assembled battery is shown in FIG. The assembled battery 100 includes a plurality of flat rectangular cells 110A to 110E, and the plurality of cells 110A to 110E are arranged along the arrangement direction x so that the wide surfaces (flat surfaces) are adjacent to each other. Has been. In this assembled battery 100, the positive electrode terminal 112 and the negative electrode terminal 114 are electrically connected sequentially by the bus bar 140 between the single cells 110A to 110E. The positive terminal 112 of the unit cell 110A arranged at one end in the arrangement direction x is a positive output terminal 112a that is open so as to be connectable to the outside, and the unit cell 110E arranged at the other end. The negative electrode terminal 114 is a negative output terminal 114a that is open to be connectable to the outside.

ところで、この種の二次電池を構成要素(単電池)とする組電池には、電池性能が優れていることはもちろんのこと、高いレベルの安全性が求められている。このため、組電池の安全性を向上させるための種々の技術が従来から提案されている。例えば、使用中に単電池が発熱すると、各々の単電池が相互に加熱し合って組電池全体の温度が急激に上昇することがあるため、組電池を構成する各々の単電池の温度上昇を抑制するような技術が種々提案されている。   By the way, an assembled battery including this type of secondary battery as a constituent element (unit cell) is required to have a high level of safety as well as excellent battery performance. For this reason, various techniques for improving the safety of the assembled battery have been proposed. For example, if a unit cell generates heat during use, the unit cells may heat each other and the temperature of the entire assembled battery may increase rapidly. Various techniques have been proposed to suppress it.

特開2015−125859号公報Japanese Patent Laying-Open No. 2015-125859

しかしながら、組電池を車両などの移動体に搭載して使用している際に、図6に示すように、釘のような鋭利な導電性の異物Fが、組電池100を構成する各単電池の内部に収容された正極132および負極135を該正負極の積層方向に貫くように複数の単電池(図6では単電池110A、110B)を貫通する場合がある。このような場合、当該導電性の異物Fによって貫かれた各々の単電池110A、110Bで短絡電流が発生し得、当該短絡電流のジュール熱によって単電池110A、110Bの温度が上昇する虞がある。
このとき、配列方向xの端部に配置された1番目の単電池110Aで生じる温度上昇は、単一の二次電池に導電性の異物が刺さった場合に生じる温度上昇と同程度であるが、該1番目の単電池110Aに隣接した2番目の単電池110Bでは、1番目の単電池110Aよりも急激な温度上昇が生じ得る。
However, when the assembled battery is mounted on a moving body such as a vehicle and used, a sharp conductive foreign substance F such as a nail is formed into each unit battery constituting the assembled battery 100 as shown in FIG. In some cases, a plurality of unit cells (unit cells 110A and 110B in FIG. 6) are penetrated so as to penetrate the positive electrode 132 and the negative electrode 135 accommodated in the inside in the stacking direction of the positive and negative electrodes. In such a case, a short-circuit current may be generated in each of the single cells 110A and 110B penetrated by the conductive foreign matter F, and the temperature of the single cells 110A and 110B may increase due to the Joule heat of the short-circuit current. .
At this time, the temperature rise that occurs in the first unit cell 110A arranged at the end in the arrangement direction x is about the same as the temperature rise that occurs when a conductive foreign object pierces the single secondary battery. In the second unit cell 110B adjacent to the first unit cell 110A, the temperature may rise more rapidly than in the first unit cell 110A.

具体的には、導電性の異物Fが単電池110A、110Bを上記正負極積層方向に貫通すると、バスバー140と導電性の異物Fとを介して2つの単電池110A、110Bの間で短絡電流E1が流れる外部短絡が生じる。この場合、2番目の単電池110Bの負極135に、該2番目の単電池110Bの内部で生じる短絡電流E2と、上記した外部短絡の短絡電流E1の2つの短絡電流(合計700A程度)が流れ込んで2番目の単電池110Bにおいて急激な温度上昇が生じ得る。そして、導電性の異物Fが2個以上の単電池を貫通した場合には、2番目以降に配置された単電池(例えば、3番目の単電池110C)においても外部短絡に起因した急激な温度上昇が生じ得る。   Specifically, when the conductive foreign matter F penetrates the single cells 110A and 110B in the positive and negative electrode stacking direction, a short-circuit current is generated between the two single cells 110A and 110B via the bus bar 140 and the conductive foreign matter F. An external short circuit in which E1 flows occurs. In this case, two short-circuit currents (about 700 A in total) of the short-circuit current E2 generated inside the second unit cell 110B and the above-described external short-circuit current E1 flow into the negative electrode 135 of the second unit cell 110B. Thus, a rapid temperature rise may occur in the second unit cell 110B. When the conductive foreign substance F penetrates two or more single cells, the rapid temperature caused by the external short circuit also in the second and subsequent single cells (for example, the third single cell 110C). An increase can occur.

本発明は、かかる点に鑑みてなされたものであり、その主な目的は、複数の単電池が接続された組電池に鋭利な導電性の異物が刺さった際に、複数の単電池の間で生じる外部短絡を抑制して、短絡電流による単電池の急激な温度上昇を好適に抑制することができる組電池を提供することを目的とする。   The present invention has been made in view of such a point, and the main object of the present invention is between a plurality of single cells when a sharp conductive foreign object is pierced into an assembled battery in which the plurality of single cells are connected. It is an object of the present invention to provide an assembled battery that can suppress an external short circuit caused by the above-described problem and can suitably suppress an abrupt temperature increase of a single cell due to a short circuit current.

上記目的を実現するべく、本発明によって以下の構成の組電池が提供される。   In order to achieve the above object, an assembled battery having the following configuration is provided by the present invention.

