JP2018075580A - Manufacturing method of brazing joint and brazing joint - Google Patents
Manufacturing method of brazing joint and brazing joint Download PDFInfo
- Publication number
- JP2018075580A JP2018075580A JP2016217204A JP2016217204A JP2018075580A JP 2018075580 A JP2018075580 A JP 2018075580A JP 2016217204 A JP2016217204 A JP 2016217204A JP 2016217204 A JP2016217204 A JP 2016217204A JP 2018075580 A JP2018075580 A JP 2018075580A
- Authority
- JP
- Japan
- Prior art keywords
- brazing
- value
- metal member
- joint
- foil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
Description
本発明は、ろう継手の製造方法およびろう継手に関し、例えば、オーステナイト系ステンレス鋼を用いて成る2つ以上の金属部材を硼素(B)を含むろう箔を用いて接合するろう継手の製造方法、および、オーステナイト系ステンレス鋼を用いて成る2つ以上の金属部材がBを含むろう層を介して接合されているろう継手に関する。 The present invention relates to a brazing joint manufacturing method and a brazing joint, for example, a brazing joint manufacturing method in which two or more metal members made of austenitic stainless steel are joined using a brazing foil containing boron (B), The present invention also relates to a brazed joint in which two or more metal members made of austenitic stainless steel are joined via a brazing layer containing B.
例えば、自動車等の排気ガス再循環装置(Exhaust Gas Recirculation System)の熱交換器(EGRクーラ)などにおいて、オーステナイト系ステンレス鋼を用いて成る金属部材(被接合材)がろう材を用いて接合(ろう付け)されて形成されたろう継手が多く用いられている。かかるろう継手に用いるろう材として、Ni系のろう材が多く使用されている。かかるNi系のろう部材では、主成分であるNiに対し、低融点化によるろう付け温度低減の目的でBが添加されることがある。例えば、JISやAWSで規格化されているBNi−2は2.75質量%以上3.50質量%以下のBを含む代表的なNi系のろう材である。 For example, in a heat exchanger (EGR cooler) of an exhaust gas recirculation system (exhaust gas recirculation system) of an automobile or the like, a metal member (joined material) made of austenitic stainless steel is joined using a brazing material ( A brazed joint formed by brazing is often used. As a brazing material used for such a brazed joint, a Ni-based brazing material is often used. In such a Ni-based brazing member, B may be added to Ni as the main component for the purpose of reducing the brazing temperature by lowering the melting point. For example, BNi-2 standardized by JIS and AWS is a typical Ni-based brazing material containing B of 2.75% by mass or more and 3.50% by mass or less.
また、上述したBNi−2の他、例えば、特許文献1にはステンレス鋼を用いて成る金属部材のろう付けに有用な1.1質量%以上1.3質量%以下のBを含むNi(ニッケル)−Cr(クロム)−Si(珪素)−B系の箔状のろう材(ろう箔)が開示され、特許文献2には0.1質量%以上3.8質量%以下のBを含むNi−Cr−Si−B−P系の箔状のろう材(ろう箔)が開示され、特許文献3には0質量%以上5.4質量%以下のBを含むNi−Cr−Si−B−P−Fe(鉄)系の箔状のろう材(ろう箔)が開示され、並びに、特許文献4には0.8質量%以上1.1質量%以下のBを含むNi−Cr−Si−B−P−Fe−Mo(モリブデン)−Cu(銅)系の箔状のろう材(ろう箔)が開示されている。 In addition to the above-mentioned BNi-2, for example, Patent Document 1 discloses Ni (nickel) containing 1.1 mass% or more and 1.3 mass% or less of B which is useful for brazing a metal member made of stainless steel. ) -Cr (chromium) -Si (silicon) -B-based foil-like brazing material (brazing foil) is disclosed, and Patent Document 2 discloses Ni containing 0.1 mass% or more and 3.8 mass% or less of B. -Cr-Si-B-P-based foil-like brazing material (brazing foil) is disclosed, and Patent Document 3 discloses Ni-Cr-Si-B- containing 0 mass% or more and 5.4 mass% or less of B. P-Fe (iron) -based foil-like brazing material (brazing foil) is disclosed, and Patent Document 4 includes Ni-Cr-Si- containing 0.8 mass% or more and 1.1 mass% or less of B. A BP-Fe-Mo (molybdenum) -Cu (copper) -based foil-like brazing material (brazing foil) is disclosed.
耐食性が良好なオーステナイト系ステンレス鋼を用いて成る金属部材(被接合材)がBを含むろう材(ろう箔)を用いて接合されて形成されたろう継手は、ろう材の溶融および凝固によって形成されたろう層を有し、金属部材はろう層に隣接してCr系硼化物を含む拡散領域を有するものとなる。これは、ろう付けの際の加熱により、ろう材に含まれるBが金属部材の内部へ拡散して拡散領域が形成され、拡散したBが金属部材に含まれるCrと結び付いてCr系硼化物が形成されることによる。かかるCr系硼化物を有すると、その周囲のCrが消費されてCr欠乏領域が形成される。耐食性が良好なオーステナイト系ステンレス鋼といえども例えば硫酸性雰囲気に暴露されると腐食を受けるが、かかるCr欠乏領域が表面から内部へ連続的に分布する組織形態を有するろう継手の例えば硫酸耐食性は特に低下する。 A brazed joint formed by joining a metal member (bonded material) made of austenitic stainless steel with good corrosion resistance using a brazing material (brazing foil) containing B is formed by melting and solidifying the brazing material. The metal member has a diffusion region containing a Cr-based boride adjacent to the brazing layer. This is because the B contained in the brazing material diffuses into the interior of the metal member due to heating during brazing and a diffusion region is formed, and the diffused B is combined with Cr contained in the metal member to form a Cr-based boride. By being formed. When such a Cr-based boride is included, the surrounding Cr is consumed and a Cr-deficient region is formed. Even austenitic stainless steel with good corrosion resistance is corroded when exposed to, for example, a sulfuric acid atmosphere, but for example, the sulfuric acid corrosion resistance of a brazed joint having a structure morphology in which such Cr-deficient regions are continuously distributed from the surface to the inside is In particular, it decreases.
本発明は、オーステナイト系ステンレス鋼を用いて成る金属部材がBを含むろう箔を用いて接合されているろう継手の硫酸耐食性の向上を目的とし、そのために好適なろう継手の製造方法、および、その方法を用いて得られるろう継手を提供する。 The present invention aims to improve sulfuric acid corrosion resistance of a brazed joint in which a metal member made of austenitic stainless steel is joined using a brazing foil containing B, and a method for producing a brazed joint suitable for the purpose, and A brazed joint obtained by using the method is provided.
本発明者は、上述した課題の解決策を検討する過程で、上述した拡散領域におけるCr系硼化物の分布形態に着目した。そして、前記金属部材の前記ろう層に隣接するCr系硼化物を含む拡散領域の特に前記ろう層に近接するろう層近接拡散領域におけるCr系硼化物の分布を特定の形態に制御することにより、かかる制御を行ったろう継手の硫酸耐食性が向上することを見出し、本発明に到達した。 The present inventor paid attention to the distribution form of the Cr-based boride in the diffusion region in the process of examining the solution to the above-described problem. And by controlling the distribution of the Cr-based boride in the diffusion region adjacent to the brazing layer in the diffusion region containing the Cr-based boride adjacent to the brazing layer of the metal member to a specific form, The inventors have found that the sulfuric acid corrosion resistance of the brazed joint subjected to such control is improved, and reached the present invention.
すなわち、本発明のろう継手の製造方法は、オーステナイト系ステンレス鋼を用いて成る第1の金属部材と、オーステナイト系ステンレス鋼を用いて成る第2の金属部材とを、0.30質量%以上6.0質量%以下の硼素(B)を含むNi基アモルファス合金またはFe基アモルファス合金から成るろう箔を用いて接合して形成するろう継手の製造方法であって、前記ろう箔を加熱して溶融ろうにする加熱工程と、前記溶融ろうを冷却して凝固させる冷却工程とを含む熱処理工程を有し、前記熱処理工程における保持温度および保持時間を、T(t)を前記ろう箔の加熱を開始からt時間後の前記金属部材の温度とし、Tsを前記ろう箔の固相線温度とし、t0をT(t)がTsに達したときの時間とし、t1をT(t)がTsを超えた後に再びTsに達したときの時間としたとき、t0からt1の区間においてJ=∫〔T(t)・1/(t―t0)〕dtで得られるJ値が1/J≦1.0×10−4[K・log(秒)]−1を満足する範囲で選択する方法である。 That is, in the method for producing a brazed joint of the present invention, the first metal member made of austenitic stainless steel and the second metal member made of austenitic stainless steel are 0.30% by mass or more 6 A method for manufacturing a brazed joint formed by joining using a brazing foil made of a Ni-based amorphous alloy or Fe-based amorphous alloy containing boron (B) of 0.0 mass% or less, wherein the brazing foil is heated and melted A heat treatment step including a heating step for brazing and a cooling step for cooling and solidifying the molten wax, and the heating temperature and holding time in the heat treatment step are set to T (t), and the heating of the brazing foil is started. T is the solidus temperature of the brazing foil, t0 is the time when T (t) reaches Ts, and t1 is greater than Ts. After And the time when reaching Ts, the J value obtained by J = ∫ [T (t) · 1 / (t−t0)] dt in the interval from t0 to t1 is 1 / J ≦ 1.0 × 10 −4 [K · log (seconds)] This is a method of selecting within a range satisfying −1 .
上述した本発明のろう継手の製造方法を用いて、硫酸耐食性に優れたろう継手を得ることができる。すなわち、本発明のろう継手は、オーステナイト系ステンレス鋼を用いて成る第1の金属部材と、オーステナイト系ステンレス鋼を用いて成る第2の金属部材とが、硼素(B)を含むろう層を介して接合されているろう継手であって、前記金属部材の前記ろう層に隣接するCr系硼化物を含む拡散領域において、前記ろう層に対して実質的に平行となる方向であって、前記平行となる方向を長手方向として前記ろう層に近接する前記Cr系硼化物がより高濃度であるろう層近接拡散領域を含むように所定の幅の領域を測定範囲として設定し、かつ、Lを、前記測定範囲の前記長手方向における基点と終点を結ぶ線分であって、前記測定範囲において均等性をもって設定された線分LSj(j=1〜m、mは1以上の整数)の長さとし、Liをj本目の線分LSj上における基点からi番目のCr系硼化物の線分LDj上の長さとし、n(1以上の整数)をj本目の線分LSj上において計数されたCr系硼化物の個数としたときに、λj=(L―ΣLi)/nによって求まるj個のλj値の平均値であるλ値がλ≧10μmを満足するものである。 A brazed joint excellent in sulfuric acid corrosion resistance can be obtained by using the above-described method for producing a brazed joint of the present invention. That is, in the brazed joint of the present invention, the first metal member made of austenitic stainless steel and the second metal member made of austenitic stainless steel are interposed via a brazing layer containing boron (B). And in a diffusion region including a Cr-based boride adjacent to the brazing layer of the metal member, the brazing joint being in a direction substantially parallel to the brazing layer, A region having a predetermined width is set as a measurement range so as to include a brazing layer adjacent diffusion region in which the Cr-based boride adjacent to the brazing layer has a higher concentration with the direction to be the longitudinal direction, and L is The length of the line segment LSj (j = 1 to m, m is an integer of 1 or more), which is a line segment connecting the base point and the end point in the longitudinal direction of the measurement range, and is set with uniformity in the measurement range, Li The length of the i-th Cr-based boride on the line segment LDj from the base point on the first line segment LSj, and n (an integer of 1 or more) is the number of Cr-based borides counted on the j-th line segment LSj. In this case, the λ value that is an average value of j λj values obtained by λj = (L−ΣLi) / n satisfies λ ≧ 10 μm.
