[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018057137A - Full charge capacity calculation device - Google Patents

Full charge capacity calculation device Download PDF

Info

Publication number
JP2018057137A
JP2018057137A JP2016190127A JP2016190127A JP2018057137A JP 2018057137 A JP2018057137 A JP 2018057137A JP 2016190127 A JP2016190127 A JP 2016190127A JP 2016190127 A JP2016190127 A JP 2016190127A JP 2018057137 A JP2018057137 A JP 2018057137A
Authority
JP
Japan
Prior art keywords
full charge
charge capacity
soc
assembled battery
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016190127A
Other languages
Japanese (ja)
Other versions
JP6642365B2 (en
Inventor
勇樹 橘
Yuki Tachibana
勇樹 橘
裕基 堀
Yuki Hori
裕基 堀
耕司 大平
Koji Ohira
耕司 大平
粟野 直実
Naomi Awano
直実 粟野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016190127A priority Critical patent/JP6642365B2/en
Publication of JP2018057137A publication Critical patent/JP2018057137A/en
Application granted granted Critical
Publication of JP6642365B2 publication Critical patent/JP6642365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a full charge capacity calculation device capable of calculating full charge capacity of a battery pack which is constituted of a plurality of battery cells connected in series without calculating full charge capacity of the respective battery cells when the full charge capacity of the battery pack is calculated.SOLUTION: A full charge capacity calculation device 14 is provided with: a SOC calculation part 140; an integrated current amount calculation part 141; and a full charge capacity calculation part 144. The a full charge capacity calculation part 144 calculates the minimum full charge capacity based on SOC before charge/discharge of a battery pack B1 calculated by the SOC calculation part 140 based on OCV before the charge/discharge of the battery pack B1, SOC after equalization of the battery pack B1 calculated by the SOC calculation part 140 based on the SOC after equalization of the battery pack B1, and an integrated current amount calculated by the integrated current amount calculation part 141.SELECTED DRAWING: Figure 1

Description

本発明は、直列接続された複数の電池セルで構成される組電池の満充電容量を算出する満充電容量算出装置に関する。   The present invention relates to a full charge capacity calculation device for calculating a full charge capacity of a battery pack composed of a plurality of battery cells connected in series.

従来、直列接続された複数の電池セルで構成される組電池の満充電容量を算出する満充電容量算出装置として、例えば以下に示す特許文献1に開示されている組電池の制御装置がある。   2. Description of the Related Art Conventionally, as a full charge capacity calculation device that calculates the full charge capacity of an assembled battery composed of a plurality of battery cells connected in series, for example, there is an assembled battery control device disclosed in Patent Document 1 shown below.

この組電池の制御装置は、直列接続された複数の単電池で構成される組電池の内部特性状態を算出し、算出した内部特性状態に基づいて組電池を制御する装置である。ここで、単電池が電池セルに相当する。   This control device for a battery pack is a device that calculates an internal characteristic state of a battery pack composed of a plurality of single cells connected in series, and controls the battery pack based on the calculated internal characteristic state. Here, the single battery corresponds to a battery cell.

組電池の制御装置は、組電池を構成する各々の単電池の満充電容量を算出し、満充電容量が最小の単電池を選択する。そして、選択した単電池の内部状態特性を算出して組電池の内部状態特性とする。   The battery pack control device calculates the full charge capacity of each single battery constituting the battery pack, and selects the single battery having the minimum full charge capacity. Then, the internal state characteristics of the selected cell are calculated and set as the internal state characteristics of the assembled battery.

特開2010−273413号公報JP 2010-273413 A

前述した組電池の制御装置において、組電池の内部状態特性として満充電容量を算出しようとした場合、組電池を構成する各々の単電池の満充電容量を算出しなければならない。1つの単電池の満充電容量を算出するために必要とされる処理を、組電池を構成する単電池の数だけ実施しなければならない。そのため、組電池の満充電容量を算出するために要する時間が長くなってしまう。これに対し、算出処理を高速化することで時間を短くするができるが、装置がコストアップしてしまう。   In the battery pack control device described above, when the full charge capacity is calculated as the internal state characteristic of the battery pack, the full charge capacity of each single cell constituting the battery pack must be calculated. The processing required for calculating the full charge capacity of one single cell must be performed by the number of single cells constituting the assembled battery. For this reason, the time required to calculate the full charge capacity of the assembled battery becomes long. On the other hand, although the time can be shortened by speeding up the calculation process, the cost of the apparatus increases.

本発明はこのような事情に鑑みてなされたものであり、直列接続された複数の電池セルで構成される組電池の満充電容量を算出する際に、各々の電池セルの満充電容量を算出することなく組電池の満充電容量を算出することができる満充電容量算出装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and when calculating the full charge capacity of a battery pack composed of a plurality of battery cells connected in series, the full charge capacity of each battery cell is calculated. It is an object of the present invention to provide a full charge capacity calculation device capable of calculating the full charge capacity of a battery pack without performing the above process.

上記課題を解決するためになされた本発明は、直列接続された複数の電池セルで構成される組電池の満充電容量を算出する満充電容量算出装置であって、組電池のOCV(Open Circuit Voltage)に基づいて組電池のSOC(State Of Charge)を算出するSOC算出部と、組電池の充放電期間中に組電池に流れる電流の積算値である積算電流量を算出する積算電流量算出部と、充放電期間の開始前の組電池の充放電前OCVに基づいてSOC算出部が算出した組電池の充放電前SOCと、充放電期間が終了してから緩和時間が経過した後、最も電圧が低い電池セルと他の電池セルの電圧差が全て所定電圧以下になるように他の電池セルを放電させる均等化を行った後の組電池の均等化後OCVに基づいてSOC算出部が算出した組電池の均等化後SOCと、積算電流量算出部が算出した積算電流量とに基づいて最小満充電容量を算出する最小満充電容量算出部と、を有する。ここで、OCVとは、開放電圧のことである。SOCとは、残存容量のことであり、満充電容量に対する割合で表される。   The present invention made in order to solve the above problems is a full charge capacity calculation device for calculating the full charge capacity of a battery pack composed of a plurality of battery cells connected in series, wherein the OCV (Open Circuit) of the battery pack is used. An SOC calculation unit that calculates an SOC (State Of Charge) of the assembled battery based on the voltage, and an integrated current amount calculation that calculates an integrated current amount that is an integrated value of the current flowing through the assembled battery during the charge / discharge period of the assembled battery The SOC before charging / discharging of the assembled battery calculated by the SOC calculating unit based on the OCV before charging / discharging of the assembled battery before the start of the charging / discharging period, and after the relaxation time has elapsed after the charging / discharging period ends, Based on the OCV after equalization of the assembled battery after performing equalization to discharge other battery cells so that the voltage difference between the battery cell having the lowest voltage and the other battery cells is all equal to or lower than a predetermined voltage. Has a equalization after SOC of the battery OC calculating unit has calculated, and the minimum full charge capacity calculation unit for calculating a minimum full charge capacity based on the integrated current amount of accumulated current amount calculating unit has calculated, the. Here, OCV is an open circuit voltage. The SOC is the remaining capacity and is expressed as a ratio to the full charge capacity.

この構成によれば、組電池を構成する複数の電池セルは、最も電圧が低い電池と他の電池セルの電圧差が全て所定電圧以下になるように均等化されている。OCVとSOCは、所定の関係を有している。そのため、組電池を構成する各々の電池セルの充放電前SOCは、最も満充電容量が小さい電池セルの充放電前SOCとほぼ同一になる。充放電期間が終了してから緩和時間が経過した後、組電池を構成する複数の電池セルは、最も電圧が低い電池セルと他の電池セルの電圧差が全て所定電圧以下になるように均等化される。そのため、組電池の均等化後SOCは、最も満充電容量が小さい電池セルの均等化後SOCとほぼ同一になる。満充電容量は、ある状態におけるSOCと、別の状態におけるSOCと、その間の積算電流量とに基づいて算出することができる。そのため、組電池の充放電前SOCと、組電池の均等化後SOCと、充放電期間中の積算電流量とから組電池の最小満充電容量を算出することができる。つまり、各々の電池セルの満充電容量を算出することなく組電池の満充電容量を算出することができる。   According to this configuration, the plurality of battery cells constituting the assembled battery are equalized so that the voltage difference between the battery having the lowest voltage and the other battery cells is all equal to or lower than the predetermined voltage. OCV and SOC have a predetermined relationship. Therefore, the SOC before charge / discharge of each battery cell constituting the assembled battery is substantially the same as the SOC before charge / discharge of the battery cell having the smallest full charge capacity. After the relaxation time has elapsed since the end of the charge / discharge period, the plurality of battery cells constituting the assembled battery are equally distributed so that the voltage difference between the battery cell with the lowest voltage and the other battery cells is all equal to or lower than the predetermined voltage. It becomes. Therefore, the SOC after equalization of the assembled battery is almost the same as the SOC after equalization of the battery cell having the smallest full charge capacity. The full charge capacity can be calculated based on the SOC in one state, the SOC in another state, and the accumulated current amount therebetween. Therefore, the minimum full charge capacity of the assembled battery can be calculated from the pre-charge / discharge SOC of the assembled battery, the post-equalized SOC of the assembled battery, and the integrated current amount during the charge / discharge period. That is, the full charge capacity of the battery pack can be calculated without calculating the full charge capacity of each battery cell.

本実施形態における満充電容量算出装置のブロック図である。It is a block diagram of the full charge capacity calculation apparatus in this embodiment. 本実施形態における満充電容量算出装置の動作を説明するための第1のフローチャートである。It is a 1st flowchart for demonstrating operation | movement of the full charge capacity calculation apparatus in this embodiment. 本実施形態における満充電容量算出装置の動作を説明するための第2のフローチャートである。It is a 2nd flowchart for demonstrating operation | movement of the full charge capacity calculation apparatus in this embodiment. 本実施形態における満充電容量算出装置の動作を説明するための各電池セルの電圧波形のグラフである。It is a graph of the voltage waveform of each battery cell for demonstrating operation | movement of the full charge capacity calculation apparatus in this embodiment.

次に、実施形態を挙げ、本発明をより詳しく説明する。本実施形態では、本発明に係る満充電容量算出装置を、車両に搭載された組電池を制御する組電池制御システムに適用した例を示す。   Next, the present invention will be described in more detail with reference to embodiments. In the present embodiment, an example in which the full charge capacity calculation device according to the present invention is applied to an assembled battery control system for controlling an assembled battery mounted on a vehicle is shown.

まず、図1を参照して組電池制御システムの構成について説明する。   First, the configuration of the assembled battery control system will be described with reference to FIG.

図1に示す組電池制御システム1は、車両に搭載された組電池B1を制御するシステムである。ここで、組電池B1は、5つの電池セルC10〜C14を直列接続して構成されている。組電池B1の正極端及び負極端は、システムメインリレーR10、R11を介して車両に搭載された車載装置に接続されている。組電池制御システム1は、電圧センサ10と、電流センサ11と、均等化回路12と、電圧センサ130〜134と、満充電容量算出装置14とを備えている。   An assembled battery control system 1 shown in FIG. 1 is a system that controls an assembled battery B1 mounted on a vehicle. Here, the assembled battery B1 is configured by connecting five battery cells C10 to C14 in series. The positive electrode end and the negative electrode end of the assembled battery B1 are connected to an in-vehicle device mounted on the vehicle via system main relays R10 and R11. The assembled battery control system 1 includes a voltage sensor 10, a current sensor 11, an equalization circuit 12, voltage sensors 130 to 134, and a full charge capacity calculation device 14.

電圧センサ10は、組電池B1の電圧を検出するセンサである。システムメインリレーR10、R11がオフ状態の場合における電圧センサ10の検出結果が、組電池B1のOCVになる。ここで、組電池B1のOCVとは、組電池B1の開放電圧のことである。電圧センサ10の一端は組電池B1の正極端に、他端は組電池B1の負極端にそれぞれ接続されている。また、出力端は、満充電容量算出装置14に接続されている。   The voltage sensor 10 is a sensor that detects the voltage of the assembled battery B1. The detection result of the voltage sensor 10 when the system main relays R10 and R11 are in the off state is the OCV of the assembled battery B1. Here, the OCV of the assembled battery B1 is an open circuit voltage of the assembled battery B1. One end of the voltage sensor 10 is connected to the positive end of the assembled battery B1, and the other end is connected to the negative end of the assembled battery B1. The output terminal is connected to the full charge capacity calculation device 14.

電流センサ11は、組電池B1に流れる電流を検出するセンサである。電流センサ11は、組電池B1の正極端とシステムメインリレーR10の間に接続されている。電流センサ11の出力端は、満充電容量算出装置14に接続されている。   The current sensor 11 is a sensor that detects a current flowing through the assembled battery B1. The current sensor 11 is connected between the positive end of the assembled battery B1 and the system main relay R10. The output terminal of the current sensor 11 is connected to the full charge capacity calculation device 14.

均等化回路12は、組電池B1を制御するために、最も電圧が低い電池セルと他の電池セルの電圧差が全て所定電圧以下になるように他の電池セルを放電させ、電池セルC10〜C14の電圧を均等化する回路である。均等化回路12は、スイッチ120〜124と、抵抗125〜129とを備えている。   In order to control the assembled battery B1, the equalization circuit 12 discharges the other battery cells so that the voltage difference between the battery cell having the lowest voltage and the other battery cells is equal to or lower than a predetermined voltage, and the battery cells C10 to C10 are discharged. This circuit equalizes the voltage of C14. The equalization circuit 12 includes switches 120 to 124 and resistors 125 to 129.

