JP2018046959A - Ophthalmologic photographing apparatus - Google Patents
Ophthalmologic photographing apparatus Download PDFInfo
- Publication number
- JP2018046959A JP2018046959A JP2016183607A JP2016183607A JP2018046959A JP 2018046959 A JP2018046959 A JP 2018046959A JP 2016183607 A JP2016183607 A JP 2016183607A JP 2016183607 A JP2016183607 A JP 2016183607A JP 2018046959 A JP2018046959 A JP 2018046959A
- Authority
- JP
- Japan
- Prior art keywords
- blood vessel
- image
- unit
- blood
- blood flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 440
- 238000005259 measurement Methods 0.000 claims abstract description 269
- 230000017531 blood circulation Effects 0.000 claims abstract description 212
- 238000012014 optical coherence tomography Methods 0.000 claims abstract description 148
- 238000013480 data collection Methods 0.000 claims abstract description 35
- 238000012545 processing Methods 0.000 claims description 120
- 210000001747 pupil Anatomy 0.000 claims description 95
- 238000011156 evaluation Methods 0.000 claims description 60
- 238000003384 imaging method Methods 0.000 claims description 56
- 210000001367 artery Anatomy 0.000 claims description 25
- 210000003462 vein Anatomy 0.000 claims description 21
- 239000002637 mydriatic agent Substances 0.000 claims description 13
- 230000002911 mydriatic effect Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 description 91
- 230000008569 process Effects 0.000 description 67
- 210000001508 eye Anatomy 0.000 description 62
- 230000008859 change Effects 0.000 description 43
- 238000004364 calculation method Methods 0.000 description 28
- 230000003287 optical effect Effects 0.000 description 23
- 238000002583 angiography Methods 0.000 description 13
- 238000012937 correction Methods 0.000 description 13
- 238000003745 diagnosis Methods 0.000 description 9
- 230000002123 temporal effect Effects 0.000 description 9
- 239000008280 blood Substances 0.000 description 8
- 210000004369 blood Anatomy 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000009877 rendering Methods 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 208000006550 Mydriasis Diseases 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000003252 repetitive effect Effects 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 210000005252 bulbus oculi Anatomy 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 210000003733 optic disk Anatomy 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000003161 choroid Anatomy 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 210000001210 retinal vessel Anatomy 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Eye Examination Apparatus (AREA)
Abstract
Description
この発明は、眼科撮影装置に関する。 The present invention relates to an ophthalmologic photographing apparatus.
眼科分野において画像診断は重要な位置を占める。近年では光コヒーレンストモグラフィ(Optical Coherence Tomography:OCT)の活用が進んでいる。OCTは、被検眼のBモード画像や3次元画像の取得だけでなく、Cモード画像やシャドウグラムなどの正面画像(en−face画像)の取得にも利用されるようになってきている。 Image diagnosis occupies an important position in the field of ophthalmology. In recent years, utilization of optical coherence tomography (OCT) has been advanced. OCT has been used not only for acquiring B-mode images and three-dimensional images of the eye to be examined, but also for acquiring front images (en-face images) such as C-mode images and shadowgrams.
更に、被検眼の特定部位を強調した画像を取得することや、機能情報を取得することも行われている。例えば、OCTにより収集された時系列ボリュームデータに基づいて、網膜血管や脈絡膜血管が強調されたBモード画像や正面画像(血管強調画像、アンギオグラム)を構築することができる。この技術は、OCT血管造影(OCT Angiography)などと呼ばれる。また、OCTにより収集されたデータの位相情報に基づいて血流情報を取得することができる。この技術は、OCT血流計測などと呼ばれる。 Furthermore, acquiring the image which emphasized the specific site | part of the eye to be examined, and acquiring functional information are also performed. For example, based on time-series volume data collected by OCT, a B-mode image or a front image (blood vessel-enhanced image, angiogram) in which retinal blood vessels and choroidal blood vessels are emphasized can be constructed. This technique is called OCT Angiography. In addition, blood flow information can be acquired based on phase information of data collected by OCT. This technique is called OCT blood flow measurement.
OCT血流計測では、対象となる血管の向きを推定することが必要である。これは、血管に対する測定光の入射方向と血流の方向(血管の向き)との間の角度に応じて変化するドップラー周波数シフトを利用して血流情報を求めるからである。OCT血流計測を精度良く行うには、好適な向きの血管を選択する必要がある。 In OCT blood flow measurement, it is necessary to estimate the direction of a target blood vessel. This is because blood flow information is obtained using a Doppler frequency shift that changes according to the angle between the incident direction of the measurement light on the blood vessel and the direction of blood flow (the direction of the blood vessel). In order to perform OCT blood flow measurement with high accuracy, it is necessary to select a blood vessel with a suitable orientation.
しかし、従来の技術では、眼底カメラやSLO(Scanning Laser Ophthalmoscope)により得られた眼底の正面画像を参照して血管を選択していたため、ドップラー周波数シフトに影響する血管の向き成分を把握することは困難であった。そのため、準備的な計測を行って得た血管の向きを評価して好適な血管を探索するなど、検者や被検者に時間的、労力的な負担を強いていた。 However, in the conventional technique, since the blood vessel is selected with reference to the frontal image of the fundus obtained by the fundus camera or SLO (Scanning Laser Ophthalmoscope), it is not possible to grasp the direction component of the blood vessel that affects the Doppler frequency shift. It was difficult. For this reason, time and labor are imposed on the examiner and the subject, such as searching for a suitable blood vessel by evaluating the direction of the blood vessel obtained by the preliminary measurement.
この発明の目的は、OCT血流計測における負担の軽減を図ることにある。 An object of the present invention is to reduce the burden in OCT blood flow measurement.
例示的な実施形態に係る眼科撮影装置は、データ収集部と、血管強調画像形成部と、血管角度分布取得部と、計測位置設定部と、収集制御部と、血流情報生成部とを備える。データ収集部は、光コヒーレンストモグラフィ(OCT)を用いて被検眼の眼底の3次元データセットを収集する。血管強調画像形成部は、データ収集部により収集された3次元データセットに基づいて、血管強調画像を形成する。血管角度分布取得部は、血管強調画像形成部により形成された血管強調画像に基づいて、眼底の1以上の位置における血管の傾斜角度を表す血管角度分布を求める。計測位置設定部は、血管角度分布取得部により求められた血管角度分布に基づいて、OCT血流計測の対象となる計測位置を設定する。収集制御部は、計測位置設定部により設定された計測位置において血管に交差する第1断面を繰り返し走査するようにデータ収集部を制御する。血流情報生成部は、第1断面の繰り返し走査によってデータ収集部により収集された第1データと、計測位置設定部により設定された計測位置における血管の傾斜角度とに基づいて、この血管における血流状態を表す血流情報を生成する。 An ophthalmologic imaging apparatus according to an exemplary embodiment includes a data collection unit, a blood vessel enhancement image formation unit, a blood vessel angle distribution acquisition unit, a measurement position setting unit, a collection control unit, and a blood flow information generation unit. . The data collection unit collects a three-dimensional data set of the fundus of the eye to be examined using optical coherence tomography (OCT). The blood vessel emphasized image forming unit forms a blood vessel emphasized image based on the three-dimensional data set collected by the data collecting unit. The blood vessel angle distribution acquisition unit obtains a blood vessel angle distribution representing the inclination angle of the blood vessel at one or more positions of the fundus based on the blood vessel emphasized image formed by the blood vessel emphasized image forming unit. The measurement position setting unit sets a measurement position to be an object of OCT blood flow measurement based on the blood vessel angle distribution obtained by the blood vessel angle distribution acquisition unit. The collection control unit controls the data collection unit to repeatedly scan the first cross section that intersects the blood vessel at the measurement position set by the measurement position setting unit. The blood flow information generator generates blood in this blood vessel based on the first data collected by the data collector by repeated scanning of the first cross section and the inclination angle of the blood vessel at the measurement position set by the measurement position setting unit. Blood flow information representing a flow state is generated.
実施形態によれば、OCT血流計測における負担の軽減を図ることが可能である。 According to the embodiment, it is possible to reduce the burden in OCT blood flow measurement.
この発明の例示的な実施形態について、図面を参照しながら説明する。なお、この明細書で引用する文献に記載された事項を実施形態に援用することができる。 An exemplary embodiment of the present invention will be described with reference to the drawings. In addition, the matter described in the literature referred by this specification can be used for embodiment.
実施形態は、OCT血管造影を用いて眼底の1以上の位置における血管の傾斜角度を求める。眼底の位置と血管の傾斜角度とを対応付けることにより、眼底血管の傾斜角度の分布(血管角度分布)が得られる。血管角度分布は、例えば、診断や他のモダリティのために用いることができる。他のモダリティの典型例としてOCT血流計測がある。 Embodiments determine the angle of inclination of a blood vessel at one or more locations of the fundus using OCT angiography. By associating the position of the fundus with the inclination angle of the blood vessel, a distribution of the inclination angle of the fundus blood vessel (blood vessel angle distribution) is obtained. The blood vessel angle distribution can be used for diagnosis and other modalities, for example. A typical example of another modality is OCT blood flow measurement.
血管の傾斜角度は、任意の方向を基準(角度=0度)に定義されてよい。例えば、OCTにおけるA(Axial)スキャンの方向(Aラインの方向)を基準とすることができる。血管の傾斜角度の基準方向は、傾斜角度が測定される全ての位置について共通に設定されてもよいし、それぞれの位置について設定されてもよい。或いは、全ての位置を2以上の群に分割し、これら群のそれぞれについて基準方向を設定してもよい。 The inclination angle of the blood vessel may be defined with reference to an arbitrary direction (angle = 0 degree). For example, the direction of A (Axial) scan (direction of A line) in OCT can be used as a reference. The reference direction of the inclination angle of the blood vessel may be set in common for all positions where the inclination angle is measured, or may be set for each position. Alternatively, all positions may be divided into two or more groups, and a reference direction may be set for each of these groups.
