JP2018059889A - Metallic compound presence estimation method, exploration method for metallic ore deposits, resource development method, mining method, production method for secondary copper sulfide, resource production method, mine development method and drilling method - Google Patents
Metallic compound presence estimation method, exploration method for metallic ore deposits, resource development method, mining method, production method for secondary copper sulfide, resource production method, mine development method and drilling method Download PDFInfo
- Publication number
- JP2018059889A JP2018059889A JP2016220062A JP2016220062A JP2018059889A JP 2018059889 A JP2018059889 A JP 2018059889A JP 2016220062 A JP2016220062 A JP 2016220062A JP 2016220062 A JP2016220062 A JP 2016220062A JP 2018059889 A JP2018059889 A JP 2018059889A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- metal compound
- reflection spectrum
- deposit
- estimating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Geophysics And Detection Of Objects (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
この発明は、金属化合物の存在位置及び/又は存在割合を推定する方法ならびに、それを用いる金属鉱床の探鉱方法、資源開発方法、採鉱方法、二次硫化銅の産出方法、資源産出方法、鉱山開発方法およびボーリング方法に関するものであり、特には、主として地表面における金属化合物の存在の、高精度で容易な推定を可能にすることにより、金属鉱床の探鉱その他の資源探査等に資する技術を提案するものである。 The present invention relates to a method for estimating the existence position and / or proportion of a metal compound, and a metal ore exploration method, resource development method, mining method, secondary copper sulfide production method, resource production method, and mine development using the same. In particular, it proposes a technique that contributes to exploration of metal deposits and other resource exploration, especially by enabling highly accurate and easy estimation of the presence of metal compounds on the ground surface. Is.
たとえば銅ないし亜鉛等の非鉄金属資源の消費量が増大する傾向にある近年では、資源を安定して供給する必要性から、資源ポテンシャルが高いがまだ十分に探鉱されていない南米その他の地域にて、長い歴史を経て金属元素が濃集して形成された金属鉱床を新たに発見し、これから採鉱することが希求されている。 In recent years, for example, the consumption of non-ferrous metal resources such as copper and zinc has been increasing. In South America and other regions where resource potential is high but not yet fully explored due to the need to supply resources stably. There is a desire to discover a new metal deposit formed by concentrating metal elements after a long history and to mine from now on.
このような資源探鉱及び開発は、探鉱から採鉱、資源生産の開始に至るまで、多大な費用及び時間を要するものであり、その初期段階となる金属鉱床の探鉱では、そのような投資に見合う程度の濃度で金属元素が濃集した金属鉱床を、高い精度で、しかも容易に発見することが望ましい。
しかるに、一般に金属鉱床の大部分は地下に存在し、特に、地表面から浅い位置にある金属鉱床はこれまでに既に探鉱されており、今後新たに発見・開発される金属鉱床は潜頭化・深部化が進むことが予想されるので、新しい金属鉱床の探鉱は次第に難しいものになってきている。
Such resource exploration and development is costly and time consuming from exploration to mining and the start of resource production. The exploration of metal deposits, which is the initial stage of such exploration, is worthy of such investment. It is desirable to easily find a metal deposit in which metal elements are concentrated at a high concentration with high accuracy.
However, most of the metal deposits are generally underground, especially metal deposits that are shallow from the ground surface have already been explored so far. As deepening is expected, exploration of new metal deposits is becoming increasingly difficult.
ここで従来は、地下に金属鉱床が存在し得ると考えられる地帯の地表面を目視等にて観察する地表調査や採取試料の化学分析を行い、そのなかから経験等に基いて見当を付けた場所でボーリングを実施して、地中の所定の深さの範囲を構成する物質の成分を分析することにより、金属鉱床の探鉱を行っていた。この場合、経験則や技能によるところも大きく、見当が外れると多数回にわたってボーリング、成分分析等を実施することになり、費用が嵩むとともに多くの時間を要するという問題がある。 Heretofore, surface surveys were conducted to visually observe the surface of the area where metal deposits could be present underground, and chemical analysis of the collected samples was conducted, and based on the experience, etc. Exploration of metal deposits was conducted by drilling at the site and analyzing the components of the substances that make up a range of depths underground. In this case, the rule of thumb and skill is also large, and if there is a misregistration, boring, component analysis, etc. will be performed many times, and there is a problem that costs increase and a lot of time is required.
このような状況の下、たとえば非特許文献1、2に記載されているような、人工衛星や航空機等により遠隔から対象を測定するリモートセンシング技術や、光学的手法に基き鉱物等の物質の組成等を推定するスペクトル解析技術の進歩に伴い、上述した探鉱分野においても、かかる技術が用いられるに至っている。 Under such circumstances, for example, as described in Non-Patent Documents 1 and 2, remote sensing technology for measuring an object remotely by an artificial satellite or an aircraft, or the composition of a substance such as a mineral based on an optical technique With the progress of spectrum analysis technology for estimating the above, such technology has been used also in the exploration field described above.
なお非特許文献1では、地球や惑星の表面物質をリモートセンシングにより推定する際等に用いる技術として、主に輝石やカンラン石等の珪酸塩鉱物の化学組成と吸収帯との関係、及び、様々な鉱物の混合物の粒子サイズや混合率と反射スペクトルとの関係について考察されている。
非特許文献2では、いわゆる等粒子モデル(Isograin Model)で、鉱物の混合物の反射スペクトルにおける粒子サイズ及び形状を考慮した解析手法について検討されている。
In Non-Patent Document 1, as a technique used when estimating surface materials of the earth and planets by remote sensing, the relationship between the chemical composition of silicate minerals such as pyroxene and olivine and absorption bands, and various The relationship between the particle size and mixing ratio of various mineral mixtures and the reflection spectrum is discussed.
Non-Patent Document 2 discusses an analysis method that takes into account the particle size and shape in the reflection spectrum of a mixture of minerals using a so-called isoparticle model (Isograin Model).
ところで、金属鉱床の地表付近には、その金属鉱床に濃集された金属元素を含む所定の金属化合物が分布していることが解かった。
このような金属化合物の分布に関する情報は、金属鉱床の早期発見に大いに役立つと考えられるが、金属鉱床の地表付近に存在する当該金属化合物が少量でその分布が小規模であった場合、金属化合物の存在は、従来の衛星データでは確認することが困難であり、また現地調査では確認することができるがその含有量の変化を正確に把握することは困難であることもあって、これまでは、そのような金属化合物の存在を推定することは行われていなかった。
By the way, it was found that a predetermined metal compound containing metal elements concentrated in the metal deposit is distributed near the surface of the metal deposit.
Information on the distribution of such metal compounds is thought to be very useful for the early detection of metal deposits. However, if the amount of metal compounds present near the surface of the metal deposit is small and the distribution is small, the metal compound It is difficult to confirm the presence of conventional satellite data, and it can be confirmed by field surveys, but it is difficult to accurately grasp changes in its content. The existence of such a metal compound has not been estimated.
この発明は、このような問題に対処することを課題とするものであり、その目的とするところは、金属化合物の存在を高精度で容易に推定することができる金属化合物の存在推定方法、金属鉱床の探鉱方法、資源開発方法、採鉱方法、二次硫化銅の産出方法、資源産出方法、鉱山開発方法およびボーリング方法を提供することにある。 An object of the present invention is to cope with such a problem. The object of the present invention is to provide a method for estimating the presence of a metal compound, a metal compound capable of easily estimating the presence of a metal compound, and a metal. It is an object of the present invention to provide an ore deposit exploration method, resource development method, mining method, secondary copper sulfide production method, resource production method, mine development method and boring method.
発明者は、上述したように、金属鉱床の地表付近に所定の金属化合物が分布しているという新たな知見の下、これを推定するべく鋭意検討した結果、衛星データもしくはスペクトロメーター等を用いた所定の反射スペクトル解析を行うことにより、金属化合物の存在の、高精度で容易な推定が可能になることを見出した。 As described above, the inventor has intensively studied to estimate this under the new knowledge that a predetermined metal compound is distributed near the surface of the metal deposit, and as a result, satellite data or a spectrometer is used. It has been found that by performing a predetermined reflection spectrum analysis, it is possible to easily and accurately estimate the presence of a metal compound.
