[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018060699A - Manufacturing method for laminated secondary battery - Google Patents

Manufacturing method for laminated secondary battery Download PDF

Info

Publication number
JP2018060699A
JP2018060699A JP2016197711A JP2016197711A JP2018060699A JP 2018060699 A JP2018060699 A JP 2018060699A JP 2016197711 A JP2016197711 A JP 2016197711A JP 2016197711 A JP2016197711 A JP 2016197711A JP 2018060699 A JP2018060699 A JP 2018060699A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
secondary battery
laminated
terminal portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016197711A
Other languages
Japanese (ja)
Inventor
阿部 誠
Makoto Abe
阿部  誠
西村 悦子
Etsuko Nishimura
悦子 西村
野家 明彦
Akihiko Noie
明彦 野家
新平 尼崎
Shimpei Amagasaki
新平 尼崎
和明 直江
Kazuaki Naoe
和明 直江
祐介 加賀
Yusuke Kaga
祐介 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016197711A priority Critical patent/JP2018060699A/en
Publication of JP2018060699A publication Critical patent/JP2018060699A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To propose a manufacturing method for a laminated secondary battery having excellent short-circuit prevention and volume energy density.SOLUTION: A manufacturing method for a laminated secondary battery configured by laminating a positive electrode and negative electrode, the positive electrode including a positive electrode terminal part and positive electrode lamination part, the negative electrode including a negative electrode terminal part and negative electrode lamination part, the positive electrode lamination part and negative electrode lamination part having different sizes, the positive electrode or negative electrode having a separator formed thereon, the positive electrode terminal part and negative electrode terminal part being formed at different positions when viewed from the lamination direction, includes: a process for setting a lamination jig having a lamination jig recess; a process for setting an upper surface direction or side surface direction of the positive electrode terminal part or negative electrode terminal part of the positive electrode or negative electrode on which the separator is formed, so as to fit the lamination jig recess; and a process for laminating the positive electrode and negative electrode to manufacture the laminated secondary battery.SELECTED DRAWING: Figure 3

Description

本発明は、積層型二次電池の製造方法に関する。 The present invention relates to a method for manufacturing a stacked secondary battery.

電池自動車等に用いられる二次電池の形状として、捲回円筒型、捲回角型、積層型等があげられる。積層型二次電池に関する技術として、例えば、特許文献1には、次のような技術が開示されている。二次電池のケース内に正極用位置決め部材40及び負極用位置決め部材50を設けた。正極用位置決め部材40及び負極用位置決め部材50は、金属シート121,131の一辺121e,131eの延びる方向において、タブ部12f,13fの両側に配置される一対の支持部41,51を有している。そして、一対の支持部41,51に、タブ部12f,13fの外縁部と接するとともに、タブ部12f,13fの外縁部の形状に沿った形状の接触部42,52を形成した。また、特許文献2には、次のような技術が開示されている。二次電池10の電極組立体14は、正極集電タブ31及び負極集電タブ32が、電極組立体14にそれぞれ積層されるとともに、積層方向の最外の正極集電タブ31及び負極集電タブ32に正極導電部材35及び負極導電部材36が溶接されている。積層された全ての正極集電タブ31及び積層された全ての負極集電タブ32には、各導電部材35,36が電気的に接続された位置よりも先端側に積層方向に貫通する貫通孔31a,32aが形成されている。   Examples of the shape of a secondary battery used in a battery car or the like include a wound cylindrical type, a wound square type, and a stacked type. As a technique related to the stacked secondary battery, for example, Patent Document 1 discloses the following technique. A positive electrode positioning member 40 and a negative electrode positioning member 50 were provided in the case of the secondary battery. The positive electrode positioning member 40 and the negative electrode positioning member 50 have a pair of support portions 41 and 51 disposed on both sides of the tab portions 12f and 13f in the extending direction of the sides 121e and 131e of the metal sheets 121 and 131. Yes. Then, the contact portions 42 and 52 having shapes that are in contact with the outer edge portions of the tab portions 12f and 13f and conform to the outer edge portions of the tab portions 12f and 13f are formed on the pair of support portions 41 and 51. Patent Document 2 discloses the following technique. In the electrode assembly 14 of the secondary battery 10, the positive electrode current collecting tab 31 and the negative electrode current collecting tab 32 are respectively laminated on the electrode assembly 14, and the outermost positive electrode current collecting tab 31 and negative electrode current collecting member in the stacking direction. A positive electrode conductive member 35 and a negative electrode conductive member 36 are welded to the tab 32. Through-holes penetrating in the stacking direction on the tip side from the positions where the conductive members 35 and 36 are electrically connected to all the stacked positive electrode current collecting tabs 31 and all the stacked negative electrode current collecting tabs 32 31a and 32a are formed.

特開2013−187141号公報JP 2013-187141 A

特許文献1では、正極板12及び負極板13とは別に、セパレータ14の一方の縁部141を、正極用位置決め部材40の一対の第3接触部42c及び負極用位置決め部材50の一対の第3接触部42cに接触させて、セパレータ14を正極板12及び負極板13に対して予め定められた位置に位置決めしているため、電極板の位置ずれによる短絡が発生する可能性がある。   In Patent Document 1, in addition to the positive electrode plate 12 and the negative electrode plate 13, one edge portion 141 of the separator 14 is replaced with a pair of third contact portions 42 c of the positive electrode positioning member 40 and a pair of third electrodes of the negative electrode positioning member 50. Since the separator 14 is positioned at a predetermined position with respect to the positive electrode plate 12 and the negative electrode plate 13 in contact with the contact portion 42c, there is a possibility that a short circuit occurs due to the displacement of the electrode plate.