ここで開示される組電池は、正極および負極が積層した構造の電極体が角型の電池ケース内に収容されてなる電池を単電池とし、該単電池を複数備えた組電池であって、積層構造の電極体の正負極積層方向と同じ方向に複数の単電池が相互に隣接して配列されているとともに、該配列方向に配列された複数の単電池間の正極端子と負極端子とがそれぞれバスバーを介して電気的に接続されている。
そして、ここで開示される組電池では、複数の単電池のうち、外部と接続可能に開放された正極端子である正極出力端子を備えた単電池が、配列方向における両端以外の位置に配列され、配列方向における両端に配置された単電池の正極端子が、該両端の単電池に隣接した単電池の負極端子にバスバーを介して接続されているとともに、配列方向における一方の端部に配置された単電池の負極端子が、該一方の端部の単電池に隣接した単電池を除く、離隔した単電池の正極端子にバスバーを介して電気的に接続されている。
The assembled battery disclosed herein is an assembled battery including a plurality of unit cells, each of which includes a battery in which an electrode body having a structure in which a positive electrode and a negative electrode are stacked is accommodated in a rectangular battery case, A plurality of single cells are arranged adjacent to each other in the same direction as the positive and negative electrode lamination direction of the electrode body of the laminated structure, and a positive electrode terminal and a negative electrode terminal between the plurality of single cells arranged in the arrangement direction are Each is electrically connected via a bus bar.
In the assembled battery disclosed herein, among the plurality of single cells, the single cells including the positive electrode output terminal which is a positive electrode terminal that is open so as to be connectable to the outside are arranged at positions other than both ends in the arrangement direction. The positive terminals of the single cells arranged at both ends in the arrangement direction are connected to the negative terminals of the single cells adjacent to the single cells at both ends via a bus bar and arranged at one end in the arrangement direction. The negative electrode terminal of the unit cell is electrically connected to the positive electrode terminal of the separated unit cell via the bus bar, excluding the unit cell adjacent to the unit cell at the one end.

本発明者は、上記した課題を解決するために実験と検討を重ねた結果、複数の単電池を備えた組電池に釘のような鋭利な導電性の異物が刺さった場合に、かかる導電性の異物が刺さった方向によって温度上昇の程度が異なることを見出した。
具体的には、本発明者が実験を行ったところ、図5に示すような従来の組電池において、正極出力端子を有する単電池が配置されている方の端部(図5の左側)から配列方向に沿って導電性の異物が刺さると外部短絡による急激な温度上昇が発生し易くなり、負極出力端子を有する単電池が配置されている方の端部(図5の右側)から導電性の異物が刺さった場合には外部短絡による温度上昇が抑制されるという結果が得られた。
As a result of repeated experiments and studies to solve the above-described problems, the present inventor conducted such conductivity when a sharp conductive foreign object such as a nail is stuck in an assembled battery including a plurality of unit cells. It has been found that the degree of temperature rise differs depending on the direction in which the foreign object is stuck.
Specifically, when the present inventor conducted an experiment, in the conventional assembled battery as shown in FIG. 5, from the end (the left side of FIG. 5) where the unit cell having the positive electrode output terminal is arranged. When conductive foreign objects are pierced along the arrangement direction, a rapid temperature rise due to an external short circuit is likely to occur, and the conductive material is connected from the end (the right side in FIG. 5) where the unit cell having the negative output terminal is disposed. As a result, a temperature increase due to an external short circuit was suppressed when the foreign object was stuck.

本発明者は、かかる結果が得られた理由について検討を重ねた結果、図5の右側から導電性の異物が刺さった場合のように、バスバーによって接続された電極端子が正極端子、負極端子の順に並んでいる方向から導電性の異物が刺さった場合、バスバーを介して流れる外部短絡の短絡電流が小さくなることを見出した。
そして、かかる知見に基づいて、単電池の配列方向における両側の何れの方向から導電性の異物が刺さった場合でも、バスバーで接続された電極端子が正極端子、負極端子の順に並んでいる方向から導電性の異物が刺さるように、各々の単電池の電気的な接続を構築することができれば、外部短絡による急激な温度上昇を抑制することができると考え、各々の単電池の具体的な接続方法をさらに検討した結果、上記した構造の組電池を完成させるに至った。
As a result of repeatedly examining the reason why such a result was obtained, the inventor connected the electrode terminal connected by the bus bar to the positive terminal and the negative terminal as in the case where a conductive foreign object was stuck from the right side of FIG. It was found that the short-circuit current of the external short circuit flowing through the bus bar is reduced when the conductive foreign matter is stuck from the direction in which they are arranged in order.
And based on such knowledge, even if conductive foreign matter pierces from any direction on both sides in the arrangement direction of the unit cells, the electrode terminals connected by the bus bar are arranged in the order of the positive electrode terminal and the negative electrode terminal. If the electrical connection of each unit cell can be constructed so that a conductive foreign object is pierced, it is considered that a rapid temperature rise due to an external short circuit can be suppressed, and the specific connection of each unit cell As a result of further examination of the method, an assembled battery having the structure described above has been completed.

本発明の一実施形態に係る組電池を構成する単電池を模式的に示す斜視図である。It is a perspective view which shows typically the cell which comprises the assembled battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る組電池を構成する単電池の電極体を模式的に示す図である。It is a figure which shows typically the electrode body of the cell which comprises the assembled battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る組電池を模式的に示す平面図である。It is a top view which shows typically the assembled battery which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る組電池を模式的に示す平面図である。It is a top view which shows typically the assembled battery which concerns on other embodiment of this invention. 従来の組電池を模式的に示す平面図である。It is a top view which shows the conventional assembled battery typically. 従来の組電池に導電性の異物が刺さった状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state which the electroconductive foreign material stabbed into the conventional assembled battery.

以下、ここで開示される組電池の一例として、リチウムイオン二次電池を単電池とし、該リチウムイオン二次電池を複数備えた組電池を例に挙げて説明する。なお、ここで開示される組電池において、単電池として用いられる電池はリチウムイオン二次電池に限定されず、例えば、ニッケル水素電池などを用いることができる。   Hereinafter, as an example of the assembled battery disclosed herein, a lithium ion secondary battery is used as a single battery, and an assembled battery including a plurality of the lithium ion secondary batteries will be described as an example. Note that in the assembled battery disclosed herein, a battery used as a single battery is not limited to a lithium ion secondary battery, and for example, a nickel hydrogen battery can be used.

また、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。なお、各図における寸法関係(長さ、幅、厚み等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、電解質の構成および製法、リチウムイオン二次電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。   Moreover, in the following drawings, the same code | symbol is attached | subjected and demonstrated to the member and site | part which show | plays the same effect | action. In addition, the dimensional relationship (length, width, thickness, etc.) in each drawing does not reflect the actual dimensional relationship. In addition, matters other than the matters specifically mentioned in the present specification and matters necessary for the implementation of the present invention (for example, a configuration and manufacturing method of an electrolyte, a general technique related to construction of a lithium ion secondary battery, etc.) Therefore, it can be grasped as a design matter of a person skilled in the art based on the prior art in the field.

