[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018057052A - DC motor - Google Patents

DC motor Download PDF

Info

Publication number
JP2018057052A
JP2018057052A JP2016186443A JP2016186443A JP2018057052A JP 2018057052 A JP2018057052 A JP 2018057052A JP 2016186443 A JP2016186443 A JP 2016186443A JP 2016186443 A JP2016186443 A JP 2016186443A JP 2018057052 A JP2018057052 A JP 2018057052A
Authority
JP
Japan
Prior art keywords
field magnet
motor
armature core
peripheral surface
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2016186443A
Other languages
Japanese (ja)
Inventor
司 谷口
Tsukasa Taniguchi
谷口  司
和広 斉藤
Kazuhiro Saito
和広 斉藤
祥男 川田
Yoshio Kawata
祥男 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2016186443A priority Critical patent/JP2018057052A/en
Publication of JP2018057052A publication Critical patent/JP2018057052A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Current Collectors (AREA)
  • Dc Machiner (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a motor that has an elongated brush life by securing a sufficient brush length while reducing the axial length of the motor.SOLUTION: Provided is a DC motor in which an axial center position of an armature core does not coincide with that of a field magnet and which contains a brush device at an inner diameter side of the field magnet. The DC motor is provided with a tapered portion of which polarizability gradually decreases towards an axial end on an inter peripheral surface of the field magnet not opposing an outer peripheral surface of the armature core, or a step portion structured to form a gap between a yoke inner peripheral surface and an outer peripheral surface of the field magnet.SELECTED DRAWING: Figure 1

Description

本発明は、直流モータに関するものであり、特に自動車補機の駆動用モータに用いられる直流モータに関する。   The present invention relates to a direct current motor, and more particularly to a direct current motor used for a motor for driving automobile auxiliary equipment.

直流モータは、比較的容易に高出力が得られることから、例えば、自動車補機の駆動用モータとして多く用いられている。   Since a direct current motor can obtain a high output relatively easily, for example, it is often used as a motor for driving an automobile auxiliary machine.

近年、自動車の低燃料消費率の向上のため、油圧ポンプに代表される自動車補機が電動化されてきており、車両一台当りの直流モータの搭載数が増加傾向にある。自動車の搭載スペースには限りがあり、エンジンルームへの搭載性を考慮すると、モータの軸方向寸法を短縮化することが求められる。   In recent years, in order to improve the low fuel consumption rate of automobiles, automobile auxiliary machines represented by hydraulic pumps have been electrified, and the number of DC motors mounted per vehicle is increasing. The mounting space of the automobile is limited, and considering the mounting property in the engine room, it is required to shorten the axial dimension of the motor.

先行技術として特許文献1および特許文献2を挙げる。特許文献1では、二つの軸受によって回転可能に支持されたシャフトには電機子が一体回転可能に固定され、電機子はコアと、コアをシャフトに一体回転可能に支持する樹脂成形部と、樹脂成形部によってコアとの絶縁を確保した状態でコアに対して巻回される電機子コイルとを有し、樹脂成形部に凹部を設け、軸受のうち、ブラシに近い側に配設される一方の軸受と、ブラシ及びコンミュテータとを電機子の軸方向の長さ内に配設するように凹部内に配置し、樹脂成形部には位置決め部が凹設され、位置決め部内に電機子コイルが配置されており、樹脂成形部は、電機子の軸方向における長さがコアの電機子の軸方向における長さと同一としている。これより、従来の構成に比較してモータの軸方向のサイズを小さくすることができるとしている。   Patent Documents 1 and 2 are listed as prior art. In Patent Document 1, an armature is fixed to a shaft rotatably supported by two bearings so as to be integrally rotatable, the armature is a core, a resin molded portion that supports the core so as to be integrally rotatable, and a resin. An armature coil wound around the core in a state in which insulation with the core is ensured by the molded part, provided with a recess in the resin molded part, and disposed on the side of the bearing close to the brush The bearing and the brush and commutator are arranged in the recess so as to be arranged within the axial length of the armature, the positioning part is recessed in the resin molded part, and the armature coil is arranged in the positioning part The length of the resin molded portion in the axial direction of the armature is the same as the length of the core armature in the axial direction. Thus, the size of the motor in the axial direction can be reduced as compared with the conventional configuration.

