[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018076852A - Exhaust system structure for internal combustion engine - Google Patents

Exhaust system structure for internal combustion engine Download PDF

Info

Publication number
JP2018076852A
JP2018076852A JP2016220823A JP2016220823A JP2018076852A JP 2018076852 A JP2018076852 A JP 2018076852A JP 2016220823 A JP2016220823 A JP 2016220823A JP 2016220823 A JP2016220823 A JP 2016220823A JP 2018076852 A JP2018076852 A JP 2018076852A
Authority
JP
Japan
Prior art keywords
exhaust
upstream end
exhaust gas
flow
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016220823A
Other languages
Japanese (ja)
Inventor
浩典 猪股
Hironori Inomata
浩典 猪股
浩司 夏目
Koji Natsume
浩司 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2016220823A priority Critical patent/JP2018076852A/en
Publication of JP2018076852A publication Critical patent/JP2018076852A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust system structure for an internal combustion engine for enabling exhaust gas to equally flow into an exhaust emission control part.SOLUTION: The exhaust system structure for the internal combustion engine includes an exhaust passage provided so that exhaust gas from the internal combustion engine flows along a linear direction, and the exhaust emission control part for purifying the exhaust gas passing through the exhaust passage. The axial line of the exhaust emission control part is inclined to the linear direction. The exhaust passage includes a straight part, and a diffusion part provided on the downstream side of the straight part for, when the cross-sectional shape of the straight part is projected along the linear direction, guiding the exhaust gas to the upstream side end face of the exhaust emission control part at its portion where the cross-sectional shape is not projected.SELECTED DRAWING: Figure 2

Description

本発明は、内燃機関の排気系構造に関する。   The present invention relates to an exhaust system structure of an internal combustion engine.

従来、内燃機関の排気系に設けられ、内燃機関から排出される排気ガス中の一酸化炭素及び未燃焼炭化水素等を除去する触媒(排気浄化部)を備えた排気浄化装置が知られている。   2. Description of the Related Art Conventionally, there has been known an exhaust purification device that is provided in an exhaust system of an internal combustion engine and includes a catalyst (exhaust purification unit) that removes carbon monoxide, unburned hydrocarbons, and the like in exhaust gas discharged from the internal combustion engine. .

特許文献1には、排気ガス流入管の軸線に対して、触媒の軸線を傾斜させた排気浄化装置が開示されている。   Patent Document 1 discloses an exhaust purification device in which an axis of a catalyst is inclined with respect to an axis of an exhaust gas inflow pipe.

特開昭64−60711号公報JP-A 64-60711

ところで、排気浄化装置の排気浄化部を有効に活用するためには、排気ガスを排気浄化部に均等に流入させることが望まれる。   By the way, in order to effectively use the exhaust gas purification unit of the exhaust gas purification device, it is desired that the exhaust gas flow evenly into the exhaust gas purification unit.

しかしながら、特許文献1に開示された排気浄化装置では、触媒に流入する排気ガスの流入量が均一にならないという問題があった。   However, the exhaust emission control device disclosed in Patent Document 1 has a problem that the amount of exhaust gas flowing into the catalyst is not uniform.

本発明の目的は、排気ガスを排気浄化部に均等に流入させることができる内燃機関の排気系構造を提供することである。   An object of the present invention is to provide an exhaust system structure of an internal combustion engine that allows exhaust gas to uniformly flow into an exhaust purification section.

本発明に係る内燃機関の排気系構造は、内燃機関からの排気ガスが直線方向に沿って流れるように設けられる排気通路と、前記排気通路の下流側に設けられ、前記排気通路を通過した前記排気ガスを浄化する排気浄化部と、を備え、前記排気浄化部の軸線は、前記直線方向に対して傾斜しており、前記排気通路は、直線部と、前記直線部の下流側に設けられ、前記直線部の横断面形状を前記直線方向に沿って投影した場合に前記排気浄化部の上流側端面において前記横断面形状が投影されない部分に前記排気ガスを導くための拡散部と、を備えている。   An exhaust system structure for an internal combustion engine according to the present invention includes an exhaust passage provided so that exhaust gas from the internal combustion engine flows along a linear direction, and the exhaust passage structure provided on the downstream side of the exhaust passage and passed through the exhaust passage. An exhaust gas purification unit that purifies the exhaust gas, an axis of the exhaust gas purification unit is inclined with respect to the linear direction, and the exhaust passage is provided on the downstream side of the linear part and the linear part. A diffusion portion for guiding the exhaust gas to a portion where the cross-sectional shape is not projected on the upstream end surface of the exhaust purification portion when the cross-sectional shape of the straight portion is projected along the linear direction. ing.

本発明の内燃機関の排気系構造によれば、排気ガスを排気浄化部に均等に流入させることができる。   According to the exhaust system structure of the internal combustion engine of the present invention, the exhaust gas can be made to uniformly flow into the exhaust purification unit.

本発明の一実施形態に係る排気系を示す概略図Schematic showing an exhaust system according to an embodiment of the present invention. 図1の部分拡大図Partial enlarged view of FIG. 本発明の一実施形態に係る排気系の流量分布を模式的に示す断面図Sectional drawing which shows typically the flow volume distribution of the exhaust system which concerns on one Embodiment of this invention 比較例の流量分布を模式的に示す断面図Sectional view schematically showing the flow distribution of the comparative example

以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、以下に説明する実施形態は一例であり、本発明はこの実施形態により限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, embodiment described below is an example and this invention is not limited by this embodiment.