スイッチ120〜124は、抵抗125〜129を介して電池セルC10〜C14を放電させるための素子である。抵抗125〜129は、電池セルC10〜C14の放電時に流れる電流を規制するための素子である。スイッチ120〜124と抵抗125〜129は、それぞれ直列接続されている。スイッチ120〜124の一端は電池セルC10〜C14の正極端に、抵抗125〜129の一端は電池セルC10〜C14の負極端にそれぞれ接続されている。   The switches 120 to 124 are elements for discharging the battery cells C10 to C14 via the resistors 125 to 129. The resistors 125 to 129 are elements for regulating the current that flows when the battery cells C10 to C14 are discharged. The switches 120 to 124 and the resistors 125 to 129 are connected in series. One ends of the switches 120 to 124 are connected to the positive ends of the battery cells C10 to C14, and one ends of the resistors 125 to 129 are connected to the negative ends of the battery cells C10 to C14, respectively.

電圧センサ130〜134は、電池セルC10〜C14の電圧を検出するセンサである。電圧センサ130〜134の一端は電池セルC10〜C14の正極端に、他端は電池セルC10〜C14の負極端にそれぞれ接続されている。電圧センサ130〜134の出力端は、満充電容量算出装置14にそれぞれ接続されている。   The voltage sensors 130 to 134 are sensors that detect the voltages of the battery cells C10 to C14. One ends of the voltage sensors 130 to 134 are connected to the positive ends of the battery cells C10 to C14, and the other ends are connected to the negative ends of the battery cells C10 to C14. Output terminals of the voltage sensors 130 to 134 are connected to the full charge capacity calculation device 14, respectively.

組電池制御システム1内の図示されていない他の装置が、電圧センサ130〜134の検出結果に基づいてスイッチ120〜124をオン状態にし、抵抗125〜129を介して放電させることで、電池セルC10〜C14の電圧を均等化することができる。   Another device (not shown) in the assembled battery control system 1 turns on the switches 120 to 124 based on the detection results of the voltage sensors 130 to 134 and discharges them through the resistors 125 to 129, whereby the battery cell The voltages C10 to C14 can be equalized.

満充電容量算出装置14は、組電池B1の制御に用いられる組電池B1の満充電容量を算出する装置である。具体的には、組電池B1の最小満充電容量及び平均満充電容量を算出する装置である。満充電容量算出装置14は、SOC算出部140と、積算電流量算出部141と、充放電時間算出部142と、満充電容量算出判定部143と、満充電容量算出部144と、満充電容量補正部145と、満充電容量記憶部146と備えている。   The full charge capacity calculation device 14 is a device that calculates the full charge capacity of the assembled battery B1 used for controlling the assembled battery B1. Specifically, it is a device that calculates the minimum full charge capacity and the average full charge capacity of the battery pack B1. The full charge capacity calculation device 14 includes an SOC calculation unit 140, an integrated current amount calculation unit 141, a charge / discharge time calculation unit 142, a full charge capacity calculation determination unit 143, a full charge capacity calculation unit 144, and a full charge capacity. A correction unit 145 and a full charge capacity storage unit 146 are provided.

SOC算出部140は、電圧センサ10の検出した組電池B1のOCVに基づいて組電池B1のSOCを算出するブロックである。具体的には、予め設定されている組電池B1のOCVとSOCの関係に基づいて、組電池B1のOCVから組電池B1のSOCを算出するブロックである。また、SOC算出部140は、ある状態の組電池B1のSOCと別の状態の組電池B1のSOCから、それらの差分である差分SOCを算出するブロックでもある。ここで、組電池B1のSOCとは、組電池B1の残存容量のことであり、満充電容量に対する割合で表される。   The SOC calculation unit 140 is a block that calculates the SOC of the assembled battery B1 based on the OCV of the assembled battery B1 detected by the voltage sensor 10. Specifically, this is a block for calculating the SOC of the assembled battery B1 from the OCV of the assembled battery B1 based on a preset relationship between the OCV and SOC of the assembled battery B1. The SOC calculation unit 140 is also a block that calculates a difference SOC that is a difference between the SOC of the assembled battery B1 in a certain state and the SOC of the assembled battery B1 in a different state. Here, the SOC of the assembled battery B1 is the remaining capacity of the assembled battery B1, and is expressed as a ratio to the full charge capacity.

SOC算出部140は、予め設定されている組電池B1のOCVとSOCの関係に基づいて、電圧センサ10の検出した充放電期間の開始前の組電池B1の充放電前OCVから組電池B1の充放電前SOCを算出する。具体的には、前回の充放電期間が終了してから緩和時間α以上の時間が経過した後の組電池B1の充放電前OCVに基づいて組電池B1の充放電前SOCを算出する。また、予め設定されている組電池B1のOCVとSOCの関係に基づいて、電圧センサ10の検出した、充放電期間が終了してから緩和時間αが経過した後の組電池B1の充放電後OCVから組電池B1の充放電後SOCを算出する。さらに、予め設定されている組電池B1のOCVとSOCの関係に基づいて、電圧センサ10の検出した、充放電期間が終了してから緩和時間αが経過した後、最も電圧が低い電池セルと他の電池セルの電圧差が全て所定電圧β以下になるように他の電池セルを放電させる均等化を行った後の組電池B1の均等化後OCVから組電池B1の均等化後SOCを算出する。SOC算出部140は、組電池B1の充放電前SOCと充放電後SOCの差分である充放電後差分SOCを算出する。また、組電池B1の充放電前SOCと均等化後SOCの差分である均等化後差分SOCを算出する。ここで、充放電期間とは、図示されていない車両の始動スイッチがオンし、それに伴ってシステムメインリレーR10、R11がオン状態になってから、始動スイッチがオフしてシステムメインリレーR10、R11がオフ状態になるまでの期間のことである。つまり、車両が始動状態であり、システムメインリレーR10、R11を介して組電池B1と車載装置の間で電力のやり取りがされている期間のことである。システムメインリレーR10、R11がオン状態になってからオフ状態になるまでの期間のことである。なお、システムメインリレーR10、R11がオン状態から一度オフ状態になって再度オンになった場合、始動スイッチがオフにならない限りは、システムメインリレーR10、R11の1回目のオン状態と2回目のオン状態は合わせて一つの充放電期間となる。また、緩和時間αは、充放電に伴って発生する電池セルC10〜C14の分極の影響が緩和されるのに充分な時間に設定されている。所定電圧βは、組電池B1の均等化後OCVに基づいて算出される満充電容量の誤差が許容される範囲内となるような電圧に設定されている。   The SOC calculation unit 140 calculates the battery pack B1 from the OCV before charge / discharge of the battery pack B1 before the start of the charge / discharge period detected by the voltage sensor 10 based on the preset relationship between the OCV and SOC of the battery pack B1. The pre-charge / discharge SOC is calculated. Specifically, the SOC before charging / discharging of the assembled battery B1 is calculated based on the OCV before charging / discharging of the assembled battery B1 after the time equal to or longer than the relaxation time α has elapsed since the end of the previous charging / discharging period. Also, after charging / discharging of the assembled battery B1 after the relaxation time α has elapsed since the end of the charging / discharging period detected by the voltage sensor 10 based on the preset relationship between the OCV and the SOC of the assembled battery B1. The SOC after charging / discharging of the battery pack B1 is calculated from the OCV. Furthermore, based on the preset relationship between the OCV and the SOC of the assembled battery B1, the battery cell having the lowest voltage after the relaxation time α has elapsed since the end of the charging / discharging period detected by the voltage sensor 10 Calculate the post-equalization SOC of the battery pack B1 from the post-equalization OCV of the battery pack B1 after performing the equalization to discharge other battery cells so that the voltage differences of the other battery cells are all equal to or less than the predetermined voltage β. To do. The SOC calculation unit 140 calculates a post-charge / discharge difference SOC that is a difference between the pre-charge / discharge SOC of the battery pack B1 and the post-charge / discharge SOC. Further, a post-equalization difference SOC, which is a difference between the pre-charge / discharge SOC of the battery pack B1 and the post-equalization SOC, is calculated. Here, the charging / discharging period means that a start switch of a vehicle (not shown) is turned on and the system main relays R10 and R11 are turned on accordingly, and then the start switch is turned off and the system main relays R10 and R11 are turned on. This is the period until is turned off. That is, this is a period in which the vehicle is in a starting state and power is exchanged between the assembled battery B1 and the in-vehicle device via the system main relays R10 and R11. This is a period from when the system main relays R10 and R11 are turned on to when they are turned off. When the system main relays R10 and R11 are once turned off from the on state and turned on again, the system main relays R10 and R11 are turned on for the first time and the second time unless the start switch is turned off. The ON state is one charge / discharge period. In addition, the relaxation time α is set to a time sufficient to alleviate the influence of the polarization of the battery cells C10 to C14 that occurs with charge / discharge. The predetermined voltage β is set to a voltage such that an error in the full charge capacity calculated based on the equalized OCV of the assembled battery B1 is within an allowable range.

積算電流量算出部141は、電流センサ11の検出した組電池B1に流れる電流を積算して、充放電期間における組電池B1の積算電流量を算出するブロックである。   The integrated current amount calculation unit 141 is a block that integrates the current flowing through the assembled battery B1 detected by the current sensor 11 and calculates the integrated current amount of the assembled battery B1 during the charge / discharge period.

充放電時間算出部142は、充放電期間の時間を算出するブロックである。   The charge / discharge time calculation unit 142 is a block that calculates the time of the charge / discharge period.

満充電容量算出判定部143は、組電池B1の平均満充電容量及び最小満充電容量を算出するか否かを判定するブロックである。具体的には、SOC算出部140の算出した組電池B1の充放電後差分SOC及び均等化後差分SOCが所定値γより大きいか否か、充放電時間算出部142の算出した充放電時間が所定時間δより小さいか否か、電圧センサ10及び電流センサ11がともに正常であるか否かを判定するブロックである。満充電容量算出判定部143は、組電池B1の充放電後差分SOC及び均等化後差分SOCが所定値γ以下である場合、充放電時間が所定時間δ以上である場合、電圧センサ10及び電流センサ11の少なくとも1つが異常である場合のうち、少なくとも1つである場合、満充電容量算出部144による平均満充電容量、最小満充電容量の算出、及び、満充電容量補正部145による補正された平均満充電容量、最小満充電容量の算出を停止させる。ここで、所定値γは、差分SOCに基づいて算出される満充電容量の誤差が許容される範囲内となるような値に設定されている。所定時間δは、オフセット誤差を有する電流センサ11の検出結果に基づいて算出される満充電容量の誤差が許容される範囲内となるような時間に設定されている。   The full charge capacity calculation determination unit 143 is a block that determines whether or not to calculate the average full charge capacity and the minimum full charge capacity of the assembled battery B1. Specifically, whether the post-charge / discharge difference SOC and the post-equalization difference SOC calculated by the SOC calculation unit 140 are greater than a predetermined value γ, or the charge / discharge time calculated by the charge / discharge time calculation unit 142. This block determines whether or not the time is less than the predetermined time δ and whether or not the voltage sensor 10 and the current sensor 11 are both normal. The full charge capacity calculation determination unit 143 determines whether the voltage sensor 10 and the current when the post-charge / discharge difference SOC and the post-equalization difference SOC of the battery pack B1 are equal to or less than a predetermined value γ, When at least one of the sensors 11 is abnormal, if it is at least one, the full charge capacity calculation unit 144 calculates the average full charge capacity, the minimum full charge capacity, and the full charge capacity correction unit 145 corrects it. The calculation of the average full charge capacity and minimum full charge capacity is stopped. Here, the predetermined value γ is set to such a value that the error of the full charge capacity calculated based on the differential SOC falls within an allowable range. The predetermined time δ is set to such a time that the error of the full charge capacity calculated based on the detection result of the current sensor 11 having the offset error falls within an allowable range.

満充電容量算出部144は、組電池B1の平均満充電容量及び最小満充電容量を算出するブロックである。本発明の平均満充電容量算出部及び最小満充電容量算出部に相当するブロックである。満充電容量算出部144は、SOC算出部140の算出した組電池B1の充放電前SOCと、SOC算出部140の算出した組電池B1の充放電後SOCと、積算電流量算出部141の算出した積算電流量とに基づいて組電池B1の平均満充電容量を算出する。具体的には、SOC算出部140の算出した充放電後差分SOCと、積算電流量算出部141の算出した積算電流量とに基づいて組電池B1の平均満充電容量を算出するブロックである。より具体的には、以下に示す式(1)に基づいて平均満充電容量を算出する。   The full charge capacity calculation unit 144 is a block that calculates the average full charge capacity and the minimum full charge capacity of the assembled battery B1. It is a block equivalent to the average full charge capacity calculation part and minimum full charge capacity calculation part of this invention. The full charge capacity calculation unit 144 calculates the pre-charge / discharge SOC of the assembled battery B1 calculated by the SOC calculation unit 140, the post-charge / discharge SOC of the assembled battery B1 calculated by the SOC calculation unit 140, and the integrated current amount calculation unit 141. The average full charge capacity of the battery pack B1 is calculated based on the integrated current amount. Specifically, this is a block for calculating the average full charge capacity of the battery pack B1 based on the post-charge / discharge difference SOC calculated by the SOC calculation unit 140 and the integrated current amount calculated by the integrated current amount calculation unit 141. More specifically, the average full charge capacity is calculated based on the following formula (1).