OCT血管造影では、眼底の実質的に同じ範囲が繰り返しスキャンされ、それにより得られた複数の2次元データセットを含む3次元データセットに基づいて血管強調画像が形成される。3次元データセットは、例えば、複数のB断面(横断面)をそれぞれ所定回数ずつ(例えば4回ずつ)スキャンして、各B断面における画像(Bモード画像)を所定枚数ずつ形成し、これらを同じ3次元座標系に埋め込むことによって(更に、それをボクセル化することによって)取得される。このような画像形成技術は既知である。 In OCT angiography, substantially the same area of the fundus is repeatedly scanned, and a blood vessel-enhanced image is formed based on the obtained three-dimensional data set including a plurality of two-dimensional data sets. The three-dimensional data set, for example, scans a plurality of B sections (transverse sections) a predetermined number of times (for example, four times), and forms a predetermined number of images (B mode images) in each B section. Obtained by embedding in the same 3D coordinate system (and by voxelizing it). Such an image forming technique is known.
実施形態の眼科撮影装置は、OCTを実行するための光学系や駆動系や制御系やデータ処理系を含む。実施形態の眼科撮影装置は、例えばフーリエドメインOCTを実行可能に構成される。 The ophthalmologic photographing apparatus according to the embodiment includes an optical system, a drive system, a control system, and a data processing system for executing OCT. The ophthalmologic imaging apparatus of the embodiment is configured to be able to execute, for example, Fourier domain OCT.
フーリエドメインOCTには、スペクトラルドメインOCTと、スウェプトソースOCTとが含まれる。スペクトラルドメインOCTは、広帯域の低コヒーレンス光源と分光器とを用いて、干渉光のスペクトルを空間分割で取得し、それをフーリエ変換することによって被検眼を画像化する手法である。スウェプトソースOCTは、波長掃引光源(波長可変光源)と光検出器(バランスドフォトダイオード等)とを用いて、干渉光のスペクトルを時分割で取得し、それをフーリエ変換することによって被検眼を画像化する手法である。OCTの手法はフーリエドメインOCTには限定されず、タイムドメインOCTやアンファスOCTでもよい。 The Fourier domain OCT includes a spectral domain OCT and a swept source OCT. Spectral domain OCT is a technique for imaging a subject's eye by acquiring a spectrum of interference light by spatial division using a broadband low-coherence light source and a spectroscope and performing Fourier transform on the spectrum. Swept source OCT uses a wavelength-swept light source (wavelength variable light source) and a photodetector (balanced photodiode, etc.) to acquire the spectrum of interference light in a time-sharing manner, and Fourier transforms the eye to be examined. This is a technique for imaging. The method of OCT is not limited to Fourier domain OCT, but may be time domain OCT or unfaced OCT.
眼科撮影装置は、眼及び/又は他の部位を画像化するためのモダリティ(例えば、OCT以外のモダリティ)を含んでいてもよい。その典型例として、眼底カメラ、SLO、スリットランプ顕微鏡、眼科手術用顕微鏡などがある。また、眼科撮影装置は、眼及び/又は他の部位の特性を測定するための構成や、検査を行うための構成を含んでいてもよい。 The ophthalmologic imaging apparatus may include a modality (for example, a modality other than OCT) for imaging the eye and / or other parts. Typical examples include a fundus camera, SLO, a slit lamp microscope, and an ophthalmic surgical microscope. The ophthalmologic imaging apparatus may include a configuration for measuring the characteristics of the eyes and / or other parts and a configuration for performing an examination.
実施形態に係る眼科撮影装置におけるデータ処理機能(演算機能、画像処理機能、制御機能等)は、例えば、プロセッサ、記憶装置等のハードウェアと、演算プログラム、画像処理プログラム、制御プログラム等のソフトウェアとが協働することによって実現される。なお、ハードウェアの一部は、眼科撮影装置と通信可能な外部装置に設けられていてよい。また、ソフトウェアの少なくとも一部は、眼科撮影装置に予め格納されてよく、及び/又は、外部装置に予め格納されてよい。 The data processing function (calculation function, image processing function, control function, etc.) in the ophthalmic imaging apparatus according to the embodiment includes, for example, hardware such as a processor and a storage device, and software such as a calculation program, an image processing program, and a control program. Is realized through collaboration. A part of the hardware may be provided in an external device that can communicate with the ophthalmologic photographing apparatus. Further, at least a part of the software may be stored in advance in the ophthalmologic photographing apparatus and / or may be stored in advance in the external apparatus.
〈眼科撮影装置の第1実施形態〉
〈構成〉
眼科撮影装置の例示的な実施形態を説明する。眼科撮影装置の構成例を図1に示す。眼科撮影装置1は、OCTを用いて眼底の3次元データセットを収集し、この3次元データセットに基づいて血管強調画像を形成し、この血管強調画像に基づいて血管角度分布を求め、この血管角度分布に基づいて計測位置を設定し、この計測位置においてOCT血流計測を行う。このOCT血流計測では、眼科撮影装置1は、設定された計測位置において血管に交差する第1断面を繰り返し走査し、それにより収集された第1データと、当該計測位置における当該血管の傾斜角度とに基づいて、当該血管における血流状態を表す血流情報を生成する。
<First Embodiment of Ophthalmic Imaging Device>
<Constitution>
An exemplary embodiment of an ophthalmic imaging device will be described. A configuration example of the ophthalmologic photographing apparatus is shown in FIG. The ophthalmologic imaging apparatus 1 collects a three-dimensional data set of the fundus using OCT, forms a blood vessel emphasized image based on the three dimensional data set, obtains a blood vessel angle distribution based on the blood vessel emphasized image, A measurement position is set based on the angular distribution, and OCT blood flow measurement is performed at this measurement position. In this OCT blood flow measurement, the ophthalmologic imaging apparatus 1 repeatedly scans the first cross section intersecting the blood vessel at the set measurement position, and the first data collected thereby and the inclination angle of the blood vessel at the measurement position. Based on the above, blood flow information representing a blood flow state in the blood vessel is generated.
眼科撮影装置1は、血管角度分布、それから得られた情報、血流情報、それから得られた情報などを、表示デバイス2に表示することができる。表示デバイス2は眼科撮影装置1の一部であってもよいし、眼科撮影装置1に接続された外部装置であってもよい。また、眼科撮影装置1は、血管角度分布、それから得られた情報、血流情報、それから得られた情報などを、コンピュータ、記憶装置、眼科装置等に送ることができる。 The ophthalmologic photographing apparatus 1 can display the blood vessel angle distribution, information obtained therefrom, blood flow information, information obtained therefrom, and the like on the display device 2. The display device 2 may be a part of the ophthalmologic photographing apparatus 1 or may be an external device connected to the ophthalmic photographing apparatus 1. The ophthalmologic photographing apparatus 1 can send blood vessel angle distribution, information obtained therefrom, blood flow information, information obtained therefrom, and the like to a computer, a storage device, an ophthalmologic apparatus, and the like.
眼科撮影装置1は、制御部10と、記憶部20と、データ収集部30と、データ処理部40と、操作部50と、正面画像取得部60とを含む。 The ophthalmologic photographing apparatus 1 includes a control unit 10, a storage unit 20, a data collection unit 30, a data processing unit 40, an operation unit 50, and a front image acquisition unit 60.
〈制御部10〉
制御部10は、眼科撮影装置1の各部を制御する。制御部10はプロセッサを含む。「プロセッサ」は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路を意味する。制御部10は、例えば、記憶回路や記憶装置(記憶部20、外部装置等)に格納されているプログラムを読み出し実行することで、実施形態に係る機能を実現することができる。
<Control unit 10>
The control unit 10 controls each unit of the ophthalmologic photographing apparatus 1. The control unit 10 includes a processor. The “processor” is, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), a programmable logic device (for example, SPLD (Simple Programmable L). , A circuit such as a field programmable gate array (FPGA). For example, the control unit 10 can realize the functions according to the embodiment by reading and executing a program stored in a storage circuit or a storage device (such as the storage unit 20 or an external device).
また、制御部10は、ローカルエリアネットワーク(LAN)、インターネット、専用線等の通信回線を介してデータの送受信を行うための通信デバイスを含んでよい。 The control unit 10 may include a communication device for transmitting and receiving data via a communication line such as a local area network (LAN), the Internet, and a dedicated line.
〈収集制御部11〉
制御部10は収集制御部11を含む。収集制御部11は、データ収集部30を制御する。例えば、収集制御部11は、光源の制御、光スキャナの制御、測定光及び/又は参照光の光路長の変更、偏光調整、光量調整、フォーカス調整、固視位置の変更など、OCTを用いてデータを収集するための各種要素を制御する。収集制御部11が実行可能な処理の幾つかの例を後述する。
<Collection control unit 11>
The control unit 10 includes a collection control unit 11. The collection control unit 11 controls the data collection unit 30. For example, the collection control unit 11 uses OCT such as light source control, optical scanner control, change in optical path length of measurement light and / or reference light, polarization adjustment, light amount adjustment, focus adjustment, fixation position change, and the like. Control various elements for collecting data. Some examples of processing that can be executed by the collection control unit 11 will be described later.
〈表示制御部12〉
制御部10は表示制御部12を含む。表示制御部12は、表示デバイス2に情報を表示するための制御を実行する。表示制御部12は、記憶部20に格納された情報に基づいて表示制御を実行することができる。
<Display control unit 12>
The control unit 10 includes a display control unit 12. The display control unit 12 executes control for displaying information on the display device 2. The display control unit 12 can execute display control based on the information stored in the storage unit 20.
表示制御部12は、表示デバイス2に表示される情報に関する処理(生成、加工、合成等)を行うことができる。例えば、表示制御部12は、評価結果分布(又はそれから得られた情報)や、血管角度分布(又はそれから得られた情報)などを、正面画像取得部60により取得された画像(正面画像)に重ねて表示することができる。また、表示制御部12は、評価結果分布(又はそれから得られた情報)と正面画像との合成画像や、血管角度分布(又はそれから得られた情報)と正面画像との合成画像を生成することができる。 The display control unit 12 can perform processing (generation, processing, synthesis, etc.) regarding information displayed on the display device 2. For example, the display control unit 12 displays the evaluation result distribution (or information obtained therefrom), the blood vessel angle distribution (or information obtained therefrom), and the like on the image (front image) obtained by the front image obtaining unit 60. It can be displayed overlaid. Further, the display control unit 12 generates a composite image of the evaluation result distribution (or information obtained therefrom) and the front image, and a composite image of the blood vessel angle distribution (or information obtained therefrom) and the front image. Can do.
このような処理は、例えば、表示制御部12と他の要素(制御部10の他の要素、データ処理部40等)との連係により実行されてもよい。 Such processing may be executed by, for example, linking the display control unit 12 and other elements (other elements of the control unit 10, the data processing unit 40, etc.).