図1は、本発明に係る排気系を示す概略図である。図2は、図1の部分拡大図である。なお、図1及び図2には、X軸、Y軸及びZ軸が描かれている。以下の説明では、図1及び図2における左右方向をX方向又は車両前後方向といい、右方向を「+X方向」又は「車両前側」、左方向を「−X方向」又は「車両後側」という。また、図1及び図2における上下方向をY方向又は車両上下方向といい、上方向を「+Y方向」又は「車両上側」、下方向を「−Y方向」又は「車両下側」という。さらに、図1及び図2において紙面に垂直な方向をZ方向又は車両幅方向といい、手前方向を「+Z方向」又は「車両右側」、奥方向を「−Z方向」又は「車両左側」という。また、排気通路を流れる排気ガスの流れ方向における上流側及び下流側を、単に「上流側」及び「下流側」という。   FIG. 1 is a schematic view showing an exhaust system according to the present invention. FIG. 2 is a partially enlarged view of FIG. 1 and 2, the X axis, the Y axis, and the Z axis are drawn. In the following description, the left-right direction in FIGS. 1 and 2 is referred to as the X direction or the vehicle front-rear direction, the right direction is “+ X direction” or “vehicle front side”, and the left direction is “−X direction” or “vehicle rear side”. That's it. 1 and 2 is referred to as a Y direction or a vehicle vertical direction, an upward direction is referred to as a “+ Y direction” or “vehicle upper side”, and a downward direction is referred to as a “−Y direction” or “vehicle lower side”. 1 and 2, the direction perpendicular to the paper surface is referred to as the Z direction or the vehicle width direction, the front direction is referred to as "+ Z direction" or "vehicle right side", and the back direction is referred to as "-Z direction" or "vehicle left side". . Further, the upstream side and the downstream side in the flow direction of the exhaust gas flowing through the exhaust passage are simply referred to as “upstream side” and “downstream side”.

図1及び図2に示すように、排気系1は、エンジン2の車両右側に設けられた排気マニホールド3と、排気マニホールド3の集合部に連結されたターボ過給機4と、ターボ過給機4から延びる上流側排気通路5、後処理装置6、及び下流側排気通路7と、を備える。なお、本実施形態の場合、上記各部材を、エンジン2の車両右側に配置している。ただし、車両幅方向に関して、上記各部材のエンジン2に対する配置は、図示の構造に限定されるものではない。   As shown in FIGS. 1 and 2, the exhaust system 1 includes an exhaust manifold 3 provided on the right side of the vehicle of the engine 2, a turbocharger 4 connected to a collecting portion of the exhaust manifold 3, and a turbocharger. 4, an upstream exhaust passage 5 extending from 4, an aftertreatment device 6, and a downstream exhaust passage 7. In the case of the present embodiment, the above-described members are arranged on the right side of the engine 2 in the vehicle. However, the arrangement of the above members with respect to the engine 2 in the vehicle width direction is not limited to the illustrated structure.

ターボ過給機4の排気ガス出口4aの方向(開放方向)、大きさ及び形状は、後処理装置6の形状、大きさ及び設置場所などに基づいて総合的に定められる。ここでは、排気ガス出口4aの方向は、−X方向である。排気ガス出口4aの形状は、一般的な円形状である。後処理装置6の設置場所は、ターボ過給機4の−X方向の位置に設定される。   The direction (opening direction), size, and shape of the exhaust gas outlet 4a of the turbocharger 4 are comprehensively determined based on the shape, size, installation location, and the like of the aftertreatment device 6. Here, the direction of the exhaust gas outlet 4a is the -X direction. The shape of the exhaust gas outlet 4a is a general circular shape. The installation location of the post-processing device 6 is set at a position in the −X direction of the turbocharger 4.

上流側排気通路5は、中空管状の直線管8の内部空間により構成されている。直線管8は、内部空間に上流側開口部から流入した排気ガスを、直線管8の延在方向(つまり、軸8aの方向)に沿って直線的に流通させて、下流側開口部から流出させる流路としての機能を有している。なお、本構成例の場合、軸8aは、直線管8の中心軸に相当する。   The upstream exhaust passage 5 is configured by an internal space of a hollow tubular straight tube 8. The straight pipe 8 causes the exhaust gas flowing into the internal space from the upstream opening to flow linearly along the extending direction of the straight pipe 8 (that is, the direction of the axis 8a) and flows out from the downstream opening. It has a function as a flow path. In the case of this configuration example, the shaft 8 a corresponds to the central axis of the straight tube 8.

直線管8の上流側端部は、排気ガス出口4aに接続されている。一方、直線管8の下流側端部は、後処理装置6のケース10(後述する)の上流側端部に固定されている。直線管8の延在方向(つまり、軸8aの方向)、長さ、及び中空断面形状は、排気ガス出口4aの方向、後処理装置6におけるDOC11(後述する)の位置などに基づいて総合的に定められる。   The upstream end of the straight tube 8 is connected to the exhaust gas outlet 4a. On the other hand, the downstream end of the straight pipe 8 is fixed to the upstream end of a case 10 (described later) of the post-processing device 6. The extending direction (that is, the direction of the shaft 8a), the length, and the hollow cross-sectional shape of the straight tube 8 are comprehensive based on the direction of the exhaust gas outlet 4a, the position of the DOC 11 (described later) in the aftertreatment device 6, and the like. Determined.