特許文献2では、第2軸受がコア底路の内周側に配設されるとともに、出力軸の長手方向において巻線の出力軸の長手方向端部間内に配設され、ケースは、出力軸が貫通する貫通孔を備え貫通孔は第1軸受を包囲する態様で形成され、第1軸受はその一部分がモータケースから露出しており、貫通孔の出力軸の長手方向における厚さは第1軸受の高さより薄く形成することで、モータ軸方向の短縮化を図っている。   In Patent Document 2, the second bearing is disposed on the inner peripheral side of the core bottom passage, and is disposed between the longitudinal ends of the output shaft of the winding in the longitudinal direction of the output shaft. A through hole through which the shaft passes is formed, and the through hole is formed so as to surround the first bearing. A part of the first bearing is exposed from the motor case, and the thickness of the through hole in the longitudinal direction of the output shaft is the first. The motor shaft direction is shortened by forming it thinner than the height of one bearing.

特許第4518187号Japanese Patent No. 4518187 特許第4557754号Japanese Patent No. 4557754

本発明が解決しようとする課題は、モータの軸方向の短縮化を図りながら、ブラシ長さを十分確保することでブラシ寿命を伸長することである。もう1つの課題は、電機子コアに働く磁気吸引力を緩和することで軸受に作用するスラスト力を軽減して、回転時の不要な摩擦力を低減することである。さらに、ギャップの磁束密度を均等化して整流を安定化した高性能の直流モータを提供することである。   The problem to be solved by the present invention is to extend the brush life by ensuring a sufficient brush length while shortening the axial direction of the motor. Another problem is to reduce the thrust force acting on the bearing by reducing the magnetic attractive force acting on the armature core, thereby reducing unnecessary frictional force during rotation. It is another object of the present invention to provide a high-performance DC motor that stabilizes commutation by equalizing the magnetic flux density of the gap.

課題を解決するために、本発明に係る直流モータは、界磁磁石を有するヨークと、電機子コイルとコンミテータと電機子コアを有する回転電機子と、前記コンミテータに摺動接触しながら給電して整流を行うブラシと、を備え、前記界磁磁石の軸方向長さは、前記電機子コアの軸方向長さより長く、前記電機子コアの軸方向中心位置と前記界磁磁石の軸方向中心位置は、軸方向において不一致とされ、前記ブラシは、前記界磁磁石の内径側に配置され、前記電機子コアの外周面と対向しない前記界磁磁石は、起磁力低減手段を設ける。 In order to solve the problems, a DC motor according to the present invention feeds power while slidingly contacting a yoke having a field magnet, a rotary armature having an armature coil, a commutator, and an armature core, and the commutator. The axial length of the field magnet is longer than the axial length of the armature core, and the axial center position of the armature core and the axial center position of the field magnet. Are inconsistent in the axial direction, the brush is disposed on the inner diameter side of the field magnet, and the field magnet that does not face the outer peripheral surface of the armature core is provided with a magnetomotive force reducing means.

本発明の直流モータは、モータ特性向上および軸方向の短縮化を達成しながら、十分なブラシ長を確保することと、ギャップの磁束密度を均等化することにより、整流作用を安定化することでブラシ寿命時間を伸長できる。また、電機子コアに働く磁気吸引力(スラスト力)を軽減することで、回転時の摩擦力を低減でき、小型でかつ高性能なモータを提供できる。   The direct current motor of the present invention stabilizes the rectifying action by ensuring a sufficient brush length and equalizing the magnetic flux density of the gap while achieving improvement in motor characteristics and shortening in the axial direction. Brush life can be extended. Further, by reducing the magnetic attractive force (thrust force) acting on the armature core, the frictional force during rotation can be reduced, and a small and high-performance motor can be provided.