一方、特許文献2では、セパレータ23は袋状に形成されるとともに、このセパレータ23内には正極シート21が、正極集電タブ31が袋の上部から突出する状態で収容されることで、正極シート21は、セパレータ23に対して正極シート21の面に沿う方向において位置ずれが起きないようにされているが、貫通孔を用いて電極の位置を合わせているため、電極集電タブのサイズが大きくなり、体積エネルギー密度が低下する可能性がある。   On the other hand, in Patent Document 2, the separator 23 is formed in a bag shape, and the positive electrode sheet 21 is accommodated in the separator 23 in a state where the positive electrode current collecting tab 31 protrudes from the upper portion of the bag. Although the sheet 21 is not displaced in the direction along the surface of the positive electrode sheet 21 with respect to the separator 23, the size of the electrode current collecting tab is adjusted because the position of the electrode is adjusted using the through hole. May increase and the volumetric energy density may decrease.

本発明の目的は、積層型二次電池の短絡防止及び体積エネルギー密度を向上させることを目的とする。   An object of the present invention is to prevent a short circuit and to improve volume energy density of a stacked secondary battery.

上記課題を解決するための本発明の特徴は、例えば以下の通りである。   The features of the present invention for solving the above problems are as follows, for example.

正極および負極が積層されて構成される積層型二次電池の製造方法であって、正極は、正極端子部および正極積層部を有し、負極は、負極端子部および負極積層部を有し、正極積層部および負極積層部の大きさが異なり、正極または負極にセパレータが形成されており、積層方向から見たときに、正極端子部および負極端子部は異なる位置に形成され、積層冶具用くぼみを有する積層冶具をセットする工程と、セパレータが形成された正極または負極の正極端子部または負極端子部の上面方向および側面方向を積層冶具用くぼみに合わせてセットする工程と、正極および負極を積層させて積層型二次電池を作製する工程と、を含む積層型二次電池の製造方法。   A method for manufacturing a laminated secondary battery in which a positive electrode and a negative electrode are laminated, wherein the positive electrode has a positive electrode terminal portion and a positive electrode laminate portion, the negative electrode has a negative electrode terminal portion and a negative electrode laminate portion, The size of the positive electrode laminate portion and the negative electrode laminate portion is different, and a separator is formed on the positive electrode or the negative electrode. When viewed from the lamination direction, the positive electrode terminal portion and the negative electrode terminal portion are formed at different positions. A step of setting a laminated jig having a separator, a step of setting the positive electrode terminal portion or the negative electrode terminal portion of the positive electrode or negative electrode on which the separator is formed in accordance with the indentation for the laminated jig, and the positive electrode and the negative electrode are laminated. And a step of producing a laminated secondary battery, and a method for producing a laminated secondary battery.

本発明により、積層型二次電池の短絡防止及び体積エネルギー密度を向上できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。   According to the present invention, it is possible to improve short-circuit prevention and volume energy density of a stacked secondary battery. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の一実施形態に係る積層型二次電池の一例を示す平面模式図である。It is a plane schematic diagram which shows an example of the laminated type secondary battery which concerns on one Embodiment of this invention. 図1のA−A’面の断面構造図である。FIG. 2 is a cross-sectional structure diagram of the A-A ′ plane of FIG. 1. 本発明の一実施形態にかかる積層型二次電池の冶具を用いた積層手順を示す平面模式図である。It is a plane schematic diagram which shows the lamination | stacking procedure using the jig | tool of the laminated type secondary battery concerning one Embodiment of this invention. 本発明の一実施形態にかかる端子部の切欠形状を示す平面模式図である。It is a plane schematic diagram which shows the notch shape of the terminal part concerning one Embodiment of this invention. 本発明の一実施形態にかかる積層型二次電池の一例を示す平面模式図である。It is a plane schematic diagram which shows an example of the laminated type secondary battery concerning one Embodiment of this invention.

以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.

本発明では、主にリチウムイオン二次電池の構造について実施形態を説明するが、リチウムイオン二次電池に限らず、ニッケル水素電池、ニッケルカドミウム電池、鉛電池、リチウムイオン電池、ナトリウムイオン電池等の二次電池や一次電池においても固体電解質を用いた電池であれば適用可能である。   In the present invention, embodiments of the structure of a lithium ion secondary battery will be mainly described. However, the present invention is not limited to a lithium ion secondary battery, but a nickel hydrogen battery, a nickel cadmium battery, a lead battery, a lithium ion battery, a sodium ion battery, or the like. Any secondary battery or primary battery can be used as long as it uses a solid electrolyte.

図1は、本発明の一実施形態に係る積層型二次電池の一例を示す平面模式図である。図2は、図1のA−A’面の断面構造図であり、本発明の一実施形態に係る積層型二次電池の一例を示す断面模式図である。上面方向および側面方向を図1のように定義する。積層方向および面内方向を図2のように定義する。   FIG. 1 is a schematic plan view showing an example of a stacked secondary battery according to an embodiment of the present invention. FIG. 2 is a cross-sectional structural view taken along the plane A-A ′ of FIG. 1, and is a schematic cross-sectional view illustrating an example of a stacked secondary battery according to an embodiment of the present invention. The upper surface direction and the side surface direction are defined as shown in FIG. The stacking direction and the in-plane direction are defined as shown in FIG.

図1において、積層型二次電池10は、正極101、負極201、を有する。正極101は正極積層部102、正極端子部103を有し、負極201は負極積層部202、負極端子部203を有する。正極101および負極201を電極、正極積層部102および負極積層部202を電極積層部、正極端子部103および負極端子部203を電極端子部、と称する場合がある。積層方向から見たときに、正極端子部103および負極端子部203は、積層方向から見たときに異なる位置に形成されている。電極積層部の上面方向に電極端子部が形成されている。   In FIG. 1, the stacked secondary battery 10 includes a positive electrode 101 and a negative electrode 201. The positive electrode 101 has a positive electrode laminate portion 102 and a positive electrode terminal portion 103, and the negative electrode 201 has a negative electrode laminate portion 202 and a negative electrode terminal portion 203. The positive electrode 101 and the negative electrode 201 may be referred to as electrodes, the positive electrode laminate portion 102 and the negative electrode laminate portion 202 may be referred to as electrode laminate portions, and the positive electrode terminal portion 103 and the negative electrode terminal portion 203 may be referred to as electrode terminal portions. When viewed from the stacking direction, the positive terminal portion 103 and the negative terminal portion 203 are formed at different positions when viewed from the stacking direction. An electrode terminal portion is formed in the upper surface direction of the electrode laminated portion.