〈記憶部20〉
記憶部20には各種情報が記憶される。本例においては、条件情報21が予め記憶される。なお、条件情報21は、外部装置に格納されてもよい。
<Storage unit 20>
Various information is stored in the storage unit 20. In this example, the condition information 21 is stored in advance. The condition information 21 may be stored in an external device.
〈条件情報21〉
条件情報21は、血管の傾斜角度に関する1以上の条件を含み、後述の計測位置設定部43(評価処理部431)によって参照される。条件情報21に含まれる条件の幾つかの例を説明する。
<Condition information 21>
The condition information 21 includes one or more conditions related to the inclination angle of the blood vessel, and is referred to by a measurement position setting unit 43 (evaluation processing unit 431) described later. Several examples of conditions included in the condition information 21 will be described.
条件の第1の例は、OCT血流計測のための角度条件情報である。OCT血流計測ではドップラーOCT信号を利用するため、測定光の投射方向(Aスキャン方向)と血流方向との間の角度が適切でなければ良好な信号が得られない。血流方向は、測定光の投射位置における血管の向きと実質的に同一と考えられる。よって、OCT血流計測では、Aスキャン方向に対する血管の傾斜角度を評価することが重要である。 The first example of the condition is angle condition information for OCT blood flow measurement. Since OCT blood flow measurement uses a Doppler OCT signal, a good signal cannot be obtained unless the angle between the measurement light projection direction (A scan direction) and the blood flow direction is appropriate. The blood flow direction is considered to be substantially the same as the direction of the blood vessel at the measurement light projection position. Therefore, in OCT blood flow measurement, it is important to evaluate the inclination angle of the blood vessel with respect to the A scan direction.
角度条件情報には、Aスキャン方向に対する血管の傾斜角度を評価するための1以上の条件が含まれている。条件は、傾斜角度の閾値及び/又は範囲を含んでよい。また、角度条件情報は、被検眼に関する条件や、被検眼と眼科撮影装置1との関係についての条件を含んでよい。被検眼に関する条件の例として瞳孔径がある。被検眼と眼科撮影装置1との関係についての条件の例として、被検眼と眼科撮影装置1の光学系との相対位置(例えば、被検眼の軸と光学系の軸との変位)がある。 The angle condition information includes one or more conditions for evaluating the inclination angle of the blood vessel with respect to the A scan direction. The condition may include a tilt angle threshold and / or range. Further, the angle condition information may include conditions regarding the eye to be examined and conditions regarding the relationship between the eye to be examined and the ophthalmologic photographing apparatus 1. An example of the condition relating to the eye to be examined is the pupil diameter. As an example of the condition regarding the relationship between the eye to be examined and the ophthalmologic photographing apparatus 1, there is a relative position between the eye to be examined and the optical system of the ophthalmic photographing apparatus 1 (for example, displacement between the axis of the eye to be examined and the axis of the optical system).
角度条件情報の例を図2に示す。角度条件情報21aは条件情報21に含まれている。角度条件情報21aは、例えば、評価欄と角度条件欄とを含むテーブル情報である。評価欄には、評価のランクとして、「H」、「M」及び「N」が与えられている。角度条件欄には、血管の傾斜角度に関する条件として、Hランクに対応する角度条件「75〜80度」と、Mランクに対応する角度条件「75〜80度に補正可能」と、Nランクに対応する角度条件「75〜80度に補正不可能」とが与えられている。 An example of the angle condition information is shown in FIG. The angle condition information 21 a is included in the condition information 21. The angle condition information 21a is table information including an evaluation field and an angle condition field, for example. In the evaluation column, “H”, “M”, and “N” are given as evaluation ranks. In the angle condition column, as conditions relating to the inclination angle of the blood vessel, an angle condition corresponding to H rank “75 to 80 degrees”, an angle condition corresponding to M rank “can be corrected to 75 to 80 degrees”, N rank The corresponding angle condition “cannot be corrected to 75-80 degrees” is given.
評価のランクは、OCT血流計測への適性のランクを表す。例えば、Hランクは適性「高」を表し、Mランクは適性「中」を表し、Nランクは適性「無」を表す。 The rank of evaluation represents the rank of suitability for OCT blood flow measurement. For example, the H rank represents aptitude “high”, the M rank represents aptitude “medium”, and the N rank represents aptitude “none”.
Hランクに対応する角度条件は、OCT血流計測に高程度に適した血管傾斜角度(Aスキャン方向に対する角度)を表す。本例では、例えば実験的又は臨床的に得られた角度条件「75〜80度」がHランクに割り当てられる。 The angle condition corresponding to the H rank represents a blood vessel inclination angle (an angle with respect to the A scan direction) that is highly suitable for OCT blood flow measurement. In this example, an angular condition “75 to 80 degrees” obtained experimentally or clinically, for example, is assigned to the H rank.
Mランクに対応する角度条件は、OCT血流計測に中程度に適した血管傾斜角度を表す。本例では、所定の補正処理によって好適な角度条件「75〜80度」を実現可能であるという条件が、Mランクに割り当てられる。補正処理については後述する。 The angle condition corresponding to the M rank represents a blood vessel inclination angle suitable for a medium level for OCT blood flow measurement. In this example, a condition that a suitable angle condition “75 to 80 degrees” can be realized by a predetermined correction process is assigned to the M rank. The correction process will be described later.
Nランクに対応する角度条件は、OCT血流計測に適さない血管傾斜角度を表す。本例では、所定の補正処理によっても好適な角度条件「75〜80度」を実現不可能であるという条件が、Nランクに割り当てられる。 The angle condition corresponding to the N rank represents a blood vessel inclination angle that is not suitable for OCT blood flow measurement. In this example, a condition that a suitable angle condition “75 to 80 degrees” cannot be realized even by a predetermined correction process is assigned to the N rank.
Mランク及びNランクの判定に用いられる補正処理について説明する。補正処理は、例えば、被検眼の軸に対する測定光の経路のシフト(相対位置の変化)を含む。このシフトの量は瞳孔径に制限される。瞳孔径は、被検眼の測定値でも標準値(統計値等)でもよい。また、散瞳剤の投与後の瞳孔径や、散瞳剤の投与による推定瞳孔径でもよい。 A correction process used for determining the M rank and the N rank will be described. The correction process includes, for example, a shift of the measurement light path with respect to the axis of the eye to be examined (change in relative position). The amount of this shift is limited to the pupil diameter. The pupil diameter may be a measured value of the eye to be examined or a standard value (such as a statistical value). Alternatively, the pupil diameter after administration of the mydriatic agent or the estimated pupil diameter by administration of the mydriatic agent may be used.
例示的な補正処理において、評価処理部431は、瞳孔径を制約条件として測定光の経路を被検眼の軸に対してシフトさせたときに、好適な角度条件「75〜80度」が実現されるか否か判定する。被検眼の軸に対する測定光の経路のシフトと、測定光の投射方向(Aスキャン方向)の変化との関係について、以下に説明する。なお、前述したように、血管の傾斜角度はAスキャン方向を基準として定義されるので、Aスキャン方向の変化は血管の傾斜角度の変化と同値である。 In the exemplary correction processing, when the evaluation processing unit 431 shifts the path of the measurement light with respect to the axis of the eye to be examined with the pupil diameter as a constraint, a suitable angle condition “75 to 80 degrees” is realized. It is determined whether or not. The relationship between the shift of the measurement light path with respect to the axis of the eye to be examined and the change in the measurement light projection direction (A scan direction) will be described below. As described above, since the inclination angle of the blood vessel is defined with reference to the A-scan direction, the change in the A-scan direction is equivalent to the change in the inclination angle of the blood vessel.
図3を参照する。符号LS0及びLS1のそれぞれは、測定光の経路(測定経路)を示す。被検眼Eの外部において、測定経路LS0及びLS1は互いに平行であり、これらに直交する方向に距離dだけ離間している。つまり、測定経路LS1は、測定経路LS0に対して距離dだけシフトした経路である。また、被検眼E内における測定光路LS0の長さをTとする。 Please refer to FIG. Each of the symbols LS0 and LS1 indicates a path of the measurement light (measurement path). Outside the eye E, the measurement paths LS0 and LS1 are parallel to each other and are separated by a distance d in a direction perpendicular to them. That is, the measurement path LS1 is a path shifted by the distance d with respect to the measurement path LS0. The length of the measurement optical path LS0 in the eye E is T.
このとき、測定経路LS0と測定経路LS1とが眼底において成す角度Δθは、次式によって算出される:Δθ=arctan(d/T)。また、角度Δθの符号、つまり、血管傾斜角度の補正量の符号(+/−)は、測定経路LS0に対する測定経路LS1のシフト方向に応じて決定される。シフト方向が血管の長さ方向に沿う場合(より一般に、シフトを表すベクトルが血管の長さ方向の成分を含む場合や、当該成分が十分に大きい場合)、血管傾斜角度の補正が行われる。一方、シフト方向が血管の長さ方向に沿わない場合(より一般に、シフトを表すベクトルが血管の長さ方向の成分を含まない場合や、当該成分が十分に小さい場合)、血管傾斜角度の補正は行われない。 At this time, an angle Δθ formed by the measurement path LS0 and the measurement path LS1 at the fundus is calculated by the following equation: Δθ = arctan (d / T). Further, the sign of the angle Δθ, that is, the sign (+/−) of the correction amount of the blood vessel inclination angle is determined according to the shift direction of the measurement path LS1 with respect to the measurement path LS0. When the shift direction is along the length direction of the blood vessel (more generally, when the vector representing the shift includes a component in the length direction of the blood vessel or when the component is sufficiently large), the correction of the blood vessel inclination angle is performed. On the other hand, when the shift direction does not follow the length direction of the blood vessel (more generally, when the vector representing the shift does not include a component in the length direction of the blood vessel or when the component is sufficiently small), correction of the blood vessel inclination angle Is not done.