平均満充電容量=(積算電流量/充放電後差分SOC)×100・・・(1)   Average full charge capacity = (integrated current amount / differential SOC after charge / discharge) × 100 (1)

また、満充電容量算出部144は、SOC算出部140の算出した組電池B1の充放電前SOCと、SOC算出部140の算出した組電池B1の均等化後SOCと、積算電流量算出部141の算出した積算電流量とに基づいて組電池B1の最小満充電容量を算出する。具体的には、SOC算出部140の算出した均等化後差分SOCと、積算電流量算出部141の算出した積算電流量とに基づいて組電池B1の最小満充電容量を算出する。より具体的には、以下に示す式(2)に基づいて最小満充電容量を算出する。   In addition, the full charge capacity calculation unit 144 is a pre-charge / discharge SOC of the battery pack B1 calculated by the SOC calculation unit 140, a post-equalization SOC of the battery pack B1 calculated by the SOC calculation unit 140, and an integrated current amount calculation unit 141. The minimum full charge capacity of the battery pack B1 is calculated based on the calculated integrated current amount. Specifically, the minimum full charge capacity of the battery pack B1 is calculated based on the post-equalization difference SOC calculated by the SOC calculation unit 140 and the integrated current amount calculated by the integrated current amount calculation unit 141. More specifically, the minimum full charge capacity is calculated based on the following formula (2).

最小満充電容量=(積算電流量/均等化後差分SOC)×100・・・(2)   Minimum full charge capacity = (integrated current amount / differential SOC after equalization) × 100 (2)

満充電容量補正部145は、算出した組電池B1の平均満充電容量及び最小満充電容量を補正するブロックである。本発明の平均満充電容量補正部及び最小満充電容量補正部に相当するブロックである。満充電容量補正部145は、後述する満充電容量記憶部146に記憶されている前回算出した補正された平均満充電容量と、満充電容量算出部144が今回算出した平均満充電容量から所定計算式に基づいて、補正された平均満充電容量を算出する。具体的には、予め設定されているなまし定数k1(0.1≦k1≦0.99)と、なまし定数k1を用いた以下に示す式(3)に基づいて補正された平均満充電容量を算出する。   The full charge capacity correction unit 145 is a block that corrects the calculated average full charge capacity and minimum full charge capacity of the assembled battery B1. 4 is a block corresponding to an average full charge capacity correction unit and a minimum full charge capacity correction unit of the present invention. The full charge capacity correction unit 145 performs a predetermined calculation from the corrected average full charge capacity calculated last time stored in a full charge capacity storage unit 146 described later and the average full charge capacity calculated this time by the full charge capacity calculation unit 144. Based on the equation, the corrected average full charge capacity is calculated. Specifically, average full charge corrected based on Equation (3) shown below using annealing constant k1 (0.1 ≦ k1 ≦ 0.99) set beforehand and annealing constant k1. Calculate capacity.

補正された平均満充電容量=満充電容量記憶部146に記憶されている前回算出した補正された平均満充電容量×(1−k1)+満充電容量算出部144が今回算出した平均満充電容量×k1・・・(3)   Corrected average full charge capacity = corrected average full charge capacity calculated last time stored in full charge capacity storage unit 146 × (1-k1) + average full charge capacity calculated this time by full charge capacity calculation unit 144 × k1 (3)

また、満充電容量補正部145は、満充電容量記憶部146に記憶されている前回算出した補正された最小満充電容量と、満充電容量算出部144が今回算出した最小満充電容量から所定計算式に基づいて、補正された最小満充電容量を算出する。具体的には、予め設定されているなまし定数k2(0.1≦k2≦0.99)と、なまし定数k2を用いた以下に示す式(4)に基づいて補正された最小満充電容量を算出する。   Further, the full charge capacity correction unit 145 performs a predetermined calculation from the corrected minimum full charge capacity calculated in the previous time stored in the full charge capacity storage unit 146 and the minimum full charge capacity calculated by the full charge capacity calculation unit 144 this time. Based on the equation, the corrected minimum full charge capacity is calculated. Specifically, the minimum full charge corrected based on the preset annealing constant k2 (0.1 ≦ k2 ≦ 0.99) and the following equation (4) using the annealing constant k2. Calculate capacity.

補正された最小満充電容量=満充電容量記憶部146に記憶されている前回算出した補正された最小満充電容量×(1−k2)+満充電容量算出部144が今回算出した最小満充電容量×k2・・・(4)   Corrected minimum full charge capacity = corrected minimum full charge capacity calculated last time stored in full charge capacity storage unit 146 × (1-k2) + minimum full charge capacity calculated this time by full charge capacity calculation unit 144 × k2 (4)

満充電容量記憶部146は、組電池B1の平均満充電容量及び最小満充電容量を記憶するブロックである。具体的には、満充電容量補正部145によって補正された平均満充電容量及び最小満充電容量を、新たな平均満充電容量及び最小満充電容量として更新し記憶するブロックである。   The full charge capacity storage unit 146 is a block that stores the average full charge capacity and the minimum full charge capacity of the battery pack B1. Specifically, the average full charge capacity and the minimum full charge capacity corrected by the full charge capacity correction unit 145 are updated and stored as new average full charge capacity and minimum full charge capacity.

次に、図1〜図4を参照して本実施形態の組電池制御システムを構成する満充電容量算出部装置の動作について説明する。   Next, with reference to FIGS. 1-4, operation | movement of the full charge capacity calculation part apparatus which comprises the assembled battery control system of this embodiment is demonstrated.

図1に示すSOC算出部140は、図2に示すように、ステップS100において、組電池制御システム1内の図示されていない他の装置から入力される情報に基づいて、始動スイッチがオン状態であるか否かを判定する。ステップS100において、始動スイッチがオン状態でないと判定した場合、SOC算出部140は、始動スイッチがオン状態になるまで同様の判定を繰り返す。一方、ステップS100において、始動スイッチがオン状態であると判定した場合、SOC算出部140は、ステップS101において、組電池制御システム1内の図示されていない他の装置から入力される情報に基づいて、前回始動スイッチがオフしてから緩和時間α以上の時間が経過しているか否かを判定する。後述するように、始動スイッチがオフ状態になると、それに伴ってシステムメインリレーR10、R11もオフ状態になり、充放電期間が終了する。つまり、SOC算出部140は、前回の充放電期間が終了してから緩和時間α以上の時間が経過しているかを判定する。   As shown in FIG. 2, the SOC calculation unit 140 shown in FIG. 1 determines that the start switch is turned on based on information input from another device (not shown) in the assembled battery control system 1 in step S100. It is determined whether or not there is. If it is determined in step S100 that the start switch is not in the on state, SOC calculation unit 140 repeats the same determination until the start switch is in the on state. On the other hand, when it is determined in step S100 that the start switch is in the on state, the SOC calculation unit 140 is based on information input from another device (not shown) in the assembled battery control system 1 in step S101. Then, it is determined whether or not a time longer than the relaxation time α has elapsed since the start switch was turned off last time. As will be described later, when the start switch is turned off, the system main relays R10 and R11 are also turned off, and the charging / discharging period ends. That is, SOC calculation unit 140 determines whether a time equal to or longer than relaxation time α has elapsed since the end of the previous charge / discharge period.

ステップS101において、前回の充放電期間が終了してから緩和時間α以上の時間が経過していないと判定した場合、電池セルC10〜C14の分極の影響が充分に緩和されていないと判断し、満充電容量を算出するための処理を終了する。つまり、後述する、満充電容量算出部144による組電池B1の平均満充電容量及び最小満充電容量の算出を停止する。さらに、満充電容量補正部145による補正された平均満充電容量及び補正された最小満充電容量の算出を停止する。   In step S101, if it is determined that the time equal to or greater than the relaxation time α has not elapsed since the end of the previous charge / discharge period, it is determined that the polarization effect of the battery cells C10 to C14 is not sufficiently relaxed, The process for calculating the full charge capacity is terminated. That is, calculation of the average full charge capacity and the minimum full charge capacity of the assembled battery B1 by the full charge capacity calculation unit 144, which will be described later, is stopped. Further, the calculation of the corrected average full charge capacity and the corrected minimum full charge capacity by the full charge capacity correction unit 145 is stopped.

一方、ステップS101において、前回の充放電期間が終了してから緩和時間α以上の時間が経過していると判定した場合、電池セルC10〜C14の分極の影響が充分に緩和されていると判断し、SOC算出部140は、ステップS102において、電圧センサ10の検出した組電池B1の充放電前OCVを取得する。そして、ステップS103において、予め設定されている組電池B1のOCVとSOCの関係に基づいて、取得した組電池B1の充放電前OCVから組電池B1の充放電前SOCを算出する。   On the other hand, if it is determined in step S101 that the time equal to or longer than the relaxation time α has elapsed since the end of the previous charge / discharge period, it is determined that the influence of the polarization of the battery cells C10 to C14 is sufficiently relaxed. And SOC calculation part 140 acquires OCV before charge-and-discharge of assembled battery B1 which voltage sensor 10 detected in Step S102. In step S103, the SOC before charging / discharging of the assembled battery B1 is calculated from the obtained OCV before charging / discharging of the assembled battery B1 based on the preset relationship between the OCV and SOC of the assembled battery B1.

その後、積算電流量算出部141及び充放電時間算出部142は、ステップS104において、組電池制御システム1内の図示されていない他の装置から入力される情報に基づいて、システムメインリレーR10、R11がオン状態であるか否かを判定する。システムメインリレーR10、R11は、始動スイッチがオン状態になった後にオン状態になる。ステップS104において、システムメインリレーR10、R11がオン状態でないと判定した場合、充放電期間が開始していないと判断し、積算電流量算出部141及び充放電時間算出部142は、システムメインリレーR10、R11がオン状態になるまで同様の判定を繰り返す。一方、ステップS104において、システムメインリレーR10、R11がオン状態であると判定した場合、充放電期間が開始していると判断し、積算電流量算出部141は、ステップS105において、電流センサ11の検出した組電池B1に流れる電流を積算する。充放電時間算出部142は、ステップS105において、充放電期間の時間を算出するため時間を計測する。その後、積算電流量算出部141及び充放電時間算出部142は、ステップS106において、組電池制御システム1内の図示されていない他の装置から入力される情報に基づいて、始動スイッチがオフ状態であるか否かを判定する。システムメインリレーR10、R11は、始動スイッチがオフ状態になると即座にオフ状態になる。ステップS106において、始動スイッチがオフ状態でないと判定した場合、充放電期間が終了していないと判断し、積算電流量算出部141及び充放電時間算出部142は、始動スイッチがオフ状態になるまでステップ105の処理を繰り返す。   Thereafter, the integrated current amount calculation unit 141 and the charge / discharge time calculation unit 142 are based on information input from other devices (not shown) in the assembled battery control system 1 in step S104, and the system main relays R10 and R11. It is determined whether or not is in an on state. The system main relays R10 and R11 are turned on after the start switch is turned on. If it is determined in step S104 that the system main relays R10 and R11 are not in the on state, it is determined that the charge / discharge period has not started, and the integrated current amount calculation unit 141 and the charge / discharge time calculation unit 142 The same determination is repeated until R11 is turned on. On the other hand, if it is determined in step S104 that the system main relays R10 and R11 are in the on state, it is determined that the charging / discharging period has started, and the integrated current amount calculation unit 141 determines that the current sensor 11 is in step S105. The detected current flowing in the assembled battery B1 is integrated. In step S105, the charge / discharge time calculation unit 142 measures the time for calculating the time of the charge / discharge period. Thereafter, in step S106, the integrated current amount calculation unit 141 and the charge / discharge time calculation unit 142 determine that the start switch is off based on information input from another device (not shown) in the assembled battery control system 1. It is determined whether or not there is. The system main relays R10 and R11 are immediately turned off when the start switch is turned off. If it is determined in step S106 that the start switch is not in the OFF state, it is determined that the charge / discharge period has not ended, and the integrated current amount calculation unit 141 and the charge / discharge time calculation unit 142 until the start switch is in the OFF state. The process of step 105 is repeated.

始動スイッチがオフ状態になると、それに伴ってシステムメインリレーR10、R11もオフ状態になる。ステップS106において、始動スイッチがオフ状態であると判定した場合、充放電期間が終了したと判断し、積算電流量算出部141は、ステップS107において、充放電期間中における組電池B1の積算電流量の算出を完了する。充放電時間算出部142は、ステップS107において、充放電期間の時間の算出を完了する。   When the start switch is turned off, the system main relays R10 and R11 are also turned off. If it is determined in step S106 that the start switch is in the OFF state, it is determined that the charging / discharging period has ended, and in step S107, the integrated current amount calculation unit 141 determines the integrated current amount of the assembled battery B1 during the charging / discharging period. Complete the calculation. In step S107, the charge / discharge time calculation unit 142 completes the calculation of the charge / discharge period time.