このような知見により、この発明の金属化合物の存在推定方法は、金属化合物の存在位置及び/又は存在割合を推定する方法であって、350nm〜2500nmの波長領域内で、観測地点の反射スペクトルを観測して反射スペクトルの観測値を得ること、前記観測値を規格化した観測反射スペクトルを取得すること、並びに、前記観測反射スペクトルを、前記金属化合物が有する化合物反射スペクトルと比較することを含むものである。 Based on such knowledge, the existence estimation method of the metal compound of the present invention is a method for estimating the existence position and / or the existence ratio of the metal compound, and the reflection spectrum of the observation point in the wavelength region of 350 nm to 2500 nm. Observing to obtain an observation value of a reflection spectrum, obtaining an observation reflection spectrum obtained by normalizing the observation value, and comparing the observation reflection spectrum with a compound reflection spectrum of the metal compound. .
この発明の金属化合物の存在推定方法では、前記波長領域を、350nm〜600nmとすること、1900nm〜2500nmとすること、900nm〜2500nmとすること、1600nm〜2500nmとすること、350nm〜600nm及び1600nm〜2500nmとすること、500nm〜600nm及び900nm〜1100nmとすることがそれぞれ好ましい。 In the metal compound presence estimation method of the present invention, the wavelength region is 350 nm to 600 nm, 1900 nm to 2500 nm, 900 nm to 2500 nm, 1600 nm to 2500 nm, 350 nm to 600 nm, and 1600 nm to 1600 nm. The thickness is preferably 2500 nm, 500 nm to 600 nm, and 900 nm to 1100 nm.
また、この発明の金属化合物の存在推定方法では、地表面における金属化合物の存在位置及び/又は存在割合を推定することが好ましい。
そしてまた、この発明の金属化合物の存在推定方法では、対象領域で、金属化合物の存在割合の分布を推定することが好ましい。
In the method for estimating the presence of a metal compound of the present invention, it is preferable to estimate the location and / or ratio of the metal compound on the ground surface.
Moreover, in the metal compound presence estimation method of the present invention, it is preferable to estimate the distribution of the presence ratio of the metal compound in the target region.
この発明の金属化合物の存在推定方法は、相互に隣接する観測地点での観測反射スペクトルの変化を示すラプラシアンを算出することを含むことが好適である。 The method for estimating the presence of a metal compound according to the present invention preferably includes calculating a Laplacian indicating a change in an observed reflection spectrum at observation points adjacent to each other.
上記の金属化合物は、針鉄鉱、赤鉄鉱、鉄明礬石、孔雀石、珪孔雀石、藍銅鉱、ブロシャン銅鉱、アタカマ石および胆礬からなる群から選択される一種以上を含むものとすることができる。 Said metal compound shall contain 1 or more types selected from the group which consists of goethite, hematite, iron alunite, peacock stone, silicic peacock stone, kyanite, brochantite, atacamaite, and gallstone.
この発明の金属化合物の存在推定方法では、前記観測反射スペクトルを、複数種類の混合した金属化合物が有する化合物反射スペクトルと比較することが好ましい。 In the metal compound presence estimation method of the present invention, it is preferable to compare the observed reflection spectrum with a compound reflection spectrum of a plurality of types of mixed metal compounds.
この発明の金属鉱床の探鉱方法は、上記のいずれかの金属化合物の存在推定方法を用いて、対象領域での、前記金属鉱床に含まれる金属元素を含有する前記金属化合物の存在の有無に関する情報を含む金属化合物情報を得ることと、少なくとも前記金属化合物情報に基き、対象領域の金属鉱床の存在を推測することとを含むものである。 The method for exploring a metal deposit according to the present invention is the information on the presence or absence of the metal compound containing a metal element contained in the metal deposit in a target region using any one of the above-described methods for estimating the presence of a metal compound. Including obtaining metal compound information including, and estimating the presence of a metal deposit in the target region based at least on the metal compound information.
ここで、この発明の金属鉱床の探鉱方法では、前記金属化合物情報が、対象領域での金属化合物の存在割合の分布に関する情報を含むことが好ましい。 Here, in the method for exploring a metal deposit according to the present invention, it is preferable that the metal compound information includes information regarding the distribution of the presence ratio of the metal compound in the target region.
またここで、この発明の金属鉱床の探鉱方法では、対象領域の地表面の高低に関する情報を含む地形情報を得ることを含むことが好ましい。
この地形情報を得る際に、対象領域の地表面の侵食量を推定することが好ましい。
より具体的には、前記侵食量の推定が、対象領域の地表面の実際の高度と接谷面の高度との差、もしくは、接峰面の高度と対象領域の地表面の実際の高度との差から、地形厚みを算出し、当該地形厚みの厚さに応じて対象領域を複数の地帯に区画し、各地帯に当該地形厚みの厚さに応じた大きさの係数を付与した地形厚み分布を得ることを含むものとすることができる。この高度は、所定の基準面からの地表面や接谷面もしくは接峰面の高さを意味する。このうち地表面の高度は、海面を基準とした標高とすることができ、この場合、接谷面や接峰面の高度は、所定の基準面としての海面からの高さとする。
なおここで、前記接谷面もしくは接峰面を求める際に対象領域を区分けする正方形グリッドの一辺の長さを、1000m〜2000mの範囲内で設定することが好適である。
Moreover, it is preferable here that the method for exploring a metal deposit according to the present invention includes obtaining terrain information including information on the level of the ground surface of the target region.
When obtaining this topographic information, it is preferable to estimate the amount of erosion of the ground surface of the target region.
More specifically, the estimation of the erosion amount may be performed by calculating a difference between an actual altitude of the ground surface of the target area and an altitude of the tangent plane, or an altitude of the ridge surface and an actual altitude of the ground surface of the target area. The terrain thickness is calculated from the difference between the terrain thickness, the target area is divided into a plurality of zones according to the thickness of the terrain thickness, and a coefficient of a size according to the thickness of the terrain thickness is given to each zone. It can include obtaining a distribution. This altitude means the height of the ground surface, the valley face or the ridge face from a predetermined reference plane. Among these, the altitude of the ground surface can be set to an altitude based on the sea surface, and in this case, the altitude of the tangent surface and the ridge surface is the height from the sea surface as a predetermined reference surface.
Here, it is preferable to set the length of one side of the square grid that divides the target area when obtaining the tangent face or the ridge face within a range of 1000 m to 2000 m.
この発明の資源開発方法は、上記のいずれかの金属鉱床の探鉱方法を含むものである。
この発明の採鉱方法は、上記のいずれかの金属鉱床の探鉱方法により金属鉱床の存在を推測した前記対象領域において採鉱を行うものである。
この発明の二次硫化銅の産出方法は、上記のいずれかの金属鉱床の探鉱方法により金属鉱床の存在を推測した前記対象領域において二次硫化銅を産出するものである。
この発明の資源産出方法は、上記のいずれかの金属鉱床の探鉱方法により金属鉱床の存在を推測した前記対象領域において資源を産出するものである。
この発明の鉱山開発方法は、上記のいずれかの金属鉱床の探鉱方法により金属鉱床の存在を推測した前記対象領域において鉱山を開発するものである。
この発明のボーリング方法は、上記のいずれかの金属鉱床の探鉱方法により金属鉱床の存在を推測した前記対象領域においてボーリングを行うものである。ここで、前記ボーリングによる掘進の間に、該ボーリングの孔壁を構成する物質の反射スペクトルを測定し、当該反射スペクトルの測定結果に基き、そのボーリング地点の掘進長を決定することが好ましい。
The resource development method of the present invention includes any one of the above-described metal deposit exploration methods.
The mining method of the present invention is to perform mining in the target region where the presence of the metal deposit is estimated by any one of the above-described metal deposit exploration methods.
The method for producing secondary copper sulfide according to the present invention is to produce secondary copper sulfide in the target region in which the presence of the metal deposit is estimated by any one of the above-described metal deposit exploration methods.
The resource producing method according to the present invention produces resources in the target area in which the existence of the metal deposit is estimated by any one of the above-described metal deposit exploration methods.
The mine development method of the present invention is to develop a mine in the target region where the existence of the metal deposit is estimated by any one of the above-described metal deposit exploration methods.
The boring method of the present invention is to perform boring in the target region in which the existence of the metal deposit is estimated by any one of the above-described metal deposit exploration methods. Here, during the excavation by the boring, it is preferable to measure the reflection spectrum of the material constituting the hole wall of the boring and determine the excavation length of the boring point based on the measurement result of the reflection spectrum.