条件の第2の例を説明する。第2の例は、被検眼を診断するための局所的角度分布情報である。診断の対象となる疾患には、血管の(特徴的な)変形を生じる疾患が含まれる。局所的角度分布情報には、血管の特徴的な変形に対応する血管傾斜角度の局所的な分布が含まれる。典型的な例として、腫瘍や体液漏出等によって眼底血管が角膜方向又はその反対方向に突出することがある。この突出は、例えば、Aスキャン方向に対する傾斜角度が漸次的に減少する区間と漸次的に増加する区間とが傾斜角度90度の位置を挟んで隣接しているような局所的分布として表現される。局所的角度分布情報には、このような特徴的局所的分布が少なくとも1つ含まれている。 A second example of conditions will be described. The second example is local angle distribution information for diagnosing the eye to be examined. Diseases to be diagnosed include diseases that cause (characteristic) deformation of blood vessels. The local angle distribution information includes the local distribution of the blood vessel inclination angle corresponding to the characteristic deformation of the blood vessel. As a typical example, a fundus blood vessel may protrude in the corneal direction or the opposite direction due to a tumor, fluid leakage, or the like. This protrusion is expressed as, for example, a local distribution in which a section in which the inclination angle with respect to the A-scan direction gradually decreases and a section in which the inclination angle gradually increases are adjacent to each other across a position with an inclination angle of 90 degrees. . The local angular distribution information includes at least one such characteristic local distribution.
局所的角度分布情報をOCT血流計測に利用することができる。例えば、角度条件情報21a等を用いた評価において、局所的角度分布情報が表す条件を満足する位置をOCT血流計測の対象位置として選択することや、局所的角度分布情報が表す条件を満足する位置をOCT血流計測の対象位置から除外することができる。 Local angle distribution information can be used for OCT blood flow measurement. For example, in the evaluation using the angle condition information 21a or the like, a position satisfying the condition represented by the local angle distribution information is selected as a target position for OCT blood flow measurement, or the condition represented by the local angle distribution information is satisfied. The position can be excluded from the target position for OCT blood flow measurement.
条件の第3の例を説明する。第3の例は、被検眼を診断するための経時的角度変化情報である。第2の例の局所的角度分布情報は、(或る時点における)血管の形状を表す。これに対し、第3の例の経時的角度変化情報は、血管の形状の経時変化を表す。典型的な例として、腫瘍や体液漏出等の進行とともに血管の変形(前述の突出)も増加する。このような突出の変化は、例えば、傾斜角度の漸次的減少区間の幅の変化、漸次的増加区間の幅の変化、漸次的減少区間における高低差の変化、漸次的増加区間における高低差の変化、漸次的減少区間における傾きの変化、漸次的増加区間における傾きの変化などとして表現される。経時的角度変化情報には、このような特徴的変化が少なくとも1つ含まれている。 A third example of conditions will be described. The third example is time-dependent angle change information for diagnosing the eye to be examined. The local angle distribution information of the second example represents the shape of the blood vessel (at a certain point in time). On the other hand, the time-dependent angle change information of the third example represents a change in the shape of the blood vessel over time. As a typical example, blood vessel deformation (the above-mentioned protrusion) increases with the progress of tumor and fluid leakage. Such changes in protrusion include, for example, changes in the width of a gradually decreasing section of the inclination angle, changes in the width of a gradually increasing section, changes in the height difference in a gradually decreasing section, and changes in the height difference in a gradually increasing section. And a change in slope in a gradually decreasing section, a change in slope in a gradually increasing section, and the like. The temporal angle change information includes at least one such characteristic change.
経時的角度変化情報をOCT血流計測に利用することができる。例えば、角度条件情報21a等を用いた評価において、経時的角度変化情報が表す条件を満足する位置をOCT血流計測の対象位置として選択することや、経時的角度変化情報が表す条件を満足する位置をOCT血流計測の対象位置から除外することができる。 The temporal angle change information can be used for OCT blood flow measurement. For example, in the evaluation using the angle condition information 21a or the like, a position satisfying the condition represented by the temporal angle change information is selected as a target position for OCT blood flow measurement, or the condition represented by the temporal angle change information is satisfied. The position can be excluded from the target position for OCT blood flow measurement.
〈データ収集部30〉
データ収集部30は、被検眼に対してOCTを実行することにより3次元データセットを収集する。データ収集部30は、例えばスペクトラルドメインOCT又はスウェプトソースOCTを利用した計測を実行するための構成を含む。この構成には、従来と同様に、光学系、駆動系、データ収集システム(DAQ)、制御系などが含まれる。この光学系は、例えば、干渉光学系と光スキャナと光検出器とを含む。干渉光学系は、光源から出力された光を測定光と参照光とに分割し、この測定光を被検眼に投射し、被検眼からの測定光の戻り光を参照光と重ね合わせて干渉光を生成する。光スキャナは、ガルバノスキャナ等を含み、測定光を偏向する。光検出器は、干渉光学系により生成された干渉光(のスペクトル)を検出する。
<Data collection unit 30>
The data collection unit 30 collects a three-dimensional data set by performing OCT on the eye to be examined. The data collection unit 30 includes a configuration for performing measurement using, for example, a spectral domain OCT or a swept source OCT. This configuration includes an optical system, a drive system, a data acquisition system (DAQ), a control system, and the like, as in the past. This optical system includes, for example, an interference optical system, an optical scanner, and a photodetector. The interference optical system divides the light output from the light source into measurement light and reference light, projects the measurement light onto the subject's eye, and superimposes the return light of the measurement light from the subject's eye on the reference light to cause interference light. Is generated. The optical scanner includes a galvano scanner and the like, and deflects measurement light. The photodetector detects (the spectrum of) interference light generated by the interference optical system.
OCT血管造影において、データ収集部30は、被検眼の3次元領域をスキャンする。そのときのスキャンモードは、例えばラスタースキャン(3次元スキャン)である。このラスタースキャンは、例えば、複数のB断面のそれぞれを所定回数ずつスキャンするように、つまり、複数のB断面を所定回数ずつ順次にスキャンするように実行される。データ収集部30により収集された3次元データセットはデータ処理部40に送られる。 In OCT angiography, the data collection unit 30 scans a three-dimensional region of the eye to be examined. The scan mode at that time is, for example, raster scan (three-dimensional scan). The raster scan is executed, for example, so as to scan each of the plurality of B cross sections a predetermined number of times, that is, sequentially scan the plurality of B cross sections a predetermined number of times. The three-dimensional data set collected by the data collection unit 30 is sent to the data processing unit 40.
OCT血流計測において、データ収集部30は、注目血管に交差する注目断面を繰り返し走査する。そのときのスキャンモードは、例えばラインスキャン(Bスキャン)である。このラインスキャンは、例えば、所定の周波数で繰り返し実行される。各ラインスキャンにおいてデータ収集部30により収集されたデータはデータ処理部40に送られる。 In OCT blood flow measurement, the data collection unit 30 repeatedly scans a cross section of interest that intersects the blood vessel of interest. The scan mode at that time is, for example, a line scan (B scan). This line scan is repeatedly executed at a predetermined frequency, for example. Data collected by the data collection unit 30 in each line scan is sent to the data processing unit 40.
OCT血流計測において、更に、データ収集部30は、注目断面における注目血管の傾斜角度を求めるためのスキャンを行うことができる。このスキャンは、例えば、注目血管に交差する2つの断面に対して実行される。ここで、2つの断面を注目断面の近傍に配置することができる。或いは、2つの断面の一方を注目断面の近傍に配置しつつ、他方は注目断面であってよい。この場合、上記した注目断面の繰り返しスキャンにより得られたデータを利用することができる。つまり、OCT血流計測で実行されるスキャンは、注目断面の繰り返しスキャンと他の2つの断面のスキャンとの組み合わせでもよいし、注目断面の繰り返しスキャンと他の1つの断面のスキャンとでもよい。 In the OCT blood flow measurement, the data collection unit 30 can further perform a scan for obtaining the inclination angle of the blood vessel of interest in the cross section of interest. This scan is performed on, for example, two cross sections intersecting the target blood vessel. Here, two cross sections can be arranged in the vicinity of the target cross section. Alternatively, one of the two cross sections may be disposed in the vicinity of the cross section of interest while the other is the cross section of interest. In this case, it is possible to use the data obtained by repeated scanning of the target section described above. In other words, the scan executed in the OCT blood flow measurement may be a combination of a repetitive scan of the cross section of interest and a scan of the other two cross sections, or a repetitive scan of the cross section of interest and a scan of the other cross section.
注目断面における注目血管の傾斜角度を求めるためのスキャンの態様は、これらに限定されない。例えば、3以上の断面をスキャンすることができる。或いは、注目断面を含む3次元領域をスキャンすることができる(3次元スキャン)。他の例として、注目断面に交差し、且つ、注目血管に沿った断面をスキャンすることができる。 The mode of scanning for obtaining the inclination angle of the blood vessel of interest in the cross section of interest is not limited to these. For example, three or more cross sections can be scanned. Alternatively, it is possible to scan a three-dimensional region including the target cross section (three-dimensional scan). As another example, a cross section that intersects the cross section of interest and is along the blood vessel of interest can be scanned.
〈データ処理部40〉
データ処理部40は、各種のデータ処理を行う。例えば、データ処理部40は、被検眼の画像データに対して画像処理や解析処理を施す。その典型例として、データ処理部40は、3次元コンピュータグラフィクス(3DCG)等のレンダリングを実行する。データ処理部40は、画像形成部41と、血管角度分布取得部42と、計測位置設定部43と、血流情報生成部44とを含む。
<Data processing unit 40>
The data processing unit 40 performs various data processing. For example, the data processing unit 40 performs image processing and analysis processing on the image data of the eye to be examined. As a typical example, the data processing unit 40 performs rendering such as three-dimensional computer graphics (3DCG). The data processing unit 40 includes an image forming unit 41, a blood vessel angle distribution acquisition unit 42, a measurement position setting unit 43, and a blood flow information generation unit 44.
〈画像形成部41〉
画像形成部41は、データ収集部30により収集されたデータセットに基づいて、OCT画像を形成する。例えば、画像形成部41は、データ収集部30により収集された3次元データセットに基づいて、各B断面について複数の断面像(Bスキャン画像)を形成する。画像形成処理は、例えば従来のOCT技術と同様に、ノイズ除去(ノイズ低減)、フィルタ処理、FFT(Fast Fourier Transform)などを含む。
<Image forming unit 41>
The image forming unit 41 forms an OCT image based on the data set collected by the data collecting unit 30. For example, the image forming unit 41 forms a plurality of cross-sectional images (B-scan images) for each B cross-section based on the three-dimensional data set collected by the data collecting unit 30. The image forming process includes, for example, noise removal (noise reduction), filter processing, FFT (Fast Fourier Transform), and the like, as in the conventional OCT technology.
