JP2018081009A - Iodine analysis of arsenic-containing solutions - Google Patents
Iodine analysis of arsenic-containing solutions Download PDFInfo
- Publication number
- JP2018081009A JP2018081009A JP2016223567A JP2016223567A JP2018081009A JP 2018081009 A JP2018081009 A JP 2018081009A JP 2016223567 A JP2016223567 A JP 2016223567A JP 2016223567 A JP2016223567 A JP 2016223567A JP 2018081009 A JP2018081009 A JP 2018081009A
- Authority
- JP
- Japan
- Prior art keywords
- arsenic
- solution
- iodine
- elution
- activated carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052785 arsenic Inorganic materials 0.000 title claims abstract description 83
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 title claims abstract description 82
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 229910052740 iodine Inorganic materials 0.000 title claims abstract description 72
- 239000011630 iodine Substances 0.000 title claims abstract description 72
- 238000004458 analytical method Methods 0.000 title claims abstract description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 78
- 238000010828 elution Methods 0.000 claims abstract description 35
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 claims abstract description 21
- 229940006461 iodide ion Drugs 0.000 claims abstract description 21
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910021607 Silver chloride Inorganic materials 0.000 claims abstract description 8
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims abstract description 8
- 229910052709 silver Inorganic materials 0.000 claims abstract description 7
- 239000004332 silver Substances 0.000 claims abstract description 7
- 239000003480 eluent Substances 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- 238000002386 leaching Methods 0.000 claims description 8
- 238000002845 discoloration Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 91
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- -1 iron (III) ions Chemical class 0.000 description 9
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 8
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 229910001431 copper ion Inorganic materials 0.000 description 3
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 3
- 238000004255 ion exchange chromatography Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 2
- 230000033116 oxidation-reduction process Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N iron (II) ion Substances [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
【課題】ヨウ素と砒素を含む砒素含有溶液中のヨウ素濃度を簡便に測定することが可能な砒素含有溶液中のヨウ素分析法が提供する。【解決手段】ヨウ素と砒素を含む砒素含有溶液をpH4以下で活性炭と接触させ、活性炭にヨウ素を吸着させ、処理後液中に砒素を残すことにより、砒素含有溶液中の砒素とヨウ素とを分離することと、活性炭に吸着したヨウ素を、溶離液を用いて溶離させることと、溶離後液の酸化還元電位(銀/塩化銀電極)が300mV以上になるまで過酸化水素水を添加し、過酸化水素水添加後の溶離後液のヨウ素濃度をヨウ化物イオン電極により測定することを含む砒素含有溶液のヨウ素分析法である。【選択図】なしProvided is an iodine analysis method in an arsenic-containing solution capable of easily measuring an iodine concentration in an arsenic-containing solution containing iodine and arsenic. An arsenic-containing solution containing iodine and arsenic is brought into contact with activated carbon at a pH of 4 or less, iodine is adsorbed on the activated carbon, and arsenic is left in the solution after treatment to separate arsenic and iodine in the arsenic-containing solution. Elution of iodine adsorbed on the activated carbon using an eluent, and addition of hydrogen peroxide until the redox potential (silver / silver chloride electrode) of the solution after elution becomes 300 mV or higher. This is an iodine analysis method for an arsenic-containing solution, comprising measuring the iodine concentration of the solution after elution after addition of hydrogen oxide water with an iodide ion electrode. [Selection figure] None
Description
本発明は、砒素含有溶液のヨウ素分析法に関する。 The present invention relates to a method for analyzing iodine in an arsenic-containing solution.
ヨウ素を含む溶液中のヨウ素濃度の簡便な測定方法として、ヨウ化物イオン電極を用いた定量方法が知られている。例えば、特開2011−89970号公報には、鉄(III)イオンを含む酸性溶液に対し、ヨウ素を還元した後、ヨウ化物イオン電極を用いて、溶液中のヨウ化物イオン濃度を測定する方法が記載されている。 As a simple method for measuring the iodine concentration in a solution containing iodine, a quantitative method using an iodide ion electrode is known. For example, Japanese Patent Application Laid-Open No. 2011-89970 discloses a method of measuring iodide ion concentration in a solution using an iodide ion electrode after reducing iodine with respect to an acidic solution containing iron (III) ions. Have been described.