なお、直線管8の中空断面形状とは、直線管8の内周面により画成される内部空間の横断面(軸8aに直交する仮想平面に関する断面形状)をいう。換言すれば、直線管8の中空断面形状の外形(外周縁の形状)は、軸8aに直交する仮想平面に関する直線管8の内周面の断面形状に一致する。   Note that the hollow cross-sectional shape of the straight tube 8 refers to a transverse cross-section of the internal space defined by the inner peripheral surface of the straight tube 8 (cross-sectional shape related to a virtual plane orthogonal to the axis 8a). In other words, the outer shape (the shape of the outer peripheral edge) of the hollow cross-sectional shape of the straight tube 8 matches the cross-sectional shape of the inner peripheral surface of the straight tube 8 with respect to a virtual plane orthogonal to the axis 8a.

直線管8の延在方向は、例えば、DOC11の位置などに基づいて3次元的に傾けられる。ここでは、説明をわかりやすくするために、直線管8は、図1及び図2に示すように、排気ガス出口4aと同じ−X方向に直線状に延ばされる。また、直線管8の中空断面形状は、排気ガス出口4aの形状と同じ円形状である。   The extending direction of the straight tube 8 is tilted three-dimensionally based on, for example, the position of the DOC 11. Here, in order to make the explanation easy to understand, as shown in FIGS. 1 and 2, the straight tube 8 is extended linearly in the same −X direction as the exhaust gas outlet 4a. Moreover, the hollow cross-sectional shape of the straight tube 8 is the same circular shape as the shape of the exhaust gas outlet 4a.

直線管8の延在方向及び中空断面形状を排気ガス出口4aと同じ方向および形状とした理由は、ターボ過給機4から直線管8に流入した排気ガスの流速を、直線管8でなるべく低下させずに、高い状態に維持しつつDOC11に流出させるためである。また、直線管8の長さは、ターボ過給機4とDOC11との間の放熱を防止するために、また、排気ガスの流速の低下を抑えるために、なるべく短いことが望ましい。   The reason why the extending direction and the hollow cross-sectional shape of the straight tube 8 are the same direction and shape as the exhaust gas outlet 4a is that the flow rate of the exhaust gas flowing into the straight tube 8 from the turbocharger 4 is reduced by the straight tube 8 as much as possible. It is for making it flow out to DOC11, maintaining it in a high state without doing. Further, the length of the straight pipe 8 is preferably as short as possible in order to prevent heat dissipation between the turbocharger 4 and the DOC 11 and to suppress a decrease in the flow rate of the exhaust gas.

上述のとおり、直線管8の下流側端部には、後処理装置6の上流側端部が接続されている。後処理装置6は、筒状のケース10に、排気ガスを浄化するためのDOC11(本発明の「排気浄化部」に対応)及びディーゼル・パティキュレート・フィルター(DPF)12(本発明の「排気浄化部」に対応)が収容されてなる。なお、直線管8の下流側端部と後処理装置6の上流側端部とを接続する構造の詳細については後述する。   As described above, the upstream end of the post-processing device 6 is connected to the downstream end of the straight tube 8. The aftertreatment device 6 includes a cylindrical case 10, a DOC 11 for purifying exhaust gas (corresponding to the “exhaust purification unit” of the present invention), and a diesel particulate filter (DPF) 12 (“exhaust gas” of the present invention). Corresponding to the “purification section”). The details of the structure connecting the downstream end of the straight pipe 8 and the upstream end of the post-processing device 6 will be described later.

DOC11及びDPF12は、無機質マット13でケース10に保持される。DOC11は、軸11aを有する柱状に形成される。なお、本実施形態の場合、軸11aは、DOC11の中心軸に相当する。軸11aは、DOC11の上流側端面11bの面直方向に延在する。つまり、DOC11の横断面形状(軸11aに直交する仮想平面に関する断面形状)は、上流側端面11bと同じ形状となる。   The DOC 11 and the DPF 12 are held in the case 10 with an inorganic mat 13. The DOC 11 is formed in a column shape having an axis 11a. In the present embodiment, the shaft 11a corresponds to the central axis of the DOC 11. The shaft 11a extends in the direction perpendicular to the upstream end surface 11b of the DOC 11. That is, the cross-sectional shape of the DOC 11 (the cross-sectional shape related to the virtual plane orthogonal to the axis 11a) is the same shape as the upstream end surface 11b.

同じく、DPF12は、軸12aを有する柱状に形成される。なお、本実施形態の場合、軸12aは、DPF12の中心軸に相当する。軸12aは、DPF12の上流側端面12bの面直方向に延在する。つまり、DPF12の横断面形状(軸12aに直交する仮想平面に関する断面形状)は、上流側端面12bと同じ形状となる。   Similarly, the DPF 12 is formed in a column shape having a shaft 12a. In this embodiment, the shaft 12a corresponds to the central axis of the DPF 12. The shaft 12a extends in the direction perpendicular to the upstream end surface 12b of the DPF 12. That is, the cross-sectional shape of the DPF 12 (the cross-sectional shape related to the virtual plane orthogonal to the axis 12a) is the same shape as the upstream end surface 12b.