画像形成部41は、これら断面像を単一の3次元座標系に埋め込むことによりスタックデータを形成することができる。このスタックデータにおいては、各B断面に所定枚数の断面像が割り当てられている。更に、画像形成部41は、このスタックデータに対して補間処理等を施すことによりボリュームデータ(ボクセルデータ)を形成することができる。このボリュームデータについても、各B断面に相当する位置に所定数のボクセル群が割り当てられている。スタックデータやボリュームデータは、3次元データセットの例である。 The image forming unit 41 can form stack data by embedding these cross-sectional images in a single three-dimensional coordinate system. In this stack data, a predetermined number of cross-sectional images are assigned to each B cross-section. Further, the image forming unit 41 can form volume data (voxel data) by performing interpolation processing or the like on the stack data. Also for this volume data, a predetermined number of voxel groups are assigned to positions corresponding to the respective B cross sections. Stack data and volume data are examples of three-dimensional data sets.
画像形成部41は、3次元データセットに各種のレンダリングを施すことで、Bモード画像(縦断面像、軸方向断面像)、Cモード画像(横断面像、水平断面像)、プロジェクション画像、シャドウグラムなどを形成することができる。Bモード画像やCモード画像のような任意断面の画像は、指定された断面上の画素(ピクセル、ボクセル)を3次元データセットから選択することにより形成される。プロジェクション画像は、3次元データセットを所定方向(Z方向、深さ方向、Aスキャン方向)に投影することによって形成される。シャドウグラムは、3次元データセットの一部(例えば特定層に相当する部分データ)を所定方向に投影することによって形成される。Cモード画像、プロジェクション画像、シャドウグラムのような、被検眼の正面側を視点とする画像を正面画像と呼ぶ。 The image forming unit 41 performs various types of rendering on the three-dimensional data set, so that a B-mode image (longitudinal cross-sectional image, axial cross-sectional image), C-mode image (transverse cross-sectional image, horizontal cross-sectional image), projection image, shadow Gram etc. can be formed. An image of an arbitrary cross section such as a B mode image or a C mode image is formed by selecting pixels (pixels, voxels) on a specified cross section from a three-dimensional data set. The projection image is formed by projecting the three-dimensional data set in a predetermined direction (Z direction, depth direction, A scan direction). The shadowgram is formed by projecting a part of a three-dimensional data set (for example, partial data corresponding to a specific layer) in a predetermined direction. An image such as a C-mode image, a projection image, or a shadowgram with the viewpoint of the front side of the eye to be examined is called a front image.
画像形成部41は、レンダリングの他にも各種の画像処理を実行することが可能である。例えば、特定の組織や組織境界を求めるためのセグメンテーションや、組織のサイズ(層厚、体積等)を求めるためのサイズ解析などがある。セグメンテーションにより特定層(又は特定の層境界)が求められた場合、その特定層が平坦になるようにBモード画像や正面画像を再構築することが可能である。そのような画像を平坦化画像と呼ぶ。 The image forming unit 41 can execute various image processes in addition to rendering. For example, there are segmentation for obtaining a specific tissue and tissue boundary, and size analysis for obtaining the size (layer thickness, volume, etc.) of the tissue. When a specific layer (or a specific layer boundary) is obtained by segmentation, it is possible to reconstruct a B-mode image or a front image so that the specific layer becomes flat. Such an image is called a flattened image.
画像形成部41は、血管強調画像(アンギオグラム)を形成することができる。血管強調画像は、OCTデータを解析することで血管に相当する画像領域(血管領域)を特定し、この血管領域の表現態様を変更することでそれを強調した画像である。血管領域の特定には、被検眼の実質的に同じ範囲を繰り返しスキャンして得られた複数のOCTデータが用いられる。実施形態においては、平面画像としての血管強調画像を表示するために3次元データセットが用いられる。 The image forming unit 41 can form a blood vessel emphasized image (angiogram). A blood vessel enhancement image is an image in which an image region (blood vessel region) corresponding to a blood vessel is identified by analyzing OCT data, and the expression mode of the blood vessel region is changed to enhance it. A plurality of OCT data obtained by repeatedly scanning substantially the same range of the eye to be examined is used for specifying the blood vessel region. In the embodiment, a three-dimensional data set is used to display a blood vessel emphasized image as a planar image.
血管強調画像は、例えば、OCTスキャンされた眼底の3次元領域における血管の分布(つまり、血管の3次元的な分布)を表現する。血管強調画像を形成するための手法には幾つかの種類がある。そのための典型的な手法を説明する。この処理には、被検眼の複数のB断面のそれぞれを繰り返しスキャンすることにより、時系列に並んだ複数のBモード画像をB断面ごとに含む3次元データセットが用いられる。なお、実質的に同じB断面を繰り返しスキャンするための手法として、固視やトラッキングがある。 The blood vessel emphasized image represents, for example, a blood vessel distribution (that is, a three-dimensional distribution of blood vessels) in a three-dimensional region of the fundus subjected to OCT scanning. There are several types of techniques for forming a blood vessel enhanced image. A typical technique for this will be described. In this process, a three-dimensional data set including a plurality of B-mode images arranged in time series for each B section by repeatedly scanning each of the plurality of B sections of the eye to be examined is used. Note that there are fixation and tracking as a method for repeatedly scanning substantially the same B section.
血管強調画像を形成する処理では、まず、複数のBモード画像の位置合わせがB断面ごとに実行される。この位置合わせは、例えば、公知の画像マッチング技術を用いて行われる。その典型例として、各Bモード画像における特徴領域の抽出と、抽出された複数の特徴領域の位置合わせによる複数のBモード画像の位置合わせとを実行することができる。 In the process of forming a blood vessel emphasized image, first, alignment of a plurality of B mode images is executed for each B cross section. This alignment is performed using, for example, a known image matching technique. As a typical example, it is possible to execute extraction of feature regions in each B-mode image and alignment of a plurality of B-mode images by alignment of the extracted plurality of feature regions.
続いて、位置合わせされた複数のBモード画像の間で変化している画像領域を特定する処理が行われる。この処理は、例えば、異なるBモード画像の間の差分を求める処理を含む。各Bモード画像は、被検眼の形態を表す輝度画像データであり、血管以外の部位に相当する画像領域は実質的に不変であると考えられる。一方、干渉信号に寄与する後方散乱が血流によってランダムに変化することを考慮すると、位置合わせされた複数のBモード画像の間で変化が生じた画像領域(例えば、差分がゼロでない画素、又は差分が所定閾値以上である画素)は血管領域であると推定することができる。 Subsequently, a process of specifying an image region changing between the plurality of aligned B-mode images is performed. This process includes, for example, a process for obtaining a difference between different B-mode images. Each B-mode image is luminance image data representing the form of the eye to be examined, and an image region corresponding to a part other than a blood vessel is considered to be substantially unchanged. On the other hand, considering that the backscattering contributing to the interference signal changes randomly due to blood flow, an image region in which a change occurs between a plurality of aligned B-mode images (for example, a pixel whose difference is not zero, or It is possible to estimate that a pixel whose difference is equal to or greater than a predetermined threshold is a blood vessel region.
このようにして特定された画像領域には、それが血管領域である旨を示す情報が割り当てられる。複数のB断面について上記処理を実行することにより、3次元的に分布した血管領域が得られる。このような3次元血管強調画像をレンダリングすることで、血管分布を表す正面画像、任意断面の画像、任意範囲のシャドウグラムなどが生成される。 Information indicating that it is a blood vessel region is assigned to the image region thus identified. By executing the above process on a plurality of B cross sections, a three-dimensionally distributed blood vessel region is obtained. By rendering such a three-dimensional blood vessel enhancement image, a front image representing a blood vessel distribution, an image of an arbitrary cross section, a shadowgram of an arbitrary range, and the like are generated.
血管強調画像を形成する処理はこれに限定されない。例えば、ドップラーOCTを利用した従来の手法で血管領域を特定することや、従来の画像処理手法を用いて血管領域を特定することが可能である。また、部位に応じて異なる手法を用いることにより、部位ごとに血管領域を特定することが可能である。例えば、網膜については上記の典型的な手法やドップラーOCTの手法を用いて血管領域を特定し、脈絡膜については画像処理手法を用いて血管領域を特定することができる。 The process for forming the blood vessel emphasized image is not limited to this. For example, the blood vessel region can be specified by a conventional method using Doppler OCT, or the blood vessel region can be specified by using a conventional image processing method. Moreover, it is possible to identify a blood vessel region for each part by using different methods depending on the part. For example, the blood vessel region can be specified using the above-described typical method or Doppler OCT method for the retina, and the blood vessel region can be specified using the image processing method for the choroid.
〈血管角度分布取得部42〉
血管角度分布取得部42は、画像形成部41により形成された3次元血管強調画像に基づいて、血管角度分布を求める。この血管角度分布は、眼底の1以上の位置における血管の傾斜角度を表し、典型的には2以上の位置における血管の傾斜角度を表す。血管の傾斜角度の求め方の例を以下に説明する。なお、傾斜角度が求められる位置は、例えば、3次元データセットにおけるAスキャン位置であってもよいし、隣接する2つのAスキャン位置の間の位置であってもよい。
<Blood angle distribution acquisition unit 42>
The blood vessel angle distribution acquisition unit 42 obtains a blood vessel angle distribution based on the three-dimensional blood vessel enhancement image formed by the image forming unit 41. This blood vessel angle distribution represents the inclination angle of the blood vessel at one or more positions of the fundus, and typically represents the inclination angle of the blood vessel at two or more positions. An example of how to determine the inclination angle of the blood vessel will be described below. The position at which the tilt angle is obtained may be, for example, an A scan position in a three-dimensional data set, or may be a position between two adjacent A scan positions.
第1の例において、血管角度分布取得部42は、3次元血管強調画像における血管領域の細線化を行うことで血管軸線モデルを作成する。この処理は、公知の細線化アルゴリズムを用いて行うことができる。 In the first example, the blood vessel angle distribution acquisition unit 42 creates a blood vessel axis model by thinning the blood vessel region in the three-dimensional blood vessel emphasized image. This process can be performed using a known thinning algorithm.