本発明によれば、オーステナイト系ステンレス鋼を用いて成る金属部材がBを含むろう箔を用いて接合されているろう継手の硫酸耐食性を向上させることができる。 ADVANTAGE OF THE INVENTION According to this invention, the sulfuric acid corrosion resistance of the brazing joint in which the metal member using austenitic stainless steel is joined using the brazing foil containing B can be improved.
本発明のろう継手の製造方法は、オーステナイト系ステンレス鋼を用いて成る第1の金属部材と、オーステナイト系ステンレス鋼を用いて成る第2の金属部材とを、0.30質量%以上6.0質量%以下のB(硼素)を含むNi基アモルファス合金またはFe基アモルファス合金から成るろう箔を用いて接合して形成する方法である。 In the method for producing a brazed joint of the present invention, a first metal member made of austenitic stainless steel and a second metal member made of austenitic stainless steel are 0.30% by mass or more and 6.0. This is a method of joining by using a brazing foil made of a Ni-based amorphous alloy or Fe-based amorphous alloy containing B (boron) in an amount of mass% or less.
被接合材となるオーステナイト系ステンレス鋼は、ろう継手の被接合材として多用されるフェライト系ステンレス鋼よりも高い耐食性を有する。また、0.30質量%以上6.0質量%以下のBを含むNi基アモルファス合金またはFe基アモルファス合金から成るろう箔は、冷却したロールの表面上に溶湯を噴射して高速冷却する製法で、単ロール法、液体急冷法、メルトスパン法、メルトスピニング法などと呼ばれる一般的な超急冷法によって連続的に形成することが容易であり、一般的に成形性が良好な延性を有するアモルファス組織を有する箔となる。 The austenitic stainless steel to be joined has higher corrosion resistance than the ferritic stainless steel frequently used as the joined material for the brazed joint. Moreover, the brazing foil made of Ni-based amorphous alloy or Fe-based amorphous alloy containing B of 0.30 mass% or more and 6.0 mass% or less is a manufacturing method in which a molten metal is injected onto the surface of a cooled roll and cooled at high speed. It is easy to form continuously by a general ultra-quenching method called single roll method, liquid quenching method, melt span method, melt spinning method, etc. It becomes the foil which has.
NiやFeは、Coよりも安価で、アモルファス合金の基として一般的に用いられており、Niを50質量%以上含む場合をNi基といい、Feを50質量%以上含む場合をFe基という。Bが0.30質量%未満であってもアモルファス合金から成るろう箔を形成することができた場合は、本発明の適用により硫酸耐食性が良好なろう継手が得られる可能性がある。なお、Bが6.0質量%を超えるようになると、過剰なCr系硼化物の生成が予測されるため、ろう継手の硫酸耐食性が劣化する恐れがある。また、例えば厚さが10μm以上30μm以下のろう箔は、そのハンドリングが容易であるとともに、被接合材の接合表面に適した形状に加工することが、例えば打抜き加工や折り曲げ加工などにより容易である。一般的に、Bを含むろう箔は、Bを0.30質量%以上6.0質量%以下の範囲で含有していない場合は、アモルファル組織の形成に影響が及んで脆化しやすくなるので、上述した一般的な超急冷法による形成が困難になる。 Ni and Fe are cheaper than Co and are generally used as the base of amorphous alloys. A case where Ni is contained in an amount of 50% by mass or more is referred to as a Ni group, and a case where Ni is contained in an amount of 50% by mass or more is referred to as an Fe group. . If a brazing foil made of an amorphous alloy can be formed even if B is less than 0.30% by mass, there is a possibility that a brazed joint with good sulfuric acid corrosion resistance can be obtained by applying the present invention. If B exceeds 6.0% by mass, the formation of excess Cr-based borides is predicted, so that the sulfuric acid corrosion resistance of the brazed joint may be deteriorated. Further, for example, a brazing foil having a thickness of 10 μm or more and 30 μm or less is easy to handle and can be easily processed into a shape suitable for the bonding surface of the material to be bonded by, for example, punching or bending. . In general, when the brazing foil containing B does not contain B in the range of 0.30 mass% or more and 6.0 mass% or less, the formation of the amorphal structure is affected, and thus the brittle foil tends to become brittle. Formation by the above-mentioned general super rapid cooling method becomes difficult.
本発明のろう継手の製造方法では、従来と同様に、ろう箔を加熱して溶融ろうにする加熱工程と、溶融ろうを冷却して凝固させる冷却工程とを含む熱処理工程により、ろう付けを行う。この熱処理工程における保持温度および保持時間は、従来から経験的に選択されてきたが、本発明では所定の判断基準に従って選択する。具体的には、熱処理工程における保持温度および保持時間を、T(t)をろう箔の加熱を開始してからt時間後の金属部材の温度とし、Tsをろう箔の固相線温度とし、t0をT(t)がTsに達したときの時間とし、t1をT(t)がTsを超えた後再びTsに達したときの時間としたとき、t0からt1の区間においてJ=∫〔T(t)・1/(t―t0)〕dtによって求まるJ値が1/J≦1.0×10−4[K・log(秒)]−1を満足する範囲で選択する。なお、後述する実測値を用いたJ値の算定に際しては、保持時間が十分に長く昇温および降温に要する時間の実質的影響がないと判断できる場合は、J値を求める上記の数式において、t0からt1の間のヒートパターンを矩形線に近似(矩形パターン化)し、t0からt1を積分範囲として計算を単純化することができる。なお、J値は、[log(秒)]が無次元であるため、その単位は[K](ケルビン)となる。 In the method for producing a brazed joint of the present invention, brazing is performed by a heat treatment step including a heating step for heating and brazing the brazing foil and a cooling step for cooling and solidifying the brazing brazing as in the conventional method. . The holding temperature and holding time in this heat treatment step have been selected empirically in the past, but in the present invention, they are selected according to a predetermined criterion. Specifically, the holding temperature and holding time in the heat treatment step, T (t) is the temperature of the metal member after t hours from the start of the heating of the brazing foil, Ts is the solidus temperature of the brazing foil, When t0 is the time when T (t) reaches Ts and t1 is the time when T (t) reaches Ts again after T (t) exceeds Ts, in the interval from t0 to t1, J = ∫ [ T (t) · 1 / (t−t0)] The J value obtained by dt is selected within a range satisfying 1 / J ≦ 1.0 × 10 −4 [K · log (seconds)] − 1 . In calculating the J value using the actual measurement value described later, if it can be determined that the holding time is sufficiently long and there is no substantial influence of the time required for temperature increase and decrease, in the above formula for calculating the J value, The heat pattern between t0 and t1 can be approximated to a rectangular line (rectangular pattern), and the calculation can be simplified with t0 to t1 as the integration range. In addition, since [log (second)] is dimensionless, the unit of the J value is [K] (Kelvin).
本発明における重要な特徴は、ろう付けを行う熱処理条件(保持温度、保持時間)の選定に際して、J値(ろう付けパラメータ)を導入し、その逆数である1/J値を判断基準として採用したことである。ろう付けの熱処理条件(保持温度、保持時間)を、1/J≦1.0×10−4[K・log(秒)]−1を満足する範囲で選択することにより、被接合材である金属部材のろう層に隣接するCr系硼化物を含む拡散領域において、特にろう層に近接するCr系硼化物がより高濃度になりやすいろう層近接拡散領域において、Cr系硼化物の分布形態が好適化される。具体的には、ろう継手のろう層近接拡散領域におけるCr系硼化物の分布形態が、後述するj本目の線分LSj上におけるλj=(L―ΣLi)/nによって求まるj個のλj値の平均値であるλ値がλ≧10μmを満足するように形成される。 An important feature of the present invention is that when selecting the heat treatment conditions (holding temperature, holding time) for brazing, a J value (brazing parameter) is introduced, and the inverse 1 / J value is adopted as a criterion. That is. By selecting the brazing heat treatment conditions (holding temperature, holding time) within a range satisfying 1 / J ≦ 1.0 × 10 −4 [K · log (second)] −1 , the material to be joined is obtained. In the diffusion region including the Cr-based boride adjacent to the brazing layer of the metal member, particularly in the brazing layer adjacent diffusion region in which the Cr-based boride adjacent to the brazing layer tends to have a higher concentration, the distribution pattern of the Cr-based boride is Optimized. Specifically, the distribution pattern of the Cr-based boride in the brazing layer adjacent diffusion region of the brazing joint is represented by j λj values obtained by λj = (L−ΣLi) / n on the j-th line segment LSj described later. The average value λ is formed so as to satisfy λ ≧ 10 μm.
上述したようにBを含むろう箔を用いてオーステナイト系ステンレス鋼を用いて成る金属部材をろう接合すると、ろう箔の溶融によりBが金属部材の内部に拡散する。このときに、高Bろう箔(例えば4.0質量%〜6.0質量%のBを含むろう箔)では、Bが金属部材の内部で所定の濃度に均等化するような挙動を示し、Bの拡散領域がより広範になる傾向がある。そのため、高Bろう箔だからといって、ろう継手のろう層近接拡散領域にBが留まってCr系硼化物の濃度が高まってしまうとは限らない。かかる特質を考慮し、上述したようにろう付けの熱処理条件を適切に制御することにより、ろう継手のろう層近接拡散領域におけるCr系硼化物の分布形態を好適化することができる。また、低Bろう箔(例えば0.30質量%〜2.0質量%のBを含むろう箔)では、高Bろう箔と同様にBが金属部材の内部で所定の濃度に均等化するような挙動を示すが、供給可能なB量が少ないことに起因してBの拡散領域が小さくなる傾向がある。この低Bろう箔においても、ろう付けの熱処理条件を適切に制御することにより、ろう継手のろう層近接拡散領域におけるCr系硼化物の分布形態を好適化することができる。 As described above, when a metal member made of austenitic stainless steel is brazed using a brazing foil containing B, B diffuses into the metal member due to melting of the brazing foil. At this time, in a high-B brazing foil (for example, a brazing foil containing 4.0% by mass to 6.0% by mass of B), the behavior is such that B is equalized to a predetermined concentration inside the metal member, The diffusion region of B tends to be wider. Therefore, just because it is a high-B brazing foil, B does not always remain in the brazing layer adjacent diffusion region of the brazing joint and the concentration of the Cr boride does not increase. Considering such characteristics, by appropriately controlling the heat treatment conditions for brazing as described above, it is possible to optimize the distribution form of the Cr-based boride in the brazing layer adjacent diffusion region of the brazing joint. Further, in a low B brazing foil (for example, a brazing foil containing 0.30% by mass to 2.0% by mass of B), B is equalized to a predetermined concentration inside the metal member as in the high B brazing foil. However, the diffusion region of B tends to be small due to the small amount of B that can be supplied. Even in this low-B brazing foil, the distribution form of the Cr-based boride in the brazing layer adjacent diffusion region of the brazing joint can be optimized by appropriately controlling the heat treatment conditions for brazing.