本実施形態に係る直流モータを側面からみた部分断面図である。It is the fragmentary sectional view which looked at the direct-current motor concerning this embodiment from the side. 本実施形態に係わる界磁磁石4の外観斜視図である。It is an external appearance perspective view of the field magnet 4 concerning this embodiment. 本実施形態に係わる直流モータのモータ軸方向位置とギャップの磁束密度との関係図である。It is a related figure of the motor axial direction position of the DC motor concerning this embodiment, and the magnetic flux density of a gap. 他の実施形態に係わる直流モータの断面図である。It is sectional drawing of the DC motor concerning other embodiment. 他の実施形態に係わる直流モータの界磁磁石の斜視図である。It is a perspective view of the field magnet of the direct-current motor concerning other embodiments. 従来の直流モータの側面からみた断面図である。It is sectional drawing seen from the side surface of the conventional DC motor. 従来の直流モータの界磁磁石の斜視図である。It is a perspective view of the field magnet of the conventional DC motor. 従来の直流モータのモータ軸方向位置とギャップの磁束密度との関係図である。It is a related figure of the motor axial direction position of the conventional DC motor and the magnetic flux density of a gap.

以下、本発明に係わる直流モータの実施形態について説明する。   Embodiments of a DC motor according to the present invention will be described below.

図1は、本実施形態に係る直流モータを側面からみた部分断面図である。点線四角Aで囲まれた部分が断面図である。   FIG. 1 is a partial cross-sectional view of a DC motor according to the present embodiment as viewed from the side. A portion surrounded by a dotted square A is a cross-sectional view.

直流モータ1は、ヨーク3と、このヨーク3の内周壁に配置される界磁磁石4と、を有する。電機子30は、界磁磁石4の内径側であって、界磁磁石4に対してギャップ15を介して対向配置される。   The DC motor 1 has a yoke 3 and a field magnet 4 disposed on the inner peripheral wall of the yoke 3. The armature 30 is disposed on the inner diameter side of the field magnet 4 and is opposed to the field magnet 4 via the gap 15.

シャフト10は、電機子30の中央部を貫通し、この電機子30に固定される。出力軸側軸受6aは、エンドブラケット20とシャフト10の軸方向の一方側に設けられる。反出力軸側軸受6bは、ヨーク3に支承され、シャフト10の軸方向の一方側を支持する。   The shaft 10 passes through the central portion of the armature 30 and is fixed to the armature 30. The output shaft side bearing 6 a is provided on one side of the end bracket 20 and the shaft 10 in the axial direction. The non-output shaft side bearing 6 b is supported by the yoke 3 and supports one side of the shaft 10 in the axial direction.

コンミテータ7と電機子コア2は、シャフト10の軸方向に並べられる。電機子コイル5は、電機子コア2のスロット(図示せず)に巻線される。   The commutator 7 and the armature core 2 are arranged in the axial direction of the shaft 10. The armature coil 5 is wound around a slot (not shown) of the armature core 2.

電機子コイル5は、コンミテータ7を構成する整流子片11に接続されている。直流モータ1に電圧を印加すると、電流はブラシ8に流れ、電機子30へ通電され、もう一方のブラシ8(図示せず)を介して電力が給電される。   The armature coil 5 is connected to a commutator piece 11 constituting the commutator 7. When a voltage is applied to the DC motor 1, a current flows through the brush 8, energized to the armature 30, and power is supplied through the other brush 8 (not shown).

コンミテータ7への機械的な摺動接触による電流の授受は、回転中でも安定給電できるよう、ブラシ8がブラシ加圧用バネ9によりコンミテータ7に付勢される。そして電機子コイル5に整流作用に伴う電流が流れ、界磁磁石4が作る磁界と、電機子30が作る磁界の相互作用によって連続的な回転トルクが発生し、シャフト10の出力軸端より機械出力を得ている。   In the transfer of current by mechanical sliding contact to the commutator 7, the brush 8 is urged to the commutator 7 by the brush pressurizing spring 9 so that stable power feeding can be performed even during rotation. A current accompanying the rectification action flows through the armature coil 5, and a continuous rotational torque is generated by the interaction between the magnetic field generated by the field magnet 4 and the magnetic field generated by the armature 30, and the machine starts from the output shaft end of the shaft 10. I am getting output.

電機子30は、界磁磁石4の軸方向長さ寸法内に収容されるように構成される。また、ブラシ8とブラシ加圧用バネ9を含むブラシ装置およびコンミテータ7のそれぞれの一部は、界磁磁石4の軸方向長さ寸法内に収容されるように構成される。なお、ブラシ8とブラシ加圧用バネ9を含むブラシ装置およびコンミテータ7の全体が界磁磁石4の軸方向長さ寸法内に収容されるように構成されてもよい。   The armature 30 is configured to be accommodated within the axial length of the field magnet 4. Further, a part of each of the brush device including the brush 8 and the brush pressurizing spring 9 and the commutator 7 is configured to be accommodated within the axial length of the field magnet 4. Note that the entire brush device including the brush 8 and the brush pressing spring 9 and the commutator 7 may be accommodated within the axial length of the field magnet 4.