後処理装置6の設置場所は、上述したように、ターボ過給機4の−X方向の位置に設定されている。ここで、DOC11及びDPF12は、設置場所を有効に利用するために、−X方向に直線的に配置されるのではなく、各軸11a及び12aを、X方向、Y方向及びZ方向に対して3次元的に傾けるように配置される。各軸11a及び12aの傾きについての詳細は後述する。   The installation place of the post-processing device 6 is set at the position in the −X direction of the turbocharger 4 as described above. Here, the DOC 11 and the DPF 12 are not arranged linearly in the −X direction in order to effectively use the installation location, but the axes 11a and 12a are arranged with respect to the X direction, the Y direction, and the Z direction. It is arranged so as to be tilted three-dimensionally. Details of the inclinations of the axes 11a and 12a will be described later.

DOC11は、担体としての例えばアルミナに、酸化触媒としての例えば白金、酸化イリジウムまたは酸化コバルトが担持されている。DOC11は、排気ガス中に含まれる炭化水素、一酸化炭素、窒素酸化物などの未燃焼ガスを酸化する機能を有する。なお、DOC11の基本的構造及び機能については、従来から知られているDOCと同様であるため、詳しい説明は省略する。   In DOC11, for example, platinum, iridium oxide or cobalt oxide as an oxidation catalyst is supported on alumina as a carrier. The DOC 11 has a function of oxidizing unburned gases such as hydrocarbons, carbon monoxide, and nitrogen oxides contained in the exhaust gas. Note that the basic structure and function of the DOC 11 are the same as those of conventionally known DOCs, and thus detailed description thereof is omitted.

DPF12は、多孔質セラミックスの隔壁で区画された格子状の排気流路を形成する多数のセルを排気ガスの流れ方向に沿って配置し、これらセルの上流側と下流側とを交互に目封止して構成されている。DPF12は、排気ガス中に含まれる粒子状物質(PM)を捕集する機能を有する。なお、DPF12の基本的構造及び機能については、従来からしられているDPFと同様であるため、詳しい説明は省略する。   The DPF 12 arranges a number of cells forming a grid-like exhaust flow path partitioned by porous ceramic partition walls along the flow direction of the exhaust gas, and alternately seals the upstream and downstream sides of these cells. It is configured to stop. The DPF 12 has a function of collecting particulate matter (PM) contained in the exhaust gas. Note that the basic structure and function of the DPF 12 are the same as those of the conventional DPF, and thus detailed description thereof is omitted.

後処理装置6の下流側端部には、下流側排気通路7が接続されている。後処理装置6で浄化された排気ガスは、下流側排気通路7を通って外部に導出される。下流側排気通路7における下流側は、−X方向へ直線状に延びており、排気ガスは、下流側排気通路7の後端から、車両後方へ向けて導出される。   A downstream exhaust passage 7 is connected to the downstream end of the post-processing device 6. The exhaust gas purified by the post-treatment device 6 is led out through the downstream exhaust passage 7. The downstream side of the downstream side exhaust passage 7 extends linearly in the −X direction, and the exhaust gas is led out from the rear end of the downstream side exhaust passage 7 toward the rear of the vehicle.

次に、直線管8の下流側端部と後処理装置6の上流側端部とを接続する構造の詳細について説明する。図2に、軸8a方向から見た排気ガス出口4aの形状(すなわち、直線管8の中空断面形状)としての円Pと、軸11a方向から見た上流側端面11bの形状としての楕円Qとを示す。また、図2に、直線管8及びDOC11を通過する排気ガスの流れを破線で示す。   Next, the detail of the structure which connects the downstream end part of the straight pipe 8 and the upstream end part of the post-processing apparatus 6 is demonstrated. FIG. 2 shows a circle P as the shape of the exhaust gas outlet 4a seen from the direction of the axis 8a (that is, the hollow cross-sectional shape of the straight tube 8), and an ellipse Q as the shape of the upstream end face 11b seen from the direction of the axis 11a. Indicates. Moreover, the flow of the exhaust gas which passes the straight tube 8 and DOC11 is shown in FIG. 2 with a broken line.

直線管8は、直線部8bと、拡散部8cとを有する。直線管8の軸8aは、直線部8bの軸と一致する。そのため、以下の説明において、「軸8a」は、直線管8の軸を意味するとともに、直線部8bの軸を意味するものとして用いる。また、直線部8bの中空断面形状は、本発明の「直線部の横断面形状」に相当する。直線管8(直線部8b)の軸8aの方向は、上述するように−X方向である。   The straight tube 8 includes a straight portion 8b and a diffusion portion 8c. The axis 8a of the straight tube 8 coincides with the axis of the straight portion 8b. Therefore, in the following description, the “axis 8a” means the axis of the straight tube 8 and the axis of the straight portion 8b. Further, the hollow cross-sectional shape of the straight portion 8b corresponds to the “cross-sectional shape of the straight portion” of the present invention. The direction of the axis 8a of the straight tube 8 (straight portion 8b) is the -X direction as described above.

DOC11の軸11aは、−X方向の軸8aに対して3次元的に傾けられる。ここでは、説明をわかりやすくするために、軸11aは、−X方向の軸8aに対してZ軸回り(反時計回り)に所定角度αだけ傾けられる。つまり、DOC11の上流側端面11bは、軸8aに対してZ軸回り(時計回り)に所定角度(π/2−α)だけ傾けられる。   The axis 11a of the DOC 11 is tilted three-dimensionally with respect to the axis 8a in the -X direction. Here, in order to make the explanation easy to understand, the shaft 11a is inclined by a predetermined angle α around the Z axis (counterclockwise) with respect to the shaft 8a in the −X direction. That is, the upstream end surface 11b of the DOC 11 is inclined by a predetermined angle (π / 2−α) around the Z axis (clockwise) with respect to the shaft 8a.