SOC算出部140は、ステップS108において、組電池制御システム1の他のブロックから入力される情報に基づいて、始動スイッチがオフしてから緩和時間αが経過したか否かを判定する。ステップS108において、始動スイッチがオフしてから緩和時間αが経過していないと判定した場合、電池セルC10〜C14の分極の影響が充分に緩和されていないと判断し、SOC算出部140は、緩和時間αが経過するまで同様の判定を繰り返す。一方、ステップS108において、始動スイッチがオフしてから緩和時間αが経過していると判定した場合、電池セルC10〜C14の分極の影響が充分に緩和されていると判断し、SOC算出部140は、ステップS109において、電圧センサ10の検出した組電池B1の充放電後OCVを取得する。そして、ステップS110において、予め設定されている組電池B1のOCVとSOCの関係に基づいて、取得した組電池B1の充放電後OCVから組電池B1の充放電後SOCを算出する。さらに、ステップS111において、組電池B1の充放電後差分SOCを算出する。   In step S108, the SOC calculation unit 140 determines whether the relaxation time α has elapsed since the start switch was turned off based on information input from another block of the assembled battery control system 1. If it is determined in step S108 that the relaxation time α has not elapsed since the start switch was turned off, it is determined that the influence of the polarization of the battery cells C10 to C14 has not been sufficiently relaxed, and the SOC calculation unit 140 The same determination is repeated until the relaxation time α elapses. On the other hand, if it is determined in step S108 that the relaxation time α has elapsed since the start switch was turned off, it is determined that the influence of the polarization of the battery cells C10 to C14 is sufficiently relaxed, and the SOC calculation unit 140 In step S109, the OCV after charging / discharging of the assembled battery B1 detected by the voltage sensor 10 is acquired. In step S110, the SOC after charging / discharging of the assembled battery B1 is calculated from the obtained OCV after charging / discharging of the assembled battery B1 based on the preset relationship between the OCV and SOC of the assembled battery B1. Further, in step S111, a post-charge / discharge difference SOC of the assembled battery B1 is calculated.

その後、図1に示す満充電容量算出判定部143は、図3に示すように、ステップS112において、平均満充電容量を算出するか否かを判定する。具体的には、組電池B1の充放電後差分SOCが所定値γより大きいか否か、充放電時間が所定時間δより小さいか否か、電圧センサ10及び電流センサ11がともに正常であるか否かを判定する。   Thereafter, as shown in FIG. 3, the full charge capacity calculation determination unit 143 shown in FIG. 1 determines whether or not to calculate the average full charge capacity in step S112. Specifically, whether the post-charge / discharge difference SOC of the battery pack B1 is greater than a predetermined value γ, whether the charge / discharge time is less than a predetermined time δ, and whether the voltage sensor 10 and the current sensor 11 are both normal. Determine whether or not.

ステップS112において、組電池B1の充放電後差分SOCが所定値γより大きく、充放電時間が所定時間δより小さく、電圧センサ10及び電流センサ11がともに正常であると判定した場合、満充電容量算出判定部143は、平均満充電容量の算出を許可する。   In step S112, when it is determined that the difference SOC after charging / discharging of the assembled battery B1 is larger than the predetermined value γ, the charging / discharging time is shorter than the predetermined time δ, and both the voltage sensor 10 and the current sensor 11 are normal, the full charge capacity The calculation determination unit 143 permits the calculation of the average full charge capacity.

満充電容量算出部144は、ステップS113において、SOC算出部140の算出した充放電前SOCと、SOC算出部140の算出した充放電後SOCと、積算電流量算出部141の算出した積算電流量とに基づいて組電池B1の平均満充電容量を算出する。具体的には、SOC算出部140の算出した充放電後差分SOCと、積算電流量算出部141の算出した積算電流量とに基づいて組電池B1の平均満充電容量を算出する。より具体的には、式(1)に基づいて組電池B1の平均満充電容量を算出する。   In step S113, the full charge capacity calculation unit 144 calculates the pre-charge / discharge SOC calculated by the SOC calculation unit 140, the post-charge / discharge SOC calculated by the SOC calculation unit 140, and the integrated current amount calculated by the integrated current amount calculation unit 141. Based on the above, the average full charge capacity of the battery pack B1 is calculated. Specifically, the average full charge capacity of the battery pack B1 is calculated based on the post-charge / discharge difference SOC calculated by the SOC calculation unit 140 and the integrated current amount calculated by the integrated current amount calculation unit 141. More specifically, the average full charge capacity of the assembled battery B1 is calculated based on the formula (1).

その後、満充電容量補正部145は、ステップS114において、算出した組電池B1の平均満充電容量を補正する。具体的には、満充電容量記憶部146に記憶されている前回算出した補正された平均満充電容量と、満充電容量算出部144が今回算出した平均満充電容量から所定計算式に基づいて、補正された平均満充電容量を算出する。より具体的には、式(3)に基づいて補正された新たな平均満充電容量を算出する。そして、満充電容量補正部145は、ステップS115において、補正された平均満充電容量を新たな平均満充電容量として更新し、満充電容量記憶部146に記憶させる。   Thereafter, the full charge capacity correction unit 145 corrects the calculated average full charge capacity of the assembled battery B1 in step S114. Specifically, based on a predetermined calculation formula from the corrected average full charge capacity calculated last time stored in the full charge capacity storage unit 146 and the average full charge capacity calculated by the full charge capacity calculation unit 144 this time, The corrected average full charge capacity is calculated. More specifically, a new average full charge capacity corrected based on Equation (3) is calculated. In step S115, the full charge capacity correction unit 145 updates the corrected average full charge capacity as a new average full charge capacity, and stores it in the full charge capacity storage unit 146.

一方、ステップS112において、組電池B1の充放電後差分SOCが所定値γ以下であると判定した場合、充放電後差分SOCに含まれる誤差の影響が大きくなって平均満充電容量の精度が低下してしまうと判断し、ステップS113〜ステップS115は実施されない。また、充放電時間が所定時間δ以上であると判定した場合、電流センサ11のオフセット誤差の影響が大きくなって積算電流量の精度が低下し、それに伴って平均満充電容量の精度も低下してしまうと判断し、ステップS113〜ステップS115は実施されない。さらに、電圧センサ10及び電流センサ11の少なくとも1つが異常であると判定した場合、OCVや積算電流量の信頼性が低いため、ステップS113〜ステップS115は実施されない。つまり、組電池B1の充放電後差分SOCが所定値γ以下である場合、充放電時間が所定時間δ以上である場合、電圧センサ10及び電流センサ11の少なくとも1つが異常である場合のうち、少なくとも1つである場合、満充電容量算出部144による平均満充電容量の算出、及び、満充電容量補正部145による補正された平均満充電容量の算出を停止する。   On the other hand, when it is determined in step S112 that the post-charge / discharge difference SOC of the assembled battery B1 is equal to or less than the predetermined value γ, the influence of the error included in the post-charge / discharge difference SOC increases, and the accuracy of the average full charge capacity decreases. Therefore, step S113 to step S115 are not performed. In addition, when it is determined that the charge / discharge time is equal to or longer than the predetermined time δ, the influence of the offset error of the current sensor 11 is increased and the accuracy of the accumulated current amount is lowered, and accordingly, the accuracy of the average full charge capacity is also lowered. Steps S113 to S115 are not performed. Furthermore, when it is determined that at least one of the voltage sensor 10 and the current sensor 11 is abnormal, the reliability of the OCV and the accumulated current amount is low, and thus Steps S113 to S115 are not performed. That is, when the difference SOC after charging / discharging of the assembled battery B1 is equal to or less than the predetermined value γ, when the charge / discharge time is equal to or longer than the predetermined time δ, or when at least one of the voltage sensor 10 and the current sensor 11 is abnormal, In the case of at least one, the calculation of the average full charge capacity by the full charge capacity calculation unit 144 and the calculation of the average full charge capacity corrected by the full charge capacity correction unit 145 are stopped.

その後、組電池制御システム1内の図示されていない他の装置が、電圧センサ130〜134の検出した電池セルC10〜C14の電圧に基づいて均等化回路12を制御し、電池セルC10〜C14の電圧を均等化する。具体的には、最も電圧が低い電池セルと他の電池セルの電圧差が全て所定電圧β以下になるようにスイッチ120〜124を制御する。   Thereafter, another device (not shown) in the battery pack control system 1 controls the equalization circuit 12 based on the voltages of the battery cells C10 to C14 detected by the voltage sensors 130 to 134, and the battery cells C10 to C14. Equalize the voltage. Specifically, the switches 120 to 124 are controlled so that the voltage difference between the battery cell having the lowest voltage and the other battery cells is all equal to or less than the predetermined voltage β.

SOC算出部140は、ステップS116において、均等化が終了したか否かを判定する。具体的には、電圧センサ130〜134の検出結果に基づいて、最も電圧が低い電池セルと他の電池セルの電圧差が全て所定電圧β以下になっているか否かを判定する。ステップS116において、最も電圧が低い電池セルと他の電池セルの電圧差のうち、少なくとも1つが所定電圧β以下になっていないと判定した場合、SOC算出部140は、電圧差が全て所定電圧β以下になるまで同様の判定を繰り返す。   In step S116, the SOC calculation unit 140 determines whether equalization has ended. Specifically, based on the detection results of the voltage sensors 130 to 134, it is determined whether or not the voltage difference between the battery cell having the lowest voltage and the other battery cells is equal to or less than the predetermined voltage β. In step S116, when it is determined that at least one of the voltage differences between the battery cell having the lowest voltage and the other battery cells is not equal to or lower than the predetermined voltage β, the SOC calculation unit 140 determines that all the voltage differences are the predetermined voltage β. The same determination is repeated until the following.

一方、ステップS116において、最も電圧が低い電池セルと他の電池セルの電圧差が全て所定電圧β以下になっていると判定した場合、SOC算出部140は、ステップS117において、電圧センサ10の検出した組電池B1の均等化後OCVを取得する。そして、ステップS118において、予め設定されている組電池B1のOCVとSOCの関係に基づいて、取得した組電池B1の均等化後OCVから組電池B1の均等化後SOCを算出する。さらに、ステップS119において、組電池B1の均等化後差分SOCを算出する。   On the other hand, when it is determined in step S116 that the voltage difference between the battery cell having the lowest voltage and the other battery cells is all equal to or less than the predetermined voltage β, the SOC calculation unit 140 detects the voltage sensor 10 in step S117. The OCV is obtained after equalizing the assembled battery B1. Then, in step S118, based on the preset relationship between the OCV and the SOC of the assembled battery B1, the post-equalized SOC of the assembled battery B1 is calculated from the obtained equalized OCV of the assembled battery B1. Further, in step S119, the equalized difference SOC of the assembled battery B1 is calculated.

その後、満充電容量算出判定部143は、ステップS120において、最小満充電容量を算出するか否かを判定する。具体的には、組電池B1の均等化後差分SOCが所定値γより大きいか否か、充放電時間が所定時間δより小さいか否か、電圧センサ10及び電流センサ11がともに正常であるか否かを判定する。   Thereafter, the full charge capacity calculation determination unit 143 determines whether or not to calculate the minimum full charge capacity in step S120. Specifically, whether the difference SOC after equalization of the assembled battery B1 is larger than a predetermined value γ, whether the charge / discharge time is shorter than a predetermined time δ, whether both the voltage sensor 10 and the current sensor 11 are normal Determine whether or not.

ステップS120において、組電池B1の均等化後差分SOCが所定値γより大きく、充放電時間が所定時間δより小さく、電圧センサ10及び電流センサ11がともに正常であると判定した場合、満充電容量算出判定部143は、最小満充電容量の算出を許可する。   When it is determined in step S120 that the post-equalization difference SOC of the assembled battery B1 is greater than the predetermined value γ, the charge / discharge time is less than the predetermined time δ, and both the voltage sensor 10 and the current sensor 11 are normal, the full charge capacity The calculation determination unit 143 permits calculation of the minimum full charge capacity.

満充電容量算出部144は、ステップS121において、SOC算出部140の算出した充放電前SOCと、SOC算出部140の算出した均等化後SOCと、積算電流量算出部141の算出した積算電流量とに基づいて組電池B1の最小満充電容量を算出する。具体的には、SOC算出部140の算出した均等化後差分SOCと、積算電流量算出部141の算出した積算電流量とに基づいて組電池B1の最小満充電容量を算出する。より具体的には、式(2)に基づいて最小満充電容量を算出する。   In step S121, the full charge capacity calculation unit 144 calculates the pre-charge / discharge SOC calculated by the SOC calculation unit 140, the post-equalization SOC calculated by the SOC calculation unit 140, and the integrated current amount calculated by the integrated current amount calculation unit 141. Based on the above, the minimum full charge capacity of the battery pack B1 is calculated. Specifically, the minimum full charge capacity of the battery pack B1 is calculated based on the post-equalization difference SOC calculated by the SOC calculation unit 140 and the integrated current amount calculated by the integrated current amount calculation unit 141. More specifically, the minimum full charge capacity is calculated based on Equation (2).