この発明の金属化合物の推定方法によれば、上述したような反射スペクトル解析を行うことにより、金属化合物の存在位置及び/又は存在割合を、高精度で容易に推定することができる。
それ故に、この金属化合物の推定方法を金属鉱床の探鉱その他の資源探査等に用いた場合は、かかる探査等に要する時間及びコストの削減に寄与することができる。
According to the metal compound estimation method of the present invention, the presence position and / or the presence ratio of the metal compound can be easily estimated with high accuracy by performing the reflection spectrum analysis as described above.
Therefore, when this metal compound estimation method is used for exploration of metal deposits and other resource exploration, it can contribute to reduction of time and cost required for such exploration.
以下に、この発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
<金属化合物の存在推定方法>
この発明の一の実施形態に係る金属化合物の存在推定方法には、金属化合物の存在位置及び/又は存在割合を推定するに当り、350nm〜2500nmの波長領域内で、観測地点の反射スペクトルを観測して反射スペクトルの観測値を得ること、その観測値を規格化して観測反射スペクトルを取得すること、並びに、観測反射スペクトルを、前記金属化合物が有する化合物反射スペクトルと比較することが含まれる。
<Presence estimation method of metal compound>
In the method for estimating the presence of a metal compound according to an embodiment of the present invention, the reflection spectrum at an observation point is observed within a wavelength region of 350 nm to 2500 nm when estimating the location and / or ratio of the metal compound. Obtaining the observed value of the reflection spectrum, normalizing the observed value to obtain the observed reflection spectrum, and comparing the observed reflection spectrum with the compound reflection spectrum of the metal compound.
(金属化合物)
金属化合物は、たとえば後述の金属鉱床等に含まれる金属元素と他の元素が結びついたものとすることができ、具体的には、針鉄鉱、赤鉄鉱、鉄明礬石、孔雀石、珪孔雀石、藍銅鉱、ブロシャン銅鉱、アタカマ石および胆礬からなる群から選択される一種以上を含むものを挙げることができる。なかでも、孔雀石や珪孔雀石は、他の銅鉱物に比べ形成されやすく地表での分布量が多いので、反射スペクトルから識別ないし検出されやすい点でより一層好ましい。
(Metal compound)
The metal compound can be, for example, a combination of a metal element contained in a metal deposit, which will be described later, and other elements. Specifically, goethite, hematite, iron alunite, peacock stone, siliceous peacock stone And one or more selected from the group consisting of kyanite, brochantite, atacamaite, and gallstone. Among these, peacock stones and silicic peacock stones are more preferable because they are more easily formed than other copper minerals and have a large amount of distribution on the surface of the earth.
金属化合物に含まれる金属元素は、銅、モリブデン、鉄、錫、タングステン、金、銀、鉛および亜鉛からなる群から選択される一種以上を含むことが好ましい。
特に金属化合物に含まれる金属元素が銅である場合、金属化合物は、孔雀石、珪孔雀石、藍銅鉱、ブロシャン銅鉱、アタカマ石および胆礬からなる群から選択される一種以上を含むことが好適である。
The metal element contained in the metal compound preferably contains one or more selected from the group consisting of copper, molybdenum, iron, tin, tungsten, gold, silver, lead and zinc.
In particular, when the metal element contained in the metal compound is copper, the metal compound preferably contains one or more selected from the group consisting of peacock stone, silica peacock stone, kyanite, brochantite, atacamaite, and gallstone. It is.
この発明の一の実施形態では、所定の対象領域で、上述したような金属化合物の存在位置及び存在割合の少なくとも一方、好ましくは存在割合の分布を推定することとし、そのために、次に述べる反射スペクトル解析を実施する。 In one embodiment of the present invention, at least one of the existence position and the existence ratio of the metal compound as described above, preferably the distribution of the existence ratio, is estimated in a predetermined target region. Perform spectral analysis.
(反射スペクトル解析)
金属化合物の存在の推定に反射スペクトル解析を用いることにより、目視による確認に比して、個人差による結果の相違を抑制することができ、またX線回折法等を用いた成分分析に比して、低コストかつ短時間で、広範囲について行うことができる。
(Reflection spectrum analysis)
By using reflection spectrum analysis to estimate the presence of metal compounds, differences in results due to individual differences can be suppressed compared to visual confirmation, and compared to component analysis using X-ray diffractometry. Thus, it can be performed over a wide range at a low cost and in a short time.
反射スペクトル解析は、たとえば衛星データやスペクトロメーター(分光器)等により、対象領域で、主として地表面や岩石表面等の地表の反射スペクトルを観測して反射スペクトルの観測値を取得し、その観測値に各種の数学的処理等を施すことにより、対象領域の地表面における金属化合物の存在位置及び/又は存在割合を算出する。なお地表とは、露出している面であり、地表面から1cm程度の深さまでであれば光学的に光が侵入できると考えられる。
スペクトロメーターは、対象領域の上空を飛行させる有人もしくは無人の航空機または、対象領域の地表面上で移動させる有人もしくは無人の車両その他の乗り物に搭載し、あるいは、対象領域の地表面上で移動ないし歩行する観測者に保持させて用いることができる。
In reflection spectrum analysis, for example, satellite data or a spectrometer (spectrometer) is used to observe the reflection spectrum of the ground surface, such as the ground surface or rock surface, in the target area, and obtain the observation value of the reflection spectrum. Are subjected to various mathematical treatments to calculate the existence position and / or the existence ratio of the metal compound on the ground surface of the target region. The ground surface is an exposed surface, and it is considered that light can enter optically as long as the depth is about 1 cm from the ground surface.
The spectrometer is mounted on a manned or unmanned aircraft flying over the target area, or a manned or unmanned vehicle or other vehicle moving on the ground surface of the target area, or may not move on the ground surface of the target area. It can be used by being held by a walking observer.
ここで用いることのできるデータの具体例としては、たとえば、ASTER、WorldView−2、WorldView−3、AITRES、航空機搭載型のHyMap sensorやAVIRIS等によるデータを挙げることができ、また、スペクトロメーターの具体例としては、たとえば、ARCoptix社製のARCspectro Rocket、ASD社製のFieldspec等を挙げることができる。また今後打ち上げられる予定のハイパースペクトル衛星(たとえば、EnMap(独)、PRISMA(仏)、HISUI(日)等)のデータを用いることもできる。
なかでも、空間分解能は数m程度、波長分解能は10nm程度であるものが好ましく、また、量子化は1000階調以上(10〜12bit)であるものが好ましい。それにより、地表面の金属化合物の分布が小規模・少量であっても有効に観測することができる。なお、階調数が多いほど、僅かな変化を識別できるので、検出限界値は下がることになる。
Specific examples of data that can be used here include, for example, data based on ASTER, WorldView-2, WorldView-3, AITRES, air-borne HyMap sensor, AVIRIS, and the like. Examples include, for example, ARCspector Rocket manufactured by AROptix, Fieldspec manufactured by ASD, and the like. Further, data of hyperspectral satellites to be launched in the future (for example, EnMap (Germany), PRISMA (France), HISUI (Japan), etc.) can also be used.
Among them, the spatial resolution is preferably about several meters and the wavelength resolution is about 10 nm, and the quantization is preferably 1000 gradations or more (10 to 12 bits). As a result, even if the distribution of metal compounds on the ground surface is small and small, it can be effectively observed. As the number of gradations increases, a slight change can be identified, so that the detection limit value decreases.
反射スペクトル解析の手法の一例を述べると、はじめに、衛星データを用いること又はスペクトロメーターにより測定すること等により、350nm〜2500nmの波長領域内で、対象領域の一以上の観測地点の地表面や岩石表面等の反射スペクトルを観測し、当該地点での反射スペクトルの観測値を得る。なおここでは、公知の手法にて大気補正等の必要な補正を行うことができる。 An example of a reflection spectrum analysis method is as follows. First, by using satellite data or measuring with a spectrometer, the ground surface or rocks of one or more observation points in the target region within the wavelength range of 350 nm to 2500 nm. A reflection spectrum of the surface or the like is observed, and an observation value of the reflection spectrum at the point is obtained. Here, necessary corrections such as atmospheric correction can be performed by a known method.