図2に示すように、直線部8bの軸8aと、DOC11の軸11aとは、DOC11の上流側端面11bで交差せず、DOC11の内部で交差する。すなわち、直線部8bの軸8aは、DOC11の上流側端面11bの中心よりも車両上下方向における下側に位置している。   As shown in FIG. 2, the axis 8 a of the straight portion 8 b and the axis 11 a of the DOC 11 do not intersect at the upstream end surface 11 b of the DOC 11 but intersect inside the DOC 11. That is, the shaft 8a of the straight portion 8b is located below the center of the upstream end surface 11b of the DOC 11 in the vehicle vertical direction.

直線部8bの中空断面形状(ここでは、円)を直線方向(−X方向)に投影した場合、DOC11の上流側端面11bに投影される上記中空断面形状の像は、楕円Qの長軸に対して同一直線上に位置する長軸を有する楕円Rとなる。また、図2に示すように、楕円Rにおける排気ガス出口4a寄りの長軸端は、楕円Qにおける排気ガス出口4a寄りの長軸端と一致している。   When the hollow cross-sectional shape (here, a circle) of the straight portion 8b is projected in the linear direction (−X direction), the image of the hollow cross-sectional shape projected on the upstream end surface 11b of the DOC 11 is on the long axis of the ellipse Q. On the other hand, an ellipse R having a long axis located on the same straight line is obtained. Further, as shown in FIG. 2, the major axis end of the ellipse R near the exhaust gas outlet 4 a coincides with the major axis end of the ellipse Q near the exhaust gas outlet 4 a.

すなわち、本実施形態では、上流側端面11bの車両上下方向における下端は、直線部8bの内周の車両上下方向における下端と同じ高さに位置している。なお、軸8aに対する上流側端面11bの傾斜角度は、例えば、DOC11の大きさ、形状及びその配置場所に基づいて設定される。   That is, in this embodiment, the lower end in the vehicle up-down direction of the upstream end surface 11b is located at the same height as the lower end in the vehicle up-down direction of the inner periphery of the straight portion 8b. The inclination angle of the upstream end surface 11b with respect to the shaft 8a is set based on, for example, the size and shape of the DOC 11 and its arrangement location.

ケース10の上流側端縁10aは、DOC11の上流側端面11bと略一致している。直線管8の下流側端部の内周は、ケース10の上流側端縁10aの外周に隙間無く沿うように形成されている。本実施形態では、ケース10の上流側端縁10aに直線管8の下流側端部が嵌合され、溶接されることにより、直線管8及びケース10が密閉される。   The upstream end edge 10 a of the case 10 substantially coincides with the upstream end face 11 b of the DOC 11. The inner periphery of the downstream end portion of the straight pipe 8 is formed so as to follow the outer periphery of the upstream end edge 10a of the case 10 without a gap. In the present embodiment, the downstream end of the straight tube 8 is fitted to the upstream end edge 10a of the case 10 and welded, whereby the straight tube 8 and the case 10 are sealed.

図2に示すように、直線部8bの下流側には、拡散部8cが設けられている。拡散部8cは、周壁部8dと、周壁部8dの一方端を塞ぐ蓋部8eとを有する。蓋部8eにおける上流側端面11bと対向する面は、対向面8fを形成する。上流側端面11bと対向面8fとの間には、排気ガスが通過する隙間が設けられている。本実施形態では、蓋部8eは上流側端面11bに対して平行に設けられており、上流側端面11bと対向面8fとの隙間は一定である。なお、蓋部8eをテーパ状とし、上流側端面11bと対向面8fとの隙間を、外径側ほど小さくしてもよい。   As shown in FIG. 2, a diffusion part 8c is provided on the downstream side of the straight part 8b. The diffusion portion 8c includes a peripheral wall portion 8d and a lid portion 8e that closes one end of the peripheral wall portion 8d. A surface of the lid portion 8e that faces the upstream end surface 11b forms a facing surface 8f. A gap through which exhaust gas passes is provided between the upstream end face 11b and the facing face 8f. In the present embodiment, the lid portion 8e is provided in parallel to the upstream end surface 11b, and the gap between the upstream end surface 11b and the facing surface 8f is constant. The lid portion 8e may be tapered, and the gap between the upstream end surface 11b and the facing surface 8f may be made smaller toward the outer diameter side.

<本実施形態の効果>
本実施形態の効果について、比較例を示しながら説明する。図3は、本実施形態における排気ガスの流れを模式的に示したものである。図4は、比較例における排気ガスの流れを模式的に示したものである。図中の矢印は、排気ガスの流れを概念的に示したものであり、太い矢印ほど、流量が多いことを示している。
<Effect of this embodiment>
The effect of this embodiment will be described with reference to a comparative example. FIG. 3 schematically shows the flow of exhaust gas in the present embodiment. FIG. 4 schematically shows the flow of the exhaust gas in the comparative example. The arrows in the figure conceptually show the flow of exhaust gas, and the thicker the arrows, the higher the flow rate.

なお、比較例は、直線管8の軸8bとDOC11の軸11aとをDOC11の上流側端面11bで交差させ、ターボ過給機4の排気ガス出口4aから上流側端面11bに向けて上流側排気通路5を車両上下方向に徐々に拡径した場合を示している。   In the comparative example, the shaft 8b of the straight tube 8 and the shaft 11a of the DOC 11 intersect at the upstream end surface 11b of the DOC 11, and the upstream exhaust gas is directed from the exhaust gas outlet 4a of the turbocharger 4 toward the upstream end surface 11b. The case where the diameter of the passage 5 is gradually expanded in the vehicle vertical direction is shown.