その後、満充電容量補正部145は、ステップS122において、算出した組電池B1の最小満充電容量を補正する。具体的には、満充電容量記憶部146に記憶されている前回算出した補正された最小満充電容量と、満充電容量算出部144が今回算出した最小満充電容量から所定計算式に基づいて、補正された最小満充電容量を算出する。より具体的には、式(4)に基づいて補正された新たな最小満充電容量を算出する。そして、満充電容量補正部145は、ステップS123において、補正された最小満充電容量を新たな最小満充電容量として更新し、満充電容量記憶部146に記憶させる。   Thereafter, in step S122, the full charge capacity correction unit 145 corrects the calculated minimum full charge capacity of the assembled battery B1. Specifically, based on a predetermined calculation formula from the corrected minimum full charge capacity calculated last time stored in the full charge capacity storage unit 146 and the minimum full charge capacity calculated by the full charge capacity calculation unit 144 this time, Calculate the corrected minimum full charge capacity. More specifically, the new minimum full charge capacity corrected based on the equation (4) is calculated. Then, in step S123, the full charge capacity correction unit 145 updates the corrected minimum full charge capacity as a new minimum full charge capacity, and stores it in the full charge capacity storage unit 146.

一方、ステップS120において、組電池B1の均等化後差分SOCが所定値γ以下であると判定した場合、均等化後差分SOCに含まれる誤差の影響が大きくなって最小満充電容量の精度が低下してしまうと判断し、ステップS121〜ステップS123は実施されない。また、充放電時間が所定時間δ以上であると判定した場合、電流センサ11のオフセット誤差の影響が大きくなって積算電流量の精度が低下し、それに伴って最小満充電容量の精度も低下してしまうと判断し、ステップS121〜ステップS123は実施されない。さらに、電圧センサ10及び電流センサ11の少なくとも1つが異常であると判定した場合、OCVや積算電流量の信頼性が低いため、ステップS121〜ステップS123は実施されない。つまり、組電池B1の均等化後差分SOCが所定値γ以下である場合、充放電時間が所定時間δ以上である場合、電圧センサ10及び電流センサ11の少なくとも1つが異常である場合のうち、少なくとも1つである場合、満充電容量算出部144による最小満充電容量の算出、及び、満充電容量補正部145による補正された最小満充電容量の算出を停止する。   On the other hand, if it is determined in step S120 that the post-equalization difference SOC of the assembled battery B1 is equal to or smaller than the predetermined value γ, the influence of the error included in the post-equalization difference SOC becomes large, and the accuracy of the minimum full charge capacity decreases. Therefore, step S121 to step S123 are not performed. Further, when it is determined that the charge / discharge time is equal to or longer than the predetermined time δ, the influence of the offset error of the current sensor 11 is increased and the accuracy of the accumulated current amount is lowered, and accordingly, the accuracy of the minimum full charge capacity is also lowered. Steps S121 to S123 are not performed. Further, when it is determined that at least one of the voltage sensor 10 and the current sensor 11 is abnormal, the reliability of the OCV and the accumulated current amount is low, and thus Steps S121 to S123 are not performed. That is, when the post-equalization difference SOC of the assembled battery B1 is equal to or less than the predetermined value γ, when the charge / discharge time is equal to or longer than the predetermined time δ, or when at least one of the voltage sensor 10 and the current sensor 11 is abnormal, In the case of at least one, the calculation of the minimum full charge capacity by the full charge capacity calculation unit 144 and the calculation of the corrected minimum full charge capacity by the full charge capacity correction unit 145 are stopped.

図4に示すように、前回始動スイッチがオフした時刻t0から所定時間経過した時刻t1で始動スイッチがオン状態になる。つまり、前回の充放電期間が終了した時刻t0から所定時間経過した時刻t1で始動スイッチがオン状態になる。時刻t0から時刻t1までの時間が緩和時間α以上である場合、電池セルC10〜C14の分極の影響が充分に緩和されたと判断し、SOC算出部140は、時刻t2で、組電池B1の充放電前OCVを取得し、組電池B1の充放電前SOCを算出する。しかし、時刻t0から時刻t1までの時間が緩和時間αに達していない場合は、電池セルC10〜C14の分極の影響が充分に緩和されていないと判断し、組電池B1の平均満充電容量及び最小満充電容量の算出を停止する。   As shown in FIG. 4, the start switch is turned on at time t1 when a predetermined time has elapsed from time t0 when the start switch was turned off last time. That is, the start switch is turned on at time t1 when a predetermined time has elapsed from time t0 when the previous charging / discharging period ended. When the time from time t0 to time t1 is equal to or greater than the relaxation time α, it is determined that the influence of the polarization of the battery cells C10 to C14 has been sufficiently relaxed, and the SOC calculation unit 140 recharges the assembled battery B1 at time t2. The pre-discharge OCV is acquired, and the pre-charge / discharge SOC of the battery pack B1 is calculated. However, if the time from time t0 to time t1 has not reached the relaxation time α, it is determined that the influence of the polarization of the battery cells C10 to C14 is not sufficiently relaxed, and the average full charge capacity of the battery pack B1 and Stop calculating the minimum full charge capacity.

その後、時刻t3でシステムメインリレーR10、R11がオン状態になり、充放電期間が開始する。充放電期間が開始すると、積算電流量算出141は、組電池B1に流れる電流を積算する。充放電時間算出部142は、充放電期間の時間を算出するため時間を計測する。充放電期間が開始し、例えば、組電池B1から車載装置に電力が供給され、組電池B1が充電されることなく放電し続けると、電池セルC10〜C14の電圧が低下する。内部状態のバラツキにより、電池セルC10〜C14の電圧の低下速度もそれぞれ異なる。その後、時刻t4で始動スイッチがオフ状態になり、それに伴ってシステムメインリレーR10、R11もオフ状態になって充放電期間が終了する。積算電流量算出部141は、時刻t4で充放電期間中における組電池B1の積算電流量の算出を完了する。充放電時間算出部142は、時刻t4で充放電期間の時間の算出を完了する。   Thereafter, the system main relays R10 and R11 are turned on at time t3, and the charge / discharge period starts. When the charging / discharging period starts, the integrated current amount calculation 141 integrates the current flowing through the assembled battery B1. The charge / discharge time calculation unit 142 measures time in order to calculate the time of the charge / discharge period. When the charging / discharging period starts and, for example, power is supplied from the assembled battery B1 to the in-vehicle device and the assembled battery B1 continues to be discharged without being charged, the voltage of the battery cells C10 to C14 decreases. The rate of voltage decrease of the battery cells C10 to C14 varies depending on the variation in the internal state. Thereafter, the start switch is turned off at time t4, and accordingly, the system main relays R10 and R11 are also turned off, and the charging / discharging period ends. The accumulated current amount calculation unit 141 completes the calculation of the accumulated current amount of the assembled battery B1 during the charge / discharge period at time t4. The charge / discharge time calculation unit 142 completes the calculation of the charge / discharge period time at time t4.

充放電期間が終了すると、分極の影響が徐々に緩和され、電池セルC10〜C14の電圧が変動する。SOC算出部140は、時刻t4から緩和時間α経過後の時刻t5で、組電池B1の充放電後OCVを取得し、組電池B1の充放電後SOCを算出するとともに、組電池B1の充放電後差分SOCを算出する。   When the charging / discharging period ends, the influence of polarization is gradually relaxed, and the voltages of the battery cells C10 to C14 vary. The SOC calculation unit 140 obtains the OCV after charge / discharge of the battery pack B1 at time t5 after the relaxation time α has elapsed from time t4, calculates the SOC after charge / discharge of the battery pack B1, and charges / discharges the battery pack B1. The post-difference SOC is calculated.

時刻t5において、電池セルC10〜C14のうち、電池セルC13の電圧が最も低い。最も電圧が低い電池セルC13と他の電池セルC10〜C12、C14の電圧差が全て所定電圧β以下になるように、時刻t5から均等化が開始される。最も電圧が低い電池セルC13と他の電池セルC10〜C12、C14の電圧差が全て所定電圧β以下になった時刻t6で、均等化が終了する。   At time t5, the battery cell C13 has the lowest voltage among the battery cells C10 to C14. The equalization is started from time t5 so that the voltage difference between the battery cell C13 having the lowest voltage and the other battery cells C10 to C12, C14 is all equal to or less than the predetermined voltage β. The equalization ends at time t6 when the voltage difference between the battery cell C13 having the lowest voltage and the other battery cells C10 to C12, C14 is all equal to or lower than the predetermined voltage β.

SOC算出部140は、均等化終了後の時刻t7で、組電池B1の均等化後OCVを取得し、組電池B1の均等化後SOCを算出するとともに、組電池B1の均等化後差分SOCを算出する。   The SOC calculation unit 140 obtains the post-equalization SOCV of the battery pack B1 at time t7 after the end of the equalization, calculates the post-equalization SOC of the battery pack B1, and calculates the post-equalization difference SOC of the battery pack B1. calculate.

満充電容量算出判定部143は、時刻t5の後、平均満充電容量を算出するか否かを判定する。組電池B1の充放電後差分SOCが所定値γより大きく、充放電時間が所定時間δより小さく、電圧センサ10及び電流センサ11がともに正常であると判定した場合、満充電容量算出判定部143は、平均満充電容量の算出を許可する。満充電容量算出部144は、SOC算出部140の算出した充放電後差分SOCと、積算電流量算出部141の算出した積算電流量とに基づいて組電池B1の平均満充電容量を算出する。具体的には、式(1)に基づいて組電池B1の平均満充電容量を算出する。満充電容量補正部145は、満充電容量記憶部146に記憶されている前回算出した補正された平均満充電容量と、満充電容量算出部144が今回算出した平均満充電容量から所定計算式に基づいて、補正された平均満充電容量を算出する。具体的には、式(3)に基づいて補正された新たな平均満充電容量を算出する。そして、補正された平均満充電容量を新たな平均満充電容量として更新し、満充電容量記憶部146に記憶させる。   The full charge capacity calculation determination unit 143 determines whether or not to calculate the average full charge capacity after time t5. When it is determined that the difference SOC after charging / discharging of the battery pack B1 is larger than the predetermined value γ, the charging / discharging time is shorter than the predetermined time δ, and both the voltage sensor 10 and the current sensor 11 are normal, the full charge capacity calculation determination unit 143 Allows the calculation of the average full charge capacity. The full charge capacity calculation unit 144 calculates the average full charge capacity of the battery pack B1 based on the post-charge / discharge difference SOC calculated by the SOC calculation unit 140 and the integrated current amount calculated by the integrated current amount calculation unit 141. Specifically, the average full charge capacity of the battery pack B1 is calculated based on the formula (1). The full charge capacity correction unit 145 calculates a predetermined calculation formula from the corrected average full charge capacity calculated last time stored in the full charge capacity storage unit 146 and the average full charge capacity calculated by the full charge capacity calculation unit 144 this time. Based on this, the corrected average full charge capacity is calculated. Specifically, a new average full charge capacity corrected based on Equation (3) is calculated. Then, the corrected average full charge capacity is updated as a new average full charge capacity and stored in the full charge capacity storage unit 146.

一方、組電池B1の充放電後差分SOCが所定値γ以下である場合、充放電時間が所定時間δ以上である場合、電圧センサ10及び電流センサ11の少なくとも1つが異常である場合のうち、少なくとも1つである場合、満充電容量算出部144による平均満充電容量の算出、及び、満充電容量補正部145による補正された平均満充電容量の算出を停止する。   On the other hand, when the difference SOC after charging / discharging of the assembled battery B1 is equal to or less than the predetermined value γ, when the charging / discharging time is equal to or longer than the predetermined time δ, or when at least one of the voltage sensor 10 and the current sensor 11 is abnormal, In the case of at least one, the calculation of the average full charge capacity by the full charge capacity calculation unit 144 and the calculation of the average full charge capacity corrected by the full charge capacity correction unit 145 are stopped.

満充電容量算出判定部143は、時刻t7の後、最小満充電容量を算出するか否かを判定する。組電池B1の均等化後差分SOCが所定値γより大きく、充放電時間が所定時間δより小さく、電圧センサ10及び電流センサ11がともに正常であると判定した場合、満充電容量算出判定部143は、最小満充電容量の算出を許可する。満充電容量算出部144は、SOC算出部140の算出した均等化後差分SOCと、積算電流量算出部141の算出した積算電流量とに基づいて組電池B1の最小満充電容量を算出する。具体的には、式(2)に基づいて最小満充電容量を算出する。満充電容量補正部145は、満充電容量記憶部146に記憶されている前回算出した補正された最小満充電容量と、満充電容量算出部144が今回算出した最小満充電容量から所定計算式に基づいて、補正された最小満充電容量を算出する。具体的には、式(4)に基づいて補正された新たな最小満充電容量を算出する。そして、補正された最小満充電容量を新たな最小満充電容量として更新し、満充電容量記憶部146に記憶させる。   The full charge capacity calculation determination unit 143 determines whether or not to calculate the minimum full charge capacity after time t7. When it is determined that the post-equalization difference SOC of the assembled battery B1 is greater than the predetermined value γ, the charge / discharge time is less than the predetermined time δ, and both the voltage sensor 10 and the current sensor 11 are normal, the full charge capacity calculation determination unit 143 Allows the calculation of the minimum full charge capacity. The full charge capacity calculation unit 144 calculates the minimum full charge capacity of the battery pack B1 based on the post-equalization difference SOC calculated by the SOC calculation unit 140 and the integrated current amount calculated by the integrated current amount calculation unit 141. Specifically, the minimum full charge capacity is calculated based on Equation (2). The full charge capacity correction unit 145 calculates a predetermined calculation formula from the corrected minimum full charge capacity calculated in the previous time stored in the full charge capacity storage unit 146 and the minimum full charge capacity calculated by the full charge capacity calculation unit 144 this time. Based on this, the corrected minimum full charge capacity is calculated. Specifically, a new minimum full charge capacity corrected based on equation (4) is calculated. Then, the corrected minimum full charge capacity is updated as a new minimum full charge capacity and stored in the full charge capacity storage unit 146.