1.単電池の構成
先ず、本実施形態に係る組電池を構成する単電池を説明する。図1は本実施形態に係る組電池を構成する単電池を模式的に示す斜視図であり、図2は本実施形態に係る組電池を構成する単電池の電極体を模式的に示す図である。
本実施形態に係る組電池を構成する単電池10は、図1に示す角型の電池ケース50内に、図2に示す電極体30を収容することによって構成される。
1. First, a single battery constituting the assembled battery according to this embodiment will be described. FIG. 1 is a perspective view schematically showing a unit cell constituting the assembled battery according to this embodiment, and FIG. 2 is a diagram schematically showing an electrode body of the unit battery constituting the assembled battery according to this embodiment. is there.
The unit cell 10 constituting the assembled battery according to the present embodiment is configured by housing the electrode body 30 illustrated in FIG. 2 in the rectangular battery case 50 illustrated in FIG. 1.

(1)電池ケース
図1に示すように、電池ケース50は、上面が開放された扁平な角型のケース本体52と、当該上面の開口部を塞ぐ蓋体54とから構成されている。電池ケース50は、例えば、金属や樹脂などによって構成されていることが好ましい。また、電池ケース50の上面をなす蓋体54には、正極端子12と負極端子14とが設けられている。図示は省略するが、正極端子12は電池ケース50内の電極体の正極に接続され、負極端子14は負極に接続されている。
(1) Battery Case As shown in FIG. 1, the battery case 50 includes a flat rectangular case main body 52 having an open upper surface and a lid 54 that closes the opening of the upper surface. The battery case 50 is preferably made of, for example, metal or resin. Further, the positive electrode terminal 12 and the negative electrode terminal 14 are provided on the lid 54 that forms the upper surface of the battery case 50. Although not shown, the positive electrode terminal 12 is connected to the positive electrode of the electrode body in the battery case 50, and the negative electrode terminal 14 is connected to the negative electrode.

(2)電解液
上記した電池ケース50の内部には、電極体30(図2参照)とともに電解液が収容されている。電解液には、従来からリチウムイオン二次電池に用いられるものと同様のものを特に限定なく使用することができ、例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合溶媒(例えば体積比3:4:3)に六フッ化リン酸リチウム(LiPF)を約1mol/Lの濃度で含有させた非水電解液を使用することができる。
(2) Electrolytic Solution Inside the battery case 50 described above, an electrolytic solution is accommodated together with the electrode body 30 (see FIG. 2). As the electrolyte, the same electrolyte solution as that conventionally used for a lithium ion secondary battery can be used without particular limitation. For example, ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC). A non-aqueous electrolyte solution containing lithium hexafluorophosphate (LiPF 6 ) at a concentration of about 1 mol / L in a mixed solvent (for example, volume ratio 3: 4: 3) can be used.

(3)電極体
本実施形態においては、正極および負極が積層した構造の電極体が用いられる。図2に示すように、本実施形態における電極体30は、長尺シート状の正極31と負極35とをセパレータ38を介して積層させた後、当該積層体を捲回することによって構成された捲回電極体である。正極31は、アルミニウム箔等からなる正極集電体32の表面に正極活物質層33が付与されることによって構成されており、負極35は、銅箔等からなる負極集電体36の表面に、負極活物質を含む負極活物質層37を付与することによって構成されている。また、セパレータ38には、正極31と負極35を電気的に絶縁する機能、非水電解質を保持する機能などを備えた樹脂製の多孔性シート(フィルム)が用いられる。
かかる正極31、負極35、セパレータ38を構成する各材料については、従来の一般的なリチウムイオン二次電池の電極体に用いられるものと同様のものを制限なく使用可能であり、本発明を特徴づけるものではないため詳細な説明を省略する。
なお、電極体は、正極と負極とを積層させることによって構成されていればよく、上記した捲回電極体の他に、矩形のシート状の正極と負極とを交互に積層させた積層電極体を用いることもできる。
(3) Electrode body In this embodiment, an electrode body having a structure in which a positive electrode and a negative electrode are laminated is used. As shown in FIG. 2, the electrode body 30 in the present embodiment is configured by laminating a long sheet-like positive electrode 31 and a negative electrode 35 via a separator 38 and then winding the laminated body. It is a wound electrode body. The positive electrode 31 is configured by applying a positive electrode active material layer 33 to the surface of a positive electrode current collector 32 made of aluminum foil or the like, and the negative electrode 35 is formed on the surface of a negative electrode current collector 36 made of copper foil or the like. The negative electrode active material layer 37 containing the negative electrode active material is provided. For the separator 38, a resin porous sheet (film) having a function of electrically insulating the positive electrode 31 and the negative electrode 35, a function of holding a nonaqueous electrolyte, and the like is used.
About each material which comprises this positive electrode 31, the negative electrode 35, and the separator 38, the thing similar to what is used for the electrode body of the conventional general lithium ion secondary battery can be used without a restriction | limiting, and this invention is characterized. Since it is not attached, detailed description is omitted.
In addition, the electrode body should just be comprised by laminating | stacking a positive electrode and a negative electrode, and the laminated electrode body which laminated | stacked the rectangular sheet-like positive electrode and the negative electrode other than the winding electrode body mentioned above alternately Can also be used.

2.組電池の構成
図3は本実施形態に係る組電池を模式的に示す平面図である。本実施形態に係る組電池1は、上記した構成の単電池10を複数個(n個)備えており、各々の単電池10A〜10Nを隣接させて配列し、該配列された各々の単電池10A〜10Nの正極端子12と負極端子14とを電気的に接続することによって構築されている。以下、本実施形態に係る組電池の構成を具体的に説明する。
2. FIG. 3 is a plan view schematically showing the assembled battery according to the present embodiment. The assembled battery 1 according to the present embodiment includes a plurality (n) of the unit cells 10 having the above-described configuration, and the unit cells 10A to 10N are arranged adjacent to each other, and each unit cell that is arranged. It is constructed by electrically connecting the positive terminal 12 and the negative terminal 14 of 10A to 10N. Hereinafter, the configuration of the assembled battery according to the present embodiment will be specifically described.

図3に示すように、本実施形態に係る組電池1では、角型の単電池10A〜10Nが相互に隣接するように配列方向xに沿って配列されている。この単電池10A〜10Nの配列方向xは、上記した積層構造を有する電極体30の正負極積層方向(図2の紙面に対して垂直方向)と同じ方向である。
そして、当該配列方向xに配列された各々の単電池10A〜10Nは、バスバー40、42によって正極端子12と負極端子14とを相互に接続することによって電気的に直列に接続されている。なお、図示は省略するが、各々の単電池10A〜10Nは、拘束部材によって配列方向xに沿って拘束されている。
As shown in FIG. 3, in the assembled battery 1 according to the present embodiment, the square unit cells 10 </ b> A to 10 </ b> N are arranged along the arrangement direction x so as to be adjacent to each other. The arrangement direction x of the unit cells 10A to 10N is the same direction as the positive and negative electrode stacking direction (perpendicular to the paper surface of FIG. 2) of the electrode body 30 having the above-described stacked structure.
The unit cells 10A to 10N arranged in the arrangement direction x are electrically connected in series by connecting the positive electrode terminal 12 and the negative electrode terminal 14 to each other by the bus bars 40 and 42. In addition, although illustration is abbreviate | omitted, each cell 10A-10N is restrained along the sequence direction x by the restraint member.