こうした観点から、例えば2.0質量%〜4.0質量%のBを含むろう箔では、ろう付けの熱処理条件の影響を強く受けて、金属部材の内部に拡散するBの挙動が不安定になりやすいと考えられる。したがって、例えば2.0質量%〜4.0質量%のBを含むろう箔では、Bの拡散の影響を強く受けるCr系硼化物の分布形態のろう付けの熱処理条件に対する感受性が高いと考えられる。こうした観点から、ろう箔に例えば2.0質量%〜4.0質量%のBが含まれている場合は、ろう付けの熱処理条件の影響を強く受けて敏感に反応し、金属部材の内部に拡散するBの挙動が不安定になりやすいと考えられる。 From such a viewpoint, for example, in a brazing foil containing 2.0% by mass to 4.0% by mass of B, the behavior of B diffusing into the metal member is unstable due to the strong influence of the heat treatment conditions of brazing. It seems to be easy to become. Therefore, for example, in a brazing foil containing 2.0% by mass to 4.0% by mass of B, it is considered that the distribution form of Cr boride strongly influenced by the diffusion of B is highly sensitive to the heat treatment conditions of brazing. . From such a viewpoint, when 2.0% by mass to 4.0% by mass of B is contained in the brazing foil, for example, it reacts sensitively under the influence of the heat treatment conditions of brazing, and enters the inside of the metal member. It is considered that the behavior of diffusing B tends to be unstable.
本発明においてJ値(ろう付けパラメータ)は、硫酸耐食性が良好なろう継手を得るために重要な熱処理における保持温度および保持時間を選択する際の指標となる値である。そして、本発明では、かかる保持温度および保持時間を選択する判断基準(閾値)としてJ値の逆数である1/J値を採用し、1/J≦1.0×10−4[K・log(秒)]−1を満足する範囲で選択する。1/J値が上記を満足する範囲で選択する理由は、1/J値が1.0×10−4[K・log(秒)]−1を超えたろう継手において、拡散領域におけるCr系硼化物の分布形態に係るλ値が10μm未満に低下する場合が確認され、そのλ値の低下に起因してろう継手の硫酸腐食による最大浸食深さが0.10mmを超える場合が確認されたためである。この点は、詳しく後述する。なお、1/J値を採用した理由は、絶対温度の逆数と同様に、入熱に対する直線性が保たれるので、J値を用いるよりも簡明だからである。 In the present invention, the J value (brazing parameter) is a value that serves as an index for selecting the holding temperature and holding time in heat treatment important for obtaining a brazed joint with good sulfuric acid corrosion resistance. In the present invention, the 1 / J value that is the reciprocal of the J value is adopted as a criterion (threshold) for selecting the holding temperature and holding time, and 1 / J ≦ 1.0 × 10 −4 [K · log. (Seconds)] Select within a range satisfying -1 . The reason why the 1 / J value is selected within the range satisfying the above is that, in a brazed joint having a 1 / J value exceeding 1.0 × 10 −4 [K · log (second)] −1 , Cr-based boron in the diffusion region is selected. It was confirmed that the λ value related to the distribution form of the chemical compound was reduced to less than 10 μm, and it was confirmed that the maximum erosion depth due to sulfuric acid corrosion of the brazed joint exceeded 0.10 mm due to the decrease in the λ value. is there. This point will be described in detail later. The reason why the 1 / J value is used is that, as is the case with the reciprocal of the absolute temperature, linearity with respect to heat input is maintained, so that it is simpler than using the J value.
以下、熱処理における保持温度および保持時間を決める方法を含め、本発明について詳細に説明する。
本発明における1/J値は、例えば、ろう付けに用いるろう箔の融点を超える例えばTs(固相線温度)+50℃〜150℃の範囲で保持温度を設定し、そのときの保持時間を十分に長く例えば3h〜5hの範囲で設定したヒートパターンによる熱処理試験を行い、あるいは、かかるろう箔の融点を十分に超える例えばTs+150℃〜450℃の範囲で保持温度を設定し、そのときの保持時間を短く例えば0.1分〜60分の範囲で設定したヒートパターンによる熱処理試験を行い、その試験データからJ値を求める方法によって求めることができる。そして、かかる所望の保持温度に適合する保持時間は、かかる方法で求めた1/J値を判断基準として決定することができる。
Hereinafter, the present invention will be described in detail including a method for determining the holding temperature and holding time in the heat treatment.
In the present invention, the 1 / J value is set, for example, in the range of Ts (solidus temperature) + 50 ° C. to 150 ° C. exceeding the melting point of the brazing foil used for brazing, and the holding time at that time is sufficient. For example, a heat treatment test with a heat pattern set in the range of 3 h to 5 h is performed, or the holding temperature is set in a range of Ts + 150 ° C. to 450 ° C., for example, which sufficiently exceeds the melting point of the wax foil, and the holding time at that time Can be obtained by a method of performing a heat treatment test with a heat pattern set in a range of 0.1 minutes to 60 minutes, for example, and obtaining a J value from the test data. The holding time suitable for the desired holding temperature can be determined using the 1 / J value obtained by this method as a criterion.
例えば、熱処理試験は、被接合材となる2つの金属部材の間にろう箔が挟持されたもの(試験体)と、その試験体と同等サイズのダミー材とを熱処理炉内に配置し、真空雰囲気(約2×10−3Pa〜約5×10−3Pa)で、所望のヒートパターンを設定して行うことができる。なお、試験体の実温は、例えばシース熱電対を取り付けて測定したダミー材の実温で代替してよい。ヒートパターンは、例えばろう箔の融点(本発明では固相線温度を採用する)が1000℃であった場合は、保持温度を例えば1280℃とし、昇温速度および降温速度を例えば80℃/分(約1.3℃/秒)とし、所定の保持温度に昇温後の保持時間を十分な余裕を持つように例えば270分(16200秒)とし、その後の降温過程では約400℃に達したら窒素ガスで衝風冷却を行うように設定できる。 For example, in the heat treatment test, a brazing foil is sandwiched between two metal members to be bonded (test body) and a dummy material having the same size as the test body is placed in a heat treatment furnace and vacuum is applied. A desired heat pattern can be set in an atmosphere (about 2 × 10 −3 Pa to about 5 × 10 −3 Pa). In addition, you may substitute the actual temperature of a test body with the actual temperature of the dummy material measured, for example by attaching a sheath thermocouple. For example, when the melting point of the wax foil (in the present invention, the solidus temperature is adopted) is 1000 ° C., the holding temperature is set to, for example, 1280 ° C., and the heating rate and the cooling rate are set to, for example, 80 ° C./min. (About 1.3 ° C./second), for example, 270 minutes (16200 seconds) so that the holding time after raising the temperature to a predetermined holding temperature has a sufficient margin, and in the subsequent temperature lowering process, when it reaches about 400 ° C. It can be set to perform blast cooling with nitrogen gas.
本発明における1/J値は、上述した熱処理試験において、ダミー材の温度変化を昇温開始から例えば20秒刻みに記録し、その試験データに基づいてJ値を求め、そのJ値を逆数に変換する方法により求めることができる。例えば、図1は、上述した熱処理試験に基づいてJ値を求めた試験データの一例である。図1中に示すダミー材の温度T(t)℃の変化パターンは、t=0秒でT(0)=20℃(室温)のときに昇温(加熱)を開始し、t=t0秒でT(t0)=Ts(固相線温度)に達し、さらに昇温してt=t0秒+α0〜t1秒−α1の間はT(t)=T(t1)=Th(保持温度)で保持され、その後に降温してt=t1秒で再びT(t1)=Tsに達し、その後は室温に向けて降温する。なお、J値を求めるに際して、保持時間を有意に長く(図1に示すパターンでは約20000秒)し、T(t)=Thである保持時間と、Ts(t0秒)を超えて再びTs(t1秒)に達する所要時間との差の実質的な影響を抑制し、上記のα0およびα1を0秒と見做せるようにした。 In the heat treatment test described above, the 1 / J value in the present invention records the temperature change of the dummy material in increments of 20 seconds, for example, in increments of 20 seconds, obtains the J value based on the test data, and reciprocates the J value. It can be determined by the conversion method. For example, FIG. 1 is an example of test data obtained for the J value based on the heat treatment test described above. The change pattern of the temperature T (t) ° C. of the dummy material shown in FIG. 1 starts the temperature rise (heating) when t = 0 seconds and T (0) = 20 ° C. (room temperature), and t = t 0 seconds. T (t0) = Ts (solidus temperature), and the temperature is further raised, and during t = t0 seconds + α0 to t1 seconds−α1, T (t) = T (t1) = Th (holding temperature) Then, the temperature is lowered, and T (t1) = Ts is reached again at t = t1 seconds, and then the temperature is lowered toward room temperature. When obtaining the J value, the holding time is significantly increased (about 20000 seconds in the pattern shown in FIG. 1), and the holding time T (t) = Th and again exceeds Ts (t0 seconds) and Ts ( The substantial influence of the difference from the required time to reach (t1 seconds) is suppressed, and the above α0 and α1 can be regarded as 0 seconds.
したがって、本発明においてJ値を求めるに際しては、ダミー材のt=t0秒〜t1秒のTs℃〜Th℃〜Ts℃の間の温度T(t)の変化を、積分区間をt0秒からt1秒としたJ=∫T(t)×1/(t―t0)×dt[K・log(秒)]にしたがう。この際に、図1中に示すように矩形パターンに置換して単純化することにより、J=(Th−Ts)/(t1−t0)[K・log(秒)]により容易にJ値を求めることができる。 Therefore, in obtaining the J value in the present invention, the change of the temperature T (t) between Ts ° C. to Th ° C. to Ts ° C. of the dummy material from t = t0 seconds to t1 seconds is represented by the integration interval from t0 seconds to t1. According to J = ∫T (t) × 1 / (t−t0) × dt [K · log (seconds)]. At this time, as shown in FIG. 1, by replacing with a rectangular pattern and simplifying, the J value can be easily obtained by J = (Th−Ts) / (t1−t0) [K · log (seconds)]. Can be sought.
上述したろう付けを行う熱処理条件(保持温度、保持時間)の選定に係る1/J値の閾値(1.0×10−4[K・log(秒)]−1)の決定に際しては、オーステナイト系ステンレス鋼を用いて成る第1の金属部材と、オーステナイト系ステンレス鋼を用いて成る第2の金属部材とを、Bを含むろう材を用いて熱処理(ろう接合)を行って幾つかのろう継手(試験体)を作製し、ろう継手の拡散領域におけるCr系硼化物の分布形態に係るλ値と、そのろう継手の硫酸腐食による最大浸食深さD値との関係性(図2参照)や、その熱処理(ろう接合)に基づいて求めた1/J値とD値との関係性(図3参照)を検討した。 In determining the 1 / J value threshold (1.0 × 10 −4 [K · log (seconds) −1 ) related to the selection of the heat treatment conditions (holding temperature and holding time) for performing the brazing described above, austenite A first metal member made of a stainless steel and a second metal member made of an austenitic stainless steel are subjected to heat treatment (brazing joint) using a brazing material containing B, and several solders A joint (test body) was prepared, and the relationship between the λ value related to the distribution of Cr boride in the diffusion region of the brazed joint and the maximum erosion depth D value due to sulfuric acid corrosion of the brazed joint (see FIG. 2) In addition, the relationship between the 1 / J value and the D value determined based on the heat treatment (brazing joining) (see FIG. 3) was examined.
1/J値を求めるに際して、ろう継手に用いる素材として、ろう継手の素材となる第1の金属部材と第2の金属部材には、入手が容易なオーステナイト系ステンレス鋼として代表的なSUS304から成り、全長が約25mmで、接合面の縦の長さが約35mmで横の長さが約10mmの直方体状のものを用いた。金属部材の接合面は、ペーパ研磨(#800)後にアセトン超音波洗浄を行った。また、ろう接合に用いるろう材には、メルトスピニング法で作製した幅方向の平均厚さが26μm〜42μmで、Bが0.02質量%〜3.12質量%で、固相線温度Tsが877℃〜992℃であって組成が異なるNi基アモルファス合金薄帯から選択し、その薄帯から金属部材の接合面に対応するサイズに切り出した長方形状のシート(ろう箔)を用いた。なお、上記の金属部材およびろう箔のサイズは一例であって、これに限定されるものではない。 When determining the 1 / J value, the first metal member and the second metal member used as the brazing joint material are made of SUS304, which is a typical austenitic stainless steel, which is easily available. A rectangular parallelepiped having a total length of about 25 mm, a vertical length of the joining surface of about 35 mm, and a horizontal length of about 10 mm was used. The joining surface of the metal member was subjected to acetone ultrasonic cleaning after paper polishing (# 800). In addition, the brazing material used for the brazing joint has an average thickness in the width direction of 26 μm to 42 μm produced by a melt spinning method, B is 0.02 mass% to 3.12 mass%, and the solidus temperature Ts is A rectangular sheet (wax foil) that was selected from Ni-based amorphous alloy ribbons having a composition of 877 ° C. to 992 ° C. and cut out from the ribbon to a size corresponding to the joint surface of the metal member was used. The sizes of the metal member and the brazing foil are examples, and are not limited thereto.