次いで、反射スペクトルの当該観測値を規格化(単位ベクトル化)して、観測反射スペクトルを取得する。観測反射スペクトルの規格化は、より詳細には、各観測値を、同じ条件下での所定の基準観測値又は、観測値の各値の二乗和の合計の平方根で除すること等により行うことができる。この規格化を行う理由は次のとおりである。観測値は、センサへの入射光量(絶対値)である。つまり、衛星データでは、日向、日陰、太陽高度、大気の透明度等が変化することから、同じ物質であっても観測されるセンサへの入射光量は異なる。測定器の場合も同様に、光源の経年劣化や対象物との距離等によって入射光量は異なる。このような入射光量では物質の推定が困難であるから、上述したような規格化を行う。 Next, the observed value of the reflection spectrum is normalized (unit vectorized) to obtain the observed reflection spectrum. More specifically, normalization of the observed reflection spectrum should be performed by dividing each observation value by a predetermined reference observation value under the same conditions or the square root of the sum of squares of each value of the observation value. Can do. The reason for this standardization is as follows. The observed value is the amount of light incident on the sensor (absolute value). That is, in the satellite data, the sunlight, shade, solar altitude, atmospheric transparency, and the like change, so that the amount of incident light on the sensor that is observed differs even with the same substance. Similarly, in the case of a measuring device, the amount of incident light varies depending on the aging of the light source, the distance from the object, and the like. Since it is difficult to estimate a substance with such an incident light quantity, the above-described normalization is performed.
そして、こうして得られた観測反射スペクトルを、所定の金属化合物の化合物反射スペクトルと比較する。比較対象の化合物反射スペクトルは、既知であるか、又は別途測定することにより得ることができる。この比較による類似度に従い、金属化合物の存在位置ないし存在割合を推定することができる。 The observed reflection spectrum thus obtained is compared with the compound reflection spectrum of a predetermined metal compound. The compound reflection spectrum to be compared is known or can be obtained by separate measurement. According to the similarity by this comparison, the existence position or the existence ratio of the metal compound can be estimated.
類似度を計測するには、たとえば、Spectral Angle Mapper(SAM)法や、相互相関法等を用いることができる。SAM法は、バンド数に相当するn次元のベクトルとして表現し、これと最小角をなす金属化合物の物質を解として出力するものであり、また相互相関法は、反射スペクトル間の相関係数から評価する方法で、この場合も最も高い相関係数となる金属化合物の物質を解とするものであり、これらの方法は当該技術分野において既に知られている。
あるいは、単一の鉱物ではなく、複数種類の金属化合物が混合した金属化合物の化合物反射スペクトルと比較することも可能であり、このような混合物の化合物反射スペクトルからその構成物質比を精度よく求めるモデルとしては、先述した等粒子モデル等がある。
In order to measure the degree of similarity, for example, a spectral angle mapper (SAM) method, a cross-correlation method, or the like can be used. The SAM method is expressed as an n-dimensional vector corresponding to the number of bands, and the material of the metal compound forming the minimum angle with this is output as a solution. The cross-correlation method is based on the correlation coefficient between reflection spectra. In this method, the substance of the metal compound having the highest correlation coefficient is used as a solution, and these methods are already known in the art.
Alternatively, it is also possible to compare with the compound reflection spectrum of a metal compound in which multiple types of metal compounds are mixed instead of a single mineral, and a model for accurately determining the constituent ratio from the compound reflection spectrum of such a mixture As the above-mentioned equi-particle model.
ここで、金属化合物は、その種類に応じて異なる反射スペクトル特性を有する。その具体例として、図1に、植物、胆礬、珪孔雀石、ブロシャン銅鉱及びアタカマ石のそれぞれの反射スペクトル特性を示す。たとえば、図1より、概して可視域と短波長赤外域で、これらの鉱物は、植物とは異なる反射スペクトル特性を示すことが解かる。 Here, the metal compound has different reflection spectrum characteristics depending on its type. As a specific example, FIG. 1 shows the reflection spectrum characteristics of plants, gallstones, silicic peacock stone, brochant copper ore and atacama stone. For example, it can be seen from FIG. 1 that these minerals exhibit reflection spectral characteristics different from those of plants, generally in the visible region and the short-wavelength infrared region.
このような各物質の反射スペクトル特性に従って、適切な波長領域を設定することができる。
図1に示すところから、胆礬や珪孔雀石、ブロシャン銅鉱、アタカマ石等の存在割合の分布を推定する場合、精度よく推定するため、波長領域は、350nm〜600nm、1600nm〜2500nm、特に1900nm〜2500nmに設定することが好ましいといえる。またカオリン、セリサイト、明礬石については、2000nm〜2500nmの波長領域が特に有効である。また、波長領域は、900nm〜2500nmに設定することもできる。
あるいは、針鉄鉱や赤鉄鉱等の存在割合の分布を推定する場合、それらの鉱物の反射スペクトル特性に特徴がある500nm〜600nm及び900nm〜1100nmの波長領域に設定することが好ましい。なお、スペクトロメーターを使用する場合は、1300nm〜1600nmに設定することが好適である。衛星データでは大気の吸収(水蒸気等)によりこの範囲は観測できないことがある。
An appropriate wavelength region can be set according to the reflection spectral characteristics of each substance.
From the location shown in FIG. 1, when estimating the distribution of the abundance ratio of gallstones, silicic falconite, brochantite, atacamaite, etc., the wavelength region is 350 nm to 600 nm, 1600 nm to 2500 nm, especially 1900 nm in order to estimate accurately It can be said that setting to ˜2500 nm is preferable. For kaolin, sericite, and alunite, the wavelength region of 2000 nm to 2500 nm is particularly effective. The wavelength region can also be set to 900 nm to 2500 nm.
Or when estimating the distribution of the abundance ratio of goethite, hematite, etc., it is preferable to set in the wavelength region of 500 nm to 600 nm and 900 nm to 1100 nm, which are characterized by the reflection spectrum characteristics of those minerals. In addition, when using a spectrometer, it is suitable to set to 1300 nm-1600 nm. In satellite data, this range may not be observable due to atmospheric absorption (water vapor, etc.).
以上に述べた手法を、対象領域をメッシュで区画した全ての地帯について行うことにより、対象領域での金属化合物の存在割合の分布についてのマップを作成することができる。 By performing the above-described method for all zones in which the target area is partitioned by mesh, a map of the distribution of the presence ratio of the metal compound in the target area can be created.
なおここで、金属化合物の存在割合の分布は、連続する三点のデータの変化を表すラプラシアンで評価することができる。
連続する三点のデータの変化の形態としては、(1)隣接する二点の傾きが変化しない場合(三点が水平、右上がり、右下がりのいずれの傾きであっても直線的な変化をする場合)、(2)隣接する二点の傾きが大きくなる場合(最初の二点の傾きより後の二点の傾きが大きい場合)、(3)隣接する二点の傾きが小さくなる場合(最初の二点の傾きより後の二点の傾きが小さい場合)がある。ここで、三点の連続する各データをそれぞれA、B、Cとし、ラプラシアン=(2×B)/(A+C)と定義すると、上記の(1)の場合、中間点のBはAとCを結んだ直線上にあり、ラプラシアン=1.0となり、また上記の(2)の場合、中間点のBはAとCを結んだ直線より下にあり、ラプラシアン<1.0となり、また上記の(3)の場合、中間点のBはAとCを結んだ直線より上にあり、ラプラシアン>1.0となる。仮に、Bの反射が強い物質が、上記の(1)に加わると、上記の(3)に変化することが予想される。このようなBに反射ピークをもつ物質の有無を検出するため、ラプラシアンで評価することができる。このラプラシアンを用いる方法は、上記の等粒子モデルを用いる方法に比して簡便に実施することができる点で有効である。
Here, the distribution of the presence ratio of the metal compound can be evaluated by a Laplacian that represents a change in data at three consecutive points.
As the form of change of data at three consecutive points, (1) When the inclination of two adjacent points does not change (regardless of the inclination of the three points horizontal, right-up, or right-down, the change is linear) (2) When the inclination of two adjacent points becomes large (when the inclination of two points after the first two points is large), (3) When the inclination of two adjacent points becomes small ( The slope of the two points after the first two points is small). Here, if each of the three consecutive points of data is A, B, and C and defined as Laplacian = (2 × B) / (A + C), in the case of (1) above, B at the midpoint is A and C Laplacian = 1.0, and in the case of (2) above, the intermediate point B is below the straight line connecting A and C, and Laplacian <1.0. In the case of (3), the intermediate point B is above the straight line connecting A and C, and Laplacian> 1.0. If a substance with strong B reflection is added to (1) above, it is expected to change to (3) above. In order to detect the presence or absence of such a substance having a reflection peak at B, it can be evaluated by Laplacian. This method using Laplacian is effective in that it can be carried out more easily than the method using the above-mentioned equivalent particle model.