なお、本実施形態に係る組電池1では、配列方向xの一方の端部に配置された単電池10Nの負極端子14が、外部と接続可能に開放された負極出力端子14aとなっている。本明細書においては、かかる負極出力端子14aを有する単電池10Nが配置されている方の端部を配列方向xの下流側とし、その反対方向の端部を配列方向xの上流側とする。すなわち、図3中の左側を配列方向xの上流側とし、右側を下流側とする。そして、配列方向xの上流側の端部に配置された単電池を1番目の単電池10Aと称し、下流側の端部に配置された単電池をn番目の単電池10Nと称する。   In the assembled battery 1 according to the present embodiment, the negative electrode terminal 14 of the unit cell 10N arranged at one end in the arrangement direction x is a negative output terminal 14a that is open so as to be connected to the outside. In the present specification, the end portion on which the unit cell 10N having the negative output terminal 14a is disposed is the downstream side in the arrangement direction x, and the opposite end portion is the upstream side in the arrangement direction x. That is, the left side in FIG. 3 is the upstream side in the arrangement direction x, and the right side is the downstream side. And the unit cell arrange | positioned at the edge part of the upstream of the arrangement direction x is called 1st cell unit 10A, and the unit cell arrange | positioned at the edge part of the downstream side is called nth unit cell 10N.

本実施形態に係る組電池1では、先ず、複数の単電池10A〜10Nのうち、外部と接続可能に開放された正極端子12である正極出力端子12aを備えた単電池10Cが、配列方向xにおける両端以外の位置に配列されている。具体的には、本実施形態においては、図5に示す従来の組電池とは異なり、配列方向xの端部に配置された1番目の単電池10Aには正極出力端子が設けられておらず、配列方向xの上流側から3番目に配置される単電池10Cに正極出力端子12aが設けられている。
このように、正極出力端子12aを備えた単電池10Cを、配列方向xにおける両端以外の位置に配列することによって、配列方向xの上流側の端部に配置される1番目の単電池10Aの正極端子12と、当該1番目の単電池10Aに隣接する2番目の単電池10Bの負極端子14とをバスバー40を介して接続することができる。これによって、本実施形態に係る組電池1の上流側においては、配列方向xの上流側から下流側に向かって正極端子12、負極端子14の順に並ぶようにバスバー40による電気的な接続を構築することができる。
In the assembled battery 1 according to the present embodiment, first, among the plurality of single cells 10A to 10N, the single cell 10C including the positive electrode output terminal 12a that is the positive electrode terminal 12 that is open so as to be connectable to the outside is arranged in the arrangement direction x. Are arranged at positions other than both ends. Specifically, in the present embodiment, unlike the conventional assembled battery shown in FIG. 5, the first unit cell 10A arranged at the end in the arrangement direction x is not provided with a positive electrode output terminal. The positive electrode output terminal 12a is provided in the unit cell 10C arranged third from the upstream side in the arrangement direction x.
As described above, by arranging the unit cells 10C including the positive electrode output terminals 12a at positions other than both ends in the arrangement direction x, the first unit cell 10A arranged at the end on the upstream side in the arrangement direction x. The positive terminal 12 and the negative terminal 14 of the second unit cell 10B adjacent to the first unit cell 10A can be connected via the bus bar 40. Thus, on the upstream side of the assembled battery 1 according to the present embodiment, the electrical connection by the bus bar 40 is constructed so that the positive electrode terminal 12 and the negative electrode terminal 14 are arranged in this order from the upstream side to the downstream side in the arrangement direction x. can do.

そして、本実施形態に係る組電池1では、配列方向xの最上流側において、負極端子14、正極端子12の順でバスバーによる接続が構築されることを避けるために、配列方向xの上流側の端部に配置された1番目の単電池10Aの負極端子14が、隣接して配置されている2番目の単電池10Bではなく、1番目の単電池10Aから離隔して配置された4番目の単電池10Dの正極端子12に、斜めに延びるバスバー42を介して電気的に接続されている。   And in the assembled battery 1 which concerns on this embodiment, in order to avoid that the connection by a bus bar is constructed | assembled in order of the negative electrode terminal 14 and the positive electrode terminal 12 in the uppermost stream side of the arrangement direction x, the upstream of the arrangement direction x The negative electrode terminal 14 of the first unit cell 10A disposed at the end of the first cell is not the second unit cell 10B disposed adjacently, but the fourth unit disposed away from the first unit cell 10A. Is electrically connected to the positive electrode terminal 12 of the unit cell 10D via a bus bar 42 extending obliquely.

一方、本実施形態に係る組電池1の下流側においては、配列方向xの下流側の端部に配置されたn番目の単電池10Nの正極端子12が、当該n番目の単電池10Nに隣接するn−1番目の単電池10Mの負極端子14にバスバー40を介して接続されている。
そして、本実施形態に係る組電池1の下流側では、上記したn番目の単電池10Nとn−1番目の単電池10Mとの接続と同様に、下流側から上流側に向かって正極端子、負極端子の順に電気的に接続されるように各々の単電池がバスバー40を介して接続されており、かかる電気的な接続が4番目の単電池10Dまで繰り返し行われている。
On the other hand, on the downstream side of the assembled battery 1 according to the present embodiment, the positive electrode terminal 12 of the nth unit cell 10N disposed at the downstream end in the arrangement direction x is adjacent to the nth unit cell 10N. To the negative terminal 14 of the (n-1) th cell 10M.
And on the downstream side of the assembled battery 1 according to the present embodiment, as in the connection between the nth unit cell 10N and the n−1th unit cell 10M, a positive terminal from the downstream side toward the upstream side, Each unit cell is connected via the bus bar 40 so as to be electrically connected in order of the negative electrode terminal, and such electrical connection is repeatedly performed up to the fourth unit cell 10D.