表1に、ろう継手の試作に用いたろう箔(No.1〜6)の化学成分(質量%)、固相線温度Ts(℃)、液相線温度Tl(℃)、幅方向の平均厚さ(μm)を示す。なお、表1に示すTs、Tlは、昇温速度を毎分5℃、10℃、20℃の3段階で変えて求めた各々の固相線と液相線の温度値をグラフ化し、そのグラフにおいて切片に対応する値を求めたものである。また、表1に示すNiには、不可避的に含まれてしまった不純物(微量元素)を含む。また、TsとTlは、DTA(Differential Thermal Analysis)によりアルゴンガス雰囲気で測定した。なお、ろう箔No.5は、Bが0.02質量%で本発明の範囲外であるが、アモルファル合金から成るろう箔として形成できたことから本発明の作用効果を奏する可能性があるため、上述したJ値の考え方を適用してもよい。 Table 1 shows the chemical composition (mass%), the solidus temperature Ts (° C), the liquidus temperature Tl (° C), and the average thickness in the width direction of the brazing foil (Nos. 1 to 6) used for the trial production of the brazed joint. (Μm). In addition, Ts and Tl shown in Table 1 are graphs of the temperature values of the respective solidus lines and liquidus lines obtained by changing the rate of temperature rise in 3 steps of 5 ° C, 10 ° C, and 20 ° C per minute. The value corresponding to the intercept in the graph is obtained. Further, Ni shown in Table 1 includes impurities (trace elements) that are inevitably included. Further, Ts and Tl were measured in an argon gas atmosphere by DTA (Differential Thermal Analysis). In addition, wax foil No. 5 is out of the scope of the present invention with B being 0.02% by mass, but since it could be formed as a brazing foil made of an amorphous alloy, the effects of the present invention may be obtained. You may apply ideas.
ろう継手の作製に際して、上述した第1の金属部材の接合面と第2の金属部材の接合面とでろう箔を挟持して仮組を行い、ろう継手の仮組品を作製した。そのろう継手の仮組品を熱処理炉(脱脂炉)内に配置し、アルゴンガス雰囲気で、昇温速度と降温速度を80℃/分、保持温度を500℃、保持時間を1hとして脱脂処理を行った。なお、脱脂処理は、金属部材やろう材の清浄度合いに応じて行えばよく、必ずしも行わなくてもよい。続いて、脱脂処理後のろう継手の仮組品を熱処理炉(ろう付け炉)内に配置し、ろう付け(ろう接合)のための熱処理を行った。熱処理は、真空雰囲気(約2×10−3Pa〜約5×10−3Pa)で、表1に示すTsが948℃〜992℃であることから保持温度を1280℃とし、昇温速度および降温速度を80℃/分とし、保持時間を270分(16200秒)とし、その後の降温過程では約400℃に達したときに窒素ガスで衝風冷却する、ヒートパターン(図1参照)で行った。これにより、図11(a)に示す、全長が約50mm(約25mm+ろう箔の厚さ+約25mm)で、ろう接合面の縦の長さが約35mmで横の長さが約10mmのろう継手10を得ることができる。 When producing the brazed joint, a temporary assembly was carried out by sandwiching the brazing foil between the joint surface of the first metal member and the joint surface of the second metal member described above, thereby producing a temporary assembly of the braze joint. The temporary assembly of the brazed joint is placed in a heat treatment furnace (degreasing furnace), and degreasing is performed in an argon gas atmosphere at a heating rate of 80 ° C./min, a holding temperature of 500 ° C., and a holding time of 1 h. went. Note that the degreasing treatment may be performed according to the degree of cleanliness of the metal member or the brazing material, and is not necessarily performed. Subsequently, the temporary assembly of the brazed joint after the degreasing treatment was placed in a heat treatment furnace (brazing furnace), and heat treatment for brazing (brazing joining) was performed. The heat treatment is performed in a vacuum atmosphere (about 2 × 10 −3 Pa to about 5 × 10 −3 Pa), and Ts shown in Table 1 is 948 ° C. to 992 ° C. Therefore, the holding temperature is set to 1280 ° C. The cooling rate is 80 ° C./min, the holding time is 270 minutes (16200 seconds), and the subsequent cooling process is performed in a heat pattern (see FIG. 1) in which blast cooling is performed with nitrogen gas when the temperature reaches about 400 ° C. It was. As a result, the brazing length shown in FIG. 11A is about 50 mm (about 25 mm + the thickness of the brazing foil + about 25 mm), the brazing joint surface has a vertical length of about 35 mm, and a lateral length of about 10 mm. The joint 10 can be obtained.
硫酸腐食試験は、腐食液を特級硫酸とし、硫酸濃度を10質量%、液温を60℃、浸漬時間を3hとして行った。硫酸腐食試験に用いる試験体20は、図11(b)に示す、厚さが約1mmで四辺の長さが約10mmの正方形とし、その正方形のほぼ中央にろう層3がストライプ状に位置し、その両側に金属部材1、2が位置する並接構造の平板とした。また、その平板(試験体20)は、図11(a)中に点線で示すように、その表裏面がろう継手10の全長方法に沿い、その厚さ方向がろう接合面の約35mmの縦方向に沿うように、ろう継手10のほぼ中央部分から切り出した。また、試験体20の最大浸食深さ(D値)の測定は、硫酸腐食試験後の試験体(以下、硫酸腐食試験前の試験体20と区別するため「試験体21」とする。)を水で超音波洗浄した後に80℃で2hの乾燥を行ったものを用いた。 In the sulfuric acid corrosion test, the corrosive liquid was special grade sulfuric acid, the sulfuric acid concentration was 10% by mass, the liquid temperature was 60 ° C., and the immersion time was 3 hours. The specimen 20 used in the sulfuric acid corrosion test is a square having a thickness of about 1 mm and a length of about 10 mm as shown in FIG. 11B, and the brazing layer 3 is located in a stripe shape at the approximate center of the square. A flat plate having a juxtaposed structure in which the metal members 1 and 2 are located on both sides thereof. Further, as shown by a dotted line in FIG. 11 (a), the front and back surfaces of the flat plate (test body 20) follow the full length method of the brazed joint 10, and the thickness direction is a vertical length of about 35 mm of the brazed joint surface. It cut out from the substantially center part of the brazing joint 10 so that the direction might be followed. Moreover, the measurement of the maximum erosion depth (D value) of the test body 20 is performed on a test body after the sulfuric acid corrosion test (hereinafter referred to as “test body 21” in order to distinguish from the test body 20 before the sulfuric acid corrosion test). What was subjected to ultrasonic cleaning with water and dried at 80 ° C. for 2 hours was used.
また、上述したλ値やD値の観察や測定には、EPMA(Electron Probe Microscopy Analysis)、SEM(Scanning Electron Microscope)、レーザ顕微鏡などを使用することができる。λ値を求めるためのCr系硼化物の観察や測定には、硫酸腐食試験前の試験体20を用いた。なお、λ値を求める方法については後述する。また、D値は、レーザ顕微鏡を用いて、試験体21の観察面(上記の並接構造の平板の板厚方向の狭幅の側面)がレーザ顕微鏡の基準面と正対し、かつ、試験体21のろう層3、後述するλ測定範囲5を含む拡散領域4(図4参照)、金属部材1、2の各部分が収まるように、例えば20倍の倍率で約0.66mmの正方形状の測定範囲を設定し、その測定範囲の中で最も浸食量が小さい試験体21の表面を深さの基準(基準面)とし、あるいは金属部材1、2やろう層3の腐食量が実質的に無視できるほど小さい場合はその金属部材1、2やろう層3の表面を深さの基準(基準面)とし、その測定範囲で観察される浸食部を横断する複数のプロファイルを測定し、そのうちの最も大きい(深い)値をD値とする方法で求めることができる。なお、試験体21の上記の観察面の全面を複数の領域に分割して観察し、その複数の分割領域の最大深さをD値としてもよい。また、浸食深さが最も大きい箇所を含む領域が明確に特定できる場合は、その明確に特定される測定範囲を観察して求めた浸食深さの最大値をD値とすることもできる。 In addition, for observation and measurement of the above-described λ value and D value, EPMA (Electron Probe Microscope Analysis), SEM (Scanning Electron Microscope), laser microscope, and the like can be used. The specimen 20 before the sulfuric acid corrosion test was used for the observation and measurement of the Cr boride for obtaining the λ value. A method for obtaining the λ value will be described later. Further, the D value is determined by using a laser microscope, and the observation surface of the test body 21 (the narrow side surface in the plate thickness direction of the plate of the parallel structure described above) faces the reference surface of the laser microscope, and the test body 21. The brazing layer 3, the diffusion region 4 (see FIG. 4) including the λ measurement range 5 to be described later, and the metal members 1 and 2, for example, have a square shape of about 0.66 mm at a magnification of 20 times. A measurement range is set, and the surface of the specimen 21 having the smallest erosion amount in the measurement range is used as a reference for the depth (reference surface), or the corrosion amount of the metal members 1 and 2 and the brazing layer 3 is substantially equal. If it is negligibly small, the surfaces of the metal members 1 and 2 and the brazing layer 3 are used as reference depths (reference planes), and a plurality of profiles across the erosion part observed in the measurement range are measured. It can be obtained by a method in which the largest (deep) value is the D value. Note that the entire observation surface of the specimen 21 may be divided into a plurality of regions and observed, and the maximum depth of the plurality of divided regions may be set as the D value. Moreover, when the area | region containing the location where the erosion depth is the largest can be specified clearly, the maximum value of the erosion depth calculated | required by observing the measurement range specified clearly can also be made into D value.
図2に示すように、D値は、λ値が3μm付近で0.03mm程度あるいは0.14mm程度と大きく振れている。また、本発明の対象となるろう箔のBの範囲(0.30質量%以上6.0質量%以下)のほぼ中央値となる図2中に黒丸で示す3.12質量%のBを含むろう箔を用いた場合の回帰線(図2中に示す線分)上で見たD値は、λ値が5μm付近で0.08mm程度、λ値が10μm付近で0.07mm程度、λ値が45μm付近で0.05mm程度であることが分かる。したがって、λ値が大きくなるとD値が小さくなる傾向や近似線の性質並びに測定の信頼性や再現性の観点を加味すれば、λ値がλ≧10μm(好ましくは20μm)を満たすことにより、D値が0.10mm以下さらには0.05μm以下となるろう継手が得られることが期待できる。 As shown in FIG. 2, the D value greatly fluctuates to about 0.03 mm or about 0.14 mm when the λ value is around 3 μm. In addition, it includes 3.12% by mass B indicated by a black circle in FIG. 2, which is almost the median value of the range of B (0.30% by mass to 6.0% by mass) of the wax foil that is the subject of the present invention. The D value seen on the regression line (the line segment shown in FIG. 2) when brazing foil is used is about 0.08 mm when the λ value is around 5 μm, and about 0.07 mm when the λ value is around 10 μm. Is about 0.05 mm around 45 μm. Therefore, if the tendency of the D value to decrease as the λ value increases, the characteristics of the approximate line, and the reliability and reproducibility of the measurement are taken into account, the λ value satisfies λ ≧ 10 μm (preferably 20 μm). It can be expected that a brazed joint having a value of 0.10 mm or less, further 0.05 μm or less is obtained.