一方、組電池B1の均等化後差分SOCが所定値γ以下である場合、充放電時間が所定時間δ以上である場合、電圧センサ10及び電流センサ11の少なくとも1つが異常である場合のうち、少なくとも1つである場合、満充電容量算出部144による最小満充電容量の算出、及び、満充電容量補正部145による補正された最小満充電容量の算出を停止する。   On the other hand, when the differential SOC after equalization of the assembled battery B1 is equal to or less than the predetermined value γ, when the charge / discharge time is equal to or longer than the predetermined time δ, or when at least one of the voltage sensor 10 and the current sensor 11 is abnormal, In the case of at least one, the calculation of the minimum full charge capacity by the full charge capacity calculation unit 144 and the calculation of the corrected minimum full charge capacity by the full charge capacity correction unit 145 are stopped.

次に、本実施形態の満充電容量算出装置の効果について説明する。   Next, the effect of the full charge capacity calculation device of the present embodiment will be described.

本実施形態によれば、満充電容量算出装置14は、組電池B1のOCVに基づいて組電池B1のSOCを算出するSOC算出部140と、組電池B1の充放電期間に組電池B1に流れる電流の積算値である積算電流量を算出する積算電流量算出部141と、組電池B1の充放電前OCVに基づいてSOC算出部140が算出した組電池B1の充放電前SOCと、組電池B1の均等化後OCVに基づいてSOC算出部140が算出した組電池B1の均等化後SOCと、積算電流量算出部141が算出した積算電流量とに基づいて最小満充電容量を算出する満充電容量算出部144と、を有している。   According to the present embodiment, the full charge capacity calculation device 14 flows to the assembled battery B1 during the charging / discharging period of the assembled battery B1, and the SOC calculating unit 140 that calculates the SOC of the assembled battery B1 based on the OCV of the assembled battery B1. An integrated current amount calculating unit 141 that calculates an integrated current amount that is an integrated value of current, an SOC before and after charging of the assembled battery B1 calculated by the SOC calculating unit 140 based on the OCV before charging and discharging of the assembled battery B1, and an assembled battery Based on the post-equalization SOC of the battery pack B1 calculated by the SOC calculation unit 140 based on the post-equalization OCV of B1 and the integrated current amount calculated by the integrated current amount calculation unit 141, the full charge capacity is calculated. And a charge capacity calculation unit 144.

組電池B1を構成する電池セルC10〜C14は、最も電圧が低い電池と他の電池セルの電圧差が全て所定電圧以下になるように均等化されている。OCVとSOCは、所定の関係を有している。そのため、各々の電池セルC10〜C14の充放電前SOCは、最も満充電容量が小さい電池セルの充放電前SOCとほぼ同一になる。充放電期間が終了してから緩和時間αが経過した後、電池セルC10〜C14は、最も電圧が低い電池セルと他の電池セルの電圧差が全て所定電圧以下になるように均等化される。そのため、組電池B1の均等化後SOCは、最も満充電容量が小さい電池セルの均等化後SOCとほぼ同一になる。満充電容量は、ある状態におけるSOCと、別の状態におけるSOCと、その間の積算電流量とに基づいて算出することができる。そのため、組電池B1の充放電前SOCと、組電池B1の均等化後SOCと、充放電期間中の積算電流量とから組電池B1の最小満充電容量を算出することができる。つまり、各々の電池セルC10〜C14の満充電容量を算出することなく組電池B1の満充電容量を算出することができる。   The battery cells C10 to C14 constituting the assembled battery B1 are equalized so that the voltage difference between the battery with the lowest voltage and the other battery cells is all equal to or lower than a predetermined voltage. OCV and SOC have a predetermined relationship. Therefore, the SOC before charge / discharge of each of the battery cells C10 to C14 is substantially the same as the SOC before charge / discharge of the battery cell having the smallest full charge capacity. After the relaxation time α has elapsed since the end of the charge / discharge period, the battery cells C10 to C14 are equalized so that the voltage difference between the battery cell with the lowest voltage and the other battery cells is all equal to or lower than the predetermined voltage. . Therefore, the post-equalization SOC of the assembled battery B1 is substantially the same as the post-equalization SOC of the battery cell having the smallest full charge capacity. The full charge capacity can be calculated based on the SOC in one state, the SOC in another state, and the accumulated current amount therebetween. Therefore, the minimum full charge capacity of the assembled battery B1 can be calculated from the pre-charge / discharge SOC of the assembled battery B1, the post-equalization SOC of the assembled battery B1, and the integrated current amount during the charge / discharge period. That is, the full charge capacity of the battery pack B1 can be calculated without calculating the full charge capacity of each of the battery cells C10 to C14.

本実施形態によれば、SOC算出部140は、前回の充放電期間が終了してから緩和時間α以上の時間が経過した後の組電池B1の充放電前OCVに基づいて組電池B1の充放電前SOCを算出する。そのため、分極の影響が充分に緩和された組電池B1の充放電前OCVに基づいて組電池B1の充放電前SOCを算出することができる。従って、組電池B1の充放電前SOCの誤差を抑えることができる。   According to the present embodiment, the SOC calculation unit 140 charges / recharges the assembled battery B1 based on the pre-charge / discharge OCV of the assembled battery B1 after the time equal to or greater than the relaxation time α has elapsed since the end of the previous charge / discharge period. The pre-discharge SOC is calculated. Therefore, the SOC before charging / discharging of the assembled battery B1 can be calculated based on the OCV before charging / discharging of the assembled battery B1 in which the influence of polarization is sufficiently mitigated. Therefore, it is possible to suppress the SOC error before charging / discharging the assembled battery B1.

本実施形態によれば、満充電容量算出部144は、組電池B1の均等化後差分SOCが所定値γ以下である場合、充放電時間が所定時間δ以上である場合、電圧センサ10及び電流センサ11の少なくとも1つが異常である場合のうち、少なくとも1つである場合、最小満充電容量の算出を停止する。   According to the present embodiment, the full charge capacity calculation unit 144 determines that the voltage sensor 10 and the current when the difference SOC after equalization of the assembled battery B1 is equal to or less than the predetermined value γ, the charge / discharge time is equal to or greater than the predetermined time δ. When at least one of the sensors 11 is abnormal, if it is at least one, the calculation of the minimum full charge capacity is stopped.

最小満充電容量は、式(2)に基づいて算出される。組電池B1の均等化後差分SOCが所定値γ以下である場合、均等化後差分SOCに含まれ誤差の影響が大きくなって最小満充電容量の精度が低下してしまう。そのため、組電池B1の均等化後差分SOCが所定値γ以下である場合に、最小満充電容量の算出を停止することで、最小満充電容量の精度低下を抑えることができる。また、充放電時間が所定時間δ以上である場合、電流センサ11のオフセット誤差の影響が大きくなって積算電流量の精度が低下し、それに伴って最小満充電容量の精度も低下してしまう。そのため、充放電時間が所定時間δ以上である場合に、最小満充電容量の算出を停止することで、積算電流量の精度低下に伴う最小満充電容量の精度低下を抑えることができる。さらに、電圧センサ10及び電流センサ11の少なくとも1つが異常である場合、OCVや積算電流量の信頼性が低下し、それに伴って最小満充電容量の信頼性も低下してしまう。そのため、電圧センサ10及び電流センサ11の少なくとも1つが異常である場合に、最小満充電容量の算出を停止することで、最小満充電容量の信頼性低下を抑えることができる。   The minimum full charge capacity is calculated based on the formula (2). When the differential SOC after the equalization of the assembled battery B1 is equal to or less than the predetermined value γ, the influence of the error included in the post-equalization difference SOC becomes large, and the accuracy of the minimum full charge capacity decreases. Therefore, when the post-equalization difference SOC of the assembled battery B1 is equal to or less than the predetermined value γ, it is possible to suppress a decrease in accuracy of the minimum full charge capacity by stopping the calculation of the minimum full charge capacity. In addition, when the charge / discharge time is equal to or longer than the predetermined time δ, the influence of the offset error of the current sensor 11 is increased, the accuracy of the accumulated current amount is lowered, and accordingly, the accuracy of the minimum full charge capacity is also lowered. Therefore, when the charging / discharging time is equal to or longer than the predetermined time δ, by stopping the calculation of the minimum full charge capacity, it is possible to suppress a decrease in the accuracy of the minimum full charge capacity due to a decrease in the accuracy of the integrated current amount. Furthermore, when at least one of the voltage sensor 10 and the current sensor 11 is abnormal, the reliability of the OCV and the accumulated current amount is lowered, and accordingly, the reliability of the minimum full charge capacity is also lowered. Therefore, when at least one of the voltage sensor 10 and the current sensor 11 is abnormal, it is possible to suppress a decrease in the reliability of the minimum full charge capacity by stopping the calculation of the minimum full charge capacity.

本実施形態によれば、満充電容量算出装置14は、満充電容量記憶部146に記憶されている前回算出した補正された最小満充電容量と最小満充電容量算出部が今回算出した最小満充電容量から、所定計算式に基づいて補正された最小満充電容量を算出する満充電容量補正部145を有している。   According to the present embodiment, the full charge capacity calculation device 14 includes the corrected minimum full charge capacity calculated last time stored in the full charge capacity storage unit 146 and the minimum full charge calculated this time by the minimum full charge capacity calculation unit. A full charge capacity correction unit 145 that calculates a minimum full charge capacity corrected based on a predetermined calculation formula from the capacity is provided.

最小満充電容量は、誤差を有している。前回算出した最小満充電容量と今回算出した最小満充電容量で含まれる誤差が大きく変動する可能性がある。しかし、満充電容量補正部145が、満充電容量記憶部146に記憶されている前回算出した補正された最小満充電容量と最小満充電容量算出部が今回算出した最小満充電容量から、所定計算式に基づいて補正された最小満充電容量を算出する。そのため、最小満充電容量に含まれる誤差による影響を抑えることができる。   The minimum full charge capacity has an error. There is a possibility that the error included in the previously calculated minimum full charge capacity and the presently calculated minimum full charge capacity may vary greatly. However, the full charge capacity correction unit 145 performs a predetermined calculation from the corrected minimum full charge capacity calculated last time stored in the full charge capacity storage unit 146 and the minimum full charge capacity calculated this time by the minimum full charge capacity calculation unit. The minimum full charge capacity corrected based on the equation is calculated. Therefore, it is possible to suppress the influence due to the error included in the minimum full charge capacity.

本実施形態によれば、満充電容量補正部145は、組電池B1の均等化後差分SOCが所定値γ以下である場合、充放電時間が所定時間δ以上である場合、電圧センサ及び電流センサの少なくとも1つが異常である場合のうち、少なくとも1つである場合、補正された最小満充電容量の算出を停止する。   According to the present embodiment, the full charge capacity correction unit 145 includes a voltage sensor and a current sensor when the post-equalization difference SOC of the assembled battery B1 is a predetermined value γ or less, a charge / discharge time is a predetermined time δ or more, If at least one of the two is abnormal, the calculation of the corrected minimum full charge capacity is stopped.

前述したように、組電池B1の均等化後差分SOCが所定値γ以下である場合、充放電時間が所定時間δ以上である場合、電圧センサ及び電流センサの少なくとも1つが異常である場合のうち、少なくとも1つである場合、最小満充電容量の精度や信頼性が低下してしまう。そのため、組電池B1の均等化後差分SOCが所定値γ以下である場合、充放電時間が所定時間δ以上である場合、電圧センサ及び電流センサの少なくとも1つが異常である場合のうち、少なくとも1つである場合に、補正された最小満充電容量の算出を停止することで、補正された最小満充電容量の精度低下や信頼性低下を抑えることができる。   As described above, when the post-equalization difference SOC of the assembled battery B1 is equal to or smaller than the predetermined value γ, when the charge / discharge time is equal to or longer than the predetermined time δ, or when at least one of the voltage sensor and the current sensor is abnormal In the case of at least one, the accuracy and reliability of the minimum full charge capacity is lowered. Therefore, when the post-equalization difference SOC of the assembled battery B1 is equal to or less than the predetermined value γ, the charge / discharge time is equal to or greater than the predetermined time δ, or at least one of the voltage sensor and the current sensor is abnormal. Therefore, by stopping the calculation of the corrected minimum full charge capacity, it is possible to suppress a decrease in accuracy and a decrease in reliability of the corrected minimum full charge capacity.