図1では、正極101および負極201の大きさが異なっている。具体的には、正極積層部102および負極積層部202の大きさが異なっている。積層型二次電池10の面内方向において、負極積層部202を正極積層部102に対して大きくしているが、小さくしてもよい。負極積層部202を正極積層部102に対して大きくすることにより、正極101中の正極活物質からのリチウム析出の抑制できる。また、正極101、負極201は各1枚としているが、複数毎に電極端子部を合わせて電極を積層してもよい。
図2では、正極101、負極201を空間的に離して図示しているが、実際の電池では各々の間には空間はほぼなく、面内で接触している。図2において、正極101は、正極集電箔104、正極合材層105、正極セパレータ106を有する。負極201は、負極集電箔204、負極合材層205、負極セパレータ206を有する。正極集電箔104および負極集電箔204を電極集電箔、正極合材層105および負極合材層205を電極合材層、正極セパレータ106および負極セパレータ206をセパレータ、と称する場合がある。正極101および負極201それぞれが、正極セパレータ106および負極セパレータ206を有しているが、一方のみがセパレータを有していてもよい。図2では、正極セパレータ106の大きさおよび正極合材層105の大きさ、負極セパレータ206の大きさおよび負極合材層205の大きさが同一になっているが、同一でなくてもよい。セパレータを塗布で作製する場合、両者の大きさが同一になる場合がある。図2では、積層方向において、正極101、負極201の順に2組積層されているが1組でもよいし、3組以上でもよい。
In FIG. 1, the sizes of the positive electrode 101 and the negative electrode 201 are different. Specifically, the positive electrode laminate 102 and the negative electrode laminate 202 are different in size. In the in-plane direction of the stacked secondary battery 10, the negative electrode stacking portion 202 is made larger than the positive electrode stacking portion 102, but may be made smaller. By making the negative electrode laminate portion 202 larger than the positive electrode laminate portion 102, lithium deposition from the positive electrode active material in the positive electrode 101 can be suppressed. Moreover, although the positive electrode 101 and the negative electrode 201 are each one sheet, you may laminate | stack an electrode, combining an electrode terminal part for every plurality.
In FIG. 2, the positive electrode 101 and the negative electrode 201 are illustrated as being spatially separated, but in an actual battery, there is almost no space between them, and they are in contact in a plane. In FIG. 2, the positive electrode 101 includes a positive electrode current collector foil 104, a positive electrode mixture layer 105, and a positive electrode separator 106. The negative electrode 201 includes a negative electrode current collector foil 204, a negative electrode mixture layer 205, and a negative electrode separator 206. The positive electrode current collector foil 104 and the negative electrode current collector foil 204 may be referred to as an electrode current collector foil, the positive electrode mixture layer 105 and the negative electrode mixture layer 205 may be referred to as an electrode mixture layer, and the positive electrode separator 106 and the negative electrode separator 206 may be referred to as separators. Each of the positive electrode 101 and the negative electrode 201 has the positive electrode separator 106 and the negative electrode separator 206, but only one of them may have a separator. In FIG. 2, the size of the positive electrode separator 106 and the size of the positive electrode mixture layer 105, the size of the negative electrode separator 206, and the size of the negative electrode mixture layer 205 are the same, but they may not be the same. When producing a separator by application | coating, both magnitude | sizes may become the same. In FIG. 2, in the stacking direction, two sets of the positive electrode 101 and the negative electrode 201 are stacked in this order, but may be one set or three or more sets.

積層方向の最下部を除く正極集電箔104の両面に正極合材層105、正極セパレータ106が形成されている。積層方向の最下部を除く負極集電箔204の両面に負極合材層205、負極セパレータ206が形成されている。   A positive electrode mixture layer 105 and a positive electrode separator 106 are formed on both surfaces of the positive electrode current collector foil 104 excluding the lowermost part in the stacking direction. A negative electrode mixture layer 205 and a negative electrode separator 206 are formed on both surfaces of the negative electrode current collector foil 204 excluding the lowermost part in the stacking direction.

積層方向の最下部の正極101は正極集電箔104の片面(負極201が配置されている方の面)にのみ正極合材層105、正極セパレータ106が形成されている。積層方向の最上部の負極201は、負極集電箔204の片面(正極101が配置されているの面)にのみ負極合材層205、負極セパレータ206が形成されている。   In the lowermost positive electrode 101 in the stacking direction, the positive electrode mixture layer 105 and the positive electrode separator 106 are formed only on one surface of the positive electrode current collector foil 104 (the surface on which the negative electrode 201 is disposed). In the uppermost negative electrode 201 in the stacking direction, the negative electrode mixture layer 205 and the negative electrode separator 206 are formed only on one surface of the negative electrode current collector foil 204 (the surface on which the positive electrode 101 is disposed).

単位セル20は、正極集電箔104、正極合材層105、正極セパレータ106、負極セパレータ206、負極合材層205、負極集電箔204で構成されている。また、単位セル20は積層方向に対し、胸像反転を繰り返しながら配置されている。本実施例では3組の単位セルで構成されている。   The unit cell 20 includes a positive electrode current collector foil 104, a positive electrode composite material layer 105, a positive electrode separator 106, a negative electrode separator 206, a negative electrode composite material layer 205, and a negative electrode current collector foil 204. Further, the unit cells 20 are arranged while repeating bust image inversion in the stacking direction. In this embodiment, it is composed of three sets of unit cells.