また、ヨウ素を含む溶液中のヨウ素濃度を測定する方法として、ヨウ素を活性炭に吸着させて溶離させる方法が知られている。例えば、特開2013−1634号公報には、ヨウ素を吸着している活性炭に溶離液を通液し、pHと酸化還元電位を観察することにより溶離終了時点を見極める方法が記載されている。 As a method for measuring the iodine concentration in a solution containing iodine, a method is known in which iodine is adsorbed onto activated carbon and eluted. For example, JP2013-1634A describes a method of determining the end point of elution by passing an eluent through activated carbon adsorbing iodine and observing the pH and oxidation-reduction potential.
しかしながら、特許文献1及び2のいずれの方法も、ヨウ素と砒素とを含有する砒素含有溶液のヨウ素分析については検討されていない。例えば、特許文献1に記載された方法では、ヨウ化物イオン電極を用いたヨウ素分析において、溶液中のI2をI-に還元するために、還元剤として亜鉛粉末を添加しているが、ヨウ素と砒素を含有する砒素含有溶液を処理する場合には、溶液中の砒素と還元剤としての亜鉛粉末とが酸化還元反応を起こし、有害ガスであるアルシンが発生する危険性がある。このため、砒素含有溶液に対しては、特許文献1に記載された方法を採用することができない場合がある。特許文献2に記載された発明も、砒素含有溶液への適用については検討がなされていない。 However, neither of the methods of Patent Documents 1 and 2 has been studied for iodine analysis of an arsenic-containing solution containing iodine and arsenic. For example, in the method described in Patent Document 1, zinc powder is added as a reducing agent in order to reduce I 2 in a solution to I − in iodine analysis using an iodide ion electrode. When an arsenic-containing solution containing arsenic and arsenic is treated, there is a risk that arsenic in the solution and zinc powder as a reducing agent cause an oxidation-reduction reaction to generate a harmful gas, arsine. For this reason, the method described in Patent Document 1 may not be employed for an arsenic-containing solution. The invention described in Patent Document 2 is also not studied for application to an arsenic-containing solution.
一方、銅鉱石の生産工程においては、例えば砒素を含む硫化銅鉱などの浸出処理の際にはヨウ素と砒素を含有する溶液(以下「砒素含有溶液」という)が得られ、この砒素含有溶液中のヨウ素濃度を迅速且つ簡便に測定する方法が求められている。 On the other hand, in the production process of copper ore, a solution containing iodine and arsenic (hereinafter referred to as “arsenic-containing solution”) is obtained during the leaching process of copper sulfide ore containing arsenic, for example. There is a need for a method for quickly and easily measuring iodine concentration.
上記課題を鑑み、本発明は、ヨウ素と砒素を含む砒素含有溶液中のヨウ素濃度を簡便に測定することが可能な砒素含有溶液中のヨウ素分析法を提供する。 In view of the above problems, the present invention provides an iodine analysis method in an arsenic-containing solution capable of easily measuring the iodine concentration in an arsenic-containing solution containing iodine and arsenic.
本発明者は上記課題を解決するために鋭意検討した結果、砒素含有溶液中の砒素とヨウ素とを酸性条件下で活性炭と接触させることにより、砒素含有溶液中のヨウ素と砒素を分離した後、活性炭に吸着した砒素含有溶液中のヨウ素を溶離し、溶離後液中のヨウ化物イオン濃度を、ヨウ化物イオン電極を用いて測定することが有効であるとの知見を得た。 As a result of intensive studies to solve the above-mentioned problems, the present inventors separated iodine and arsenic in the arsenic-containing solution by bringing the arsenic and iodine in the arsenic-containing solution into contact with activated carbon under acidic conditions. It was found that it is effective to elute iodine in the arsenic-containing solution adsorbed on the activated carbon and measure the iodide ion concentration in the solution after elution using an iodide ion electrode.