本実施形態によれば、満充電容量算出部144は、組電池B1の充放電前SOCと、組電池B1の充放電後OCVに基づいてSOC算出部140が算出した組電池B1の充電放電後SOCと、積算電流量とに基づいて平均満充電容量を算出する。   According to the present embodiment, the full charge capacity calculation unit 144 is after the charging / discharging of the assembled battery B1 calculated by the SOC calculating unit 140 based on the SOC before charging / discharging of the assembled battery B1 and the OCV after charging / discharging of the assembled battery B1. An average full charge capacity is calculated based on the SOC and the integrated current amount.

最小満充電容量は、均等化後SOCに基づいて算出されるため、均等化後に算出される。均等化に必要な時間は、各々の電池セルC10〜C14の状態によって変化する。均等化にかかる時間が長くなると、最小満充電容量の算出までの時間が長くなる。均等化が完了して最小満充電容量が算出される前に始動スイッチがオンされて組電池B1が使用されるような場合、また、このような状況が何度も続いた場合、ずっと最小満充電容量は算出されず、更新もされない。その結果、最小満充電容量に基づいて制御を行うような場合、制御に悪影響を与える可能性がある。しかし、平均満充電容量は、組電池B1の充放電後SOCに基づいて算出される。そのため、平均満充電容量は、最小満充電容量より早く算出される。しかも、平均満充電容量は最小満充電容量より大きいが、大幅に異なる可能性は低い。従って、平均満充電容量を算出することで、長期にわたって最小満充電容量が算出されていない場合、最小満充電容量の代わりに平均満充電容量を用いることできるようになる。その結果、最小満充電容量の算出遅れに伴う悪影響を抑えることができる。   Since the minimum full charge capacity is calculated based on the post-equalization SOC, it is calculated after the equalization. The time required for equalization varies depending on the state of each of the battery cells C10 to C14. If the time required for equalization becomes longer, the time until the minimum full charge capacity is calculated becomes longer. If the start switch is turned on and the battery pack B1 is used before the equalization is completed and the minimum full charge capacity is calculated, or if this situation continues many times, the minimum The charge capacity is not calculated and is not updated. As a result, when the control is performed based on the minimum full charge capacity, the control may be adversely affected. However, the average full charge capacity is calculated based on the SOC after charging / discharging of the assembled battery B1. Therefore, the average full charge capacity is calculated earlier than the minimum full charge capacity. Moreover, the average full charge capacity is greater than the minimum full charge capacity, but is unlikely to be significantly different. Accordingly, by calculating the average full charge capacity, when the minimum full charge capacity has not been calculated over a long period of time, the average full charge capacity can be used instead of the minimum full charge capacity. As a result, it is possible to suppress an adverse effect due to a delay in calculating the minimum full charge capacity.

本実施形態によれば、満充電容量算出部144は、組電池B1の充放電後差分SOCが所定値γ以下である場合、充放電時間が所定時間δ以上である場合、電圧センサ10及び電流センサ11の少なくとも1つが異常である場合のうち、少なくとも1つである場合、平均満充電容量の算出を停止する。   According to the present embodiment, the full charge capacity calculation unit 144 determines that the voltage sensor 10 and the current are charged when the post-charge / discharge difference SOC of the assembled battery B1 is equal to or smaller than the predetermined value γ, when the charge / discharge time is equal to or longer than the predetermined time δ. When at least one of the sensors 11 is abnormal, the calculation of the average full charge capacity is stopped when at least one of the sensors 11 is abnormal.

平均満充電容量は、式(1)に基づいて算出される。組電池B1の充放電後差分SOCが所定値γ以下である場合、充放電後差分SOCに含まれる誤差の影響が大きくなって平均満充電容量の精度が低下してしまう。そのため、組電池B1の充放電後差分SOCが所定値γ以下である場合に、平均満充電容量の算出を停止することで、平均満充電容量の精度低下を抑えることができる。また、充放電時間が所定時間δ以上である場合、電流センサ11のオフセット誤差の影響が大きくなって積算電流量の精度が低下し、それに伴って平均満充電容量の精度も低下してしまう。そのため、充放電時間が所定時間δ以上である場合に、平均満充電容量の算出を停止することで、積算電流量の精度低下に伴う平均満充電容量の精度低下を抑えることができる。さらに、電圧センサ10及び電流センサ11の少なくとも1つが異常である場合、OCVや積算電流量の信頼性が低下し、それに伴って平均満充電容量の信頼性も低下してしまう。そのため、電圧センサ10及び電流センサ11の少なくとも1つが異常である場合に、平均満充電容量の算出を停止することで、平均満充電容量の信頼性低下を抑えることができる。   The average full charge capacity is calculated based on the formula (1). When the difference SOC after charging / discharging of the assembled battery B1 is equal to or less than the predetermined value γ, the influence of the error included in the difference SOC after charging / discharging becomes large, and the accuracy of the average full charge capacity decreases. Therefore, when the post-charge / discharge difference SOC of the assembled battery B1 is equal to or less than the predetermined value γ, the accuracy of the average full charge capacity can be prevented from decreasing by stopping the calculation of the average full charge capacity. Further, when the charging / discharging time is equal to or longer than the predetermined time δ, the influence of the offset error of the current sensor 11 is increased, the accuracy of the accumulated current amount is lowered, and accordingly, the accuracy of the average full charge capacity is also lowered. Therefore, when the charging / discharging time is equal to or longer than the predetermined time δ, by stopping the calculation of the average full charge capacity, it is possible to suppress a decrease in the accuracy of the average full charge capacity due to a decrease in the accuracy of the integrated current amount. Furthermore, when at least one of the voltage sensor 10 and the current sensor 11 is abnormal, the reliability of the OCV and the accumulated current amount is lowered, and accordingly, the reliability of the average full charge capacity is also lowered. Therefore, when at least one of the voltage sensor 10 and the current sensor 11 is abnormal, it is possible to suppress a decrease in the reliability of the average full charge capacity by stopping the calculation of the average full charge capacity.

本実施形態によれば、満充電容量補正部145は、満充電容量記憶部146に記憶されている前回算出した補正された平均満充電容量と平均満充電容量算出部が今回算出した平均満充電容量から、所定計算式に基づいて補正された平均満充電容量を算出する。   According to the present embodiment, the full charge capacity correction unit 145 includes the corrected average full charge capacity calculated last time stored in the full charge capacity storage unit 146 and the average full charge calculated this time by the average full charge capacity calculation unit. An average full charge capacity corrected based on a predetermined calculation formula is calculated from the capacity.

平均満充電容量は、誤差を有している。前回算出した平均満充電容量と今回算出した平均満充電容量で含まれる誤差が大きく変動する可能性がある。しかし、満充電容量補正部145が、満充電容量記憶部146に記憶されている前回算出した補正された平均満充電容量と平均満充電容量算出部が今回算出した平均満充電容量から、所定計算式に基づいて補正された平均満充電容量を算出する。そのため、平均満充電容量に含まれる誤差による影響を抑えることができる。   The average full charge capacity has an error. There is a possibility that the error included in the average full charge capacity calculated last time and the average full charge capacity calculated this time fluctuate greatly. However, the full charge capacity correction unit 145 performs a predetermined calculation from the corrected average full charge capacity calculated last time stored in the full charge capacity storage unit 146 and the average full charge capacity calculated by the average full charge capacity calculation unit this time. The average full charge capacity corrected based on the formula is calculated. Therefore, it is possible to suppress the influence due to the error included in the average full charge capacity.

本実施形態によれば、満充電容量補正部145は、組電池B1の充放電後差分SOCが所定値γ以下である場合、充放電時間が所定時間δ以上である場合、電圧センサ及び電流センサの少なくとも1つが異常である場合のうち、少なくとも1つである場合、補正された平均満充電容量の算出を停止する。   According to the present embodiment, the full charge capacity correction unit 145 includes a voltage sensor and a current sensor when the post-charge / discharge difference SOC of the assembled battery B1 is equal to or less than the predetermined value γ, and when the charge / discharge time is equal to or greater than the predetermined time δ. If at least one of the two is abnormal, the calculation of the corrected average full charge capacity is stopped.

前述したように、組電池B1の充放電後差分SOCが所定値γ以下である場合、充放電時間が所定時間δ以上である場合、電圧センサ10及び電流センサ11の少なくとも1つが異常である場合のうち、少なくとも1つである場合、平均満充電容量の精度や信頼性が低下してしまう。そのため、組電池B1の充放電後差分SOCが所定値γ以下である場合、充放電時間が所定時間δ以上である場合、電圧センサ10及び電流センサ11の少なくとも1つが異常である場合のうち、少なくとも1つである場合に、補正された平均満充電容量の算出を停止することで、補正された平均満充電容量の精度低下や信頼性低下を抑えることができる。   As described above, when the post-charge / discharge difference SOC of the assembled battery B1 is equal to or smaller than the predetermined value γ, when the charge / discharge time is equal to or longer than the predetermined time δ, or when at least one of the voltage sensor 10 and the current sensor 11 is abnormal. In the case of at least one of them, the accuracy and reliability of the average full charge capacity is lowered. Therefore, when the difference SOC after charging / discharging of the assembled battery B1 is equal to or less than the predetermined value γ, when the charge / discharge time is equal to or longer than the predetermined time δ, or when at least one of the voltage sensor 10 and the current sensor 11 is abnormal, In the case of at least one, by stopping the calculation of the corrected average full charge capacity, it is possible to suppress a decrease in accuracy and a decrease in reliability of the corrected average full charge capacity.

なお、本実施形態では、組電池B1が直列接続された5つの電池セルC10〜C14で構成されている例を挙げているが、これに限られるものではない。組電池は、直列接続された複数の電池セルで構成されていればよい。   In the present embodiment, an example in which the battery pack C1 includes five battery cells C10 to C14 connected in series is described, but the present invention is not limited to this. The assembled battery should just be comprised by the some battery cell connected in series.

本実施形態では、満充電容量算出部144に、補正された平均満充電容量を算出するためのなまし定数k1と、補正された最小満充電容量を算出するためのなまし定数k2が別々に設定されている例を挙げているが、これに限られるものではない。なまし定数k1、k2は、同一の値であってもよいし、別々の値であってもよい。また、状況に応じて値を可変させてもよい。   In the present embodiment, the full charge capacity calculation unit 144 has an annealing constant k1 for calculating the corrected average full charge capacity and an annealing constant k2 for calculating the corrected minimum full charge capacity separately. An example is given, but it is not limited to this. The annealing constants k1 and k2 may be the same value or different values. Further, the value may be varied according to the situation.

本実施形態では、満充電容量補正部145が、式(3)及び式(4)に基づいて補正された平均満充電容量及び補正された最小満充電容量を算出する例を挙げているが、これに限られるものではない。別の所定計算式に基づいて算出するようにしてもよい。   In the present embodiment, the full charge capacity correction unit 145 calculates an average full charge capacity corrected based on the equations (3) and (4) and a corrected minimum full charge capacity. It is not limited to this. You may make it calculate based on another predetermined calculation formula.

1・・・組電池制御システム、10・・・電圧センサ、11・・・電流センサ、12・・・均等化回路、14・・・満充電容量算出装置、140・・・SOC算出部、141・・・積算電流量算出部、142・・・充放電時間算出部、143・・・満充電容量算出判定部、144・・・満充電容量算出部、145・・・満充電容量補正部、146・・・満充電容量記憶部、B1・・・組電池、C10〜C14・・・電池セル   DESCRIPTION OF SYMBOLS 1 ... Battery pack control system, 10 ... Voltage sensor, 11 ... Current sensor, 12 ... Equalization circuit, 14 ... Full charge capacity calculation apparatus, 140 ... SOC calculation part, 141 ... accumulated current amount calculation unit, 142 ... charge / discharge time calculation unit, 143 ... full charge capacity calculation determination unit, 144 ... full charge capacity calculation unit, 145 ... full charge capacity correction unit, 146: full charge capacity storage unit, B1: assembled battery, C10 to C14: battery cell

Claims (9)