以上のように、本実施形態に係る組電池1では、斜めに延びるバスバー42を介した1番目の単電池10Aと4番目の単電池10Dとの接続を除いて、配列方向xにおける両端から中央に向かって各々の単電池10A〜10Nが、正極端子12、負極端子14の順で順次電気的に接続されている。   As described above, in the assembled battery 1 according to the present embodiment, the first cell 10A and the fourth cell 10D are connected to each other in the arrangement direction x from the center except for the connection between the first cell 10A and the fourth cell 10D via the diagonally extending bus bar 42. Each of the unit cells 10A to 10N is sequentially electrically connected in order of the positive electrode terminal 12 and the negative electrode terminal 14.

3.導電性の異物が刺さった場合
次に、上記した構造の組電池1に導電性の異物が刺さった場合について説明する。
かかる構造の組電池1によれば、配列方向xの上流側から導電性の異物が刺さった場合でも、下流側から導電性の異物が刺さった場合でも、バスバー40を介した外部短絡の発生を抑制することができるため、当該外部短絡による急激な温度上昇の発生を抑制することができる。以下、配列方向xの上流側から導電性の異物が刺さった場合と、下流側から導電性の異物が刺さった場合に分けて説明する。
3. Next, a case where conductive foreign matter is stuck in the assembled battery 1 having the above structure will be described.
According to the assembled battery 1 having such a structure, even when a conductive foreign object is stuck from the upstream side in the arrangement direction x, or when a conductive foreign object is stuck from the downstream side, the occurrence of an external short circuit via the bus bar 40 is prevented. Since it can suppress, generation | occurrence | production of the rapid temperature rise by the said external short circuit can be suppressed. Hereinafter, a case where a conductive foreign material is stuck from the upstream side in the arrangement direction x and a case where a conductive foreign matter is stuck from the downstream side will be described separately.

(1)配列方向の上流側から導電性の異物が刺さった場合
本実施形態に係る組電池1に配列方向xの上流側から導電性の異物が刺さって、当該導電性の異物が、1番目〜3番目の単電池10A〜10Cを貫通した場合について説明する。このとき、1番目〜3番目の単電池10A〜10Cは、何れも配列方向xの上流側から下流側に向かって正極端子12、負極端子14の順で電気的に接続されているため、バスバー40を介した大きな短絡電流が流れることがなく、急激な温度上昇が生じることを防止することができる。
(1) When conductive foreign matter is stuck from the upstream side in the arrangement direction The conductive foreign matter is stuck in the assembled battery 1 according to the present embodiment from the upstream side in the arrangement direction x. The case where the third cells 10A to 10C are penetrated will be described. At this time, the first to third unit cells 10A to 10C are all electrically connected in order of the positive terminal 12 and the negative terminal 14 from the upstream side to the downstream side in the arrangement direction x. A large short-circuit current through 40 does not flow, and a rapid temperature rise can be prevented.

なお、本実施形態に係る組電池1では、上記したように、1番目の単電池10Aと4番目の単電池10Dのみが、上流側から下流側に向かって負極端子14、正極端子12の順で接続される。しかし、1番目の単電池10Aと4番目の単電池10Dの間には、2個の単電池(2番目の単電池10B、3番目の単電池10C)が配置されているため、導電性の異物が1番目の単電池10Aを貫通してから4番目の単電池10Dに到達するまでに若干の時間を要する。この4番目の単電池10Dに導電性の異物が到達するまでの間に、1番目の単電池10Aで内部短絡が生じて、1番目の単電池10Aの正負極が破損するため、バスバー42を介して流れる外部短絡の短絡電流が1番目の単電池10Aにおいて大きな抵抗を受ける。このように、本実施形態においては、1番目の単電池10Aと4番目の単電池10Dとの接続部分においても、バスバー42を介して大きな外部短絡の短絡電流が流れることを抑制することができる。   In the assembled battery 1 according to this embodiment, as described above, only the first unit cell 10A and the fourth unit cell 10D are in the order of the negative electrode terminal 14 and the positive electrode terminal 12 from the upstream side toward the downstream side. Connected with. However, since two unit cells (second unit cell 10B and third unit cell 10C) are arranged between the first unit cell 10A and the fourth unit cell 10D, the conductive unit It takes some time for the foreign object to reach the fourth unit cell 10D after passing through the first unit cell 10A. Until the conductive foreign matter reaches the fourth unit cell 10D, an internal short circuit occurs in the first unit cell 10A, and the positive and negative electrodes of the first unit cell 10A are damaged. The short circuit current of the external short circuit flowing through the first cell 10A receives a large resistance. Thus, in this embodiment, it is possible to suppress a large external short-circuit current from flowing through the bus bar 42 even in the connection portion between the first unit cell 10A and the fourth unit cell 10D. .

(2)下流側から刺さった場合
次に、配列方向xの下流側から導電性の異物が刺さって、当該導電性の異物が、n番目の単電池Nとn−1番目の単電池10Mを貫通した場合について説明する。このとき、n番目の単電池Nとn−1番目の単電池10Mは、配列方向xの下流側から上流側に向かって正極端子12、負極端子14の順で接続されているため、上記した上流側から導電性の異物が刺さった場合と同様に、バスバー40を介した外部短絡による急激な温度上昇を抑制することができる。
(2) When stuck from the downstream side Next, a conductive foreign matter is stuck from the downstream side in the arrangement direction x, and the conductive foreign matter causes the nth unit cell N and the (n−1) th unit cell 10M. The case where it penetrates will be described. At this time, the n-th unit cell N and the (n-1) -th unit cell 10M are connected in order of the positive electrode terminal 12 and the negative electrode terminal 14 from the downstream side in the arrangement direction x toward the upstream side. Similar to the case where a conductive foreign object is stuck from the upstream side, a rapid temperature increase due to an external short circuit via the bus bar 40 can be suppressed.

以上のように、本実施形態に係る組電池1では、配列方向xの上流側と下流側の何れの方向から導電性の異物が刺さった場合でも、バスバー40を介した大きな外部短絡の短絡電流が流れることを抑制することができるため、当該外部短絡による急激な温度上昇が生じることを抑制することができ、高いレベルの安全性を確保することができる。   As described above, in the assembled battery 1 according to the present embodiment, a large external short-circuit current via the bus bar 40 even when conductive foreign matter is pierced from either the upstream side or the downstream side in the arrangement direction x. Therefore, it is possible to suppress a rapid temperature rise due to the external short circuit, and to ensure a high level of safety.