補助線800が電極積層部と電極端子部の境界となっている。正極積層部102は、正極集電箔104、正極合材層105、正極セパレータ106で構成される。正極端子部103も正極集電箔104、正極合材層105、正極セパレータ106で構成されるが、正極集電箔104のみで構成されていてもよい。正極端子部103が正極集電箔104、正極合材層105、正極セパレータ106で構成される場合でも、正極端子部103では、外部接続端子との接続のために、正極集電箔104上に正極合材層105、正極セパレータ106が形成されていない箇所がある。   The auxiliary line 800 is a boundary between the electrode laminated portion and the electrode terminal portion. The positive electrode stacking unit 102 includes a positive electrode current collector foil 104, a positive electrode mixture layer 105, and a positive electrode separator 106. The positive electrode terminal portion 103 is also configured by the positive electrode current collector foil 104, the positive electrode mixture layer 105, and the positive electrode separator 106, but may be configured by only the positive electrode current collector foil 104. Even when the positive electrode terminal portion 103 is constituted by the positive electrode current collector foil 104, the positive electrode mixture layer 105, and the positive electrode separator 106, the positive electrode terminal portion 103 is disposed on the positive electrode current collector foil 104 for connection with an external connection terminal. There are places where the positive electrode mixture layer 105 and the positive electrode separator 106 are not formed.

負極積層部202は、負極集電箔204、負極合材層205、負極セパレータ206で構成される。負極端子部203も負極集電箔204、負極合材層205、負極セパレータ206で構成されるが、負極集電箔204のみで構成されていてもよい。負極端子部203が負極集電箔204、負極合材層205、負極セパレータ206で構成される場合でも、負極端子部203では、外部接続端子との接続のために、負極集電箔204上に負極合材層205、負極セパレータ206が形成されていない箇所がある。   The negative electrode laminate 202 is composed of a negative electrode current collector foil 204, a negative electrode mixture layer 205, and a negative electrode separator 206. The negative electrode terminal portion 203 is also composed of the negative electrode current collector foil 204, the negative electrode mixture layer 205, and the negative electrode separator 206, but may be composed of only the negative electrode current collector foil 204. Even when the negative electrode terminal portion 203 includes the negative electrode current collector foil 204, the negative electrode mixture layer 205, and the negative electrode separator 206, the negative electrode terminal portion 203 is disposed on the negative electrode current collector foil 204 for connection with an external connection terminal. There is a portion where the negative electrode mixture layer 205 and the negative electrode separator 206 are not formed.

<正極集電箔104>
正極集電箔104には、アルミニウム箔や孔径0.1〜10mmのアルミニウム製穿孔箔、エキスパンドメタル、発泡アルミニウム板などが用いられる。材質は、アルミニウムの他に、ステンレス、チタンなども適用できる。正極集電箔104の厚さは、好ましくは10nm〜1mmである。二次電池のエネルギー密度と電極の機械強度両立の観点から1〜100μm程度が望ましい。
<Positive electrode current collector foil 104>
As the positive electrode current collector foil 104, an aluminum foil, an aluminum perforated foil having a pore diameter of 0.1 to 10 mm, an expanded metal, a foamed aluminum plate, or the like is used. As the material, stainless steel, titanium, or the like can be applied in addition to aluminum. The thickness of the positive electrode current collector foil 104 is preferably 10 nm to 1 mm. About 1-100 micrometers is desirable from a viewpoint of the energy density of a secondary battery and the mechanical strength of an electrode.

<正極合材層105>
正極合材層105には、少なくともLiの吸蔵・放出が可能な正極活物質が含まれている。正極活物質としては、LiCo系複合酸化物、LiNi系複合酸化物、LiMn系複合酸化物、Li−Co−Ni−Mn系複合酸化物、LiFeP系複合酸化物などが挙げられる。正極合材層105中に、正極合材層105内の電子伝導性を担う導電材や、正極合材層105内の材料間の密着性を確保するバインダ、さらには正極合材層105内のイオン伝導性を確保するための固体電解質を含めてもよい。
<Positive electrode mixture layer 105>
The positive electrode mixture layer 105 contains at least a positive electrode active material capable of inserting and extracting Li. Examples of the positive electrode active material include LiCo composite oxides, LiNi composite oxides, LiMn composite oxides, Li—Co—Ni—Mn composite oxides, LiFeP composite oxides, and the like. In the positive electrode mixture layer 105, a conductive material responsible for electronic conductivity in the positive electrode mixture layer 105, a binder that secures adhesion between the materials in the positive electrode mixture layer 105, and further in the positive electrode mixture layer 105 A solid electrolyte for ensuring ionic conductivity may be included.

正極合材層105を作製する方法として、正極合材層105に含まれる材料を溶媒に溶かしてスラリー化し、それを正極集電箔104上に塗工する。塗工方法に特段の限定はなく、例えば、ドクターブレード法、ディッピング法、スプレー法などの従前の方法を利用できる。また、塗布から乾燥までを複数回行うことにより、複数の正極合材層105を正極集電箔104に積層してもよい。その後、溶媒を除去するための乾燥、正極合材層105内の電子伝導性、イオン伝導性を確保するためのプレス工程を経て、正極合材層105が形成する。   As a method for producing the positive electrode mixture layer 105, a material contained in the positive electrode mixture layer 105 is dissolved in a solvent to form a slurry, which is applied onto the positive electrode current collector foil 104. The coating method is not particularly limited, and for example, a conventional method such as a doctor blade method, a dipping method, or a spray method can be used. Further, a plurality of positive electrode mixture layers 105 may be laminated on the positive electrode current collector foil 104 by performing a plurality of times from application to drying. Thereafter, the positive electrode mixture layer 105 is formed through a drying process for removing the solvent and a pressing step for ensuring electron conductivity and ion conductivity in the positive electrode mixture layer 105.