以上の知見を基礎として完成した本発明は一側面において、ヨウ素と砒素を含む砒素含有溶液をpH4以下で活性炭と接触させ、活性炭にヨウ素を吸着させ、処理後液中に砒素を残すことにより、砒素含有溶液中の砒素とヨウ素とを分離することと、活性炭に吸着したヨウ素を、溶離液を用いて溶離させることと、溶離後液の酸化還元電位(銀/塩化銀電極)が300mV以上になるまで過酸化水素水を添加し、過酸化水素水添加後の溶離後液のヨウ素濃度をヨウ化物イオン電極により測定することを含む砒素含有溶液のヨウ素分析法が提供される。 The present invention completed on the basis of the above knowledge, in one aspect, by contacting an arsenic-containing solution containing iodine and arsenic with activated carbon at pH 4 or less, adsorbing iodine to the activated carbon, leaving arsenic in the solution after treatment, Separation of arsenic and iodine in the arsenic-containing solution, elution of iodine adsorbed on the activated carbon using an eluent, and the redox potential (silver / silver chloride electrode) of the solution after elution to 300 mV or more There is provided an iodine analysis method for an arsenic-containing solution, which comprises adding hydrogen peroxide solution until the solution is obtained, and measuring the iodine concentration of the solution after elution after addition of the hydrogen peroxide solution with an iodide ion electrode.
本発明に係る砒素含有溶液のヨウ素分析法は一実施形態において、溶離後液の酸化還元電位(銀/塩化銀電極)を300〜400mVに調整することを含む。 In one embodiment, the iodine analysis method for an arsenic-containing solution according to the present invention includes adjusting the redox potential (silver / silver chloride electrode) of the post-elution solution to 300 to 400 mV.
本発明に係る砒素含有溶液のヨウ素分析法は別の一実施形態において、溶離後液に黄色い変色が生じるまで過酸化水素水を添加することを含む。 In another embodiment, the method for iodine analysis of an arsenic-containing solution according to the present invention includes adding hydrogen peroxide solution until a yellow discoloration occurs in the solution after elution.
本発明に係る砒素含有溶液のヨウ素分析法は更に別の一実施形態において、砒素含有溶液が、銅鉱石の浸出後液であることを含む。 In yet another embodiment, the method for iodine analysis of an arsenic-containing solution according to the present invention includes that the arsenic-containing solution is a solution after leaching of copper ore.
本発明によれば、ヨウ素と砒素を含む砒素含有溶液中のヨウ素濃度を簡便に測定することが可能な砒素含有溶液中のヨウ素分析法が提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the iodine analysis method in the arsenic containing solution which can measure the iodine concentration in the arsenic containing solution containing an iodine and arsenic simply can be provided.
本発明の実施の形態に係る砒素含有溶液中のヨウ素分析法について以下に説明する。
処理対象とする砒素含有溶液としては、ヨウ素と砒素を少なくとも含む溶液が利用可能である。例えば、硫化銅鉱などの砒素を含有する銅鉱石の浸出後液(PLS:Pregnant Leach Solution)を、砒素含有溶液として好適に利用することができる。この浸出後液には、ヨウ素及び砒素の他に、銅鉱石から浸出される銅イオンやその他金属イオン、銅鉱石の浸出液として用いられる硫酸、鉄(III)イオン等の不純物が更に含まれている。以下に限定されるものではないが、砒素含有溶液としては、例えば、3g/L以下の銅イオン、2.5g/L以下の鉄(III)イオン、4〜6g/Lの鉄(II)イオン、30mg/L以下の砒素、4g/L以下の硫酸を主な不純物として含む溶液が利用可能である。
An iodine analysis method in an arsenic-containing solution according to an embodiment of the present invention will be described below.
As the arsenic-containing solution to be treated, a solution containing at least iodine and arsenic can be used. For example, a leaching solution (PLS: Pregnant Leach Solution) of copper ore containing arsenic such as copper sulfide ore can be suitably used as the arsenic-containing solution. In addition to iodine and arsenic, the post-leaching solution further contains impurities such as copper ions and other metal ions leached from copper ore, sulfuric acid used as a copper ore leaching solution, and iron (III) ions. . Although not limited to the following, examples of the arsenic-containing solution include 3 g / L or less of copper ions, 2.5 g / L or less of iron (III) ions, and 4 to 6 g / L of iron (II) ions. A solution containing arsenic of 30 mg / L or less and 4 g / L or less of sulfuric acid as main impurities can be used.