上述したλ値とD値の関係性の観点に立って、図3に示す1/J値とλ値の関係性を考慮することにより、1/J値の閾値を決定することができる。なお、図3には、図2と同様、3.12質量%のBを含むろう箔を用いた場合を黒丸で示し、その回帰線を併記している。1/J値は、図3に示すように、1.1×10−4[K・log(秒)]−1を超える範囲ではλ値が10μm未満となるポイントが存在し、1.1×10−4[K・log(秒)]−1以下の範囲ではλ値が10μm未満となるポイントが存在しない。言い換えれば、1/J値が1/J≦1.1×10−4[K・log(秒)]−1を満たす範囲ではλ値がλ≧10μmを満足することが分かるため、上述したようにD値が1.0mm以下さらには0.05μm以下となることが期待できる。 From the viewpoint of the relationship between the λ value and the D value described above, the threshold value of the 1 / J value can be determined by considering the relationship between the 1 / J value and the λ value shown in FIG. In addition, in FIG. 3, the case where the brazing foil containing 3.12 mass% B is used is shown by the black circle similarly to FIG. 2, and the regression line is also written together. As shown in FIG. 3, the 1 / J value has a point where the λ value is less than 10 μm in the range exceeding 1.1 × 10 −4 [K · log (seconds) −1 , 10 −4 [K · log (seconds)] In the range of −1 or less, there is no point at which the λ value is less than 10 μm. In other words, in the range where the 1 / J value satisfies 1 / J ≦ 1.1 × 10 −4 [K · log (seconds)] − 1 , it can be seen that the λ value satisfies λ ≧ 10 μm. Further, it can be expected that the D value is 1.0 mm or less, further 0.05 μm or less.
したがって、λ値との関係性の観点では、1.1×10−4[K・log(秒)]−1を1/J値の閾値とすることが考えられるが、1/J値が大きくなるとλ値が小さくなる傾向や測定の信頼性および再現性の観点を加味し、本発明においては1.0×10−4[K・log(秒)]−1を閾値となる1/J値とすることとした。なお、生産性の観点では、ろう付け熱処理の保持温度はより低く設定し、保持時間はより短く設定することが好ましい。こうした生産性を重視する場合は、かかる保持温度および保持時間を、1/J≦1.0×10−4を満足するとともに、図3に示す回帰線からしてろう継手のλ値が十分に大きい300μmに達することが期待できる1/J値が8.0×10−5付近を限度として、8.0×10−5≦1/J≦1.0×10−4を満足する範囲で行うことが好ましい。 Therefore, from the viewpoint of the relationship with the λ value, 1.1 × 10 −4 [K · log (seconds)] −1 may be considered as a 1 / J value threshold, but the 1 / J value is large. Then, in consideration of the tendency that the λ value becomes smaller and the reliability and reproducibility of measurement, in the present invention, 1 × J value in which 1.0 × 10 −4 [K · log (seconds)] −1 is a threshold value. It was decided that. From the viewpoint of productivity, it is preferable to set the holding temperature for brazing heat treatment lower and set the holding time shorter. When emphasizing such productivity, the holding temperature and holding time satisfy 1 / J ≦ 1.0 × 10 −4 and the λ value of the brazed joint is sufficiently large from the regression line shown in FIG. in a range of 1 / J values which can be expected to reach a large 300μm as a totaling 8.0 × 10 -5 around satisfies 8.0 × 10 -5 ≦ 1 / J ≦ 1.0 × 10 -4 It is preferable.
本発明のろう継手は、上述したように0.10mm以下さらには0.05μm以下のD値が期待できる優れた硫酸耐食性を有する。本発明のろう継手は、上述した本発明のろう継手の製造方法を用いて作製することができ、オーステナイト系ステンレス鋼を用いて成る第1の金属部材と、オーステナイト系ステンレス鋼を用いて成る第2の金属部材とが、Bを含むろう層を介して接合されている。また、第1の金属部材のろう層に隣接する領域および第2の金属部材のろう層に隣接する領域には、Cr系硼化物を含む拡散領域を有する。また、本発明のろう継手は、Cr系硼化物を含む拡散領域のろう層に最も近接するろう層近接拡散領域において、後述する所定の方法によって求まるλ値がλ≧10μmを満足する。 As described above, the brazed joint of the present invention has excellent sulfuric acid corrosion resistance that can be expected to have a D value of 0.10 mm or less, further 0.05 μm or less. The brazed joint of the present invention can be produced by using the above-described method for producing a brazed joint of the present invention, and includes a first metal member made of austenitic stainless steel and a first metallic member made of austenitic stainless steel. Two metal members are joined to each other through a brazing layer containing B. The region adjacent to the brazing layer of the first metal member and the region adjacent to the brazing layer of the second metal member have diffusion regions containing Cr-based borides. In the brazing joint of the present invention, the λ value obtained by a predetermined method described later satisfies λ ≧ 10 μm in the brazing layer adjacent diffusion region closest to the brazing layer of the diffusion region containing Cr boride.
ろう継手の素材となるオーステナイト系ステンレス鋼を用いて成る金属部材の硫酸耐食性は一般的に良好であるが、かかる金属部材同士をBを含むろう材(ろう箔やろう粉末)を用いて接合したろう継手の硫酸耐食性が素材と同等に良好であるとは限らない。硫酸耐食性が低下したろう継手では、金属部材とろう層の境界領域において、特にろう層に最も近接する領域(ろう層近接拡散領域)において、ろう接合時の加熱によりろう材側から拡散したBが金属部材側のCrと結合してCr系硼化物を生成した際の周囲のCrの消費により生成されたCr濃度が低い組織(Cr欠乏層)が確認される場合がある。ろう継手においてCr欠乏層が連なり、より大きなCr欠乏層が形成されている場合や、より広範なCr欠乏層のネットワークが形成されている場合は、そのろう継手には硫酸耐食性が期待できない。 The sulfuric acid corrosion resistance of metal members made of austenitic stainless steel, which is a material for brazing joints, is generally good, but these metal members are joined together using a brazing material (brazing foil or brazing powder) containing B. The sulfuric acid corrosion resistance of brazed joints is not always as good as that of the material. In the brazed joint with reduced sulfuric acid corrosion resistance, B diffused from the brazing filler metal side by heating during brazing in the boundary region between the metal member and the brazing layer, particularly in the region closest to the brazing layer (the brazing layer adjacent diffusion region). In some cases, a structure (Cr-deficient layer) having a low Cr concentration generated by consumption of surrounding Cr when bonded to Cr on the metal member side to generate a Cr-based boride may be confirmed. When a Cr-depleted layer is connected in a brazed joint and a larger Cr-depleted layer is formed, or when a wider network of Cr-depleted layers is formed, the brazed joint cannot be expected to have sulfuric acid corrosion resistance.
λ値は、上述したように金属部材のろう層に最も近接するCr系硼化物を含むろう層近接拡散領域におけるCr系硼化物の平均的な間隔を表すものであり、拡散領域(ろう層近接拡散領域)におけるCr系硼化物(言い換えればCr欠乏層)の大きさや広がりを表す指標として利用することができる。例えば、ろう継手におけるλ値が、10μm以上(好ましくは20μm以上)であると優れた硫酸耐食性を有してD値が小さくなり(図2参照)、10μm未満であるとD値が大きくなることがある。したがって、λ値がλ≧10μmを満足する本発明のろう継手は、良好な硫酸耐食性を有するものとなる。 The λ value represents the average spacing of Cr-based borides in the brazing layer adjacent diffusion region containing the Cr-based boride closest to the brazing layer of the metal member as described above. It can be used as an index representing the size and spread of Cr-based boride (in other words, Cr-deficient layer) in the diffusion region. For example, if the λ value in a brazed joint is 10 μm or more (preferably 20 μm or more), the sulfuric acid corrosion resistance is excellent and the D value is small (see FIG. 2), and if it is less than 10 μm, the D value is large. There is. Therefore, the brazed joint of the present invention satisfying the λ value of λ ≧ 10 μm has good sulfuric acid corrosion resistance.
ろう継手における上記のλ値について、図4に示すモデルを参照して説明する。かかるλ値を測定する範囲(λ測定範囲5)としては、Cr系硼化物を含む拡散領域4において、ろう層3に対して実質的に平行となる方向であって、その平行となる方向を長手方向としてろう層3に近接するCr系硼化物がより高濃度になりやすい領域(ろう層近接拡散領域)を含む所定の幅(例えば5μm)の領域を設定することができる。そして、λ値は、Lを、λ測定範囲5の長手方向における基点と終点を結ぶ線分であって、そのλ測定範囲5において均等性をもって設定された線分LSj(j=1〜m、mは1以上の整数)の長さとし、Liを基点PSjからi番目のCr系硼化物の線分LSj上の長さ(基点PSjからi番目のCr系硼化物が線分LSjと重なる部分の長さ)とし、n(Nは1以上の整数)を線分LSj上において計数されるCr系硼化物の個数としたときに、λj=(L―ΣLi)/nによって求まるj個のλj値の平均値として求めることができる。なお、線分LSjの長さLは、上述した硫酸腐食試験に用いる試験体(ストライプ状のろう層を有する四辺の長さが約10mmの正方形の平板)のろう層の長手方向の長さと一致させることにより、j本の線分LSjの長さを均一化することができる。 The λ value in the brazed joint will be described with reference to the model shown in FIG. The range in which the λ value is measured (λ measurement range 5) is a direction that is substantially parallel to the brazing layer 3 in the diffusion region 4 including the Cr-based boride, and the parallel direction is defined as follows. As a longitudinal direction, a region having a predetermined width (for example, 5 μm) including a region (a brazing layer adjacent diffusion region) in which Cr-based boride close to the brazing layer 3 is likely to have a higher concentration can be set. The λ value is a line segment connecting a base point and an end point in the longitudinal direction of the λ measurement range 5, and the line segment LSj (j = 1 to m, m is a length of 1 or more), and Li is the length on the line segment LSj of the i-th Cr-based boride from the base point PSj (the portion where the i-th Cr-based boride overlaps the line segment LSj from the base point PSj) Length), and n (N is an integer equal to or greater than 1) is the number of Cr-based borides counted on the line LSj, j λj values obtained by λj = (L−ΣLi) / n It can be calculated as an average value. The length L of the line segment LSj coincides with the length in the longitudinal direction of the brazing layer of the specimen used in the sulfuric acid corrosion test described above (a square flat plate having a stripe-shaped brazing layer with four sides having a length of about 10 mm). By doing so, the length of the j line segments LSj can be made uniform.