正極合材層105の厚さは全固体電池のエネルギー密度、レート特性、入出力特性に応じて設計するが、一般的には数μm〜数百μmのサイズとなる。正極合材層105に含まれる正極活物質等の材料の粒径は、正極合材層105の厚さ以下になるように規定される。正極活物質粉末中に正極合材層105の厚さ以上の粒径を有する粗粒がある場合、ふるい分級、風流分級などにより粗粒を予め除去し、正極合材層105の厚さ以下の粒子を用意する。   The thickness of the positive electrode mixture layer 105 is designed according to the energy density, rate characteristics, and input / output characteristics of the all-solid-state battery, but generally has a size of several μm to several hundred μm. The particle size of a material such as a positive electrode active material included in the positive electrode mixture layer 105 is defined to be equal to or less than the thickness of the positive electrode mixture layer 105. When the positive electrode active material powder includes coarse particles having a particle size equal to or larger than the thickness of the positive electrode mixture layer 105, the coarse particles are previously removed by sieving classification, wind classification, etc. Prepare the particles.

<負極集電箔204>
負極集電箔204には、銅箔や孔径0.1〜10mmの銅製穿孔箔、エキスパンドメタル、発泡銅板などが用いられ、材質は、銅の他に、ステンレス、チタン、ニッケルなども適用できる。負極集電箔204の厚さは、好ましくは10nm〜1mmである。全固体電池のエネルギー密度と電極の機械強度両立の観点から1〜100μm程度が望ましい。
<Negative electrode current collector foil 204>
For the negative electrode current collector foil 204, a copper foil, a copper perforated foil having a hole diameter of 0.1 to 10 mm, an expanded metal, a foamed copper plate, or the like is used. In addition to copper, stainless steel, titanium, nickel, or the like can be applied. The thickness of the negative electrode current collector foil 204 is preferably 10 nm to 1 mm. About 1-100 micrometers is desirable from a viewpoint of the energy density of an all-solid-state battery and the mechanical strength of an electrode.

<負極合材層205>
負極合材層205には、少なくともLiの吸蔵・放出が可能な負極活物質が含まれている。負極活物質としては、天然黒鉛、ソフトカーボン、非晶質炭素などの炭素系材料、Si金属やSi合金、チタン酸リチウム、リチウム金属などが上げられる。負極合材層205中に、負極合材層205内の電子伝導性を担う導電材や、負極合材層205内の材料間の密着性を確保するバインダ、さらには負極合材層205内のイオン伝導性を確保するための固体電解質を含めてもよい。
<Negative electrode mixture layer 205>
The negative electrode mixture layer 205 contains at least a negative electrode active material capable of inserting and extracting Li. Examples of the negative electrode active material include carbon-based materials such as natural graphite, soft carbon, and amorphous carbon, Si metal, Si alloy, lithium titanate, and lithium metal. In the negative electrode mixture layer 205, a conductive material responsible for electronic conductivity in the negative electrode mixture layer 205, a binder that ensures adhesion between the materials in the negative electrode mixture layer 205, and further in the negative electrode mixture layer 205 A solid electrolyte for ensuring ionic conductivity may be included.

負極合材層205の厚さは全固体電池のエネルギー密度、レート特性、入出力特性に応じて設計するが、一般的には数μm〜数百μmのサイズとなる。負極合材層205に含まれる正極活物質等の材料の粒径は、負極合材層205の厚さ以下になるように規定される。正極活物質粉末中に負極合材層205の厚さ以上の粒径を有する粗粒がある場合、ふるい分級、風流分級などにより粗粒を予め除去し、負極合材層205の厚さ以下の粒子を用意する。   The thickness of the negative electrode mixture layer 205 is designed in accordance with the energy density, rate characteristics, and input / output characteristics of the all-solid-state battery, but generally has a size of several μm to several hundred μm. The particle size of the material such as the positive electrode active material included in the negative electrode mixture layer 205 is defined to be equal to or less than the thickness of the negative electrode mixture layer 205. When the positive electrode active material powder has coarse particles having a particle size equal to or larger than the thickness of the negative electrode mixture layer 205, the coarse particles are previously removed by sieving classification, wind classification, etc. Prepare the particles.

<セパレータ>
正極セパレータ106、負極セパレータ206には固体電解質が含まれる。固体電解質として、Li10GePS12、Li2S−Pなどの硫化物系、Li−La−Zr−Oなどの酸化物系、イオン液体や常温溶融塩などを有機高分子や無機粒子などに担持させたポリマー型、半固体電解質等、二次電池の動作温度範囲内で流動性を示さない材料が挙げられる。固体電解質層は、粉体の圧縮、結着材との混合、スラリー化した固体電解質層の離型材への塗布や担持体への含浸などにより形成する。固体電解質層の厚さは二次電池のエネルギー密度、電子絶縁性の確保等の観点から数nm〜数mmのサイズとなる。
図3は、本発明の一実施形態にかかる積層型二次電池の冶具を用いた積層手順を示す平面模式図である。積層冶具300は、積層型二次電池10の製造工程において、電極をずれなく積層するために用いる冶具である。
<Separator>
The positive electrode separator 106 and the negative electrode separator 206 contain a solid electrolyte. As the solid electrolyte, Li 10 Ge 2 PS 12, Li2S-P 2 S sulfide such as 5, Li-La-Zr- O oxide system such as, organic polymer and ionic liquid or ionic liquid and inorganic particles Examples thereof include materials that do not exhibit fluidity within the operating temperature range of a secondary battery, such as a polymer type supported on a semi-solid electrolyte, a semi-solid electrolyte, and the like. The solid electrolyte layer is formed by compressing powder, mixing with a binder, applying the slurryed solid electrolyte layer to a release material, or impregnating a carrier. The thickness of the solid electrolyte layer is a size of several nm to several mm from the viewpoint of ensuring the energy density of the secondary battery, ensuring electronic insulation, and the like.
FIG. 3 is a schematic plan view illustrating a stacking procedure using a jig for a stacked secondary battery according to an embodiment of the present invention. The lamination jig 300 is a jig used for laminating electrodes without deviation in the manufacturing process of the laminated secondary battery 10.