血管角度分布取得部42は、この血管軸線モデルの任意の位置(注目位置)における傾きを算出することにより、注目位置における血管傾斜角度を求めることができる。注目位置において血管軸線モデルが微分可能である場合、血管角度分布取得部42は、微分演算によって傾きを算出することができる。他方、注目位置において血管軸線モデルが微分不可能である場合には、例えば、注目位置における血管軸線の位置と、その近傍位置(1以上の近傍位置)における血管軸線の位置とに基づいて、注目位置における傾き(の近似値)を算出することができる。 The blood vessel angle distribution acquisition unit 42 can obtain the blood vessel inclination angle at the target position by calculating the inclination at an arbitrary position (target position) of the blood vessel axis model. When the blood vessel axis model is differentiable at the position of interest, the blood vessel angle distribution acquisition unit 42 can calculate the inclination by differentiation. On the other hand, when the vascular axis model cannot be differentiated at the position of interest, for example, based on the position of the vascular axis line at the position of interest and the position of the blood vessel axis at the vicinity position (one or more neighboring positions). The inclination (approximate value) at the position can be calculated.
第2の例について説明する。図4を参照する。符号B0は、血管傾斜角度が算出される注目位置を含む断面(注目断面)を表す断層像(注目断層像)を示す。注目断層像B0には、血管領域V0が描出されている。符号B11及びB12は、注目断面B0の近傍に位置する2つの断面(近傍断面)を表す2つの断層像(近傍断層像)を示す。近傍断層像B11には、血管領域V0と同じ血管(注目血管)の他の断面における血管領域V11が描出されている。同様に、近傍断層像B12には、注目血管の他の断面における血管領域V12が描出されている。 A second example will be described. Please refer to FIG. Symbol B0 indicates a tomographic image (target tomographic image) representing a cross section (target cross section) including the target position where the blood vessel tilt angle is calculated. A blood vessel region V0 is depicted in the tomographic image B0 of interest. Reference numerals B11 and B12 indicate two tomographic images (neighboring tomographic images) representing two cross sections (neighboring cross sections) located in the vicinity of the target cross section B0. In the nearby tomographic image B11, a blood vessel region V11 in another cross section of the same blood vessel (target blood vessel) as the blood vessel region V0 is depicted. Similarly, in the nearby tomographic image B12, a blood vessel region V12 in another cross section of the target blood vessel is depicted.
ここで、例えば、ラベリングやリージョングローイング等の公知の処理を3次元血管強調画像に適用することにより、注目血管の位置(分布)を把握して近傍断面を設定することができる。なお、注目断面及び近傍断面の少なくとも一方をユーザが設定するための表示及びグラフィカルユーザーインターフェイス(GUI)を提供することも可能である。 Here, for example, by applying a known process such as labeling or region growing to the three-dimensional blood vessel enhancement image, it is possible to grasp the position (distribution) of the target blood vessel and set a neighboring cross section. It is also possible to provide a display and a graphical user interface (GUI) for the user to set at least one of the attention cross section and the neighboring cross section.
血管角度分布取得部42は、注目断層像B0と近傍断層像B11及びB12とに基づいて、注目断面における注目血管の傾きを算出する。なお、参照される近傍断層像の個数は2つに限定されず、1以上の任意個数であってよい。 The blood vessel angle distribution acquisition unit 42 calculates the inclination of the blood vessel of interest in the cross section of interest based on the tomographic image B0 and the neighboring tomographic images B11 and B12. Note that the number of neighboring tomographic images to be referred to is not limited to two and may be one or more arbitrary numbers.
血管角度分布取得部42は、血管領域V0、V11及びV12と断面間距離とに基づいて、注目断面における注目血管の傾きを算出する。断面間距離は、近傍断層像B11と近傍断層像B12との間の距離を含んでよい。また、断面間距離は、近傍断層像B11と注目断層像B0との間の距離、及び、近傍断層像B12と注目断層像B0との間の距離の少なくとも一方を含んでよい。近傍断層像B11(B12)と注目断層像B0との間隔をLとする。 The blood vessel angle distribution acquisition unit 42 calculates the inclination of the blood vessel of interest in the cross section of interest based on the blood vessel regions V0, V11, and V12 and the distance between cross sections. The distance between cross sections may include a distance between the nearby tomographic image B11 and the nearby tomographic image B12. The cross-sectional distance may include at least one of the distance between the nearby tomographic image B11 and the target tomographic image B0 and the distance between the nearby tomographic image B12 and the target tomographic image B0. Let L be the interval between the nearby tomographic image B11 (B12) and the target tomographic image B0.
図4に示すAスキャン方向(下方を示す矢印が指す方向)は、例えば、注目断層像B0に含まれるAスキャン像(例えば、注目断層像B0に含まれる複数のAスキャン像の中央に位置するAスキャン像)の向きを示す。本例において、注目断面におけるAスキャン方向と注目血管の向きAとが成す角度を、当該注目断面における当該注目血管の傾斜角度として定義することができる。 The A scan direction shown in FIG. 4 (the direction indicated by the arrow pointing downward) is, for example, located at the center of the A scan image included in the target tomographic image B0 (for example, the plurality of A scan images included in the target tomographic image B0). (A scan image) direction. In this example, the angle formed by the A scan direction in the cross section of interest and the direction A of the blood vessel of interest can be defined as the inclination angle of the blood vessel of interest in the cross section of interest.
1つの例において、血管角度分布取得部42は、3つの血管領域V0、V11及びV12の位置関係に基づいて、注目断面における注目血管の向きAを算出することができる。この位置関係は、例えば、3つの血管領域V0、V11及びV12を結ぶことによって得られる。具体的には、血管角度分布取得部42は、3つの血管領域V0、V11及びV12のそれぞれの特徴点を特定し、これら特徴点を結ぶ。この特徴点としては、中心位置(軸線位置)、重心位置、最上部などがある。また、これら特徴点の結び方としては、線分で結ぶ方法、近似曲線(スプライン曲線、ベジェ曲線等)で結ぶ方法などがある。 In one example, the blood vessel angle distribution acquisition unit 42 can calculate the direction A of the target blood vessel in the target cross section based on the positional relationship between the three blood vessel regions V0, V11, and V12. This positional relationship is obtained, for example, by connecting three blood vessel regions V0, V11, and V12. Specifically, the blood vessel angle distribution acquisition unit 42 specifies the feature points of the three blood vessel regions V0, V11, and V12 and connects these feature points. As the feature points, there are a center position (axis position), a gravity center position, an uppermost portion, and the like. In addition, as a method of connecting these feature points, there are a method of connecting with line segments, a method of connecting with approximate curves (spline curve, Bezier curve, etc.), and the like.
更に、血管角度分布取得部42は、これら特徴点を結ぶ線に基づいて向きAを算出する。線分が用いられる場合、血管角度分布取得部42は、例えば、注目断層像B0内の血管領域V0の特徴点と近傍断層像B11内の血管領域V11の特徴点とを結ぶ第1線分の傾きと、血管領域V0の当該特徴点と近傍断層像B12内の血管領域V12の特徴点とを結ぶ第2線分の傾きとに基づいて、向きAを算出することができる。この算出処理の例として、2つの線分の傾きの平均値を求めることができる。また、近似曲線で結ぶ場合の例として、近似曲線と注目断面との交差位置における近似曲線の傾きを求めることができる。 Further, the blood vessel angle distribution acquisition unit 42 calculates the direction A based on a line connecting these feature points. When a line segment is used, the blood vessel angle distribution acquisition unit 42, for example, a first line segment that connects a feature point of the blood vessel region V0 in the target tomographic image B0 and a feature point of the blood vessel region V11 in the neighboring tomographic image B11. The direction A can be calculated based on the inclination and the inclination of the second line segment connecting the feature point of the blood vessel region V0 and the feature point of the blood vessel region V12 in the nearby tomographic image B12. As an example of this calculation process, the average value of the slopes of two line segments can be obtained. Further, as an example of connecting with an approximate curve, the slope of the approximate curve at the intersection position of the approximate curve and the target cross section can be obtained.
この例では、3つの断面における血管領域を考慮しているが、2つの断面の血管領域を考慮して傾きを求めることも可能である。具体例として、近傍断層像B11内の血管領域V11と近傍断層像B12内の血管領域V12とに基づいて、注目断面における注目血管の向きAを求めることができる。また、近傍断層像B11内の血管領域V11と注目断層像B0内の血管領域V0とに基づいて、注目断面における注目血管の向きAを求めることもできる。例えば、上記の第1線分又は第2線分の傾きを求め、これを注目血管の向きAとして採用することができる。 In this example, the blood vessel regions in three cross sections are considered, but the inclination can be obtained in consideration of the blood vessel regions in the two cross sections. As a specific example, the direction A of the target blood vessel in the target cross section can be obtained based on the blood vessel region V11 in the nearby tomographic image B11 and the blood vessel region V12 in the nearby tomographic image B12. Further, the direction A of the target blood vessel in the target cross section can be obtained based on the blood vessel region V11 in the nearby tomographic image B11 and the blood vessel region V0 in the target tomographic image B0. For example, the inclination of the first line segment or the second line segment can be obtained and used as the orientation A of the target blood vessel.
また、上記の例では血管の向きを1つだけ求めてそれを向きAとして採用しているが、血管領域V0中の2以上の位置(又は領域)についてそれぞれ傾きを求めてもよい。この場合、得られた2以上の傾きの値を別々に用いることもできるし、これら傾きの値から統計的に得られる1つの値(例えば平均値)を向きAとして用いることもできる。 In the above example, only one blood vessel direction is obtained and used as the direction A. However, the inclination may be obtained for each of two or more positions (or regions) in the blood vessel region V0. In this case, two or more obtained slope values can be used separately, or one value (for example, an average value) statistically obtained from these slope values can be used as the direction A.
〈計測位置設定部43〉
計測位置設定部43は、血管角度分布取得部42により取得された血管角度分布に基づいて、OCT血流計測の対象となる計測位置を設定する。血管角度分布は、眼底の1以上の位置における血管の傾斜角度を表し、典型的には2以上の位置における血管の傾斜角度を表す。傾斜角度は、例えば、その位置におけるAスキャン方向(OCT測定光の入射方向)を基準として定義される。
<Measurement position setting unit 43>
The measurement position setting unit 43 sets a measurement position to be subjected to OCT blood flow measurement based on the blood vessel angle distribution acquired by the blood vessel angle distribution acquisition unit 42. The blood vessel angle distribution represents the inclination angle of the blood vessel at one or more positions of the fundus, and typically represents the inclination angle of the blood vessel at two or more positions. The tilt angle is defined with reference to the A scan direction (incidence direction of OCT measurement light) at the position, for example.