なお、ろう層3と金属部材1との境界の明確な設定は、それを一義に特定する実用に適する方法が知られていないため困難である。したがって、本発明では、ろう層3の境界線(直線)を、EPMAなどの分析結果を用いて、ろう層3と拡散領域4と金属部材1のCrやBや他の元素(例えばNi)の分布形態を考慮して合理的なろう層3の境界線(おそらく曲線となる)を設定し、その境界線(曲線)を考慮して合理的な境界線(直線)を設定することとした。そして、その境界線(直線)の方向を、ろう層3に対して真に平行となるか一義に特定できないことから、上記の「実質的に平行となる方向」とした。また、図4に示すモデルでは、簡便のため、2本の点線で挟まれた線分LSjを含む領域をλ測定範囲5として示し、そのλ測定範囲5をCr系硼化物が高濃度になりやすいろう層近傍拡散領域を含む「所定の幅の領域」と同等であるとして示している。 In addition, the clear setting of the boundary between the brazing layer 3 and the metal member 1 is difficult because a method suitable for practical use for uniquely identifying the boundary is not known. Therefore, in the present invention, the boundary line (straight line) of the brazing layer 3 is used to analyze the brazing layer 3, the diffusion region 4, Cr, B, and other elements (for example, Ni) of the brazing layer 3, the diffusion region 4, and the metal member 1. A rational boundary line (probably a curve) is set in consideration of the distribution form, and a rational boundary line (straight line) is set in consideration of the boundary line (curve). And since the direction of the boundary line (straight line) cannot be uniquely specified as to whether it is truly parallel to the brazing layer 3, it is referred to as the “substantially parallel direction”. In the model shown in FIG. 4, for the sake of simplicity, a region including a line segment LSj sandwiched between two dotted lines is shown as a λ measurement range 5, and the λ measurement range 5 has a high concentration of Cr-based boride. It is shown as being equivalent to the “region of a predetermined width” including the diffusion region near the soldering layer.
また、ろう継手におけるλ値は、Cr系硼化物がより高濃度になる傾向を示すろう層近接拡散領域を含む部分を対象として、例えばEPMAにより少なくともCrとBの強度(濃度)分布を表すデジタル画像を得て、Bを参照しながらCrの強度分布のテキストデータ配列を用いて、上記のλj=(L―ΣLi)/nにより、j本目の線分LSjにおけるλj値を求め、得られたm個のλj(λ1〜λm)値の平均値として求めることができる。なお、Cr系硼化物がより高濃度になっている領域の判別方法としては、例えばEPMAによるCrの強度分布を、例えば後述する3値化により強調した強度分布を用いて、そのブラックカラー表示された領域をより高濃度な領域として設定するような方法などを採用することができる。 In addition, the λ value in the brazed joint is a digital that represents a strength (concentration) distribution of at least Cr and B by EPMA, for example, in a portion including a brazing layer adjacent diffusion region that tends to have a higher concentration of Cr-based boride. An image was obtained, and the λj value in the j-th line segment LSj was obtained by λj = (L−ΣLi) / n using the text data array of Cr intensity distribution with reference to B, and obtained. It can be obtained as an average value of m λj (λ1 to λm) values. In addition, as a method for discriminating a region where the Cr-based boride has a higher concentration, for example, the intensity distribution of Cr by EPMA is displayed in black color using, for example, an intensity distribution emphasized by ternarization described later. For example, a method of setting the area as a higher density area can be employed.
なお、上述したデジタル画像のλ値の測定範囲において、上記の長さLの線分LSjに対して直交する方向(図4中に示すY方向)の画素(セル)が1個の場合はj=1とし、m個の場合はj=mとすることができる。λ測定範囲5におけるCr系硼化物の濃度分布に均等性があるなどの合理的な理由がある場合は、j=1としてλ値を求めることにより、ろう継手の硫酸耐食性の良否判断に係る生産効率の向上が期待できる。また、線分LSjの長さLj(j=1〜m)は、jを2以上とする場合は、上述したようにろう層の長手方向の長さと一致させることが好ましい。jが2以上である場合は、上述したようにm本の線分LSjに対してm個のλ値(λj値、j=1〜m)が求められるため、そのm個のλj値の平均を求めて、被検体となるろう継手のλ値とすることができるので、λ値の信頼性向上が期待できる。こうした観点から、λ値は、線分LSj上におけるCr系硼化物の大きさの平均値と見做すこともできるし、λ値測定範囲におけるCr系硼化物の大きさの平均値と見做すこともできる。 In the above-described measurement range of the λ value of the digital image, j is obtained when there is one pixel (cell) in a direction orthogonal to the line segment LSj having the length L (Y direction shown in FIG. 4). = 1, and in the case of m, j = m. If there is a reasonable reason such as the uniformity of Cr-based boride concentration distribution in the λ measurement range 5, the λ value is determined as j = 1, thereby producing a product for determining whether the sulfuric acid corrosion resistance of brazed joints is good or bad. Increased efficiency can be expected. Further, the length Lj (j = 1 to m) of the line segment LSj is preferably matched with the length of the brazing layer in the longitudinal direction as described above when j is 2 or more. When j is 2 or more, since m λ values (λj values, j = 1 to m) are obtained for m line segments LSj as described above, an average of the m λj values is obtained. Therefore, the reliability of the λ value can be expected to be improved. From this point of view, the λ value can be regarded as an average value of the size of the Cr-based boride on the line segment LSj, or can be regarded as an average value of the size of the Cr-based boride in the λ value measurement range. You can also
一例として、ろう継手のろう層に最も近接するろう層近接拡散領域を含む部分のEPMAによるCrの強度分布を模式的に示す図4を参照し、1本の線分LSj(j=m=1)を設定し、1個のλj値(j=m=1)をλ値として求める場合について、具体的に説明する。図4は、金属部材1と金属部材2(図示略)の間にろう層3を有して成るろう継手の拡散領域4において、ろう層近接拡散領域を含むように倍率を設定して得られる、EPMAによるCrの強度分布のデジタル画像を模式的に示している。なお、ろう層3、拡散領域4、ろう層近接拡散領域(実質的にλ測定範囲5と重複する)のおおよその区分を点線で示している。 As an example, referring to FIG. 4 schematically showing the strength distribution of Cr by EPMA in a portion including the brazing layer adjacent diffusion region closest to the brazing layer of the brazing joint, one line segment LSj (j = m = 1) ) And setting one λj value (j = m = 1) as the λ value will be specifically described. FIG. 4 is obtained by setting the magnification so as to include the brazing layer adjacent diffusion region in the diffusion region 4 of the brazing joint having the brazing layer 3 between the metal member 1 and the metal member 2 (not shown). 2 schematically shows a digital image of Cr intensity distribution by EPMA. In addition, the rough division of the brazing layer 3, the diffusion region 4, and the brazing layer adjacent diffusion region (substantially overlapping with the λ measurement range 5) is indicated by a dotted line.
かかるデジタル画像(実際にはテキストデータ配列)において、λ測定範囲5のX方向における基点PSj(j=1)と終点PEj(j=1)を結ぶ長さLの線分LSj(j=1)を設定する。続いて、その線分LSj上において、基点PSjから最も近い1番目のCr系硼化物C1の線分LSj上の長さL1(i=1)を求め、次いで2番目のCr系硼化物C1の線分LSj上の長さL2(i=2)を求め、…(略)…、i番目のCr系硼化物Ciの線分LSj上の長さLiを求め、…(略)…、最後に終点PEjに最も近いn番目のCr系硼化物Cnの線分LSjの長さLn(i=n)を求めることにより、線分LSj(j=1)上においてn個のLi(i=n)を求めることができる。かかるn個のLi(i=n)を用いて、λ=(L―ΣLi)/nによりj=1の場合のλ値を求めることができる。 In such a digital image (actually, text data array), a line segment LSj (j = 1) of length L connecting the base point PSj (j = 1) and the end point PEj (j = 1) in the X direction of the λ measurement range 5 Set. Subsequently, on the line segment LSj, the length L1 (i = 1) on the line segment LSj of the first Cr boride C1 closest to the base point PSj is obtained, and then the second Cr boride C1 of the second Cr boride C1 is obtained. Find the length L2 (i = 2) on the line segment LSj, ... (omitted) ..., find the length Li on the line segment LSj of the i-th Cr-based boride Ci, ... (omitted) ..., finally By determining the length Ln (i = n) of the line segment LSj of the n-th Cr-based boride Cn closest to the end point PEj, n Li (i = n) on the line segment LSj (j = 1) Can be requested. Using these n Li (i = n), the λ value when j = 1 can be obtained from λ = (L−ΣLi) / n.
上述したEPMAの倍率は、被検体(ろう継手)におけるλ測定範囲5に複数個のCr系硼化物が存在するように、例えば200倍〜1800倍の範囲で調整することができる。また、EPMAによるCrとBの強度分布(デジタル画像)は、CPS値(Counts Per Secomd)や原子%(at%)値であってよい。また、EPMAによるテキストデータ配列は、CSV(Comma Separated Values)形式などであってよい。また、λ値を求める際に、EPMAによるCrとBの強度分布(デジタル画像)のテキストデータ配列を所定のルールに従って加工し、より強調された強度分布(デジタル画像)として用いることもできる。例えば、強度値の並びであるテキストデータ配列において、全データのうち数値が大きいデータ群(例えば全データ数の5%相当)をブラックカラー表示可能に対応付け、これに次いで数値が大きいデータ群(例えば全データの20%相当)をグレーカラー表示可能に対応付け、残りの数値が比較的小さいデータ群(例えば全データの75%相当)をホワイトカラー表示可能に対応付けることにより、3値化(ブラック/グレー/ホワイト)した強度分布を用いてもよい。 The magnification of the above-mentioned EPMA can be adjusted, for example, in the range of 200 times to 1800 times so that a plurality of Cr-based borides exist in the λ measurement range 5 of the specimen (brazing joint). The intensity distribution (digital image) of Cr and B by EPMA may be a CPS value (Counts Per Second) or an atomic% (at%) value. The text data array by EPMA may be in CSV (Comma Separated Values) format or the like. Further, when obtaining the λ value, the text data array of Cr and B intensity distributions (digital image) by EPMA can be processed according to a predetermined rule and used as a more emphasized intensity distribution (digital image). For example, in a text data array in which intensity values are arranged, a data group having a large numerical value (e.g., equivalent to 5% of the total number of data) among all data is associated with black color display so that a data group having the next largest numerical value ( For example, 20% of all data is associated with gray color display, and the remaining numerical values (for example, 75% of all data) are associated with white color display so as to be ternary (black). (Gray / white) intensity distribution may be used.
また、上述したλ測定範囲5の決定は、ろう継手の組織形態が個々相違することがあるような場合も、その境界を一義的に決定付けることは困難である。そのため、λ測定範囲5の決定は、EPMAによるCrとBの強度分布を十分に考慮し、また必要に応じて他の元素の強度分布も参照し、金属部材側1、2からろう層3へ向かってCr系硼化物の分布形態が粗から密に変化する境界を見極める方法を採用することもできる。その場合は、CrとBの強度分布を上述した3値化などの方法により強調する操作を行うことにより、Cr系硼化物の分布形態の粗密の変化がより明確化されるため、λ測定範囲5の決定を容易に行うことができる。さらに、全画素に対してCrおよび/またはBが占める画素数比(面積比)などに基づいてCr系硼化物の粗密の変化を判断するための閾値を設定し、かかる閾値を判断基準にする方法によれば、λ測定範囲5の決定をより容易に行うことができる。こうした方法の他、実用性の観点からは、上述したCrやBの強度分布のデジタル画像を見て、ろう継手において硫酸腐食されやすいろう層側から、例えば2μm以内、信頼性向上のためには5μm以内、さらなる信頼性向上のためには10μm以内を、λ測定範囲5の所定の幅として決定付ける方法が好ましい。なお、信頼性および生産効率の両立の観点からは、λ測定範囲5の所定の幅としては5μmが好ましい。 In addition, it is difficult to uniquely determine the boundary of the above-described determination of the λ measurement range 5 even when the structure of the brazed joint may be different from one another. Therefore, the determination of the λ measurement range 5 takes into account the strength distribution of Cr and B by EPMA, and also refers to the strength distribution of other elements as necessary, from the metal member side 1 and 2 to the brazing layer 3. On the other hand, a method of determining the boundary where the distribution form of the Cr boride changes from coarse to dense can also be adopted. In that case, by performing an operation of emphasizing the intensity distribution of Cr and B by the above-described method such as ternarization, the change in roughness of the distribution form of the Cr boride is further clarified, so that the λ measurement range 5 can be easily determined. Furthermore, a threshold value for determining a change in density of the Cr-based boride is set based on a pixel number ratio (area ratio) occupied by Cr and / or B with respect to all pixels, and this threshold value is used as a determination criterion. According to the method, the determination of the λ measurement range 5 can be performed more easily. In addition to these methods, from the viewpoint of practicality, from the above-mentioned digital image of the strength distribution of Cr and B, for example, within 2 μm from the brazing layer side that is prone to sulfuric acid corrosion in brazing joints, in order to improve reliability A method of determining within 5 μm and within 10 μm as the predetermined width of the λ measurement range 5 is preferable for further improvement of reliability. From the viewpoint of achieving both reliability and production efficiency, the predetermined width of the λ measurement range 5 is preferably 5 μm.