直列接続された複数の電池セルで構成される組電池の満充電容量を算出する満充電容量算出装置であって、
前記組電池のOCV(Open Circuit Voltage)に基づいて前記組電池のSOC(State Of Charge)を算出するSOC算出部(140)と、
前記組電池の充放電期間中に前記組電池に流れる電流の積算値である積算電流量を算出する積算電流量算出部(141)と、
充放電期間の開始前の前記組電池の充放電前OCVに基づいて前記SOC算出部が算出した前記組電池の充放電前SOCと、充放電期間が終了してから緩和時間(α)が経過した後、最も電圧が低い前記電池セルと他の前記電池セルの電圧差が全て所定電圧(β)以下になるように他の前記電池セルを放電させる均等化を行った後の前記組電池の均等化後OCVに基づいて前記SOC算出部が算出した前記組電池の均等化後SOCと、前記積算電流量算出部が算出した積算電流量とに基づいて最小満充電容量を算出する最小満充電容量算出部(144)と、
を有する満充電容量算出装置。
A full charge capacity calculation device for calculating a full charge capacity of an assembled battery composed of a plurality of battery cells connected in series,
An SOC calculation unit (140) for calculating an SOC (State Of Charge) of the assembled battery based on an OCV (Open Circuit Voltage) of the assembled battery;
An integrated current amount calculation unit (141) that calculates an integrated current amount that is an integrated value of a current flowing through the assembled battery during a charge / discharge period of the assembled battery;
The SOC before charging / discharging of the assembled battery calculated by the SOC calculation unit based on the OCV before charging / discharging of the assembled battery before the start of the charging / discharging period, and the relaxation time (α) have elapsed since the charging / discharging period ended. Then, the battery pack of the assembled battery after equalization for discharging other battery cells so that the voltage difference between the battery cell having the lowest voltage and the other battery cells is all equal to or lower than a predetermined voltage (β). Minimum full charge for calculating the minimum full charge capacity based on the post-equalization SOC of the assembled battery calculated by the SOC calculation unit based on the post-equalization OCV and the integrated current amount calculated by the integrated current amount calculation unit A capacity calculator (144);
A full charge capacity calculation device.
前記SOC算出部は、前回の充放電期間が終了してから緩和時間以上の時間が経過した後の前記組電池の充放電前OCVに基づいて前記組電池の充放電前SOCを算出する請求項1に記載の満充電容量算出装置。   The SOC calculation unit calculates the pre-charge / discharge SOC of the assembled battery based on the pre-charge / discharge OCV of the assembled battery after a time equal to or greater than the relaxation time has elapsed since the end of the previous charge / discharge period. The full charge capacity calculation device according to 1. 前記最小満充電容量算出部は、前記組電池の充放電前SOCと均等化後SOCの差分である均等化後差分SOCが所定値(γ)以下である場合、充放電時間が所定時間(δ)以上である場合、前記組電池のOCVを検出するために設けられている電圧センサ、及び、前記組電池の積算電流量を算出ために設けられている電流センサの少なくとも1つが異常である場合のうち、少なくとも1つである場合、最小満充電容量の算出を停止する請求項1又は2に記載の満充電容量算出装置。   When the difference SOC after equalization, which is the difference between the pre-charge / discharge SOC of the battery pack and the post-equalization SOC, is equal to or less than a predetermined value (γ), the minimum full charge capacity calculation unit calculates the charge / discharge time for a predetermined time (δ ) When the above is true, at least one of the voltage sensor provided for detecting the OCV of the assembled battery and the current sensor provided for calculating the integrated current amount of the assembled battery is abnormal 3. The full charge capacity calculation device according to claim 1, wherein the calculation of the minimum full charge capacity is stopped when the number is at least one. 前回算出した最小満充電容量と前記最小満充電容量算出部が今回算出した最小満充電容量から、所定計算式に基づいて補正された最小満充電容量を算出する最小満充電容量補正部(145)を有する請求項1〜3のいずれか1項に記載の満充電容量算出装置。   A minimum full charge capacity correction unit (145) for calculating a minimum full charge capacity corrected based on a predetermined calculation formula from the previously calculated minimum full charge capacity and the minimum full charge capacity calculated this time by the minimum full charge capacity calculation unit. The full charge capacity calculation apparatus according to any one of claims 1 to 3. 前記最小満充電容量補正部は、前記組電池の充放電前SOCと均等化後SOCの差分である均等化後差分SOCが所定値(γ)以下である場合、充放電時間が所定時間(δ)以上である場合、前記組電池のOCVを検出するために設けられている電圧センサ、及び、前記組電池の積算電流量を算出ために設けられている電流センサの少なくとも1つが異常である場合のうち、少なくとも1つである場合、補正された最小満充電容量の算出を停止する請求項4に記載の満充電容量算出装置。   When the difference SOC after equalization, which is the difference between the pre-charge / discharge SOC and the post-equalization SOC of the battery pack, is equal to or less than a predetermined value (γ), the minimum full charge capacity correction unit is configured to charge / discharge time for a predetermined time (δ ) When the above is true, at least one of the voltage sensor provided for detecting the OCV of the assembled battery and the current sensor provided for calculating the integrated current amount of the assembled battery is abnormal 5. The full charge capacity calculation device according to claim 4, wherein calculation of the corrected minimum full charge capacity is stopped when the number is at least one. 前記組電池の充放電前SOCと、充放電期間が終了してから緩和時間が経過した後の前記組電池の充放電後OCVに基づいて前記SOC算出部が算出した前記組電池の充電放電後SOCと、積算電流量とに基づいて平均満充電容量を算出する平均満充電容量算出部(144)を有する請求項1〜5のいずれか1項に記載の満充電容量算出装置。   After charging / discharging of the assembled battery calculated by the SOC calculation unit based on the SOC before charging / discharging of the assembled battery and the OCV after charging / discharging of the assembled battery after the relaxation time has elapsed after the end of the charging / discharging period. The full charge capacity calculation device according to any one of claims 1 to 5, further comprising an average full charge capacity calculation unit (144) that calculates an average full charge capacity based on the SOC and the integrated current amount. 前記平均満充電容量算出部は、前記組電池の充放電前SOCと充放電後SOCの差分である充放電後差分SOCが所定値(γ)以下である場合、充放電時間が所定時間(δ)以上である場合、前記組電池のOCVを検出するために設けられている電圧センサ、及び、前記組電池の積算電流量を算出するために設けられている電流センサの少なくとも1つが異常である場合のうち、少なくとも1つである場合、平均満充電容量の算出を停止する請求項6に記載の満充電容量算出装置。   The average full charge capacity calculation unit, when a post-charge / discharge difference SOC that is a difference between the pre-charge / discharge SOC of the battery pack and the post-charge / discharge SOC is equal to or less than a predetermined value (γ), ) If this is the case, at least one of the voltage sensor provided for detecting the OCV of the assembled battery and the current sensor provided for calculating the integrated current amount of the assembled battery is abnormal. The full charge capacity calculation device according to claim 6, wherein the calculation of the average full charge capacity is stopped when the number of cases is at least one. 前回算出した平均満充電容量と前記平均満充電容量算出部が今回算出した平均満充電容量から、所定計算式に基づいて補正された平均満充電容量を算出する平均満充電容量補正部(145)を有する請求項6又は7に記載の満充電容量算出装置。   An average full charge capacity correction unit (145) for calculating an average full charge capacity corrected based on a predetermined calculation formula from the previously calculated average full charge capacity and the average full charge capacity calculated this time by the average full charge capacity calculation unit. The full charge capacity calculation apparatus according to claim 6 or 7, wherein: 前記平均満充電容量補正部は、前記組電池の充放電前SOCと充放電後SOCの差分である充放電後差分SOCが所定値(γ)以下である場合、充放電時間が所定時間(δ)以上である場合、前記組電池のOCVを検出するために設けられている電圧センサ、及び、前記組電池の積算電流量を算出するために設けられている電流センサの少なくとも1つが異常である場合のうち、少なくとも1つである場合、補正された平均満充電容量の算出を停止する請求項8に記載の満充電容量算出装置。   The average full charge capacity correction unit is configured such that when the post-charge / discharge difference SOC, which is the difference between the pre-charge / discharge SOC of the battery pack, is equal to or less than a predetermined value (γ), the charge / discharge time is a predetermined time (δ ) If this is the case, at least one of the voltage sensor provided for detecting the OCV of the assembled battery and the current sensor provided for calculating the integrated current amount of the assembled battery is abnormal. The full charge capacity calculation apparatus according to claim 8, wherein the calculation of the corrected average full charge capacity is stopped when there is at least one of the cases.
JP2016190127A 2016-09-28 2016-09-28 Full charge capacity calculation device Active JP6642365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016190127A JP6642365B2 (en) 2016-09-28 2016-09-28 Full charge capacity calculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016190127A JP6642365B2 (en) 2016-09-28 2016-09-28 Full charge capacity calculation device

Publications (2)

Publication Number Publication Date
JP2018057137A true JP2018057137A (en) 2018-04-05
JP6642365B2 JP6642365B2 (en) 2020-02-05

Family

ID=61833157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016190127A Active JP6642365B2 (en) 2016-09-28 2016-09-28 Full charge capacity calculation device

Country Status (1)

Country Link
JP (1) JP6642365B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109164398A (en) * 2018-08-03 2019-01-08 北京交通大学 Cell capacity evaluation method in a kind of Li-ion batteries piles
CN110797577A (en) * 2019-10-29 2020-02-14 中兴高能技术有限责任公司 Lithium ion battery charging method and device and computer storage medium
WO2020262655A1 (en) * 2019-06-27 2020-12-30 パナソニックIpマネジメント株式会社 Secondary battery control device
CN112578294A (en) * 2019-09-29 2021-03-30 比亚迪股份有限公司 Method, device, vehicle and medium for lithium battery measurement
JP2021090275A (en) * 2019-12-04 2021-06-10 株式会社デンソーテン Calculation device and full charge capacity calculation method
US11243255B2 (en) 2019-03-08 2022-02-08 Samsung Electronics Co., Ltd. Electronic device for determining state of charge of battery device, and method of operating the electronic device
JP2023051291A (en) * 2021-09-30 2023-04-11 横河電機株式会社 Diagnosis device, diagnosis method and diagnosis program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012143996A1 (en) * 2011-04-18 2012-10-26 日立ビークルエナジー株式会社 Electric storage device
JP2012237665A (en) * 2011-05-12 2012-12-06 Toyota Motor Corp Battery state estimation device
JP2013214371A (en) * 2012-03-30 2013-10-17 Toyota Motor Corp Battery system and estimation method
JP2015083928A (en) * 2013-10-25 2015-04-30 株式会社デンソー Full charge capacity calculation device
JP2015114105A (en) * 2013-12-06 2015-06-22 トヨタ自動車株式会社 Power storage system
WO2016140152A1 (en) * 2015-03-02 2016-09-09 日立オートモティブシステムズ株式会社 Battery control device and vehicle system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012143996A1 (en) * 2011-04-18 2012-10-26 日立ビークルエナジー株式会社 Electric storage device
JP2012237665A (en) * 2011-05-12 2012-12-06 Toyota Motor Corp Battery state estimation device
JP2013214371A (en) * 2012-03-30 2013-10-17 Toyota Motor Corp Battery system and estimation method
JP2015083928A (en) * 2013-10-25 2015-04-30 株式会社デンソー Full charge capacity calculation device
JP2015114105A (en) * 2013-12-06 2015-06-22 トヨタ自動車株式会社 Power storage system
WO2016140152A1 (en) * 2015-03-02 2016-09-09 日立オートモティブシステムズ株式会社 Battery control device and vehicle system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109164398A (en) * 2018-08-03 2019-01-08 北京交通大学 Cell capacity evaluation method in a kind of Li-ion batteries piles
CN109164398B (en) * 2018-08-03 2019-10-11 北京交通大学 Cell capacity evaluation method in a kind of Li-ion batteries piles
US11243255B2 (en) 2019-03-08 2022-02-08 Samsung Electronics Co., Ltd. Electronic device for determining state of charge of battery device, and method of operating the electronic device
US11774502B2 (en) 2019-03-08 2023-10-03 Samsung Electronics Co., Ltd. Electronic device for determining state of charge of battery device, and method of operating the electronic device
WO2020262655A1 (en) * 2019-06-27 2020-12-30 パナソニックIpマネジメント株式会社 Secondary battery control device
CN112578294A (en) * 2019-09-29 2021-03-30 比亚迪股份有限公司 Method, device, vehicle and medium for lithium battery measurement
CN110797577A (en) * 2019-10-29 2020-02-14 中兴高能技术有限责任公司 Lithium ion battery charging method and device and computer storage medium
CN110797577B (en) * 2019-10-29 2020-10-09 中兴高能技术有限责任公司 Lithium ion battery charging method and device and computer storage medium
JP2021090275A (en) * 2019-12-04 2021-06-10 株式会社デンソーテン Calculation device and full charge capacity calculation method
JP2023051291A (en) * 2021-09-30 2023-04-11 横河電機株式会社 Diagnosis device, diagnosis method and diagnosis program

Also Published As

Publication number Publication date
JP6642365B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
JP6642365B2 (en) Full charge capacity calculation device
US9438059B2 (en) Battery control apparatus and battery control method
JP5477448B1 (en) Voltage equalization device
EP2418751B1 (en) Battery charger and battery charging method
JP6179407B2 (en) Battery pack equalization apparatus and method
USRE45919E1 (en) Control device and method and power supply device
JP4767220B2 (en) Charge state equalizing device and electric vehicle equipped with the same
JP5021561B2 (en) Charge control device for battery pack
JP6648709B2 (en) Battery module controller
JP2013102592A (en) Battery equalization device and method
WO2015178075A1 (en) Battery control device
JP2008236991A (en) Voltage balance circuit, battery unit, and battery unit control method
JP6770933B2 (en) Power storage system
JP6643923B2 (en) Battery pack replacement method for battery system and battery pack
JP2014115127A (en) Full charge capacity estimation device and method
JP2015195653A (en) Battery system, charging/discharging control program, and charging/discharging control method
CN107430170B (en) battery state of charge estimation device and state of charge estimation method
JP2018129958A (en) Charging rate equalization device
US10027136B2 (en) Battery and electric bicycle
JP2009232659A (en) Charge-discharge control method and charge-discharge control device of battery
JPWO2018230187A1 (en) Battery monitoring device
JP2013255320A (en) Battery equalization device and method
JP2011058961A (en) Battery control apparatus and method of estimating internal resistance of battery
JP6279442B2 (en) Fault detection system
KR101776507B1 (en) Method and system for charging battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R151 Written notification of patent or utility model registration

Ref document number: 6642365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250