ところで、上述した反射スペクトルの観測値は、特定の波長のみを観測して得られるマルチスペクトルデータとすることもできるが、たとえば400nm〜2500nm等の可視〜短波長赤外域までの波長領域を連続して測定することで得られる連続スペクトルデータとすることが、精度向上の観点から好ましい。連続スペクトルデータは、ハイパーデータを用いることや、携行型反射スペクトル測定機で測定すること等により得ることができる。具体的には、ハイパーデータとしては、先述した反射スペクトル解析に用いるデータのうち、航空機搭載型のHyMap sensorやAVIRIS、AITRES、EnMap、PRISMA、HISUI等によるデータがあり、また携行型反射スペクトル測定機としては、たとえば、ARCoptix株式会社製のARCspectro Rocket、ASD株式会社製のFieldspec等がある By the way, the observed value of the reflection spectrum described above can be multispectral data obtained by observing only a specific wavelength. For example, the wavelength range from visible to short-wavelength infrared region such as 400 nm to 2500 nm is continuous. From the viewpoint of improving accuracy, it is preferable to obtain continuous spectrum data obtained by measurement. Continuous spectrum data can be obtained by using hyper data, measuring with a portable reflection spectrum measuring device, or the like. Specifically, as the hyper data, among the data used for the reflection spectrum analysis described above, there are data by an on-board type HyMap sensor, AVRIS, AITRES, EnMap, PRISMA, HISUI, etc., and a portable reflection spectrum measuring instrument. For example, there is an ARCspector Rocket manufactured by AROptix, a Fieldspec manufactured by ASD, and the like.
<金属鉱床の探鉱方法>
以上に述べた反射スペクトル解析を用いる金属化合物の存在推定方法は、金属鉱床の探鉱に用いることができる。
すなわち、この発明の一の実施形態に係る金属鉱床の探鉱では、上述した金属化合物の存在推定方法を用いて、対象領域での、金属鉱床に含まれる金属元素を含有する金属化合物の存在の有無に関する情報を含む金属化合物情報を得ること、及び、少なくともその金属化合物情報に基いて、対象領域の金属鉱床の存在を推測することを含む。
なおここで、所定の情報等を「含む」というときは、当該所定の情報及び、当該所定の情報以外の一以上の情報からなる場合だけでなく、当該所定の情報のみからなる場合も含まれるものとする。
<Exploration method of metal deposit>
The metal compound existence estimation method using the reflection spectrum analysis described above can be used for exploration of metal deposits.
That is, in the exploration of the metal deposit according to one embodiment of the present invention, the presence / absence of the metal compound containing the metal element contained in the metal deposit in the target region is determined using the above-described method for estimating the presence of the metal compound. And obtaining information on the metal compound including the information on, and inferring the existence of the metal deposit in the target area based at least on the metal compound information.
Here, “including” predetermined information includes not only the predetermined information and one or more pieces of information other than the predetermined information, but also includes only the predetermined information. Shall.
(金属鉱床)
この方法は、様々な金属鉱床の探鉱に用いることができるが、後述する鉱化プロセスに基く理論から解かるように、特に、マグマによる高温の地下水が周囲の岩石と反応し、金属成分等が析出して形成される熱水鉱床、そのなかでも斑岩銅鉱床の探鉱に適用することが好適である。その他、IOCG型鉱床(酸化鉄型銅金鉱床)やスカルン鉱床、浅熱水型鉱床等も、変質とCu鉱化作用を伴うことから有効に適用することができる。
(Metal deposit)
Although this method can be used for exploration of various metal deposits, as understood from the theory based on the mineralization process described later, in particular, high-temperature groundwater due to magma reacts with surrounding rocks, and metal components, etc. It is suitable for exploration of hydrothermal deposits formed by precipitation, especially porphyry copper deposits. In addition, IOCG type deposits (iron oxide type copper gold deposits), skarn deposits, epithermal water type deposits, etc. can be effectively applied because they involve alteration and Cu mineralization.
班岩銅鉱床を含む熱水鉱床等の金属鉱床は、初生鉱化作用と二次富化作用の二つの鉱化プロセスを経て形成される。
初生鉱化作用では、図2(a)に示すように、成層火山1等の地下で、マグマの上昇に伴い地中深部から放出された熱水2の影響により、地下数kmほどの比較的深い箇所に、初生硫化銅等を含む初生鉱化帯3が形成される。このとき、熱水と岩石が反応することにより、初生鉱化帯の周囲に、黒雲母、絹雲母および緑泥石等の変質鉱物を含む変質帯4が生成される。
Metal deposits such as hydrothermal deposits, including the block rock copper deposit, are formed through two mineralization processes: primary mineralization and secondary enrichment.
In the primary mineralization, as shown in Fig. 2 (a), the underground water of the stratified volcano 1 and so on is affected by the hot water 2 released from the deep underground as the magma rises. A primary mineralized zone 3 containing primary copper sulfide and the like is formed at a deep location. At this time, the hot water and the rock react to generate an alteration zone 4 containing alteration minerals such as biotite, sericite and chlorite around the primary mineralization zone.
その後、数百万〜数千万年という長い年月の経過に伴い、図2(b)に示すように、隆起や侵食が生じて初生鉱化帯3が地表側に接近し、その地表付近の溶脱帯5にて降雨RF等による黄鉄鉱の分解により形成された酸により初生硫化銅が溶脱されて、地下水面GL下に二次硫化銅等が析出してなる二次富化帯6が形成される二次鉱化作用が起こる。この二次富化帯6は、全体として地表の侵食や地下水位の低下により下方に移動し、また溶脱帯5で溶脱された銅等が溶脱帯5から下方に移動するに従って成長する。二次富化帯6が形成された後も、その周囲ないし近傍には、初生鉱化作用で生成された変質鉱物を含む変質帯4が存在する。また、溶脱帯5では溶脱に伴い形成された変質鉱物(カオリンや鉄ミョウバン石等)も併せて存在する。 Then, with the passage of millions of years to tens of millions of years, as shown in Fig. 2 (b), uplift and erosion occurred, and the primary mineralized zone 3 approached the surface side, and the vicinity of the surface In the leaching zone 5, the primary copper sulfide is leached by the acid formed by the decomposition of pyrite by rain RF and the like, and the secondary enriched zone 6 is formed by depositing secondary copper sulfide and the like under the groundwater surface GL. Secondary mineralization occurs. The secondary enrichment zone 6 as a whole moves downward due to surface erosion and groundwater level reduction, and grows as copper leached in the leaching zone 5 moves downward from the leaching zone 5. Even after the secondary enrichment zone 6 is formed, the alteration zone 4 containing alteration minerals generated by the primary mineralization is present around or in the vicinity thereof. In the leaching zone 5, alteration minerals (kaolin, iron alumite, etc.) formed along with leaching are also present.
そして、このような鉱化プロセスにより形成された金属鉱床では、その地表付近に、このような金属化合物が少量・小規模で分布することがあるという新たな知見を得た。
したがって、上述した金属化合物の存在推定方法により得られる金属化合物情報を、金属鉱床の探鉱に用いることにより、金属鉱床の早期発見につながると考えられる。
And in the metal deposit formed by such a mineralization process, the new knowledge that such a metal compound may be distributed in small quantities and small scales near the ground surface was acquired.
Therefore, it is considered that the metal compound information obtained by the above-described method for estimating the presence of the metal compound is used for exploration of the metal deposit, leading to early discovery of the metal deposit.