(本発明例1)
図11(a)に示す構成を有するろう継手(以下、「ろう継手A」という。)を1/J値を考慮して作製した。ろう継手Aの素材となる第1の金属部材と第2の金属部材には、SUS304から成り、全長が25mmで接合面のサイズが35mm×10mmの直方体状のものを用いた。金属部材の接合面はペーパ研磨(#800)後にアセトン超音波洗浄を行った。ろう接合に用いるろう材には、表1に示すNo.6のろう箔(Bが1.16質量%、Tsが948℃、平均厚さが31μm)であって、金属部材の接合面に対応するサイズに切り出した長方形状のシート(ろう箔)を用いた。そして、第1の金属部材の接合面と第2の金属部材の接合面とでろう箔を挟持して仮組を行い、ろう継手Aの素形材を作製した。
(Invention Example 1)
A brazed joint having the configuration shown in FIG. 11A (hereinafter referred to as “brazed joint A”) was produced in consideration of the 1 / J value. The first metal member and the second metal member that are the materials of the brazed joint A were made of SUS304 and had a rectangular parallelepiped shape having a total length of 25 mm and a joint surface size of 35 mm × 10 mm. The joining surface of the metal member was subjected to acetone ultrasonic cleaning after paper polishing (# 800). The brazing material used for brazing is No. 1 shown in Table 1. No. 6 brazing foil (B is 1.16% by mass, Ts is 948 ° C., average thickness is 31 μm), and a rectangular sheet (wax foil) cut into a size corresponding to the joining surface of the metal member is used. It was. And the brazing foil was pinched | interposed with the joining surface of the 1st metal member, and the joining surface of the 2nd metal member, the temporary assembly was performed, and the raw material of the brazing joint A was produced.
続いて、ろう継手Aの素形材を脱脂処理(アルゴンガス雰囲気、昇温速度と降温速度が80℃/分、保持温度が500℃、保持時間が1h)した後に、1/J値を考慮したろう付け熱処理を行った。ろう付け熱処理は、真空雰囲気(約2×10−3Pa〜約5×10−3Pa)で、室温(20℃)から昇温が開始され、昇温速度が80℃/分、保持温度が1300℃、その保持温度に対して1/J値が本発明の製造方法の規定範囲内の9.4×10−5[K・log(秒)]−1となる保持時間として0.1分、降温速度が80℃/分、降温プロセスで400℃に達したら窒素ガスによる衝風冷却が開始される、ヒートパターンを用いて行った。なお、ここでのJ値は、上述したように矩形パターンで単純化して求めたものである。 Subsequently, the shape of the brazed joint A is degreased (argon gas atmosphere, temperature rising and cooling rate is 80 ° C./min, holding temperature is 500 ° C., holding time is 1 h), and 1 / J value is taken into consideration A brazing heat treatment was performed. The brazing heat treatment is started in a vacuum atmosphere (about 2 × 10 −3 Pa to about 5 × 10 −3 Pa) at room temperature (20 ° C.), the temperature rising rate is 80 ° C./min, and the holding temperature is 1 min. As a holding time at which 1 / J value is 19.4 ° C. and 9.4 × 10 −5 [K · log (seconds) −1 within the specified range of the manufacturing method of the present invention with respect to the holding temperature. When the temperature decreasing rate reached 80 ° C./min and 400 ° C. in the temperature decreasing process, blast cooling with nitrogen gas was started. The J value here is obtained by simplifying the rectangular pattern as described above.
次に、上述した方法で作製したろう継手Aから、図11(b)に示す構成を有する平板を切り出し、硫酸腐食試験に用いる試験体(以下、「試験体A」という。)を作製した。続いて、その試験体AのCrとBの強度分布をEPMAを用いて測定した。そして、そのEPMA(デジタル画像)のテキストデータ配列を用いて、上述した3値化(ブラック/グレー/ホワイト)によるCrとBの強度分布を強調したテキストデータ配列を作成した。CrとBの強度分布を強調したデジタル画像(200倍)を図5に示し、それらを拡大したデジタル画像(1800倍)を図6に示す。次いで、その3値化したCrの強度分布(デジタル画像)を用いて、試験体Aのλ測定範囲5であるろう層3の境界線(直線)を設定し、そのλ測定範囲5の幅を5μmとし、j=1として、上述したλ値を求める方法にしたがってλ値を求めた。なお、ろう層3の境界線(直線)は、図5および図6に示すCrとBの分布形態(特に右端側に着目)に基づいて決定した。その結果、試験体Aすなわちろう継手Aのλ値は24.9μmであった。 Next, a flat plate having the configuration shown in FIG. 11B was cut out from the brazed joint A produced by the above-described method, and a test body used for the sulfuric acid corrosion test (hereinafter referred to as “test body A”) was produced. Subsequently, the Cr and B strength distribution of the specimen A was measured using EPMA. Then, using the EPMA (digital image) text data array, a text data array in which the intensity distribution of Cr and B by the above-described ternarization (black / gray / white) is emphasized was created. FIG. 5 shows a digital image (200 times) in which the intensity distribution of Cr and B is emphasized, and FIG. 6 shows a digital image (1800 times) obtained by enlarging them. Next, using the ternary Cr intensity distribution (digital image), a boundary line (straight line) of the brazing layer 3 which is the λ measurement range 5 of the specimen A is set, and the width of the λ measurement range 5 is The λ value was determined according to the above-described method for determining the λ value, with 5 μm and j = 1. The boundary line (straight line) of the brazing layer 3 was determined based on the distribution form of Cr and B shown in FIGS. 5 and 6 (particularly focusing on the right end side). As a result, the λ value of the specimen A, that is, the brazed joint A, was 24.9 μm.
次に、λ値を求めた試験体Aを用いて、硫酸腐食試験を行った。硫酸腐食試験は、腐食液を特級硫酸とし、硫酸濃度を10質量%、液温を60℃、試験体Aの浸漬時間を3hとした。そして、硫酸腐食試験後の試験体(以下、「試験体Aa」という。)を、水で超音波洗浄し、80℃で2hの乾燥を行った。硫酸腐食試験後の試験体Aaを用いて、上述した最大浸食深さ(D値)を求める方法にしたがって、レーザ顕微鏡を用いて試験体Aaの浸食部を横断する複数のプロファイルを測定し、そのうちの最も大きい(深い)値をD値として求めた。その結果、試験体AaのD値は、0.10mm以下の0.04mmであった。 Next, a sulfuric acid corrosion test was performed using the specimen A from which the λ value was obtained. In the sulfuric acid corrosion test, the corrosive liquid was special grade sulfuric acid, the sulfuric acid concentration was 10 mass%, the liquid temperature was 60 ° C., and the immersion time of the specimen A was 3 h. And the test body after a sulfuric acid corrosion test (henceforth "the test body Aa") was ultrasonically washed with water, and dried for 2 h at 80 degreeC. According to the method for obtaining the maximum erosion depth (D value) using the specimen Aa after the sulfuric acid corrosion test, a plurality of profiles crossing the eroded portion of the specimen Aa are measured using a laser microscope, The largest (deep) value of was determined as the D value. As a result, the D value of the specimen Aa was 0.04 mm which is 0.10 mm or less.
この結果から、ろう継手を、SUS304を用いて成る第1の金属部材と第2の金属部材を1.16質量%のBを含むろう箔を用いてろう付け(ろう接合)して作製する場合において、1/J値が1/J≦1.0×10−4)[K・log(秒)]−1を満足する範囲でろう付け熱処理の保持温度と保持時間を選択する本発明の製造方法を適用することにより、λ値がλ≧10μmを満足する、D値が小さく硫酸耐食性が良好な本発明のろう継手が得られることが確認された。 From this result, a brazing joint is produced by brazing (brazing) a first metal member made of SUS304 and a second metal member using a brazing foil containing 1.16% by mass of B. In the present invention, the holding temperature and holding time of the brazing heat treatment are selected within a range where the 1 / J value satisfies 1 / J ≦ 1.0 × 10 −4 ) [K · log (seconds)] −1. By applying the method, it was confirmed that the brazed joint of the present invention having a λ value satisfying λ ≧ 10 μm, a small D value and good sulfuric acid corrosion resistance was obtained.
(本発明例2)
上述した本発明例1と同様な方法により、ろう継手(以下、「ろう継手B」という。)を1/J値を考慮して作製した。なお、ろう接合に用いるろう材には、表1に示すNo.1のろう箔(Bが3.12質量%、Tsが976℃、平均厚さが42μm)を用いた。また、ろう付け熱処理は、真空雰囲気(約2×10−3Pa〜約5×10−3Pa)で、室温(20℃)から昇温が開始され、昇温速度が80℃/分、保持温度が1200℃、その保持温度に対して1/J値が本発明の製造方法の規定範囲内の9.0×10−5[K・log(秒)]−1となる保持時間として270分、降温速度が80℃/分、降温プロセスで400℃に達したら窒素ガスによる衝風冷却が開始される、ヒートパターンを用いて行った。上記以外の例えば硫酸腐食試験やそれに用いる試験体の作製方法、並びに、λ値やD値を求める方法などは、本発明例1と同様であるため記載を略す。
(Invention Example 2)
A brazed joint (hereinafter referred to as “brazed joint B”) was produced in the same manner as in the first example of the present invention in consideration of the 1 / J value. For the brazing material used for brazing, No. 1 shown in Table 1 was used. No. 1 wax foil (B: 3.12% by mass, Ts: 976 ° C., average thickness: 42 μm) was used. The brazing heat treatment is started at room temperature (20 ° C.) in a vacuum atmosphere (about 2 × 10 −3 Pa to about 5 × 10 −3 Pa), and the temperature rising rate is maintained at 80 ° C./min. 270 minutes as the holding time when the temperature is 1200 ° C. and the 1 / J value is 9.0 × 10 −5 [K · log (seconds) −1 within the specified range of the manufacturing method of the present invention with respect to the holding temperature. When the temperature decreasing rate reached 80 ° C./min and 400 ° C. in the temperature decreasing process, blast cooling with nitrogen gas was started. Other than the above, for example, a sulfuric acid corrosion test, a method for preparing a test specimen used therefor, a method for obtaining a λ value and a D value, and the like are the same as those in the first example of the present invention, and thus description thereof is omitted.