電機子コア2の軸方向の位置においては、この電機子コア2の軸方向の中央部が界磁磁石4の軸方向の中央部に対して反出力軸側軸受6b側に偏った位置に配置される。電機子コア2が配置されない界磁磁石4のもう一方のスペースに、ブラシ8、ブラシ加圧用バネ9を含むブラシ装置が配置される。これより、電機子30とブラシ8とブラシ加圧用バネ9を含むブラシ装置は、モータ軸方向に対し界磁磁石4に内包されて構成される。   At the position of the armature core 2 in the axial direction, the central part of the armature core 2 in the axial direction is disposed at a position that is biased toward the side opposite to the output shaft side bearing 6b with respect to the central part of the field magnet 4 in the axial direction. Is done. In the other space of the field magnet 4 where the armature core 2 is not disposed, a brush device including a brush 8 and a brush pressing spring 9 is disposed. Thus, the brush device including the armature 30, the brush 8, and the brush pressing spring 9 is configured to be included in the field magnet 4 with respect to the motor axial direction.

界磁磁石4には、電機子コア2の出力軸側の端部から出力軸側に向かって、極率が小さくなるテーパ部12が設けられる。これより、ブラシ装置の外径寸法は、界磁磁石4のテーパ部12の内周面に干渉しない範囲で拡大させることで、ブラシ8の長さ寸法を長く設定できる。   The field magnet 4 is provided with a taper portion 12 having a decreasing rate from the end on the output shaft side of the armature core 2 toward the output shaft. Thus, the length of the brush 8 can be set longer by increasing the outer diameter of the brush device within a range that does not interfere with the inner peripheral surface of the tapered portion 12 of the field magnet 4.

図2は、本実施形態に係わる界磁磁石4の外観斜視図である。   FIG. 2 is an external perspective view of the field magnet 4 according to the present embodiment.

界磁磁石4の外周面は、円筒形のヨーク3の内周面に沿うようにアーク形状とし、界磁磁石4はヨーク3へ接着材を用いて固定する。   The outer peripheral surface of the field magnet 4 is arc-shaped along the inner peripheral surface of the cylindrical yoke 3, and the field magnet 4 is fixed to the yoke 3 with an adhesive.

図3は、本実施形態に係わるモータ軸方向位置とギャップの磁束密度との関係図を示す。図3の上図は、界磁磁石4の周辺断面である。図3の下図は、上図に追記した矢印の方向に沿って、ギャップ15の磁束密度をプロットしたものである。   FIG. 3 is a diagram showing the relationship between the position in the motor axial direction and the magnetic flux density of the gap according to the present embodiment. The upper diagram of FIG. 3 is a peripheral cross section of the field magnet 4. The lower diagram of FIG. 3 plots the magnetic flux density of the gap 15 along the direction of the arrow added to the upper diagram.

図3の上図に示されたA部は、電機子コア2の反出力軸側の端部位置に対応する。B部は、電機子コア2の出力軸側の端部位置に対応する。   3 corresponds to the end position of the armature core 2 on the side opposite to the output shaft. Part B corresponds to the end position of the armature core 2 on the output shaft side.

電機子コア2では、磁束の集束作用が高まるため、ギャップ15の磁束密度が高く設定される。電機子コア2に対し大きくオーバーハングした界磁磁石4の起磁力により、B部はA部に対してギャップの磁束密度が高くなる。この傾向は、従来例(図6、図7および図8参照)で顕著である。つまり図6ないし図8の従来例は、界磁磁石4に12が形成されておらず、界磁磁石4の電機子コア2側に平面が形成されている。   In the armature core 2, the magnetic flux density of the gap 15 is set high because the magnetic flux focusing action is enhanced. Due to the magnetomotive force of the field magnet 4 that is greatly overhanged with respect to the armature core 2, the magnetic flux density of the gap in the B portion is higher than that in the A portion. This tendency is remarkable in the conventional example (see FIGS. 6, 7 and 8). That is, in the conventional example of FIGS. 6 to 8, 12 is not formed in the field magnet 4, and a plane is formed on the armature core 2 side of the field magnet 4.