(地形情報)
金属鉱床の探鉱では、上記の金属化合物情報のみを用いる他、当該金属化合物情報に、対象領域の地表面の高低に関する情報を含む地形情報を組み合せて用いることもできる。
山部や尾根部等といった相対的に標高が高い範囲では、溶脱帯5の厚みが十分にあることから、二次富化作用により初生硫化銅等が溶脱・下降し、地下で二次富化帯6を成長させる。一方、谷部等の相対的に窪んだ地帯では、地表面の侵食が速く、相当量の初生硫化銅等が浸食とともに除去された結果、溶脱帯5の実効的な厚みが薄くなり、二次富化帯6が成長しなかったものと考えられる。つまり、山部や尾根部等では、浸食が遅いため実効的な溶脱厚が厚く、溶脱に要した時間も十分確保できたために二次富化帯6が成長しやすい環境にあったと考えられる。したがって、二次富化作用による二次硫化銅の蓄積は、現在の地形に強く支配されていたと考えられ、金属鉱床の探鉱に地形は重要な情報となることを示している。
(Terrain information)
In the exploration of a metal deposit, in addition to using only the above metal compound information, it is also possible to use the metal compound information in combination with terrain information including information on the height of the ground surface of the target region.
In areas where the altitude is relatively high, such as mountains and ridges, the thickness of the leaching zone 5 is sufficient, so that secondary copper enriches and descends primary copper sulfide, etc., resulting in secondary enrichment underground. Grow strip 6. On the other hand, in relatively depressed areas such as valleys, the erosion of the ground surface is fast, and a substantial amount of primary copper sulfide is removed along with the erosion. It is thought that enrichment zone 6 did not grow. In other words, it is considered that in the mountains, ridges, and the like, the effective leaching thickness was thick because erosion was slow and the time required for leaching was sufficiently secured, so that the secondary enriched zone 6 was likely to grow. Therefore, secondary copper sulfide accumulation due to secondary enrichment is considered to be strongly controlled by the current topography, indicating that topography is important information for exploration of metal deposits.
このような知見より、二次富化帯の形成プロセスの推定には対象領域の地表面の高低、より具体的には対象領域の地表面の侵食量に関する情報が含まれることが好ましい。
対象領域の地表面の侵食量を推定するに当っては、対象領域の地表面の実際の高度と地下水面の近似面となる接谷面の高度との差、もしくは、過去の地形面の近似面となる接峰面の高度と対象領域の地表面の実際の高度との差から、地形厚みを算出し、当該地形厚みの厚さに応じて対象領域を複数の地帯に区画し、各地帯に当該地形厚みの厚さに応じた大きさの係数を付与した地形厚み分布を得ることにより行うことができる。より詳細には以下のとおりである。
From such knowledge, it is preferable that the estimation of the formation process of the secondary enrichment zone includes information on the level of the ground surface of the target region, more specifically, information on the amount of erosion of the ground surface of the target region.
When estimating the amount of erosion on the ground surface of the target area, the difference between the actual height of the ground surface of the target area and the height of the close contact surface, which is an approximate surface of the groundwater surface, or an approximation of the past topographic surface The terrain thickness is calculated from the difference between the altitude of the ridge face that is the surface and the actual altitude of the ground surface of the target area, and the target area is divided into multiple zones according to the thickness of the terrain thickness. Can be obtained by obtaining a terrain thickness distribution to which a coefficient corresponding to the thickness of the terrain thickness is given. More details are as follows.
接谷面及び接峰面は、地下水位の推定や地形解析等で用いられ得る仮想面であって、対象領域を所定のサイズの正方形グリッドで区画し、各グリッド内での最も低い地点に接するような面が接谷面であり、各グリッド内の最も高い地点に接するような面が接峰面である。ここでは、山頂部や尾根部は侵食を免れた部分と考え、谷部は大きく侵食された部分と考えている。
この際の正方形グリッドの一辺の長さは、1000m〜2000mの範囲内で設定することが好ましい。その理由は、斜面を刻む大きな谷の間隔がこの程度の値をとるためである。これを言い換えれば、正方形グリッドの一辺の長さを1000m未満とすると、谷間隔よりも狭い間隔でメッシュを切ることになって、谷と谷の間で最高標高を得ることになり、現在刻まれている地形の影響が現れてしまうことが懸念され、また、正方形グリッドの一辺の長さを2000mより大きくすると、二つ以上の大きな谷から一点とることになり、現在の地形に接する面とはならない可能性がある。メッシュサイズは地形(岩石)や浸食ステージによって変更する必要があり、好ましくはその地域の地形特徴(主として谷の波長)を考慮した上で決定することが効果的である。
The tangent surface and the ridge surface are virtual surfaces that can be used for groundwater level estimation, topographic analysis, etc., and divide the target area with a square grid of a predetermined size and touch the lowest point in each grid Such a surface is a tangent surface, and a surface that is in contact with the highest point in each grid is a tangential surface. Here, the summit and ridges are considered to have escaped erosion, and the valleys are considered to have been greatly eroded.
In this case, the length of one side of the square grid is preferably set within a range of 1000 m to 2000 m. The reason is that the interval between the large valleys carving the slope takes this value. In other words, if the length of one side of the square grid is less than 1000 m, the mesh will be cut at an interval narrower than the valley interval, and the highest elevation will be obtained between the valleys. If the length of one side of the square grid is larger than 2000 m, it will be one point from two or more large valleys, and the surface that touches the current topography It may not be possible. The mesh size needs to be changed depending on the terrain (rock) and the erosion stage, and is preferably determined in consideration of the terrain characteristics of the region (mainly the wavelength of the valley).
次いで、これらの接谷面もしくは接峰面のいずれかの高度と、実際の地表面の高度との差(絶対値)を算出し、これを地形厚みとする。
仮に接谷面の高度と実際の地表面の高度との差を地形厚みとした場合、この地形厚みが薄い箇所ほど、浸食量が大きく侵食速度が速かった範囲と推測される。
Next, the difference (absolute value) between the altitude of any one of these tangent surfaces or tangential surfaces and the actual altitude of the ground surface is calculated, and this is used as the terrain thickness.
If the difference between the altitude of the contact surface and the actual ground surface is defined as the terrain thickness, the thinner the terrain thickness, the greater the erosion rate and the faster the erosion rate.
その後は、上記の地形厚みの厚さに応じて対象領域を複数の地帯に区画し、それらの各地帯に当該地形厚みの厚さに応じた大きさの係数を付与することで、地形厚み分布を得る。たとえば、図3に一例を示すように、地形厚みが300mより厚い地帯には1.00の係数を付与し、地形厚みが200m〜300mの地帯には0.75の係数を付与し、地形厚みが100m〜200mの地帯には0.50の係数を付与し、地形厚みが100m未満の地帯には0.25の係数を付与することができる。地形厚みが厚い地帯ほど、つまり係数が大きい地帯ほど侵食速度が小さいと考えられ、先に述べた二次富化作用の知見に基けば、そのような地帯のほうが、地下に二次富化帯6が大きく成長していて有効な金属鉱床が存在する可能性が高い。 After that, the target area is divided into a plurality of zones according to the thickness of the topography thickness, and a coefficient of a size according to the thickness of the topography thickness is given to each zone, so that the topography thickness distribution Get. For example, as shown in FIG. 3, for example, a zone having a terrain thickness greater than 300 m is given a coefficient of 1.00, and a zone having a terrain thickness of 200 m to 300 m is given a factor of 0.75. Can be given a coefficient of 0.50 for zones of 100 m to 200 m, and a coefficient of 0.25 for zones with a terrain thickness of less than 100 m. Zones with thicker terrain, that is, zones with a higher coefficient are considered to have lower erosion rates. Based on the knowledge of secondary enrichment described above, such zones are secondary enriched underground. There is a high possibility that the band 6 has grown greatly and there is an effective metal deposit.
各地形厚みで付与する係数は、上述した値に限らず適宜設定できることは勿論である。
またここでは、地形厚みの厚さに応じて四段階に区分けして、これらに各係数を付与しているところ、地形厚みは、細分化し過ぎても意味がなく精度がないので、4段階〜10段階で区分けすることが好ましい。特に、端数のでない4段階、5段階または10段階、なかでも4段階または5段階がより好適である。
Of course, the coefficient given by each terrain thickness is not limited to the above-described value, and can be set as appropriate.
Also, here, it is divided into four stages according to the thickness of the terrain thickness, and each coefficient is given to these, and the terrain thickness is meaningless and has no precision even if it is subdivided too much, so there are 4 levels ~ It is preferable to classify in 10 stages. In particular, 4 steps, 5 steps or 10 steps, and 4 steps or 5 steps, which are not fractional, are more preferable.