図4に示すように、排気ガス出口4aから上流側端面11bに向けて上流側排気通路5を車両上下方向に徐々に拡径した場合、車両上下方向において下側に位置する流れa、中央に位置する流れb、及び上側に位置する流れcは、徐々に広がりながら上流側端面11bに到達する。   As shown in FIG. 4, when the upstream exhaust passage 5 is gradually expanded in the vehicle vertical direction from the exhaust gas outlet 4a toward the upstream end surface 11b, the flow a located at the lower side in the vehicle vertical direction is The flow b positioned and the flow c positioned above reach the upstream end face 11b while gradually spreading.

DOC11の上流側端面11bに到達した流れaは、一部が屈曲してDOC11に流入し(曲げ内側の流れf)、一部がDOC11の上流側端面11bに沿った流れdとなる。さらに、流れdは、流れbと合流する。   A part of the flow a that has reached the upstream end face 11b of the DOC 11 is bent and flows into the DOC 11 (a flow f inside the bend), and a part thereof becomes a flow d along the upstream end face 11b of the DOC 11. Furthermore, the flow d merges with the flow b.

流れbと流れdとが合流した流れは、一部が屈曲してDOC11に流入する曲げ中央の流れgとなり、一部はDOC11の上流側端面11bに沿った流れeとなる。流れgのDOC11への流入量は、上流側端面11bに沿った流れdの影響により妨げられ、流れfの流入量と同程度となる。また、流れeの流量は、流れdの流量よりも多くなる。   A flow obtained by joining the flow b and the flow d is a flow g at the center of bending where part of the flow b is bent and flows into the DOC 11, and part of the flow is a flow e along the upstream end surface 11 b of the DOC 11. The inflow amount of the flow g to the DOC 11 is hindered by the influence of the flow d along the upstream end surface 11b, and is approximately the same as the inflow amount of the flow f. Further, the flow rate of the flow e is larger than the flow rate of the flow d.

流れeは、流れcと合流して、屈曲してDOC11に流入する(曲げ外側の流れh)。そのため、流れhのDOC11への流入量は多くなる。換言すれば、DOC11への流入量は、曲げ外側の流れhのみが多くなる。そのため、DOC11への排気ガスの流入量に偏りが生じ、DOC11を有効に使えないことになる。   The flow e merges with the flow c, bends, and flows into the DOC 11 (flow h outside the bend). Therefore, the amount of the flow h flowing into the DOC 11 increases. In other words, only the flow h outside the bending increases in the amount of inflow into the DOC 11. Therefore, the amount of exhaust gas flowing into the DOC 11 is biased, and the DOC 11 cannot be used effectively.

一方、図3に示すように、本実施形態によれば、車両上下方向において下側に位置する流れA、中央に位置する流れ流れB、及び上側に位置する流れCは、直線部8bによって軸8aの方向に沿った直線状の流れの状態で上流側端面11bに到達する。上流側端面11bに到達した流れAは、一部が屈曲してDOC11に流入し(曲げ内側の流れF)、一部が上流側端面11bに沿った流れDとなる。   On the other hand, as shown in FIG. 3, according to the present embodiment, the flow A positioned on the lower side, the flow flow B positioned on the center, and the flow C positioned on the upper side in the vehicle vertical direction are It reaches the upstream end face 11b in a linear flow state along the direction 8a. A part of the flow A that has reached the upstream end face 11b is bent and flows into the DOC 11 (flow F inside the bend), and a part thereof becomes a flow D along the upstream end face 11b.

さらに、流れDは、流れBと合流する。流れBと流れDとが合流した流れは、一部が屈曲してDOC11に流入する流れとなり、一部はDOC11の上流側端面11bに沿った流れEとなる。   Furthermore, stream D merges with stream B. A flow obtained by joining the flow B and the flow D is a flow that is partially bent and flows into the DOC 11, and a part of the flow is a flow E along the upstream end surface 11 b of the DOC 11.

さらに、流れEは、流れCと合流する。流れCと流れEとが合流した流れは、一部が屈曲してDOC11に流入する曲げ中央の流れGとなる。また、流れCと流れEとが合流した流れの一部は、流れJとなり、拡散部8cによって上流側端面11bにおける直線部8bの横断面形状が投影されない領域に拡散した後に、屈曲してDOC11に流入する(曲げ外側の流れH)。   Further, stream E merges with stream C. A flow obtained by joining the flow C and the flow E becomes a flow G at the center of bending where a part of the flow is bent and flows into the DOC 11. Further, a part of the flow obtained by joining the flow C and the flow E becomes a flow J, which is diffused to a region where the cross-sectional shape of the straight portion 8b on the upstream end face 11b is not projected by the diffusion portion 8c, and then bent to be a DOC11. (Flow H outside the bend).

このため、曲げ外側の流れHの流入量は、比較例に比べて少なくなる。これにより、DOC11への流入量を、図4に示す比較例に比べて、曲げ内側の流れF、曲げ中央の流れG、及び曲げ外側の流れHで均等にすることができる。   For this reason, the inflow amount of the flow H outside the bending is smaller than that in the comparative example. Thereby, compared with the comparative example shown in FIG. 4, the amount of inflow into the DOC 11 can be made uniform in the flow F inside the bending, the flow G in the bending center, and the flow H outside the bending.