積層冶具300は、積層冶具用くぼみ310を有する。積層冶具300は、正極端子部103および負極端子部203の上面方向の辺および側面方向の辺のみを規定する形状を有しており、正極積層部102および負極積層部202とは接触しない構造を有している。換言すれば、電極端子部の上面方向の長さよりも、積層冶具用くぼみ310の上面方向の長さが短くなるように設計されている。積層冶具300は、正極積層部102および負極積層部202と接触させてもよい。積層冶具300を正極積層部102および負極積層部202と接触させない構造とすることにより、電極端子部で位置合わせをするための積層冶具300を用いた場合においても、電極積層部の上面を電極で揃えることなく、電極の位置合わせが可能となる。   The lamination jig 300 has a depression 310 for a lamination jig. The stacking jig 300 has a shape that defines only the side in the upper surface direction and the side in the side surface direction of the positive electrode terminal portion 103 and the negative electrode terminal portion 203, and has a structure that does not contact the positive electrode stack portion 102 and the negative electrode stack portion 202. Have. In other words, it is designed such that the length in the upper surface direction of the laminated jig recess 310 is shorter than the length in the upper surface direction of the electrode terminal portion. The lamination jig 300 may be brought into contact with the positive electrode lamination part 102 and the negative electrode lamination part 202. By adopting a structure in which the laminated jig 300 is not in contact with the positive electrode laminated portion 102 and the negative electrode laminated portion 202, even when the laminated jig 300 for alignment at the electrode terminal portion is used, the upper surface of the electrode laminated portion is made of an electrode. The electrodes can be aligned without being aligned.

また、正極と負極と大きさが異なり、電極上にセパレータが形成された電極を積層冶具300にセットしているため、電極の位置ずれによる短絡を低減できる。また、正極端子部103および負極端子部203の上面方向の辺および側面方向の辺で電極の位置決めをしているため、正極端子部103および負極端子部203のサイズを小さくして、積層型二次電池の体積エネルギー密度を向上できる。   In addition, since the electrode having a size different from that of the positive electrode and the negative electrode and having the separator formed on the electrode is set in the laminated jig 300, a short circuit due to the displacement of the electrode can be reduced. In addition, since the electrodes are positioned on the side in the upper surface direction and the side in the side surface direction of the positive electrode terminal portion 103 and the negative electrode terminal portion 203, the size of the positive electrode terminal portion 103 and the negative electrode terminal portion 203 is reduced, so The volume energy density of the secondary battery can be improved.

図3(a)において、積層冶具300がセットされている。 図3(b)において、正極端子部103を積層冶具300の積層冶具用くぼみ310に合わせるように、正極101がセットされる。図3(c)において、負極端子部203を積層冶具300の積層冶具用くぼみ310に合わせるように、負極201がセットされる。図3(b)および図3(c)の工程が繰り返されて、複数の正極101および複数の負極201が積層された電極群が形成される。   In FIG. 3A, the laminated jig 300 is set. In FIG. 3B, the positive electrode 101 is set so that the positive electrode terminal portion 103 is aligned with the lamination jig recess 310 of the lamination jig 300. In FIG. 3C, the negative electrode 201 is set so that the negative electrode terminal portion 203 is aligned with the lamination jig recess 310 of the lamination jig 300. 3B and 3C are repeated to form an electrode group in which a plurality of positive electrodes 101 and a plurality of negative electrodes 201 are stacked.

図3(d)において、正極101同士、負極201同士の電極端子部が接続される。具体的には、積層冶具300に正極101および負極201を積層した後、積層冶具300に正極101および負極201が収納された状態で、正極端子部103および負極端子部203と外部接続端子400とを接合している。その場合、積層冶具300にセットした状態で電極端子部に外部接続端子400を接続することで、位置ずれをより防止できる。さらに、電極端子部に外部接続端子400を接続する際に、正極端子部103または負極端子部203と外部接続端子400との接合箇所を2か所以上とすることで、電極の位置ずれを防止できる。   In FIG. 3D, the electrode terminal portions of the positive electrodes 101 and the negative electrodes 201 are connected. Specifically, after the positive electrode 101 and the negative electrode 201 are stacked on the lamination jig 300, the positive electrode terminal portion 103, the negative electrode terminal portion 203, and the external connection terminal 400 in a state where the positive electrode 101 and the negative electrode 201 are accommodated in the lamination jig 300. Are joined. In that case, positional displacement can be further prevented by connecting the external connection terminal 400 to the electrode terminal portion in a state of being set on the laminated jig 300. Furthermore, when the external connection terminal 400 is connected to the electrode terminal portion, the positive electrode terminal portion 103 or the negative electrode terminal portion 203 and the external connection terminal 400 are joined at two or more locations, thereby preventing electrode displacement. it can.

電極端子部には位置合わせの精度を向上するために切欠を付けることもできる。図4は、本発明の一実施形態にかかる端子部の切欠形状を示す平面模式図である。
図4(a)では、電極端子部の上辺に半円状の切欠320を2つ設けられている。この切欠320と逆の形状を積層冶具300に形成しておくことで、この切欠320を目印に位置合わせの精度を向上できる。
The electrode terminal portion can be notched in order to improve alignment accuracy. FIG. 4 is a schematic plan view showing a notch shape of the terminal portion according to the embodiment of the present invention.
In FIG. 4A, two semicircular cutouts 320 are provided on the upper side of the electrode terminal portion. By forming the opposite shape of the notch 320 in the laminated jig 300, the alignment accuracy can be improved with the notch 320 as a mark.

図4(b)では、電極端子部の左右辺に三角形の切欠320が設けられている。図4(a)と同様に位置合わせの精度を向上できるだけでなく、切欠320の形状を鋭角とすることにより、より位置合わせ精度を向上できる。また、電極を積層するために電極を積層冶具300にセットする時の電極集電箔の切れ等を低減することを目的に、左右の切欠の位置をずらして配置した。鋭角の部分から電極集電箔の切れが発生しやすく、切欠320の位置がそろっていると鋭角の部分の幅が短くなってしまうため、切れやすくなる。電極集電箔の切れを緩和するために左右の切欠の位置をずらして配置している。   In FIG. 4B, triangular cutouts 320 are provided on the left and right sides of the electrode terminal portion. Similar to FIG. 4A, not only the alignment accuracy can be improved, but also the alignment accuracy can be further improved by making the shape of the notch 320 an acute angle. Further, the positions of the left and right cutouts are shifted in order to reduce the breakage of the electrode current collector foil when the electrodes are set on the lamination jig 300 in order to laminate the electrodes. The electrode current collector foil is likely to be cut from an acute angle portion, and when the positions of the notches 320 are aligned, the width of the acute angle portion is shortened, so that the electrode current collector foil is easily cut. In order to alleviate the cutting of the electrode current collector foil, the positions of the left and right cutouts are shifted.