またここでは、地形厚みを100mおきに区分けし、同じ係数を付与する地形厚みの範囲を100mとしているところ、同じ係数を付与する地形厚みの範囲は、基本的には、厚さの最大値を上記の区分け数で割った値とすることができるが、割り切れない場合などは厚さの最大値を区切りよく分ける間隔になるように調整可能である。 Also, here, the terrain thickness is divided every 100 m, and the range of terrain thickness that gives the same coefficient is 100 m. The range of terrain thickness that gives the same coefficient is basically the maximum value of the thickness. Although it can be set to a value divided by the number of divisions described above, it can be adjusted so that the maximum value of the thickness is divided and divided when the value cannot be divided.
(金属鉱床の推定)
以上のようにして、金属化合物情報を取得し、場合によっては地形情報をも取得した後は、少なくとも金属化合物情報、好ましくは金属化合物情報及び地形情報に基いて、対象領域の金属鉱床の存在を推測する。
(Estimation of metal deposits)
As described above, after acquiring the metal compound information and, in some cases, also acquiring the topographic information, the presence of the metal deposit in the target area based on at least the metal compound information, preferably the metal compound information and the topographic information. Infer.
地表の金属化合物の存在は、鉱化作用の有無を示唆する指標となる。すなわち、金属化合物情報は、地表の金属化合物の付近に所定の金属鉱床が存在する可能性を示唆するものである。したがって、金属化合物情報は、鉱床を推定するに当って有効な判断材料の一つとなり得る。
さらにこれに、溶脱厚の大小を表す地形情報を組み合せて探鉱することは、二次鉱化作用によって成長した二次富化帯の大小についても考慮することになり、それによって有効な金属鉱床を発見できる可能性がより一層高まる点で好ましい。
The presence of metal compounds on the surface is an indicator that suggests the presence or absence of mineralization. That is, the metal compound information suggests the possibility that a predetermined metal deposit exists in the vicinity of the metal compound on the ground surface. Therefore, the metal compound information can be one of effective judgment materials for estimating the deposit.
In addition, exploration using a combination of topographical information that indicates the size of leaching thickness also takes into account the size of the secondary enrichment zone that has grown by secondary mineralization. This is preferable because the possibility of discovery is further increased.
このように金属鉱床の存在を推定するに当っては、金属化合物情報の金属化合物の存在割合の分布、地形情報の地形厚み分布、金属化合物の存在割合の分布に地形厚み分布を乗じた結果を、地図上にマッピングすることができ、それにより、視覚的に容易に把握することができる。 In estimating the presence of metal deposits in this way, the distribution of the presence ratio of the metal compound in the metal compound information, the topography thickness distribution in the topography information, and the distribution of the presence ratio of the metal compound are multiplied by the topography thickness distribution. Can be mapped on a map, so that it can be easily grasped visually.
<資源開発>
以上に述べたようにして、金属鉱床を探鉱した後は、その探鉱結果に基いて資源開発を行うことができる。より具体的には、上記の金属鉱床の探鉱方法により金属鉱床の存在を推測した所定の対象領域で、ボーリング、採鉱を行い、二次硫化銅等の資源を産出し、鉱山を開発することができる。なおこのボーリングとは、地中に円筒等の筒状の穴を掘削し、その際にコア等の深さ方向の試料を採取することが可能な作業であり、試錐と称されることもある。ボーリングは、地質調査や地下資源の採取等において広く用いられており、この発明では、公知ないし周知のボーリング手法を含む様々なボーリング手法を採用することができる。なお、本明細書において「探鉱」とは金属鉱床を探すことを含む概念である。また、「資源」とは金属元素を含む物または鉱石または鉱物を含む概念である。「資源開発」とは資源を採掘すること、および/または、資源を産出すること、および/または、資源を使用可能な状態とすることを含む概念である。「鉱山を開発する」とは、鉱山を作ることを含む概念である。
<Resource development>
As described above, after exploring a metal deposit, resource development can be performed based on the exploration results. More specifically, it is possible to conduct drilling and mining in the predetermined target area where the existence of the metal deposit is estimated by the exploration method of the metal deposit, to produce resources such as secondary copper sulfide, and to develop the mine. it can. This boring is an operation in which a cylindrical hole such as a cylinder is excavated in the ground, and a sample in the depth direction such as a core can be taken at that time, and is sometimes referred to as a borehole. . Boring is widely used in geological surveys and underground resource collection, and various boring methods including known or well-known boring methods can be employed in the present invention. In this specification, “exploration” is a concept including searching for a metal deposit. The “resource” is a concept including an object containing metal elements, ore or mineral. “Resource development” is a concept that includes mining resources and / or producing resources and / or making resources available. “Developing a mine” is a concept including making a mine.
ボーリングを行う場合、ボーリングによる掘進の間に、ボーリングの周囲の孔壁を構成する物質の反射スペクトルを測定することにより、当該反射スペクトルの測定結果から、その地点をどの程度の深さまでボーリングするかについての掘進長を決定することができる。
たとえば、所定の深さ位置で、変質鉱物の合計濃度に対するカオリンの濃度の割合で表されるカオリンの変質強度(T_Kao/T_Clay)を、測定した反射スペクトルから算出し、そのT_Kao/T_Clayがまだ高ければ、さらに深い位置まで掘進する必要があると考えられる。この一方で、T_Kao/T_Clayが十分に低くなると、二次富化帯を通り抜けた深さ位置までボーリングが行われたと考えられ、これ以上掘進しても良好な部分は出てこないと判断することができる。
また探鉱初期段階では、尾根部では溶脱区間が数百mある可能性がある。このような場所でもT_Kao/T_Clayが高ければ良好な2次富化帯がより深部に分布する可能
When drilling, by measuring the reflection spectrum of the material that constitutes the hole wall around the boring during drilling, how much depth is to be drilled from the measurement result of the reflection spectrum. You can determine the digging length about.
For example, at a predetermined depth position, the alteration intensity of kaolin (T_Kao / T_Clay) represented by the ratio of the concentration of kaolin to the total concentration of altered minerals is calculated from the measured reflection spectrum, and the T_Kao / T_Cray is still high. For example, it is considered necessary to dig deeper. On the other hand, if T_Kao / T_Cray becomes sufficiently low, it is considered that boring has been carried out to a depth position that has passed through the secondary enrichment zone, and it is judged that no good part will come out even if drilling further. Can do.
In the initial exploration stage, there may be several hundred meters of leaching section in the ridge. Even in such places, if T_Kao / T_Clay is high, a good secondary enrichment zone can be distributed deeper.
次に、この発明を試験的に実施し、その効果を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的としたものであり、それに限定されることを意図するものではない。 Next, the present invention was experimentally implemented and its effects were confirmed, and will be described below. However, the description here is for illustrative purposes only and is not intended to be limiting.
図4に示すチリ共和国のMantoVerde鉱床(IOCG型鉱床)を対象として、銅を含む金属化合物(いわゆる酸化銅)の含有量の分布を推定した。この推定に用いた衛星データは、高空間・高波長分解能衛星データであるWorldView−2とし、当該金属化合物の反射ピークがある400〜600nm(青〜緑の波長)を重点的に解析した。その結果を図5に示す。 The distribution of the content of metal compounds containing copper (so-called copper oxide) was estimated for the MantoVerde deposit (IOCG type deposit) in the Republic of Chile shown in FIG. The satellite data used for this estimation was WorldView-2, which is high-space / high-wavelength-resolution satellite data, and 400 to 600 nm (blue to green wavelength) where the reflection peak of the metal compound is present was intensively analyzed. The result is shown in FIG.
図5に示す結果より、金属化合物の含有量が極めて少ない地帯でも検出可能であった。
よって、このような金属化合物情報を、金属鉱床の探鉱方法に有効に活用できる可能性があることが解かった。
From the results shown in FIG. 5, it was possible to detect even in a zone where the content of the metal compound was extremely small.
Therefore, it has been found that there is a possibility that such metal compound information can be effectively used for the exploration method of the metal deposit.