以上説明したように、本実施形態によれば、直線管8の下流側に、DOC11の上流側端面11bにおいて直線部8bの横断面形状が投影されない部分に排気ガスを導くための拡散部8cを設けたので、DOC11に流入する排気ガスの流入量を均等にすることができる。   As described above, according to the present embodiment, the diffusion portion 8c for guiding the exhaust gas to the portion where the cross-sectional shape of the straight portion 8b is not projected on the upstream end surface 11b of the DOC 11 is provided downstream of the straight tube 8. Since it was provided, the amount of exhaust gas flowing into the DOC 11 can be made uniform.

<本実施の形態の変形例>
なお、上記実施の形態では、直線管8が車両後側に延ばされたが、本発明はこれに限らず、例えば、後処理装置6の設置場所等に応じて、車両前側に延ばされてもよい。
<Modification of the present embodiment>
In the above embodiment, the straight tube 8 is extended to the rear side of the vehicle. However, the present invention is not limited to this, and is extended to the front side of the vehicle, for example, depending on the installation location of the post-processing device 6. May be.

また、上記実施の形態では、DPF12の軸12aは、図2に示すように、DOC11の軸11aに対してZ軸回り(反時計回り)に所定角度βで2次元的に傾けられるが、例えば、DPF12の大きさ、形状及びその配置場所等に応じて、軸11aに対して3次元的に傾けられてもよい。   In the above embodiment, the shaft 12a of the DPF 12 is tilted two-dimensionally at a predetermined angle β around the Z axis (counterclockwise) with respect to the shaft 11a of the DOC 11, as shown in FIG. The DPF 12 may be tilted three-dimensionally with respect to the shaft 11a according to the size and shape of the DPF 12 and the arrangement location thereof.

また、上記実施の形態では、DPF12の上流側にDOC11を設けたものを説明したが、これに限定されない。DPF12の上流側に、DOC11に代えて他の触媒としてのリーンNOxトラップ触媒(LNT)、選択接触還元触媒(SCR)等、排気ガスを浄化する様々な触媒を設けるようにしてもよいし、DOC11に加えて他の触媒を設けるようにしてもよい。この構成に本発明を適用した場合に、LNTの上流側端面は、直線管8の軸8aに対して所定角度で傾けられる。   Moreover, although the said embodiment demonstrated what provided DOC11 in the upstream of DPF12, it is not limited to this. Various catalysts for purifying exhaust gas such as a lean NOx trap catalyst (LNT) and a selective catalytic reduction catalyst (SCR) as other catalysts may be provided on the upstream side of the DPF 12, such as a lean NOx trap catalyst (LNT) or a selective catalytic reduction catalyst (SCR). In addition to the above, another catalyst may be provided. When the present invention is applied to this configuration, the upstream end face of the LNT is inclined at a predetermined angle with respect to the axis 8a of the straight tube 8.

また、上記実施の形態では、DOC11の軸11aを、DOC11の上流側端面11bに対して面直方向に延びるものとし、DOC11の横断面形状を上流側端面11bの形状と同一としたが、これに限定されない。上流側端面11bを、DOC11の横断面に対して傾斜させるようにしてもよい。   In the above embodiment, the shaft 11a of the DOC 11 extends in a direction perpendicular to the upstream end surface 11b of the DOC 11, and the cross-sectional shape of the DOC 11 is the same as the shape of the upstream end surface 11b. It is not limited to. You may make it incline the upstream end surface 11b with respect to the cross section of DOC11.

本開示の内燃機関の排気系構造は、排気浄化部を有効に活用することが要求される排気ガスの後処理装置として有用である。   The exhaust system structure of the internal combustion engine of the present disclosure is useful as an exhaust gas aftertreatment device that requires effective use of an exhaust purification unit.

1 排気系
2 エンジン
3 排気マニホールド
4 ターボ過給機
4a 排気ガス出口
5 上流側排気通路
6 後処理装置
7 下流側排気通路
8 直線管
8a、11a、12a 軸
8b 直線部
8c 拡散部
8d 周壁部
8e 蓋部
8f 対向面
10 ケース
11 DOC
11b、12b 上流側端面
12 DPF
DESCRIPTION OF SYMBOLS 1 Exhaust system 2 Engine 3 Exhaust manifold 4 Turbo supercharger 4a Exhaust gas outlet 5 Upstream exhaust passage 6 Post-processing device 7 Downstream exhaust passage 8 Straight pipe 8a, 11a, 12a Shaft 8b Straight portion 8c Diffusion portion 8d Circumferential wall portion 8e Lid 8f Opposing surface 10 Case 11 DOC
11b, 12b Upstream end face 12 DPF

Claims (4)