計測位置設定部43は、例えば、血管角度分布に表された傾斜角度の少なくとも一部について、その傾斜角度がOCT血流計測のために好適であるか否か評価する機能、及び/又は、その傾斜角度がOCT血流計測においてどの程度好適であるか評価する機能を備えていてよい。このような評価を行うための構成の例として、評価処理部431を設けることができる。 The measurement position setting unit 43 has, for example, a function for evaluating whether or not the inclination angle is suitable for OCT blood flow measurement for at least part of the inclination angle represented in the blood vessel angle distribution, and / or A function of evaluating how suitable the inclination angle is in OCT blood flow measurement may be provided. As an example of a configuration for performing such evaluation, an evaluation processing unit 431 can be provided.
〈評価処理部431〉
評価処理部431は、血管角度分布に含まれる傾斜角度に基づいて、OCT血流計測の対象位置としての適性を評価する。より一般に、評価処理部431は、血管角度分布取得部42により取得された傾斜角度が所定条件を満足するか判定することができる。また、評価処理部431は、血管角度分布における複数の位置のうち、所定条件を満足する眼底の1以上の位置を特定することができる。所定条件は条件情報21に含まれている。
<Evaluation processing unit 431>
The evaluation processing unit 431 evaluates suitability as a target position for OCT blood flow measurement based on the inclination angle included in the blood vessel angle distribution. More generally, the evaluation processing unit 431 can determine whether the inclination angle acquired by the blood vessel angle distribution acquisition unit 42 satisfies a predetermined condition. In addition, the evaluation processing unit 431 can specify one or more positions of the fundus satisfying a predetermined condition among a plurality of positions in the blood vessel angle distribution. The predetermined condition is included in the condition information 21.
角度条件情報が適用される場合、評価処理部431は、血管角度分布に表された傾斜角度と角度条件情報とを比較することにより、この傾斜角度(これに対応する眼底の位置)がOCT血流計測に適しているか評価することができる。このような処理によれば、この血管角度分布に含まれる複数の位置の少なくとも一部に対し、評価のランクを割り当てることができる。 When the angle condition information is applied, the evaluation processing unit 431 compares the inclination angle represented in the blood vessel angle distribution with the angle condition information, so that the inclination angle (the fundus position corresponding thereto) is determined as OCT blood. It can be evaluated whether it is suitable for flow measurement. According to such processing, an evaluation rank can be assigned to at least a part of a plurality of positions included in the blood vessel angle distribution.
例えば、図2に示す角度条件情報21aが適用される場合、血管角度分布に表された傾斜角度(これに対応する眼底の位置)に対し、Hランク、Mランク及びNランクの少なくとも1つが割り当てられる。典型的には、Hランクの位置、Mランクの位置、及びNランクの位置をそれぞれ特定することができる。また、OCT血流計測への適性が高程度であるHランクの位置のみを割り当てることができる。また、OCT血流計測への適性が中程度であるMランクの位置のみを割り当てることができる。また、OCT血流計測に適さないNランクの位置のみを割り当てることができる。 For example, when the angle condition information 21a shown in FIG. 2 is applied, at least one of H rank, M rank, and N rank is assigned to the inclination angle (fundus position corresponding thereto) represented in the blood vessel angle distribution. It is done. Typically, the H rank position, the M rank position, and the N rank position can be specified. Moreover, only the position of the H rank that is highly suitable for OCT blood flow measurement can be assigned. In addition, only M rank positions that are moderately suitable for OCT blood flow measurement can be assigned. In addition, only N rank positions that are not suitable for OCT blood flow measurement can be assigned.
局所的角度分布情報が評価に用いられる場合、評価処理部431は、例えば、血管角度分布取得部42により取得された血管角度分布と局所的角度分布情報とに基づいて、特徴的な変形が生じている血管の部位(血管が特徴的な形状を有する部位)を特定することができる。前述したように、特徴的な変形は、例えば腫瘍や体液漏出に起因する突出である。また、血管の蛇行や、血管径の局所的変化などを特徴的な変形として検出することも可能である。また、このような処理の結果を、OCT血流計測のための適性の評価に利用することができる。 When the local angle distribution information is used for evaluation, the evaluation processing unit 431 causes a characteristic deformation based on, for example, the blood vessel angle distribution acquired by the blood vessel angle distribution acquisition unit 42 and the local angle distribution information. It is possible to identify a portion of a blood vessel that is present (a portion where the blood vessel has a characteristic shape). As described above, the characteristic deformation is a protrusion due to, for example, a tumor or fluid leakage. It is also possible to detect blood meandering, local changes in blood vessel diameter, and the like as characteristic deformations. Further, the result of such processing can be used for evaluation of suitability for OCT blood flow measurement.
経時的角度変化情報が評価に用いられる場合、評価処理部431は、例えば、血管角度分布取得部42により取得された血管角度分布と経時的角度変化情報とに基づいて、血管形状の経時変化が特徴的である部位を特定することができる。前述したように、血管形状の特徴的な経時変化は、例えば腫瘍や体液漏出等の進行に起因する。また、血管の蛇行状態の経時変化や、血管径の経時的変化などを特徴的な経時変化として検出することも可能である。また、このような処理の結果を、OCT血流計測のための適性の評価に利用することができる。 When the temporal angle change information is used for the evaluation, the evaluation processing unit 431 determines whether the blood vessel shape changes over time based on the blood vessel angle distribution acquired by the blood vessel angle distribution acquisition unit 42 and the temporal angle change information, for example. A site that is characteristic can be identified. As described above, the characteristic temporal change of the blood vessel shape is caused by progression of, for example, a tumor or fluid leakage. It is also possible to detect changes over time in the meandering state of blood vessels and changes over time in the diameter of blood vessels as characteristic changes over time. Further, the result of such processing can be used for evaluation of suitability for OCT blood flow measurement.
ここで、測定経路のシフト(図3参照)が適用される場合、眼底に対する測定光の入射角の変化により、局所的角度分布情報や経時的角度変化情報との比較の確度が低下するおそれがある。例えば、眼底の同じ位置を対象とする場合でも、測定経路をシフトさせる場合とさせない場合とでは、血管の見かけの傾斜角度が変化し、局所的角度分布情報との比較結果も変化してしまう。同様に、血管の経時変化を検出する場合において、測定経路をシフトさせて得られた傾斜角度と、シフトさせずに得られた傾斜角度とを比較することは、適切とは言い難い。 Here, when the measurement path shift (see FIG. 3) is applied, the accuracy of the comparison with the local angle distribution information and the temporal angle change information may be reduced due to the change in the incident angle of the measurement light with respect to the fundus. is there. For example, even when the same position of the fundus is targeted, the apparent inclination angle of the blood vessel changes depending on whether the measurement path is shifted or not, and the comparison result with the local angle distribution information also changes. Similarly, when detecting changes in blood vessels over time, it is not appropriate to compare the inclination angle obtained by shifting the measurement path with the inclination angle obtained without shifting.
このような事情に鑑み、例えば、測定経路のシフトに応じてOCT血管造影を再度行うことや、過去と同じシフト状態を再現してOCT計測を行うことや、シフト量に応じて血管角度分布を補正することが可能である。シフト量に応じた血管角度分布(傾斜角度の計測値)の補正は、例えば、図3に示す角度Δθをキャンセルするように実行することができる。 In view of such circumstances, for example, OCT angiography is performed again according to the shift of the measurement path, OCT measurement is performed while reproducing the same shift state as in the past, and the blood vessel angle distribution is determined according to the shift amount. It is possible to correct. The correction of the blood vessel angle distribution (measurement value of the tilt angle) according to the shift amount can be executed so as to cancel the angle Δθ shown in FIG. 3, for example.
なお、装置光学系と被検眼との位置合わせ(アライメント)を行うための公知の構成を利用することで、測定経路のシフトの有無やシフト量を検出することができる。例えば、(正面画像取得部60により)被検眼の前眼部を撮影して得られた前眼部像中の特徴点(瞳孔中心等)の位置からアライメント状態(シフトの有無、シフト量)を検出することができる。或いは、角膜に対して斜め方向から投射した光束の反射光を検出して角膜頂点位置を求め、これからアライメント状態を検出することもできる。 In addition, the presence or absence of the measurement path and the shift amount can be detected by using a known configuration for performing alignment (alignment) between the apparatus optical system and the eye to be examined. For example, the alignment state (presence / absence of shift, shift amount) is determined from the position of the feature point (pupil center, etc.) in the anterior segment image obtained by photographing the anterior segment of the subject's eye (by the front image acquisition unit 60). Can be detected. Alternatively, it is also possible to detect the reflected light of the light beam projected from the oblique direction with respect to the cornea to obtain the corneal apex position and to detect the alignment state therefrom.
評価処理部431により取得された評価結果は、OCT血流計測が行われる位置(計測位置)の設定に利用される。例えば、計測位置設定部43は、傾斜角度が所定条件を満足するか判定された1以上の位置を計測位置として設定することができる。 The evaluation result acquired by the evaluation processing unit 431 is used for setting a position (measurement position) where OCT blood flow measurement is performed. For example, the measurement position setting unit 43 can set one or more positions determined as to whether the inclination angle satisfies a predetermined condition as the measurement position.
図2に示す角度条件情報21aが適用された場合、例えば、Hランクと判定された1以上の位置が計測位置として設定される。このとき、Hランクと判定された1以上の位置を順位付けすることにより(1又は2以上の)位置を選択することもできる。この順位付けは、例えば、各位置における傾斜角度の値に基づき行うこともできるし、他の情報に基づき行うこともできる。他の情報の例として、局所的角度分布情報に基づく評価結果、経時的角度変化情報に基づく評価結果、血管の太さ、血管の深さ位置、近傍の血管との位置関係、血管の種別(動脈、静脈等)、血管の分岐状態、病変部との位置関係、診断名(確定診断名、疑い診断名等)、過去の計測位置などがある。なお、これら情報を他の処理において参照することも可能である。 When the angle condition information 21a shown in FIG. 2 is applied, for example, one or more positions determined as H rank are set as measurement positions. At this time, it is possible to select a position (one or two or more) by ranking one or more positions determined to be H ranks. This ranking can be performed based on, for example, the value of the inclination angle at each position, or can be performed based on other information. Examples of other information include an evaluation result based on local angle distribution information, an evaluation result based on temporal angle change information, a blood vessel thickness, a blood vessel depth position, a positional relationship with a nearby blood vessel, a blood vessel type ( Artery, vein, etc.), branching state of blood vessel, positional relationship with a lesion, diagnosis name (definite diagnosis name, suspect diagnosis name, etc.), past measurement position, and the like. These pieces of information can be referred to in other processes.