1 成層火山
2 熱水
3 初生鉱化帯
4 変質帯
5 溶脱帯
6 二次富化帯
RF 降雨
GL 地下水面
1 Stratified volcano 2 Hot water 3 Primary mineralized zone 4 Alteration zone 5 Leaching zone 6 Secondary enrichment zone RF Rainfall GL Groundwater surface
Claims (25)
350nm〜2500nmの波長領域内で、観測地点の反射スペクトルを観測して反射スペクトルの観測値を得ること、前記観測値を規格化した観測反射スペクトルを取得すること、並びに、前記観測反射スペクトルを、前記金属化合物が有する化合物反射スペクトルと比較することを含む、金属化合物の存在推定方法。 A method for estimating an existing position and / or an existing ratio of a metal compound,
In the wavelength region of 350 nm to 2500 nm, observing the reflection spectrum of the observation point to obtain the observation value of the reflection spectrum, obtaining the observation reflection spectrum obtained by normalizing the observation value, and the observation reflection spectrum, A method for estimating the presence of a metal compound, comprising comparing with a compound reflection spectrum of the metal compound.
請求項1〜12のいずれか一項に記載の金属化合物の存在推定方法を用いて、対象領域での、前記金属鉱床に含まれる金属元素を含有する前記金属化合物の存在の有無に関する情報を含む金属化合物情報を得ることと、
少なくとも前記金属化合物情報に基き、対象領域の金属鉱床の存在を推測することと
を含む、金属鉱床の探鉱方法。 A method for exploring metal deposits,
Using the method for estimating the presence of a metal compound according to any one of claims 1 to 12, information on the presence or absence of the metal compound containing a metal element contained in the metal deposit in a target region is included. Obtaining metal compound information,
A method for exploring a metal deposit, comprising estimating the presence of a metal deposit in a target area based at least on the metal compound information.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2017336123A AU2017336123B9 (en) | 2016-09-29 | 2017-08-25 | Method for estimating presence of metal compound, method for prospecting metal deposit, method for developing resources, method for mining, method for producing secondary copper sulfide, method for producing resources, method for developing mine, and method for boring |
PCT/JP2017/030598 WO2018061561A1 (en) | 2016-09-29 | 2017-08-25 | Method for estimating presence of metal compound, method for prospecting metal deposit, method for developing resources, method for mining, method for producing secondary copper sulfide, method for producing resources, method for developing mine, and method for boring |
PE2019000735A PE20190766A1 (en) | 2016-09-29 | 2017-08-25 | METHOD FOR ESTIMATING THE PRESENCE OF METAL COMPOUND, METHOD FOR PROSPECTING METAL DEPOSIT, METHOD FOR DEVELOPING RESOURCES, METHOD FOR MINING, METHOD FOR PRODUCING SECONDARY COPPER SULFIDE, METHOD FOR PRODUCING A METHOD FOR DEVELOPMENT, METHOD FOR DEVELOPMENT, METHOD FOR DEVELOPMENT |
CL2019000843A CL2019000843A1 (en) | 2016-09-29 | 2019-03-28 | Method for estimating the presence of metal compound, method for prospecting metal deposit, method for developing resources, method for mining, method for producing secondary copper sulphide, method for producing resources, method for developing a mine, and method for drilling . |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016192257 | 2016-09-29 | ||
JP2016192257 | 2016-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018059889A true JP2018059889A (en) | 2018-04-12 |
Family
ID=61908373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016220062A Pending JP2018059889A (en) | 2016-09-29 | 2016-11-10 | Metallic compound presence estimation method, exploration method for metallic ore deposits, resource development method, mining method, production method for secondary copper sulfide, resource production method, mine development method and drilling method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2018059889A (en) |
AU (1) | AU2017336123B9 (en) |
CL (1) | CL2019000843A1 (en) |
PE (1) | PE20190766A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019191004A (en) * | 2018-04-25 | 2019-10-31 | 国立大学法人京都大学 | Detector and method for detection |
CN117664090A (en) * | 2024-01-31 | 2024-03-08 | 三亚市林业科学研究院 | A open-air mapping device for forestry investigation |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2011213480B2 (en) * | 2010-02-05 | 2014-06-12 | Technological Resources Pty. Limited | Determination of rock types by spectral scanning |
-
2016
- 2016-11-10 JP JP2016220062A patent/JP2018059889A/en active Pending
-
2017
- 2017-08-25 PE PE2019000735A patent/PE20190766A1/en unknown
- 2017-08-25 AU AU2017336123A patent/AU2017336123B9/en active Active
-
2019
- 2019-03-28 CL CL2019000843A patent/CL2019000843A1/en unknown
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019191004A (en) * | 2018-04-25 | 2019-10-31 | 国立大学法人京都大学 | Detector and method for detection |
JP7377484B2 (en) | 2018-04-25 | 2023-11-10 | 株式会社大林組 | Detection device and detection method |
CN117664090A (en) * | 2024-01-31 | 2024-03-08 | 三亚市林业科学研究院 | A open-air mapping device for forestry investigation |
CN117664090B (en) * | 2024-01-31 | 2024-03-29 | 三亚市林业科学研究院 | A open-air mapping device for forestry investigation |
Also Published As
Publication number | Publication date |
---|---|
AU2017336123B2 (en) | 2021-01-28 |
CL2019000843A1 (en) | 2019-06-07 |
AU2017336123A1 (en) | 2019-04-11 |
AU2017336123B9 (en) | 2021-02-25 |
PE20190766A1 (en) | 2019-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Elder et al. | Estimating the spatial distribution of snow water equivalence in a montane watershed | |
Schmidt et al. | Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: Evidence for and significance of an alkali and volatile‐rich igneous source | |
JP2018059888A (en) | Metal ore deposit exploration method, resource development method, mining method, secondary copper sulfide output method, resource output method, mine development method and boring method | |
WO2018061559A1 (en) | Ore deposit exploration method, resource development method, mining method, secondary copper sulfide production method, resource production method, mine development method, and boring method | |
CN109324355B (en) | Pegmatite type rare metal prospecting method | |
Blaney et al. | Chemistry and texture of the rocks at Rocknest, Gale Crater: Evidence for sedimentary origin and diagenetic alteration | |
Reath et al. | Exploration of geothermal systems using hyperspectral thermal infrared remote sensing | |
Chojnacki et al. | Valles Marineris dune sediment provenance and pathways | |
FitzpatRick | Nature, distribution, and origin of soil materials in the forensic comparison of soils | |
Rodriguez-Gomez et al. | Lithological mapping of Waiotapu Geothermal Field (New Zealand) using hyperspectral and thermal remote sensing and ground exploration techniques | |
Salese et al. | A sedimentary origin for intercrater plains north of the Hellas basin: Implications for climate conditions and erosion rates on early Mars | |
Lemière et al. | XRF and LIBS for Field Geology | |
Poetra et al. | Hydrogeochemical conditions in groundwater systems with various geomorphological units in Kulonprogo Regency, Java Island, Indonesia | |
May et al. | Reconstruction of a complex late Quaternary glacial landscape in the Cordillera de Cochabamba (Bolivia) based on a morphostratigraphic and multiple dating approach | |
Quental et al. | MINEO Southern Europe environment test site: Contamination impact mapping and modelling | |
Le Deit et al. | Ferric oxides in East Candor Chasma, Valles Marineris (Mars) inferred from analysis of OMEGA/Mars Express data: Identification and geological interpretation | |
Chen et al. | Potential of Sentinel-2 data for alteration extraction in coal-bed methane reservoirs | |
WO2018061561A1 (en) | Method for estimating presence of metal compound, method for prospecting metal deposit, method for developing resources, method for mining, method for producing secondary copper sulfide, method for producing resources, method for developing mine, and method for boring | |
JP2018059889A (en) | Metallic compound presence estimation method, exploration method for metallic ore deposits, resource development method, mining method, production method for secondary copper sulfide, resource production method, mine development method and drilling method | |
Yajima | ASTER data analysis applied to mineral resource exploration and geological mapping | |
Mathieu et al. | Field‐based and spectral indicators for soil erosion mapping in semi‐arid mediterranean environments (Coastal Cordillera of central Chile) | |
Ramsey | Ejecta distribution patterns at Meteor Crater, Arizona: On the applicability of lithologic end‐member deconvolution for spaceborne thermal infrared data of Earth and Mars | |
WO2018087988A1 (en) | Metallic ore deposit prospecting method, resource development method, mining method, secondary copper sulfide production method, resource production method, mine development method, and boring method | |
CN109709623A (en) | Nondestructive Gold mineralization detection method | |
de Linaje et al. | Study of carbonate concretions using imaging spectroscopy in the Frontier Formation, Wyoming |