一般的に、磁石の起磁力は、磁石厚みと電機子コア2の外周面に対向する表面積に比例する。つまり、界磁磁石4に、出力軸側に、漸次、極率が小となるテーパ部を設けることにより、界磁磁石4の厚みが薄くなるように操作して、起磁力が小さくなるように調整できる。   In general, the magnetomotive force of the magnet is proportional to the magnet thickness and the surface area facing the outer peripheral surface of the armature core 2. In other words, by providing the field magnet 4 with a tapered portion that gradually decreases in the polarity on the output shaft side, the field magnet 4 is operated so that the thickness of the field magnet 4 is reduced, so that the magnetomotive force is reduced. Can be adjusted.

これにより、従来の直流モータのモータ軸方向位置とギャップの磁束密度との関係図(図8)に示す、B部でのギャップ15の磁束密度の急峻な立ち上がり、ピークの値を減少させることができる。ギャップ15の磁束密度は、モータトルクに直接関係するため、高く設定したいところであるが、高すぎると整流作用に影響し、整流火花が多く発生することがある。   As a result, the steep rise and peak values of the magnetic flux density of the gap 15 at the portion B shown in the relationship diagram (FIG. 8) between the position in the motor axial direction of the conventional DC motor and the magnetic flux density of the gap can be reduced. it can. Since the magnetic flux density of the gap 15 is directly related to the motor torque, it is desired to set it high. However, if it is too high, the rectifying action may be affected, and a lot of rectifying sparks may be generated.

また、ギャップ15の磁束密度の急峻な立ち上がりは、電機子コア2の軸方向に働く磁気吸引力の増大にも影響する。この力は電機子コア2に作用する軸方向に働くスラスト力であり、電機子コア2、シャフト10を介し、出力軸側軸受6aと反出力軸側軸受6bに加わり、不要な回転摩擦力となる。   The steep rise of the magnetic flux density in the gap 15 also affects an increase in magnetic attractive force acting in the axial direction of the armature core 2. This force is a thrust force acting on the armature core 2 in the axial direction, and is applied to the output shaft side bearing 6a and the non-output shaft side bearing 6b via the armature core 2 and the shaft 10, and unnecessary rotational friction force Become.

このため、このスラスト力、すなわち磁気吸引力を緩和することがモータ特性を維持するため重要である。本実施形態の場合、整流火花を抑えるために0.5T以下に抑えれば、磁気吸引力のスラスト力への影響は少ない。すなわち、モータの軸方向長さを短縮化しながら、整流を安定化して、磁気吸引力を軽減することにより、ブラシ寿命が長く、回転摩擦力が小さい、小型でかつ高性能の直流モータを得ることができる。   For this reason, it is important to reduce the thrust force, that is, the magnetic attractive force, in order to maintain the motor characteristics. In the case of this embodiment, if it is suppressed to 0.5 T or less in order to suppress the rectifying spark, the influence of the magnetic attractive force on the thrust force is small. That is, by reducing the axial length of the motor while stabilizing the rectification and reducing the magnetic attractive force, a small and high-performance DC motor with a long brush life and a small rotational frictional force can be obtained. Can do.

本実施形態では、界磁磁石4の形状がアーク形状で説明した。界磁磁石4が板状である場合では、電機子コア2の外周と対向しない界磁磁石4の厚みが、軸方向端部に向かって漸次、薄くすることにより、本実施形態の意図する同様の効果を得ることができる。
図4に、他の実施形態に係わる直流モータの断面図を示す。図5に、他の実施の形態に係わる直流モータの界磁磁石の斜視図を示す。
In the present embodiment, the shape of the field magnet 4 is described as an arc shape. In the case where the field magnet 4 is plate-shaped, the thickness of the field magnet 4 that does not face the outer periphery of the armature core 2 is gradually reduced toward the end in the axial direction. The effect of can be obtained.
FIG. 4 shows a cross-sectional view of a DC motor according to another embodiment. FIG. 5 is a perspective view of a field magnet of a DC motor according to another embodiment.