また、本実施形態に係る組電池1においては、4番目の単電池10Dの下流側のように、配列方向xの中央部で電極端子の接続順序が負極端子14、正極端子12の順に切り替わる箇所が生じ、かかる箇所まで導電性の異物が到達した場合には、バスバーを介した外部短絡が生じ得る。しかし、一般的な導電性の異物である釘が組電池に刺さった場合に、当該釘が配列方向xの中央部まで到達する可能性は非常に低く、仮に電極端子の接続順序が切り替わる配列方向xの中央部に到達したとしても、本実施形態に係る組電池では、図5に示す従来の組電池のように2番目以降の全ての単電池に急激な温度上昇が生じるようなことがないため、従来よりも外部短絡による温度上昇が抑制される。   Further, in the assembled battery 1 according to the present embodiment, a location where the connection order of the electrode terminals is switched in the order of the negative electrode terminal 14 and the positive electrode terminal 12 at the central portion in the arrangement direction x, as in the downstream side of the fourth unit cell 10D. When a conductive foreign matter reaches such a location, an external short circuit through the bus bar can occur. However, when a nail, which is a general conductive foreign material, pierces an assembled battery, the possibility that the nail reaches the center of the arrangement direction x is very low, and the arrangement direction in which the connection order of the electrode terminals is temporarily switched. Even when the central portion of x is reached, in the assembled battery according to the present embodiment, a sudden temperature increase does not occur in all the second and subsequent cells as in the conventional assembled battery shown in FIG. Therefore, the temperature rise due to the external short circuit is suppressed more than in the past.

なお、本実施形態において、組電池を構成する単電池の個数は特に限定されないが、図3に示す構成の組電池1に単電池を追加する際には、当該追加する単電池を3番目の単電池10Cと4番目の単電池10Dの間に配置することが好ましい。これによって、斜めに延びるバスバー42によって接続された1番目の単電池10Aと4番目の単電池10Dとの間隔をさらに広くして、バスバー42を介した外部短絡をより適切に抑制することができる。
また、電極端子の接続順序が切り替わる箇所まで単電池に導電性の異物が到達することを適切に防止するためには、3番目の単電池10Cと4番目の単電池10Dの間、若しくは、4番目の単電池10Dとn−1番目の単電池10Mとの間に単電池を追加することが好ましい。
In the present embodiment, the number of unit cells constituting the assembled battery is not particularly limited. However, when adding a unit cell to the assembled battery 1 having the configuration shown in FIG. It is preferable to arrange between the unit cell 10C and the fourth unit cell 10D. As a result, the distance between the first unit cell 10A and the fourth unit cell 10D connected by the bus bar 42 extending obliquely can be further increased, and an external short circuit via the bus bar 42 can be more appropriately suppressed. .
Further, in order to appropriately prevent the conductive foreign matter from reaching the unit cell up to the place where the connection order of the electrode terminals is switched, it is between the third unit cell 10C and the fourth unit cell 10D, or 4 It is preferable to add a cell between the 10th cell 10D and the (n-1) th cell 10M.

4.他の実施形態に係る組電池
また、ここで開示される組電池の他の実施形態として、図4に示す構造の組電池1Aが挙げられる。かかる構造の組電池1Aは、複数の単電池10が隣接して配列され、該隣接した単電池10の正極端子12と負極端子14との間がバスバー40を介して直接接続されてなる単電池配列ユニット20A、20Bを2つ備えている。この単電池配列ユニット20A、20Bのそれぞれの配列方向xの両端部には、正極出力端子12a、12bと、負極出力端子14a、14bが設けられている。
そして、この図4に示す組電池1では、正極出力端子12a、12b同士が隣接するように、各々の単電池配列ユニット20A、20Bを反転させて配置し、一方の単電池配列ユニット20Aの負極出力端子14aと他方の単電池配列ユニット20Bの正極出力端子12bとが、斜めに延びるバスバー42を介して電気的に直接接続されている。
4). Assembly Battery According to Other Embodiments Another embodiment of the assembly battery disclosed herein includes an assembly battery 1A having a structure shown in FIG. In the assembled battery 1A having such a structure, a plurality of single cells 10 are arranged adjacent to each other, and the positive cells 12 and the negative electrodes 14 of the adjacent single cells 10 are directly connected via a bus bar 40. Two arrangement units 20A and 20B are provided. Positive electrode output terminals 12a and 12b and negative electrode output terminals 14a and 14b are provided at both ends in the arrangement direction x of each of the unit cell arrangement units 20A and 20B.
In the assembled battery 1 shown in FIG. 4, the unit cell arrangement units 20A and 20B are inverted and arranged so that the positive electrode output terminals 12a and 12b are adjacent to each other, and the negative electrode of one unit cell arrangement unit 20A The output terminal 14a and the positive electrode output terminal 12b of the other unit cell array unit 20B are electrically connected directly via an obliquely extending bus bar 42.

このように2つの単電池配列ユニット20A、20Bを接続することによって、上記した実施形態と同様に、正極出力端子12aが配列方向xにおける両端以外の位置に配列され、配列方向xにおける両端に配置された単電池10の正極端子12が、該両端の単電池10に隣接した単電池10の負極端子14にバスバー40を介して接続されているとともに、配列方向xにおける一方の端部に配置された単電池10の負極端子14(単電池配列ユニット20Aの負極出力端子14a)が、離隔した単電池10の正極端子12(単電池配列ユニット20Bの正極出力端子12b)にバスバー42を介して電気的に接続されている組電池1Aを構築することができる。
これによって、配列方向xの何れの方向から導電性の異物が刺さった場合でも、バスバー40を介した大きな短絡電流が流れることを抑制することができる。
By connecting the two unit cell arrangement units 20A and 20B in this way, the positive electrode output terminals 12a are arranged at positions other than both ends in the arrangement direction x and arranged at both ends in the arrangement direction x, as in the above-described embodiment. The positive electrode terminal 12 of the unit cell 10 is connected to the negative electrode terminal 14 of the unit cell 10 adjacent to the unit cell 10 at both ends via the bus bar 40 and is disposed at one end in the arrangement direction x. The negative electrode terminal 14 of the unit cell 10 (the negative electrode output terminal 14a of the unit cell array unit 20A) is electrically connected to the separated positive electrode terminal 12 (the positive electrode output terminal 12b of the unit cell array unit 20B) via the bus bar 42. The assembled battery 1 </ b> A can be constructed.
Thereby, even when a conductive foreign object is stuck from any direction of the arrangement direction x, it is possible to suppress a large short circuit current from flowing through the bus bar 40.