内燃機関からの排気ガスが直線方向に沿って流れるように設けられる排気通路と、前記排気通路の下流側に設けられ、前記排気通路を通過した前記排気ガスを浄化する排気浄化部と、を備え、
前記排気浄化部の軸線は、前記直線方向に対して傾斜しており、
前記排気通路は、直線部と、前記直線部の下流側に設けられ、前記直線部の横断面形状を前記直線方向に沿って投影した場合に前記排気浄化部の上流側端面において前記横断面形状が投影されない部分に前記排気ガスを導くための拡散部と、を備えている、
内燃機関の排気系構造。
An exhaust passage provided so that exhaust gas from the internal combustion engine flows along a linear direction, and an exhaust purification unit provided on the downstream side of the exhaust passage and purifying the exhaust gas that has passed through the exhaust passage. ,
The axis of the exhaust purification unit is inclined with respect to the linear direction,
The exhaust passage is provided on the downstream side of the straight portion and the straight portion, and when the cross-sectional shape of the straight portion is projected along the straight direction, the cross-sectional shape on the upstream end surface of the exhaust purification portion A diffusion portion for guiding the exhaust gas to a portion where is not projected,
The exhaust system structure of an internal combustion engine.
前記排気浄化部の上流側端面に投影される前記横断面形状の像の縁部と、前記排気浄化部の上流側端面の縁部とが、少なくとも一点において一致する、
請求項1に記載の内燃機関の排気系構造。
The edge of the image of the cross-sectional shape projected on the upstream end surface of the exhaust purification unit coincides with the edge of the upstream end surface of the exhaust purification unit at least at one point.
The exhaust system structure of the internal combustion engine according to claim 1.
前記拡散部における前記上流側端面との対向面と、前記上流側端面との距離は、一定である、
請求項1に記載の内燃機関の排気系構造。
The distance between the surface facing the upstream end surface in the diffusion portion and the upstream end surface is constant.
The exhaust system structure of the internal combustion engine according to claim 1.
前記拡散部における前記上流側端面との対向面と、前記上流側端面との距離は、前記投影される像から離れるにしたがって小さくなる、
請求項1に記載の内燃機関の排気系構造。
The distance between the surface facing the upstream end face in the diffusing portion and the upstream end face decreases as the distance from the projected image decreases.
The exhaust system structure of the internal combustion engine according to claim 1.
JP2016220823A 2016-11-11 2016-11-11 Exhaust system structure for internal combustion engine Pending JP2018076852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016220823A JP2018076852A (en) 2016-11-11 2016-11-11 Exhaust system structure for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016220823A JP2018076852A (en) 2016-11-11 2016-11-11 Exhaust system structure for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2018076852A true JP2018076852A (en) 2018-05-17

Family

ID=62150436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016220823A Pending JP2018076852A (en) 2016-11-11 2016-11-11 Exhaust system structure for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2018076852A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383416U (en) * 1986-11-21 1988-06-01
JPH0195523U (en) * 1987-12-17 1989-06-23
JP2001073751A (en) * 1999-09-03 2001-03-21 Daihatsu Motor Co Ltd Catalytic exhaust gas purifier of internal combustion engine
JP2004332607A (en) * 2003-05-07 2004-11-25 Sango Co Ltd Exhaust emission control device for internal combustion engine
JP2006077675A (en) * 2004-09-09 2006-03-23 Isuzu Motors Ltd Induction structure and exhaust emission control device
JP2008248814A (en) * 2007-03-30 2008-10-16 Nissan Motor Co Ltd Exhaust gas passage structure
JP2011074895A (en) * 2009-10-01 2011-04-14 Yanmar Co Ltd Engine having deodorizing catalyst unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383416U (en) * 1986-11-21 1988-06-01
JPH0195523U (en) * 1987-12-17 1989-06-23
JP2001073751A (en) * 1999-09-03 2001-03-21 Daihatsu Motor Co Ltd Catalytic exhaust gas purifier of internal combustion engine
JP2004332607A (en) * 2003-05-07 2004-11-25 Sango Co Ltd Exhaust emission control device for internal combustion engine
JP2006077675A (en) * 2004-09-09 2006-03-23 Isuzu Motors Ltd Induction structure and exhaust emission control device
JP2008248814A (en) * 2007-03-30 2008-10-16 Nissan Motor Co Ltd Exhaust gas passage structure
JP2011074895A (en) * 2009-10-01 2011-04-14 Yanmar Co Ltd Engine having deodorizing catalyst unit

Similar Documents

Publication Publication Date Title
KR101758217B1 (en) Reducing agent mixing apparatus having liquid drop preventing function
US20150260072A1 (en) Integrated exhaust treatment device having compact configuration
US10557398B2 (en) Exhaust pipe structure for internal combustion engine
JP5890661B2 (en) Exhaust purification equipment
KR20130140014A (en) Motor vehicle exhaust line
JP2018096345A (en) Exhauster for engine
JP2008138654A (en) Exhaust emission control device
JP2016188579A (en) Exhaust emission control unit
JP2009013927A (en) Exhaust emission control device
JP2016205188A (en) Exhaust emission control unit
JP2018076852A (en) Exhaust system structure for internal combustion engine
JP5553562B2 (en) Exhaust purification device
JP2009013862A (en) Exhaust emission control device of internal combustion engine
JP6306428B2 (en) Exhaust purification device
JP2018076854A (en) Exhaust system structure for internal combustion engine
JP6729721B2 (en) Engine exhaust system
JP2018076853A (en) Exhaust system structure for internal combustion engine
JP2018091152A (en) Exhaust system structure for internal combustion engine
JP6816457B2 (en) Exhaust system structure of internal combustion engine
JP2018123788A (en) Exhaust emission control device
JP6816458B2 (en) Exhaust system structure of internal combustion engine
JP2018076851A (en) Exhaust system structure for internal combustion engine
JP2017155695A (en) Exhaust emission control device of internal combustion engine
JP2018071353A (en) Exhaust system structure for internal combustion engine
JP6752733B2 (en) Exhaust purification device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190612

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210511