界磁磁石4の外周面に、ヨーク3内周面との間に隙間が形成されるように段差部13を設ける。隙間は、空隙(空気)のままでも良いが、界磁磁石4をヨーク3に強固に固定するため接着剤を充填させても良い。空隙部は、透磁率が鉄などの軟磁性材料に比べ低く磁気的な抵抗となる。この作用と、段差部13の追加により界磁磁石4の厚みを薄く設定することで磁石起磁力が小さくでき、前記実施の形態の界磁磁石4にテーパ部を設けた場合と同様の効果を奏する。   A step portion 13 is provided on the outer peripheral surface of the field magnet 4 so as to form a gap between the inner peripheral surface of the yoke 3. The gap may be left as air (air) or may be filled with an adhesive to firmly fix the field magnet 4 to the yoke 3. The air gap portion has a magnetic permeability lower than that of a soft magnetic material such as iron. The magnetomotive force can be reduced by setting the thickness of the field magnet 4 to be thin by adding this step portion 13 and the stepped portion 13, and the same effect as when the tapered portion is provided in the field magnet 4 of the above embodiment. Play.

なお、本発明は上記した各実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to each above-mentioned embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. . Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1…直流モータ、2…電機子コア、3…ヨーク、4…界磁磁石、5…電機子コイル、6a…出力軸側軸受、6b…反出力軸側軸受、7…コンミテータ、8…ブラシ、9…ブラシ加圧用バネ、10…シャフト、11…整流子片、12…テーパ部、13…段差部、15…ギャップ、20…エンドブラケット、30…電機子     DESCRIPTION OF SYMBOLS 1 ... DC motor, 2 ... Armature core, 3 ... Yoke, 4 ... Field magnet, 5 ... Armature coil, 6a ... Output shaft side bearing, 6b ... Anti-output shaft side bearing, 7 ... Commutator, 8 ... Brush, DESCRIPTION OF SYMBOLS 9 ... Spring for brush pressurization, 10 ... Shaft, 11 ... Commutator piece, 12 ... Tapered part, 13 ... Step part, 15 ... Gap, 20 ... End bracket, 30 ... Armature

Claims (6)

界磁磁石を有するヨークと、
電機子コイルとコンミテータと電機子コアを有する回転電機子と、
前記コンミテータに摺動接触しながら給電して整流を行うブラシと、を備え、
前記界磁磁石の軸方向長さは、前記電機子コアの軸方向長さより長く、
前記電機子コアの軸方向中心位置と前記界磁磁石の軸方向中心位置は、軸方向において不一致とされ、
前記ブラシは、前記界磁磁石の内径側に配置され、
前記電機子コアの外周面と対向しない前記界磁磁石は、起磁力低減手段を設ける直流モータ。
A yoke having a field magnet;
A rotary armature having an armature coil, a commutator, and an armature core;
A brush that rectifies by supplying power while slidingly contacting the commutator,
The axial length of the field magnet is longer than the axial length of the armature core,
The axial center position of the armature core and the axial center position of the field magnet are inconsistent in the axial direction,
The brush is disposed on the inner diameter side of the field magnet,
The field magnet that does not face the outer peripheral surface of the armature core is a direct current motor provided with a magnetomotive force reducing means.
請求項1に記載の直流モータであって、
前記起磁力低減手段は、前記電機子コアの外周面と対向しない界磁磁石の厚みが、軸方向端部に向かって漸次、薄く形成される直流モータ。
The DC motor according to claim 1,
The magnetomotive force reducing means is a direct current motor in which the thickness of a field magnet that does not face the outer peripheral surface of the armature core is gradually reduced toward the end in the axial direction.
請求項1に記載の直流モータであって、
前記起磁力低減手段は、前記電機子コアの外周面と対向しない界磁磁石の内周面に、軸方向端部に向かって漸次、極率が縮小してなるテーパ部である直流モータ。
The DC motor according to claim 1,
The magnetomotive force reducing means is a direct current motor which is a taper portion formed by gradually reducing the pole rate toward the end portion in the axial direction on the inner peripheral surface of the field magnet not facing the outer peripheral surface of the armature core.
請求項1に記載の直流モータであって、
前記起磁力低減手段は、前記電機子コアの外周面と対向しない界磁磁石の外周面に、ヨーク内周面との隙間が形成するように段差部を設ける直流モータ。
The DC motor according to claim 1,
The magnetomotive force reducing means is a direct current motor in which a step portion is provided on the outer peripheral surface of the field magnet that does not face the outer peripheral surface of the armature core so as to form a gap with the inner peripheral surface of the yoke.
請求項2に記載の直流モータであって、
前記テーパ部の開始位置は、前記電機子コアの軸方向の端部の位置と一致している直流モータ。
The DC motor according to claim 2,
The direct current motor in which the starting position of the taper portion coincides with the position of the end portion in the axial direction of the armature core.
請求項3に記載の直流モータであって、
前記段差部の開始位置は、前記電機子コアの軸方向の端部の位置と一致している直流モータ。
The DC motor according to claim 3,
The DC motor has a start position of the stepped portion that coincides with an axial end position of the armature core.
JP2016186443A 2016-09-26 2016-09-26 DC motor Ceased JP2018057052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016186443A JP2018057052A (en) 2016-09-26 2016-09-26 DC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016186443A JP2018057052A (en) 2016-09-26 2016-09-26 DC motor