なお、図4においては、1つの単電池配列ユニット20A、20Bが5個の単電池10を備えているが、かかる単電池配列ユニットを構成する単電池の数は特に限定されない。例えば、一般的な車載用電源として用いられる組電池は、20個〜40個(例えば30個)の単電池から構成されており、かかる組電池を構築する際には、各々の単電池配列ユニットを10個〜20個(例えば15個)の単電池で構成することが好ましい。このような多数の単電池で単電池配列ユニットを構築した場合、電極端子の接続順序が負極端子、正極端子の順に切り替わる組電池の中央部に導電性の異物が到達することを防止することができる。   In FIG. 4, each single cell array unit 20A, 20B includes five single cells 10. However, the number of single cells constituting the single cell array unit is not particularly limited. For example, an assembled battery used as a general on-vehicle power source is composed of 20 to 40 (for example, 30) unit cells, and when constructing such an assembled battery, each unit cell array unit Is preferably composed of 10 to 20 (for example, 15) single cells. When a single cell arrangement unit is constructed with such a large number of single cells, it is possible to prevent conductive foreign matter from reaching the central part of the assembled battery where the connection order of the electrode terminals is switched in the order of the negative electrode terminal and the positive electrode terminal. it can.

[試験例]
以下、本発明に関する試験例を説明するが、以下の試験例は本発明を限定することを意図したものではない。
[Test example]
Hereinafter, test examples relating to the present invention will be described, but the following test examples are not intended to limit the present invention.

1.試験例の組電池の作製
(1)試験例1、2
正極活物質(LiNi1/3Co1/3Mn1/3)と、導電材(アセチレンブラック)と、バインダ(PVDF)とが、質量比で94:3:3の割合で混合された正極活物質層が、厚さ12μmの正極集電体(アルミニウム箔)の両面に形成された矩形状の正極を作製した。一方、負極活物質(黒鉛)と、増粘剤(CMC)と、バインダ(SBR)とが、質量比で98:1:1の割合で混合された負極活物質層が、厚さ10μmの負極集電体(銅箔)の両面に形成された矩形状の負極を作製した。
次に、上記した正極と負極とセパレータとを備えた捲回電極体を作製し、当該捲回電極体を電解液とともに図1に示すような角型の電池ケースに収容して、容量が35Ahの単電池を作製した。そして、上述の手順で作製した単電池を5個用意し、当該5個の単電池を図3に示す実施形態と同様の手順でバスバーを介して接続することによって試験例1、2の組電池を構築した。
1. Production of battery pack of test example (1) Test examples 1 and 2
A positive electrode active material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), a conductive material (acetylene black), and a binder (PVDF) were mixed at a mass ratio of 94: 3: 3. A rectangular positive electrode was produced in which the positive electrode active material layer was formed on both surfaces of a positive electrode current collector (aluminum foil) having a thickness of 12 μm. On the other hand, a negative electrode active material layer in which a negative electrode active material (graphite), a thickener (CMC), and a binder (SBR) are mixed at a mass ratio of 98: 1: 1 is a negative electrode having a thickness of 10 μm. A rectangular negative electrode formed on both surfaces of the current collector (copper foil) was produced.
Next, a wound electrode body including the positive electrode, the negative electrode, and the separator described above is manufactured, and the wound electrode body is housed in a rectangular battery case as shown in FIG. A single cell was prepared. Then, five unit cells prepared in the above-described procedure are prepared, and the five unit cells are connected through the bus bar in the same procedure as in the embodiment shown in FIG. Built.

(2)試験例3、4
上記した試験例1、2と同じ手順で5個の単電池を作製した後、図5に示すようにバスバーを介して5個の単電池を接続することによって試験例3、4の組電池を構築した。
(2) Test examples 3, 4
After producing five unit cells in the same procedure as in Test Examples 1 and 2, the assembled cells of Test Examples 3 and 4 were connected by connecting the five unit cells via a bus bar as shown in FIG. It was constructed.

2.評価試験
試験例1〜試験例4の組電池に対して以下の釘刺し試験を行った。
先ず、25℃の温度環境下において、上記した各々の試験例の組電池をSOC100%の充電状態に調整し、電池ケースの外表面に2枚の熱電対を貼り付け、単電池の配列方向xに沿ってタングステン製の釘を突き刺した。なお、かかる釘の直径は6mm、先端の角度は60°であり、角型の電池ケースの幅広面の中央付近に25mm/secの速度で直角に突き刺した。なお、試験例1、3では配列方向の上流側から釘を突き刺して1番目の単電池と2番目の単電池とを貫通させ、試験例2、4では下流側から釘を突き刺して5番目の単電池と4番目の単電池とを貫通させた。
そして、釘を突き刺している間に、上記した熱電対によって組電池を構成する各々の単電池の温度を測定した。測定した温度のうち、最も高い温度を単電池の最高温度として表1に示す。
2. Evaluation Test The following nail penetration test was performed on the assembled batteries of Test Examples 1 to 4.
First, in a temperature environment of 25 ° C., the assembled battery of each of the above-described test examples is adjusted to a SOC 100% charge state, two thermocouples are attached to the outer surface of the battery case, and the cell arrangement direction x A tungsten nail was stabbed along. The nail had a diameter of 6 mm and a tip angle of 60 °, and was pierced perpendicularly at a speed of 25 mm / sec near the center of the wide surface of the rectangular battery case. In Test Examples 1 and 3, a nail is pierced from the upstream side in the arrangement direction to penetrate the first unit cell and the second unit cell. In Test Examples 2 and 4, a nail is pierced from the downstream side to the fifth cell. The unit cell and the fourth unit cell were passed through.
And while the nail was pierced, the temperature of each single cell which comprises an assembled battery was measured with the above-mentioned thermocouple. Of the measured temperatures, the highest temperature is shown in Table 1 as the maximum temperature of the cell.

Figure 2018088356
Figure 2018088356

3.評価結果
表1に示す結果より、配列方向xの下流側から上流側に釘が刺さった試験例2と試験例4では、何れの試験例においても、単電池の最高温度が450℃程度となっており、単一の二次電池に釘が刺さった場合に生じる温度上昇と同程度であった。このことから、図3に示す組電池と図5に示す組電池の何れにおいても、配列方向の下流側から導電性の異物が刺さった場合には、大きな外部短絡が発生せず、急激な温度上昇が抑制されていることが確認できた。
3. Evaluation Results From the results shown in Table 1, in Test Example 2 and Test Example 4 where the nail was pierced from the downstream side to the upstream side in the arrangement direction x, the maximum temperature of the unit cell was about 450 ° C. in both test examples. The temperature rise was similar to that caused when a nail was stuck in a single secondary battery. Therefore, in both the assembled battery shown in FIG. 3 and the assembled battery shown in FIG. 5, when a conductive foreign object is stuck from the downstream side in the arrangement direction, a large external short circuit does not occur, and a rapid temperature It was confirmed that the increase was suppressed.