本処理方法では、まず、砒素含有溶液を酸性条件下で活性炭と接触させる。砒素(III)イオンは、pH8以下では活性炭に吸着されず、砒素(V)イオンはpH4以下では活性炭に吸着されない性質を有する。そのため、砒素含有溶液を、pH4以下で活性炭と接触させることにより、砒素含有溶液中のヨウ素を活性炭に選択的に吸着させ、砒素を処理後液中に残すことができる。この操作により、砒素含有溶液から砒素とヨウ素とを分離することができる。 In this treatment method, first, an arsenic-containing solution is brought into contact with activated carbon under acidic conditions. Arsenic (III) ions are not adsorbed on activated carbon at pH 8 or lower, and arsenic (V) ions are not adsorbed on activated carbon at pH 4 or lower. Therefore, by bringing the arsenic-containing solution into contact with activated carbon at a pH of 4 or less, iodine in the arsenic-containing solution can be selectively adsorbed on the activated carbon and left in the solution after the treatment. By this operation, arsenic and iodine can be separated from the arsenic-containing solution.
砒素含有溶液の活性炭への接触方法は特に限定されない。例えば、活性炭をカラムに充填し、カラム上部から砒素含有溶液を供給して活性炭に通液させるようにしてもよい。 The method for contacting the arsenic-containing solution with activated carbon is not particularly limited. For example, activated carbon may be packed in a column, and an arsenic-containing solution may be supplied from the upper part of the column and passed through the activated carbon.
次に、活性炭に吸着したヨウ素を、溶離液を用いて溶離させる。溶離液としては、亜硫酸水溶液などが用いられる。亜硫酸水溶液を通液した後は、硫酸を用いて活性炭を洗浄する。溶離後液は酸性であり、ヨウ化物イオンの他に、二酸化硫黄、亜硫酸などの未反応還元剤と硫酸イオンを含む。 Next, iodine adsorbed on the activated carbon is eluted using an eluent. As an eluent, a sulfurous acid aqueous solution or the like is used. After passing the aqueous sulfurous acid solution, the activated carbon is washed with sulfuric acid. The solution after elution is acidic and contains unreacted reducing agents such as sulfur dioxide and sulfurous acid and sulfate ions in addition to iodide ions.
次に、溶離後液に対して過酸化水素水を添加し、溶離後液中に含まれる二酸化硫黄、亜硫酸などの未反応還元剤を酸化させる。例えば、溶離後液の酸化還元電位(銀/塩化銀電極)が300mV以上になるまで過酸化水素水を添加し、溶離後液中の還元性物質(S-2イオン)を酸化により除去することで、後述するヨウ化物イオン電極による分析を安定的に行うことができる。一方、過酸化水素水を過剰に添加すると、溶離後液中のヨウ素が揮散しやすいI2となり、ヨウ素濃度を正確に測定することができない場合がある。溶離後液の酸化還元電位は、300〜400mV程度、より好ましくは330〜370mV、更には約350mVに調整することで、ヨウ素濃度の分析精度を向上させることができる。 Next, a hydrogen peroxide solution is added to the solution after elution to oxidize unreacted reducing agents such as sulfur dioxide and sulfurous acid contained in the solution after elution. For example, hydrogen peroxide solution is added until the redox potential (silver / silver chloride electrode) of the liquid after elution becomes 300 mV or more, and the reducing substance (S -2 ion) in the liquid after elution is removed by oxidation. Thus, analysis using an iodide ion electrode described later can be performed stably. On the other hand, when hydrogen peroxide solution is added excessively, iodine in the solution after elution becomes I 2 that easily evaporates, and the iodine concentration may not be measured accurately. By adjusting the oxidation-reduction potential of the solution after elution to about 300 to 400 mV, more preferably 330 to 370 mV, and further about 350 mV, the analysis accuracy of iodine concentration can be improved.
過酸化水素水添加の終了点は、溶離後液の色の変化を観察することによっても判断できる。例えば、溶離後液中へ過酸化水素水を添加していくことにより、溶離後液の色が透明から薄い黄色へと変化していく。過酸化水素水を過剰に添加すると、溶離後液の色が濃い黄色へと変化し、溶離後液中のヨウ素が揮散しやすいI2となり、ヨウ素濃度を正確に測定することができない場合がある。このため、溶離後液の色に目視にて黄色い変色が生じ始めた時点で過酸化水素水添加を終了し、この溶離後液をヨウ化物イオン電極で測定することが好ましい。 The end point of the hydrogen peroxide solution addition can also be determined by observing a change in the color of the solution after elution. For example, by adding hydrogen peroxide solution to the solution after elution, the color of the solution after elution changes from transparent to light yellow. If hydrogen peroxide solution is added excessively, the color of the solution after elution changes to deep yellow, and iodine in the solution after elution becomes I 2 , which tends to volatilize, and the iodine concentration may not be measured accurately. . For this reason, it is preferable that the hydrogen peroxide solution addition is terminated when the color of the liquid after elution starts to visually change, and the liquid after elution is measured with an iodide ion electrode.