本発明例1と同様にろう継手Bから切り出した試験体Bについて測定したEPMA(デジタル画像)のテキストデータ配列を用いて、上述した3値化(ブラック/グレー/ホワイト)によるCrとBの強度分布を強調したテキストデータ配列を作成した。CrとBの強度分布を強調したデジタル画像(200倍)を図7に示し、それらを拡大したデジタル画像(1800倍)を図8に示す。その3値化したCrの強度分布(デジタル画像)を用いて、上述したλ値を求める方法にしたがって試験体Aの場合と同様に試験体Bのλ測定範囲5(ろう層3から5μm以内)におけるλ値を求めた結果、試験体Bすなわちろう継手Bのλ値は291μmであった。また、上述したD値を求める方法にしたがって試験体Aaの場合と同様に硫酸腐食試験後の試験体(試験体Ba)のD値を求めた結果、試験体BaのD値は0.10mm以下の0.03mmであった。 Using the text data array of EPMA (digital image) measured for the specimen B cut out from the brazed joint B in the same manner as in Example 1 of the present invention, the strength of Cr and B by the above-described ternarization (black / gray / white) A text data array with an emphasized distribution was created. FIG. 7 shows a digital image (200 times) in which the intensity distribution of Cr and B is emphasized, and FIG. 8 shows a digital image (1800 times) obtained by enlarging them. Using the ternary Cr intensity distribution (digital image), the λ measurement range 5 of the specimen B (within 5 μm from the brazing layer 3) is the same as that of the specimen A according to the method for obtaining the λ value described above. As a result, the λ value of the specimen B, that is, the brazed joint B, was 291 μm. Moreover, as a result of obtaining the D value of the test specimen (test specimen Ba) after the sulfuric acid corrosion test in the same manner as in the case of the specimen Aa according to the method for obtaining the D value described above, the D value of the specimen Ba is 0.10 mm or less. 0.03 mm.
この結果から、ろう継手を、SUS304を用いて成る第1の金属部材と第2の金属部材を3.12質量%のBを含むろう箔を用いてろう付け(ろう接合)して作製する場合において、1/J値が1/J≦1.0×10−4)[K・log(秒)]−1を満足する範囲でろう付け熱処理の保持温度と保持時間を選択する本発明の製造方法を適用することにより、λ値がλ≧10μmを満足する、D値が小さく硫酸耐食性が良好な本発明のろう継手が得られることが確認された。 From this result, when a brazing joint is produced by brazing (brazing) a first metal member made of SUS304 and a second metal member using a brazing foil containing 3.12% by mass of B. In the present invention, the holding temperature and holding time of the brazing heat treatment are selected within a range where the 1 / J value satisfies 1 / J ≦ 1.0 × 10 −4 ) [K · log (seconds)] −1. By applying the method, it was confirmed that the brazed joint of the present invention having a λ value satisfying λ ≧ 10 μm, a small D value and good sulfuric acid corrosion resistance was obtained.
(比較例)
上述した本発明例2と同様な方法により、ろう継手(以下、「ろう継手C」という。)を1/J値を考慮して作製した。なお、ろう接合に用いるろう材には、本発明例2と同様に表1に示すNo.1のろう箔(Bが3.12質量%、Tsが976℃、平均厚さが42μm)を用いた。また、ろう付け熱処理は、真空雰囲気(約2×10−3Pa〜約5×10−3Pa)で、室温(20℃)から昇温が開始され、昇温速度が80℃/分、保持温度が1200℃、その保持温度に対して1/J値が本発明の製造方法の規定範囲外の1.1×10−4[K・log(秒)]−1となる保持時間として0.1分、降温速度が80℃/分、降温プロセスで400℃に達したら窒素ガスによる衝風冷却が開始される、ヒートパターンを用いて行った。上記以外の例えば硫酸腐食試験やそれに用いる試験体の作製方法、並びに、λ値やD値を求める方法などは、本発明例と同様であるため記載を略す。
(Comparative example)
A brazed joint (hereinafter referred to as “brazed joint C”) was produced in the same manner as in the above-described Invention Example 2 in consideration of the 1 / J value. In addition, the brazing material used for brazing is similar to Example 2 of the present invention in No. 1 shown in Table 1. No. 1 wax foil (B: 3.12% by mass, Ts: 976 ° C., average thickness: 42 μm) was used. The brazing heat treatment is started at room temperature (20 ° C.) in a vacuum atmosphere (about 2 × 10 −3 Pa to about 5 × 10 −3 Pa), and the temperature rising rate is maintained at 80 ° C./min. The holding time when the temperature is 1200 ° C. and the 1 / J value is 1.1 × 10 −4 [K · log (seconds)] −1 outside the specified range of the manufacturing method of the present invention is 0. 1 minute, the temperature drop rate was 80 ° C./min. When the temperature drop process reached 400 ° C., blast cooling with nitrogen gas was started, and the heat pattern was used. Other than the above, for example, a sulfuric acid corrosion test, a method for preparing a test body used therefor, a method for obtaining a λ value and a D value, and the like are the same as in the examples of the present invention, and thus description thereof is omitted.
本発明例と同様にろう継手Cから切り出した試験体Cについて測定したEPMA(デジタル画像)のテキストデータ配列を用いて、上述した3値化(ブラック/グレー/ホワイト)によるCrとBの強度分布を強調したテキストデータ配列を作成した。CrとBの強度分布を強調したデジタル画像(200倍)を図9に示し、それらを拡大したデジタル画像(1800倍)を図10に示す。その3値化したCrの強度分布(デジタル画像)を用いて、上述したλ値を求める方法にしたがって試験体A、Bと同様に試験体Cのλ測定範囲5(ろう層3から5μm以内)におけるλ値を求めた結果、試験体Cすなわちろう継手Cのλ値は2.9μmであった。また、上述したD値を求める方法にしたがって試験体A、Bと同様に硫酸腐食試験後の試験体(試験体Ca)のD値を求めた結果、試験体CaのD値は0.10mmを超える0.14mmであった。 The intensity distribution of Cr and B by ternarization (black / gray / white) described above using the text data array of EPMA (digital image) measured for the specimen C cut out from the brazed joint C as in the present invention example A text data array with emphasis was created. FIG. 9 shows a digital image (200 times) in which the intensity distribution of Cr and B is emphasized, and FIG. 10 shows a digital image (1800 times) obtained by enlarging them. Using the ternary Cr intensity distribution (digital image), the λ measurement range 5 (within 5 μm from the brazing layer 3) of the test specimen C is the same as the test specimens A and B according to the method for obtaining the λ value described above. As a result, the λ value of the specimen C, that is, the brazed joint C, was 2.9 μm. In addition, as a result of obtaining the D value of the test specimen after the sulfuric acid corrosion test (test specimen Ca) in the same manner as the specimens A and B according to the method for obtaining the D value described above, the D value of the specimen Ca is 0.10 mm. It was more than 0.14 mm.
この結果から、ろう継手を、本発明例2と同様に、SUS304を用いて成る第1の金属部材と第2の金属部材を3.12質量%のBを含むろう箔を用いてろう付け(ろう接合)して作製する場合において、1/J値が1/J≦1.0×10−4)[K・log(秒)]−1を満足しない範囲でろう付け熱処理の保持温度と保持時間を選択する製造方法を適用することにより、λ値がλ≧10μmを満足せず、D値が大きく硫酸耐食性が良好とはいえないろう継手が得られることが確認された。また、3.12質量%のBを含むろう箔を用いた場合において、ろう付けの熱処理条件の違いにより同量のBを含むろう箔であっても、ろう継手のλ値すなわちCr系硼化物の分布形態が変化することが分かった。したがって、ろう箔に例えば2.0質量%〜4.0質量%のBが含まれている場合は、ろう付けの熱処理条件の影響を強く受けて敏感に反応し、金属部材の内部に拡散するBの挙動が不安定になるリスクがあることが分かった。 From this result, as in Example 2 of the present invention, the brazing joint was brazed using a brazing foil containing 3.12 mass% B of the first metal member and the second metal member made of SUS304 ( In the case where the 1 / J value does not satisfy 1 / J ≦ 1.0 × 10 −4 ) [K · log (seconds)] − 1 , the brazing heat treatment holding temperature and holding are maintained. By applying a manufacturing method that selects time, it was confirmed that a brazed joint having a λ value not satisfying λ ≧ 10 μm and a large D value and poor sulfuric acid corrosion resistance was obtained. In addition, when a brazing foil containing 3.12% by mass of B is used, even if the brazing foil contains the same amount of B due to the difference in heat treatment conditions for brazing, the λ value of the brazed joint, that is, the Cr-based boride It has been found that the distribution form of changes. Therefore, when the brazing foil contains, for example, 2.0% by mass to 4.0% by mass of B, it is strongly affected by the heat treatment condition of brazing and reacts sensitively and diffuses into the metal member. It turns out that there is a risk that the behavior of B becomes unstable.
1.金属部材、2.金属部材、3.ろう層、4.拡散領域、5.λ測定範囲、10.ろう継手、20.試験体 1. Metal member, 2. Metal member, 3. 3. brazing layer; 4. diffusion region, λ measurement range, 10. Brazed joint, 20. Specimen
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016217204A JP2018075580A (en) | 2016-11-07 | 2016-11-07 | Manufacturing method of brazing joint and brazing joint |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016217204A JP2018075580A (en) | 2016-11-07 | 2016-11-07 | Manufacturing method of brazing joint and brazing joint |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018075580A true JP2018075580A (en) | 2018-05-17 |
Family
ID=62149596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016217204A Pending JP2018075580A (en) | 2016-11-07 | 2016-11-07 | Manufacturing method of brazing joint and brazing joint |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018075580A (en) |
-
2016
- 2016-11-07 JP JP2016217204A patent/JP2018075580A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160319399A1 (en) | Cladded aluminum-alloy material and production method therefor, and heat exchanger using said cladded aluminum-alloy material and production method therefor | |
US20160319401A1 (en) | Aluminum-alloy clad material and production method therefor, and heat exchanger using said aluminum-alloy clad material and production method therefor | |
KR102474175B1 (en) | Nickel-base alloy with high melting range suitable for brazing super austenitic steels | |
TWI409129B (en) | Iron-chromium based brazing filler metal | |
CN104204268B (en) | Cast product having alumina barrier layer, and method for manufacturing same | |
CZ201654A3 (en) | Aluminium alloy sheet for brazing and process for producing thereof | |
JP6439795B2 (en) | Ni-based amorphous alloy ribbon for brazing and stainless steel joint using the same | |
JP2008006480A (en) | Brazing fin material for heat exchanger, heat exchanger, and method for manufacturing the same | |
JPH03481A (en) | Electrode formed of copper or copper alloy having excellent electric conductivity | |
US20170113305A1 (en) | Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor | |
CN103962748B (en) | Heat-resisting high-temperature nickel-base alloy welding wire and welding method | |
FR3055233A1 (en) | COPPER-BASED SOLDER MATERIAL AND USE OF SOLDER MATERIAL | |
JP6348378B2 (en) | Nickel-chromium-phosphorus alloy | |
US20180073118A1 (en) | Aluminum-alloy brazing sheet fin material for heat exchanger, and production process therefor | |
JP2011038163A (en) | Aluminum-clad material for heat-exchanger | |
JP2018075580A (en) | Manufacturing method of brazing joint and brazing joint | |
Penyaz et al. | Alloying-dependent microstructure influence on corrosion resistance of AISI 321 cell joints brazed by Ni-based filler metals | |
JP2006523267A5 (en) | ||
JP2006523267A (en) | Production method of aluminum alloy sheet material and aluminum alloy sheet | |
JP5702927B2 (en) | Aluminum alloy brazing fin material for heat exchanger and heat exchanger using the fin material | |
JP2017164780A (en) | Aluminum alloy brazing sheet, and brazing method for aluminum alloy brazing sheet | |
JP2020040125A (en) | Nickel-iron-phosphorus brazing alloys | |
JP2021127471A (en) | Stainless steel material and diffusion bonded object | |
JP4239853B2 (en) | Brazing composite material, method for producing the same, and brazed product | |
JP2006272363A (en) | Clad metal for brazing, and brazed product using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191010 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201105 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210603 |