Publications (1)

Publication Number Publication Date
JP2018057052A true JP2018057052A (en) 2018-04-05

Family

ID=61836126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016186443A Ceased JP2018057052A (en) 2016-09-26 2016-09-26 DC motor

Country Status (1)

Country Link
JP (1) JP2018057052A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153009U (en) * 1976-05-17 1977-11-19
JP2001069738A (en) * 1999-08-31 2001-03-16 Fujitsu Ten Ltd External circumference opposing type motor
JP2005223977A (en) * 2004-02-04 2005-08-18 Matsushita Electric Ind Co Ltd Motor fan
EP2466726A1 (en) * 2010-12-20 2012-06-20 Siemens Aktiengesellschaft Permanent magnet for a permanent magnet machine
KR101243303B1 (en) * 2011-11-07 2013-03-15 동아대학교 산학협력단 Permanent magnet type motor
JP2014103721A (en) * 2012-11-16 2014-06-05 Aisin Seiki Co Ltd Brushless motor
JP2015004272A (en) * 2013-06-19 2015-01-08 日立オートモティブシステムズ株式会社 Variable valve device of internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153009U (en) * 1976-05-17 1977-11-19
JP2001069738A (en) * 1999-08-31 2001-03-16 Fujitsu Ten Ltd External circumference opposing type motor
JP2005223977A (en) * 2004-02-04 2005-08-18 Matsushita Electric Ind Co Ltd Motor fan
EP2466726A1 (en) * 2010-12-20 2012-06-20 Siemens Aktiengesellschaft Permanent magnet for a permanent magnet machine
KR101243303B1 (en) * 2011-11-07 2013-03-15 동아대학교 산학협력단 Permanent magnet type motor
JP2014103721A (en) * 2012-11-16 2014-06-05 Aisin Seiki Co Ltd Brushless motor
JP2015004272A (en) * 2013-06-19 2015-01-08 日立オートモティブシステムズ株式会社 Variable valve device of internal combustion engine

Similar Documents

Publication Publication Date Title
US7732963B2 (en) Small-sized motor having ring-shaped field magnet
US3842300A (en) Laminated rotor structure for a dynamoelectric machine
US2575153A (en) Tapered rotor for unit bearing motors
JP2014212686A (en) Stepping motor
JP6009140B2 (en) DC motor
JP2020162191A (en) Axial-gap type rotary electric machine
JPH0116102B2 (en)
JP4728765B2 (en) Rotating machine
JP2018057052A (en) DC motor
JP5968182B2 (en) Rotating electric machine
JP2014155315A (en) Ac rectifier motor and electric blower employing the same
JP2017208973A (en) Coreless motor
JP2007244089A (en) Direct-current motor
WO2019167160A1 (en) Permanent magnet motor
JP7499468B2 (en) Electric motors and electrical equipment
JP2013135493A (en) Commutator motor
JP2009232505A (en) Rotating field type synchronous machine
JP2015156804A (en) DC motor
JP6457921B2 (en) DC motor
JP2009278844A (en) Direct-current motor
JP6737238B2 (en) Rotating electric machine
JP2006094647A (en) Motor
WO2021090550A1 (en) Electric motor and electric apparatus
JP2010504078A (en) Synchronous machine
JP6461293B2 (en) Electric motor and its motor shaft

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160928

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190725

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20200630