過酸化水素水添加後の溶離後液は、亜鉛粉末等の還元剤を用いてヨウ素をヨウ化物イオンに還元し、ヨウ化物イオン電極を用いてイオン電極法でヨウ化物イオン濃度を測定する。 The post-elution solution after the addition of hydrogen peroxide solution reduces iodine to iodide ions using a reducing agent such as zinc powder, and measures the iodide ion concentration by an ion electrode method using an iodide ion electrode.
本発明の実施の形態に係る砒素含有溶液のヨウ素分析方法によれば、砒素含有溶液中の砒素とヨウ素を活性炭により予め分離できるため、ヨウ化物イオン電極を用いた簡単なヨウ素濃度測定が可能となる。後述する実施例で詳しく説明するが、ヨウ化物イオン電極による溶離後液中のヨウ素濃度の測定結果とイオンクロマトグラフィによる活性炭通液前のヨウ素量の測定結果がほぼ一致していたことから、砒素含有溶液、より具体的には、砒素及びその他不純物を含む銅鉱石の浸出後液を処理対象溶液とした場合であっても、ヨウ化物イオン電極を用いた簡便なヨウ素濃度分析により、比較的信頼性の高い分析を行うことができる。 According to the iodine analysis method for an arsenic-containing solution according to the embodiment of the present invention, since arsenic and iodine in the arsenic-containing solution can be separated in advance by activated carbon, simple iodine concentration measurement using an iodide ion electrode is possible. Become. As will be described in detail in the examples described later, since the measurement result of iodine concentration in the solution after elution with an iodide ion electrode and the measurement result of iodine amount before passing through activated carbon by ion chromatography were almost the same, it contained arsenic. Even if the solution, more specifically, the solution after leaching of copper ore containing arsenic and other impurities is used as the solution to be treated, it is relatively reliable by simple iodine concentration analysis using an iodide ion electrode. High analysis can be performed.
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.
(実施例1:活性炭による砒素とヨウ素の分離)
銅鉱石(砒素を含む硫化銅鉱)をヨウ素と鉄(III)イオンを添加した浸出処理を行い、この浸出処理により得られた砒素を含む銅鉱石の浸出後液(PLS)を、本実施例に係る砒素含有溶液としてAs濃度の異なる6種類の溶液を利用した。市販のヤシ殻由来活性炭(太平化学産業株式会社製ヤシコールMC)110g(=乾燥重量基準:KI50mg/活性炭g)をガラス製のカラム管(高さ30cm、直径4cm)に充填した。As濃度の異なる6種類の溶液について活性炭処理前と活性炭処理後にヨウ素濃度をヨウ化物イオン濃度イオンクロマトグラフィを用いて、砒素濃度をICP発光分光分析を用いて分析し、活性炭処理前液中のヨウ素濃度と活性炭処理後液中の砒素濃度の変化を観察した。
(Example 1: Separation of arsenic and iodine by activated carbon)
The copper ore (copper sulfide containing arsenic) was leached by adding iodine and iron (III) ions, and the leached solution (PLS) of copper ore containing arsenic obtained by this leaching was used in this example. Six types of solutions having different As concentrations were used as the arsenic-containing solution. 110 g (= dry weight standard: KI 50 mg / activated carbon g) of commercially available coconut shell-derived activated carbon (Yaikol MC manufactured by Taihei Chemical Industrial Co., Ltd.) was packed in a glass column tube (height 30 cm, diameter 4 cm). Six types of solutions with different As concentrations were analyzed for iodine concentration using iodide ion concentration ion chromatography before activated carbon treatment and after activated carbon treatment, and arsenic concentration using ICP emission spectrophotometry. And the change of arsenic concentration in the solution after activated carbon treatment was observed.