一方、配列方向xの上流側から下流側に釘を刺した試験例1と試験例3とを比較すると、試験例1では最高温度が440℃となり、下流側から釘を刺した試験例2や試験例4と同程度であったのに対し、試験例3では630℃まで急激に温度が上昇した。このことから、試験例3のように負極端子、正極端子の順で電極端子が接続されている方向から釘のような導電性の異物が刺さった場合には、外部短絡による急激な温度上昇が発生する虞があることが分かった。そして、バスバーによる電気的な接続が、図3に示すように構築された組電池では、配列方向の上流側と下流側の何れの方向から釘が刺さっても、外部短絡による急激な温度上昇を防止できることが確認できた。   On the other hand, when the test example 1 in which the nail was stabbed from the upstream side to the downstream side in the arrangement direction x was compared with the test example 3, the maximum temperature was 440 ° C. in the test example 1, and the test example 2 in which the nail was stabbed from the downstream side In contrast to Test Example 4, the temperature increased rapidly to 630 ° C. in Test Example 3. From this, when a conductive foreign object such as a nail is pierced from the direction in which the electrode terminal is connected in the order of the negative electrode terminal and the positive electrode terminal as in Test Example 3, the temperature rises rapidly due to an external short circuit. It was found that there is a risk of occurrence. And in the assembled battery in which the electrical connection by the bus bar is constructed as shown in FIG. 3, even if the nail is pierced from either the upstream side or the downstream side in the arrangement direction, the temperature rises rapidly due to the external short circuit. It was confirmed that it could be prevented.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

1、1A、100 組電池
10、10A〜10N、110A〜110E 単電池
12、112 正極端子
12a、12b、112a 正極出力端子
14、114 負極端子
14a、14b、114a 負極出力端子
20A、20B 単電池配列ユニット
30 電極体
31、132 正極
32 正極集電体
33 正極活物質層
35、135 負極
36 負極集電体
37 負極活物質層
38 セパレータ
40、42、140 バスバー
50 電池ケース
52 ケース本体
54 蓋体
E1 外部短絡の短絡電流
E2 内部短絡の短絡電流
x 配列方向
1, 1A, 100 assembled battery 10, 10A-10N, 110A-110E single battery 12, 112 positive terminal 12a, 12b, 112a positive output terminal 14, 114 negative terminal 14a, 14b, 114a negative output terminal 20A, 20B single battery array Unit 30 Electrode body 31, 132 Positive electrode 32 Positive electrode current collector 33 Positive electrode active material layer 35, 135 Negative electrode 36 Negative electrode current collector 37 Negative electrode active material layer 38 Separator 40, 42, 140 Bus bar 50 Battery case 52 Case body 54 Lid body E1 External short-circuit current E2 Internal short-circuit current x arrangement direction

Claims (1)

正極および負極が積層した構造の電極体が角型の電池ケース内に収容されてなる電池を単電池とし、該単電池を複数備えた組電池であって、
前記積層構造の電極体の前記正負極積層方向と同じ方向に前記複数の単電池が相互に隣接して配列されているとともに、該配列方向に配列された複数の単電池間の正極端子と負極端子とがそれぞれバスバーを介して電気的に接続されており、
ここで、前記複数の単電池のうち、外部と接続可能に開放された正極端子である正極出力端子を備えた単電池が、前記配列方向における両端以外の位置に配列され、
前記配列方向における両端に配置された単電池の正極端子が、該両端の単電池に隣接した単電池の負極端子に前記バスバーを介して接続されているとともに、
前記配列方向における一方の端部に配置された前記単電池の負極端子が、該一方の端部の単電池に隣接した単電池を除く、離隔した単電池の正極端子に前記バスバーを介して電気的に接続されている、組電池。
A battery in which an electrode body having a structure in which a positive electrode and a negative electrode are stacked is housed in a rectangular battery case is a single battery, and an assembled battery including a plurality of the single batteries,
The plurality of single cells are arranged adjacent to each other in the same direction as the positive and negative electrode lamination direction of the electrode body of the laminated structure, and a positive electrode terminal and a negative electrode between the plurality of single cells arranged in the arrangement direction The terminals are electrically connected to each other via the bus bar,
Here, out of the plurality of unit cells, the unit cell provided with a positive electrode output terminal that is a positive electrode terminal that is open to be connectable to the outside, is arranged at a position other than both ends in the arrangement direction,
The positive terminals of the single cells arranged at both ends in the arrangement direction are connected to the negative terminals of the single cells adjacent to the single cells at both ends via the bus bar,
The negative terminal of the unit cell arranged at one end in the arrangement direction is electrically connected to the positive terminal of the separated unit cell via the bus bar, excluding the unit cell adjacent to the unit cell at the one end. Assembled battery.
JP2016231127A 2016-11-29 2016-11-29 Battery pack Pending JP2018088356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016231127A JP2018088356A (en) 2016-11-29 2016-11-29 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016231127A JP2018088356A (en) 2016-11-29 2016-11-29 Battery pack

Publications (1)

Publication Number Publication Date
JP2018088356A true JP2018088356A (en) 2018-06-07

Family

ID=62494458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016231127A Pending JP2018088356A (en) 2016-11-29 2016-11-29 Battery pack

Country Status (1)

Country Link
JP (1) JP2018088356A (en)

Similar Documents

Publication Publication Date Title
JP6288057B2 (en) Stacked all-solid battery
US11121439B2 (en) Secondary battery
JP2006066083A (en) Battery pack
JP6635309B2 (en) Battery pack
US11189889B2 (en) Rechargeable battery
US10424768B2 (en) Battery pack
JP4887568B2 (en) Secondary battery
JP7040121B2 (en) Battery
JP6629710B2 (en) Battery pack
JP6694603B2 (en) Non-aqueous electrolyte secondary battery
JP2018088356A (en) Battery pack
US11450906B2 (en) Secondary cylindrical battery having piezoelectric element and thermoelectric element
JP2018073576A (en) Battery pack
CN111293344B (en) Sealed battery and assembled battery
JP2020077493A (en) Battery pack
CN107834111B (en) Battery pack
KR101666433B1 (en) Secondary battery and manufacturing method thereof
JP2019197655A (en) Stack cell
KR101763626B1 (en) Battery Cell Comprising Conductive Member Having Structure for Improved Safety
JP2019140079A (en) Stacked battery
WO2022168835A1 (en) Electrochemical cell
JP2017063005A (en) Method for manufacturing assembled battery