図4(c)では、左右辺に半六角形の切欠320が設けられている。極を積層するために電極を積層冶具300にセットする時の電極集電箔の切れを低減することを最優先とした形状であり、電極端子部が小幅になった際に好ましく適用できる。   In FIG. 4C, semi-hexagonal notches 320 are provided on the left and right sides. It is a shape that gives the highest priority to reducing the breakage of the electrode current collector foil when the electrode is set on the lamination jig 300 for laminating the electrodes, and can be preferably applied when the electrode terminal portion becomes narrow.

積層冶具300の代わりに積層型二次電池10の位置決め外装材500を用いることで、積層冶具300を用いずに電極の位置合わせの精度を向上できる。図5は、本発明の一実施形態にかかる積層型二次電池の一例を示す平面模式図である。正極101および負極201は、位置決め外装材500および対面外装材501に収納されている。   By using the positioning exterior material 500 of the stacked secondary battery 10 instead of the stacked jig 300, the accuracy of electrode alignment can be improved without using the stacked jig 300. FIG. 5 is a schematic plan view showing an example of a stacked secondary battery according to an embodiment of the present invention. The positive electrode 101 and the negative electrode 201 are accommodated in the positioning exterior material 500 and the facing exterior material 501.

図5では、位置決め外装材500に外装材用くぼみ510をつけて電極端子部の収納位置を規定することで、電極の位置合わせの精度を向上できる。その際、位置決め外装材500に形成した外装材用くぼみ510を電極端子部と略同等、または、外装材用くぼみ510を正極積層部102および負極積層部202とは接触しない構造、とすることで、積層冶具300を用いずに電極端子部での位置合わせが可能となる。電極の位置合わせの精度を高めるためには、位置決め外装材500に形成する外装材用くぼみ510の各々の角を直角にすることが望ましい。この場合、電極積層部を収納するための外装材用くぼみ510を設けてもよいが、電極積層部を収納する領域の外装材用くぼみ510の角は直角にする必要はない。   In FIG. 5, the positioning accuracy of the electrode can be improved by attaching the exterior material recess 510 to the positioning exterior material 500 to define the storage position of the electrode terminal portion. At this time, the exterior material recess 510 formed in the positioning exterior material 500 is substantially the same as the electrode terminal portion, or the exterior material recess 510 has a structure that does not contact the positive electrode laminate portion 102 and the negative electrode laminate portion 202. Alignment at the electrode terminal portion is possible without using the laminated jig 300. In order to increase the alignment accuracy of the electrodes, it is desirable that the corners of the exterior material recess 510 formed in the positioning exterior material 500 are at right angles. In this case, an exterior material recess 510 for accommodating the electrode stack portion may be provided, but the corner of the exterior material recess 510 in the region for storing the electrode stack portion need not be a right angle.

10…積層型二次電池
20…単位セル
101…正極
102…正極積層部
103…正極端子部
104…正極集電箔
105…正極合材層
106…正極セパレータ
201…負極
202…負極積層部
203…負極端子部
204…負極集電箔
205…負極合材層
206…負極セパレータ
300…積層冶具
310…積層冶具用くぼみ
320…切欠
400…外部接続端子
500…位置決め外装材
501…対面外装材
510…外装材用くぼみ
800…補助線
DESCRIPTION OF SYMBOLS 10 ... Stack type secondary battery 20 ... Unit cell 101 ... Positive electrode 102 ... Positive electrode laminated part 103 ... Positive electrode terminal part 104 ... Positive electrode collector foil 105 ... Positive electrode compound material layer 106 ... Positive electrode separator 201 ... Negative electrode 202 ... Negative electrode laminated part 203 ... Negative electrode terminal portion 204 ... Negative electrode current collector foil 205 ... Negative electrode composite material layer 206 ... Negative electrode separator 300 ... Lamination jig 310 ... Lamination 320 for lamination jig ... Notch 400 ... External connection terminal 500 ... Positioning exterior material 501 ... Facing exterior material 510 ... Exterior Recess for material 800 ... Auxiliary line

Claims (6)