表1から分かるように、砒素含有溶液中のヨウ素は活性炭にほぼ全量吸着され、砒素はほぼ全量、活性炭処理後液中に残っていることが分かる。PLSのような銅イオン等の不純物が共存する砒素含有溶液でも、大部分の砒素を活性炭に吸着させずに活性炭処理後液中に回収できている。また、ヨウ素は活性炭処理後液には検出されず、ロスなく活性炭に吸着されていた。活性炭処理前液中のKI量はイオンクロマトグラフィによる分析の結果、2.27gであった。 As can be seen from Table 1, almost all iodine in the arsenic-containing solution is adsorbed on the activated carbon, and almost all arsenic remains in the solution after the activated carbon treatment. Even in an arsenic-containing solution in which impurities such as copper ions coexist, such as PLS, most of the arsenic can be recovered in the solution after the activated carbon treatment without being adsorbed on the activated carbon. Iodine was not detected in the solution after the activated carbon treatment and was adsorbed on the activated carbon without loss. As a result of analysis by ion chromatography, the amount of KI in the pre-activated carbon solution was 2.27 g.
(実施例2:ヨウ化物イオン電極を用いたヨウ素濃度分析結果の信頼性)
実施例1と同様の条件で、PLSを活性炭に接触させた。次に、亜硫酸水(0.15wt%SO2)を2L/hで3時間通液し、その後硫酸溶液を2L/hで1時間通液して洗浄し、溶離後液を得た。なお、亜硫酸水と硫酸の通液は、それぞれ2回実施した。溶離後液に対し、過酸化水素水(30wt%)を溶離後液の酸化還元電位(銀/塩化銀電極)が350mVになるまで添加した。過酸化水素水を添加した溶離後液に対し、亜鉛粉末を2〜3g(薬さじ2〜3杯)添加して、ヨウ化物イオン電極(東亜ディーケーケー株式会社製)で溶離後液中のヨウ化物イオン濃度を測定した。結果を表2に示す。表2に示すように、分析誤差5%程度で測定が実施できた。
(Example 2: Reliability of iodine concentration analysis result using an iodide ion electrode)
Under the same conditions as in Example 1, PLS was brought into contact with activated carbon. Next, sulfite water (0.15 wt% SO 2 ) was passed at 2 L / h for 3 hours, and then the sulfuric acid solution was passed at 2 L / h for 1 hour for washing to obtain a solution after elution. The sulfite solution and sulfuric acid were passed twice. Hydrogen peroxide water (30 wt%) was added to the solution after elution until the redox potential (silver / silver chloride electrode) of the solution after elution was 350 mV. Add 2-3 g (2-3 spoonfuls) of zinc powder to the post-elution solution to which hydrogen peroxide solution has been added, and use the iodide ion electrode (manufactured by Toa DKK Corporation) for the iodide in the post-elution solution. The ion concentration was measured. The results are shown in Table 2. As shown in Table 2, the measurement could be performed with an analysis error of about 5%.
(実施例3:ヨウ化物イオン電極測定におけるKI濃度とORPと色の関係)
0.15%亜硫酸水でヨウ化物イオンを溶離した溶液に相当する亜硫酸濃度およびKI濃度を100mg/Lに調整した溶液に過酸化水素水を添加し、溶液の色、酸化還元電位(ORP:vs.Ag/AgCl)と、KI濃度の結果を表3に示す。表3に示すように、過酸化水素水をORP350mV付近(300−400mV)で、溶液が薄い黄色を呈するように添加された場合に、ヨウ化物イオン電極を用いて測定すると、測定誤差が5%以内で分析できることが分かる。
(Example 3: Relationship between KI concentration, ORP and color in measurement of iodide ion electrode)
Hydrogen peroxide solution was added to a solution in which the concentration of sulfite and KI corresponding to the solution in which iodide ions were eluted with 0.15% aqueous sulfite was adjusted to 100 mg / L, and the solution color, redox potential (ORP: vs. . Ag / AgCl) and KI concentration results are shown in Table 3. As shown in Table 3, when the hydrogen peroxide solution was added in the vicinity of ORP 350 mV (300-400 mV) so that the solution had a light yellow color, the measurement error was 5% when measured using an iodide ion electrode. Can be analyzed within.
Claims (4)
前記活性炭に吸着したヨウ素を、溶離液を用いて溶離させることと、
溶離後液の酸化還元電位(銀/塩化銀電極)が300mV以上になるまで過酸化水素水を添加し、過酸化水素水添加後の溶離後液のヨウ素濃度をヨウ化物イオン電極により測定すること
を含む砒素含有溶液のヨウ素分析法。 Arsenic-containing solution containing iodine and arsenic is brought into contact with activated carbon at a pH of 4 or less, iodine is adsorbed on the activated carbon, and arsenic is left in the solution after treatment to separate arsenic and iodine in the arsenic-containing solution. When,
Eluting iodine adsorbed on the activated carbon using an eluent;
Add hydrogen peroxide solution until the redox potential (silver / silver chloride electrode) of the solution after elution becomes 300 mV or more, and measure the iodine concentration of the solution after elution after adding hydrogen peroxide solution with an iodide ion electrode. For iodine analysis of arsenic-containing solutions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016223567A JP2018081009A (en) | 2016-11-16 | 2016-11-16 | Iodine analysis of arsenic-containing solutions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016223567A JP2018081009A (en) | 2016-11-16 | 2016-11-16 | Iodine analysis of arsenic-containing solutions |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018081009A true JP2018081009A (en) | 2018-05-24 |
Family
ID=62198769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016223567A Pending JP2018081009A (en) | 2016-11-16 | 2016-11-16 | Iodine analysis of arsenic-containing solutions |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018081009A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113544098A (en) * | 2019-03-22 | 2021-10-22 | 埃克-泰克股份有限公司 | Method for treating electrolyte from an electrorefining process |
-
2016
- 2016-11-16 JP JP2016223567A patent/JP2018081009A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113544098A (en) * | 2019-03-22 | 2021-10-22 | 埃克-泰克股份有限公司 | Method for treating electrolyte from an electrorefining process |
CN113544098B (en) * | 2019-03-22 | 2024-05-07 | 埃克-泰克股份有限公司 | Method for treating electrolyte from an electrorefining process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hamilton et al. | Determination of arsenic and antimony in electrolytic copper by anodic stripping voltammetry at a gold film electrode | |
Shults | Applications of controlled-potential coulometry to the determination of plutonium | |
Kauranen | The use of buffers in the determination of fluoride by an ion-selective electrode at low concentrations and in the presence of aluminum | |
King Jr et al. | Kinetics of the oxidation of vanadium (II) and vanadium (III) ions by perchlorate ion | |
Clark et al. | Multielement extraction system for the determination of 18 trace elements in geochemical samples | |
De Las Torres et al. | Arsenic and antimony speciation analysis in copper electrolyte by liquid chromatography coupled to hydride generation atomic fluorescence spectrometry (HPLC-HG-AFS) | |
JP2018021905A (en) | Quantitative analysis method of total chlorine concentration, chloride ion concentration and hypochlorite concentration in liquid containing metal ion | |
Adeloju et al. | Determination of ultra-trace concentrations of tin by adsorptive cathodic stripping voltammetry on a glassy carbon mercury film electrode | |
JP6489379B2 (en) | Method for quantification and separation of heavy metal elements | |
JP2018081009A (en) | Iodine analysis of arsenic-containing solutions | |
AU2015368938B2 (en) | Method for recovering gold from activated carbon | |
CA2908688C (en) | Method of recovering gold from sulfide ore | |
Verhoeven et al. | Dissociation constant of hydrogen cyanide in saline solutions | |
Elving et al. | Analysis of Samples Containing Uranium, Niobium, and Zirconium | |
Miller | Toluene-3: 4-dithiol as a selective reagent for tungsten: the detection of tungsten, especially in molybdenum and rhenium compounds, and in ferrous alloys | |
Danielsson | Adsorption of a number of elements from sulphuric acid solutions by anion exchange | |
SOMER et al. | A new and simple procedure for the trace determination of mercury using differential pulse polarography and application to a salt lake sample | |
Cuartero et al. | A SO2-selective electrode based on a Zn-porphyrin for wine analysis | |
Reed et al. | Direct determination of arsenite by differential pulse polarography in the presence of lead (II) and thallium (I) | |
Muir et al. | Hydrometallurgical Thermodynamics. II. Solvent Effects on the Activity and Free Energies of Transfer of CN-, Ag (CN) 2-and Au (CN) 2-in Ethanol-Water and Acetonitrile-Water Mixtures | |
Zelić et al. | Voltammetric Study of Uranyl–Selenium Interactions. Part 2. Uranyl (V) Selenate Complex | |
JP2020160065A (en) | Copper valence fractionation quantification method and copper quantification device | |
Gaál et al. | Catalytic amperometric and catalytic constant-current potentiometric titrations of silver (I), palladium (II) and mercury (II) | |
Zakharova et al. | Methods of the determination of inorganic arsenic species by stripping voltammetry in weakly alkaline media | |
JP2013249503A (en) | Method for recovering rhenium |