正極および負極が積層されて構成される積層型二次電池の製造方法であって、
前記正極は、正極端子部および正極積層部を有し、
前記負極は、負極端子部および負極積層部を有し、
前記正極積層部および前記負極積層部の大きさが異なり、
前記正極または前記負極にセパレータが形成されており、
積層方向から見たときに、前記正極端子部および前記負極端子部は異なる位置に形成され、
積層冶具用くぼみを有する積層冶具をセットする工程と、
前記セパレータが形成された前記正極または前記負極の前記正極端子部または前記負極端子部の上面方向および側面方向を前記積層冶具用くぼみに合わせてセットする工程と、
前記正極および前記負極を積層させて積層型二次電池を作製する工程と、を含む積層型二次電池の製造方法。
A method for producing a laminated secondary battery in which a positive electrode and a negative electrode are laminated,
The positive electrode has a positive electrode terminal part and a positive electrode laminate part,
The negative electrode has a negative electrode terminal portion and a negative electrode laminate portion,
The positive electrode laminate and the negative electrode laminate are different in size,
A separator is formed on the positive electrode or the negative electrode,
When viewed from the stacking direction, the positive terminal portion and the negative terminal portion are formed at different positions,
A step of setting a lamination jig having a depression for the lamination jig;
A step of setting the upper surface direction and the side surface direction of the positive electrode terminal portion or the negative electrode terminal portion of the positive electrode or the negative electrode on which the separator is formed according to the depression for the laminated jig;
Laminating the positive electrode and the negative electrode to produce a laminated secondary battery.
請求項1の積層型二次電池の製造方法において、
前記積層冶具用くぼみの上面方向の長さは前記セパレータが形成された前記正極または前記負極の前記正極端子部または前記負極端子部の上面方向の長さより小さい積層型二次電池の製造方法。
In the manufacturing method of the lamination type secondary battery of Claim 1,
The method of manufacturing a laminated secondary battery, wherein the length of the depression for the laminated jig is smaller than the length of the positive electrode terminal or the negative electrode terminal portion of the positive electrode or the negative electrode on which the separator is formed.
請求項1の積層型二次電池の製造方法において、
積層方向から見たときに、前記セパレータと前記セパレータが形成された前記正極または前記負極の 前記正極積層部または前記負極積層部との大きさが同一である積層型二次電池の製造方法。
In the manufacturing method of the lamination type secondary battery of Claim 1,
A method of manufacturing a stacked secondary battery, wherein the size of the positive electrode or the negative electrode on which the separator is formed and the positive electrode stack or the negative electrode stack is the same when viewed from the stacking direction.
請求項1の積層型二次電池の製造方法において、
前記積層冶具に前記正極および前記負極を積層した後、前記積層冶具に前記正極および前記負極が収納された状態で、前記正極端子部および前記負極端子部と外部接続端子とを接合する工程を含む積層型二次電池の製造方法。
In the manufacturing method of the lamination type secondary battery of Claim 1,
After the positive electrode and the negative electrode are laminated on the laminated jig, the positive electrode terminal portion, the negative electrode terminal portion and the external connection terminal are joined in a state where the positive electrode and the negative electrode are housed in the laminated jig. A method for manufacturing a stacked secondary battery.
請求項1の積層型二次電池の製造方法において、
前記正極端子部または前記負極端子部と前記外部接続端子との接合箇所が2か所以上である積層型二次電池の製造方法。
In the manufacturing method of the lamination type secondary battery of Claim 1,
A method for manufacturing a laminated secondary battery, wherein the positive electrode terminal portion or the negative electrode terminal portion and the external connection terminal are joined at two or more locations.
請求項1の積層型二次電池の製造方法において、
前記積層冶具が前記正極および前記負極を収納する位置決め外装材である積層型二次電池の製造方法。
In the manufacturing method of the lamination type secondary battery of Claim 1,
A method for manufacturing a laminated secondary battery, wherein the laminated jig is a positioning exterior material that houses the positive electrode and the negative electrode.
JP2016197711A 2016-10-06 2016-10-06 Manufacturing method for laminated secondary battery Pending JP2018060699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016197711A JP2018060699A (en) 2016-10-06 2016-10-06 Manufacturing method for laminated secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016197711A JP2018060699A (en) 2016-10-06 2016-10-06 Manufacturing method for laminated secondary battery

Publications (1)

Publication Number Publication Date
JP2018060699A true JP2018060699A (en) 2018-04-12

Family

ID=61907729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016197711A Pending JP2018060699A (en) 2016-10-06 2016-10-06 Manufacturing method for laminated secondary battery

Country Status (1)

Country Link
JP (1) JP2018060699A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190508A (en) * 2017-04-28 2018-11-29 株式会社豊田自動織機 Inspection method of power storage device
CN113994498A (en) * 2019-09-27 2022-01-28 株式会社Lg新能源 Electrode assembly having depressions formed in electrode tabs, guide member for stacking the same, and method of manufacturing stacked battery using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190508A (en) * 2017-04-28 2018-11-29 株式会社豊田自動織機 Inspection method of power storage device
CN113994498A (en) * 2019-09-27 2022-01-28 株式会社Lg新能源 Electrode assembly having depressions formed in electrode tabs, guide member for stacking the same, and method of manufacturing stacked battery using the same
JP2022528478A (en) * 2019-09-27 2022-06-10 エルジー エナジー ソリューション リミテッド An electrode assembly in which a recess is formed in an electrode tab, a guide member for laminating the electrode assembly, and a method for manufacturing a stack type battery using the guide member.
JP7391447B2 (en) 2019-09-27 2023-12-05 エルジー エナジー ソリューション リミテッド An electrode assembly in which a recess is formed in an electrode tab, a guide member for stacking the same, and a method for manufacturing a stacked battery using the same

Similar Documents

Publication Publication Date Title
JP6288057B2 (en) Stacked all-solid battery
KR100848788B1 (en) Electrode Assembly Having Electrode Tabs of the Same Size in Joint Portion thereof and Electrochemical Cell Containing the Same
JP6567491B2 (en) Electrochemical cell having folded electrodes and separator, battery comprising the cell, and method of forming the same
JP5779828B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
JP5943243B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
US20200266482A1 (en) Battery
JP2017199668A (en) Battery, and battery manufacturing method
JP6020437B2 (en) Folding battery
JP2015504591A (en) Electrode assembly manufacturing method and electrode assembly manufactured using the same
JP5413129B2 (en) Solid battery manufacturing method
US20210305630A1 (en) Positive electrode for solid-state battery, manufacturing method for positive electrode for solid-state battery, and solid-state battery
CN106469826B (en) Battery with a battery cell
JP2017195076A (en) Bipolar type battery
JP6674885B2 (en) Secondary battery and method of manufacturing secondary battery
JP2011129446A (en) Laminated type battery
JP2015018670A (en) Bipolar battery
JP2018060699A (en) Manufacturing method for laminated secondary battery
KR101090684B1 (en) Electrode assembly for battery and manufacturing thereof
JP7253399B2 (en) secondary battery
WO2018042942A1 (en) Electrode for stacked cells, and stacked cell
JP7279632B2 (en) All-solid battery
CN115395078A (en) Solid-state battery and method for manufacturing solid-state battery
JP2018107003A (en) All-solid battery
JP2021099949A (en) All-solid battery
JP7479104B1 (en) Electrode sheet and secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170126