Hランクと判定された位置が無い場合には、例えば、Mランクと判定された位置のうちから計測部位を設定することができる。或いは、Hランクと判定された位置が無い場合、又は、Hランクと判定された位置もMランクと判定された部位も無い場合、OCT血管造影及び血管角度分布の取得を再度行うことや、これらを再度行うことを促すことが可能である。 When there is no position determined as H rank, for example, a measurement site can be set from among positions determined as M rank. Alternatively, when there is no position determined as H rank, or when there is no position determined as H rank or part determined as M rank, OCT angiography and acquisition of blood vessel angle distribution may be performed again, Can be urged to be performed again.
〈血流情報生成部44〉
血流情報生成部44は、OCT血流計測のために動作する。血流情報生成部44は、OCT血流計測のためにデータ収集部30により収集されたデータと、血管の傾斜角度とに基づいて、当該血管における血流状態を表す血流情報を生成する。
<Blood flow information generation unit 44>
The blood flow information generation unit 44 operates for OCT blood flow measurement. The blood flow information generation unit 44 generates blood flow information representing a blood flow state in the blood vessel based on the data collected by the data collection unit 30 for OCT blood flow measurement and the inclination angle of the blood vessel.
データ収集部30により収集されたデータは、注目血管に交差する注目断面を繰り返し走査することにより収集されたデータ(第1データ)を少なくとも含み、注目血管に交差し、且つ、注目断面と異なる1以上の断面(注目断面の近傍の断面)を走査することにより得られたデータ(第2データ)を更に含んでよい。第2データが含まれない場合には、例えば、OCT血流計測とは別途に取得された、注目断面の位置又はその近傍位置における注目血管の傾斜角度を用いることができる。その例として、血管角度分布取得部42により求められた傾斜角度(血管角度分布)を用いることが可能である。 The data collected by the data collection unit 30 includes at least data (first data) collected by repeatedly scanning a cross section of interest that intersects the blood vessel of interest, crosses the blood vessel of interest, and is different from the cross section of interest 1 Data (second data) obtained by scanning the above cross section (cross section in the vicinity of the target cross section) may be further included. When the second data is not included, for example, the inclination angle of the blood vessel of interest at the position of the cross section of interest or a position near the cross section obtained separately from the OCT blood flow measurement can be used. As an example, the inclination angle (blood vessel angle distribution) obtained by the blood vessel angle distribution acquisition unit 42 can be used.
血流情報生成部44が実行する処理の例を説明する。典型的な例において、血流情報生成部44は、データ収集部30により収集されたデータに基づいて、眼底の断層像と位相画像とを形成する。 An example of processing executed by the blood flow information generation unit 44 will be described. In a typical example, the blood flow information generating unit 44 forms a fundus tomographic image and a phase image based on the data collected by the data collecting unit 30.
OCT血流計測では、眼底に対して2種類の走査(補助的走査及び本走査)を行う。補助的走査は、注目断面と異なる1以上の断面(注目断面の近傍の断面)を走査して第2データを収集するために実行される。典型的な補助的走査では、注目血管に交差する2以上の断面が測定光で走査される。補助的走査により取得されたデータは、注目断面における注目血管の傾斜角度を求めるために用いられる。一方、本走査は、注目血管に交差する注目断面を測定光で反復的に走査して第1データを収集するために実行される。補助的走査が行われる断面は、注目断面の近傍に配置される。本走査は、OCTを用いたドップラー計測である。 In OCT blood flow measurement, two types of scanning (auxiliary scanning and main scanning) are performed on the fundus. The auxiliary scan is executed to scan one or more cross sections (cross sections in the vicinity of the target cross section) different from the target cross section and collect the second data. In a typical auxiliary scan, two or more cross sections intersecting the blood vessel of interest are scanned with measurement light. Data acquired by the auxiliary scanning is used to obtain the inclination angle of the target blood vessel in the target cross section. On the other hand, the main scan is executed to collect first data by repeatedly scanning a cross section of interest intersecting the blood vessel of interest with measurement light. The section on which the auxiliary scanning is performed is arranged in the vicinity of the target section. The main scanning is Doppler measurement using OCT.
補助的走査及び本走査の対象断面は、例えば、注目血管の走行方向に対して直交するように向き付けられる。また、補助的走査の対象断面と注目断面との間の距離(断面間距離)は、事前に設定されるか、或いは、検査ごとに設定される。後者の例として、注目断面又はその近傍における注目血管の曲率や、検査精度等の所定のファクターに基づいて、断面間距離を設定することが可能である。また、ユーザが所望の断面間距離を設定するようにしてもよい。 For example, the target cross section of the auxiliary scan and the main scan is oriented so as to be orthogonal to the traveling direction of the blood vessel of interest. In addition, the distance between the target cross section of the auxiliary scan and the target cross section (inter-section distance) is set in advance or set for each examination. As an example of the latter, it is possible to set the distance between cross sections based on a predetermined factor such as the curvature of the blood vessel of interest at or near the cross section of interest and the inspection accuracy. Further, the user may set a desired cross-sectional distance.
本走査は、患者の心臓の少なくとも1心周期の間にわたって実行されることが望ましい。それにより、心臓の全ての時相における血流情報が得られる。本走査の実行時間は、予め設定された一定の時間であってもよいし、患者ごとに又は検査ごとに設定された時間であってもよい。 This scan is preferably performed over at least one cardiac cycle of the patient's heart. Thereby, blood flow information in all time phases of the heart is obtained. The execution time of the main scan may be a predetermined time set in advance, or may be a time set for each patient or for each examination.
血流情報生成部44は、例えば、注目断面の近傍に設定された2つの補助的断面に対する補助的走査により収集されたデータに基づいて、第1補助的断面の形態を表す断層像と、第2補助的断面の形態を表す断層像とを形成する。このとき、加算平均等の技術を利用して画質向上を図ることや、各補助的断面の2以上の断層像から最適な1枚を選択することが可能である。 The blood flow information generation unit 44, for example, based on data collected by auxiliary scanning on two auxiliary cross sections set in the vicinity of the target cross section, a tomographic image representing the form of the first auxiliary cross section, 2 A tomographic image representing the shape of the auxiliary cross section is formed. At this time, it is possible to improve the image quality by using a technique such as addition averaging, or to select an optimal one from two or more tomographic images of each auxiliary section.
更に、血流情報生成部44は、注目断面に対する本走査(反復的走査)により収集されたデータに基づいて、注目断面の形態の時系列変化を表す断層像群を形成する。この処理は、例えば、走査の反復ごとに収集されたデータから断層像を形成することにより実現される。或いは、所定反復数ごとに収集された2以上のデータから2以上の断層像を形成し、これらの平均(加算平均、移動平均等)を求めることによって画質の向上を図ってもよい。 Furthermore, the blood flow information generation unit 44 forms a tomographic image group representing a time-series change in the form of the cross section of interest based on the data collected by the main scan (repetitive scan) with respect to the cross section of interest. This process is realized, for example, by forming a tomographic image from data collected for each repetition of scanning. Alternatively, the image quality may be improved by forming two or more tomographic images from two or more data collected for each predetermined number of repetitions and obtaining an average of these (addition average, moving average, etc.).
血流情報生成部44が実行する処理は、例えば従来のOCT技術と同様に、ノイズ除去(ノイズ低減)、フィルタ処理、FFT(Fast Fourier Transform)などを含む。なお、ここで説明した断層像形成処理は、画像形成部41が実行する処理と同様である。したがって、断層像形成処理を画像形成部41にて行うことができる。 The processing executed by the blood flow information generation unit 44 includes, for example, noise removal (noise reduction), filter processing, FFT (Fast Fourier Transform), and the like, as in the conventional OCT technology. Note that the tomographic image forming process described here is the same as the process executed by the image forming unit 41. Therefore, the tomographic image forming process can be performed by the image forming unit 41.
血流情報生成部44は、注目断面に対する本走査により収集されたデータに基づいて、注目断面における位相差の時系列変化を表す位相画像を形成する。この処理に用いられるデータは、注目断面の断層像(群)を形成するために用いられるデータと同じである。よって、注目断面の断層像と位相画像との間には自然な位置対応関係があり、レジストレーションは容易である。 The blood flow information generation unit 44 forms a phase image representing a time-series change of the phase difference in the cross section of interest based on the data collected by the main scan for the cross section of interest. The data used for this processing is the same as the data used to form the tomographic image (group) of the cross section of interest. Therefore, there is a natural positional correspondence between the tomographic image of the cross section of interest and the phase image, and registration is easy.
位相画像の形成方法の例を説明する。典型的な例において、位相画像は、隣り合うAライン複素信号(隣接する走査点に対応する信号)の位相差を算出することにより得られる。換言すると、この例の位相画像は、注目断面の断層像の各画素について、その画素の画素値(輝度値)の時系列変化に基づき形成される。任意の画素について、血流情報生成部44は、その輝度値の時系列変化のグラフを考慮する。血流情報生成部44は、このグラフにおいて所定の時間間隔Δtだけ離れた2つの時点t1及びt2(t2=t1+Δt)の間における位相差Δφを求める。そして、この位相差Δφを時点t1(より一般に2つの時点t1及びt2の間の任意の時点)における位相差Δφ(t1)として定義する。予め設定された多数の時点のそれぞれについてこの処理を実行することで、当該画素における位相差の時系列変化が得られる。 An example of a phase image forming method will be described. In a typical example, a phase image is obtained by calculating a phase difference between adjacent A-line complex signals (signals corresponding to adjacent scanning points). In other words, the phase image in this example is formed based on the time-series change of the pixel value (luminance value) of each pixel of the tomographic image of the cross section of interest. For an arbitrary pixel, the blood flow information generation unit 44 considers a graph of a time-series change in luminance value. The blood flow information generation unit 44 obtains a phase difference Δφ between two time points t1 and t2 (t2 = t1 + Δt) separated by a predetermined time interval Δt in this graph. The phase difference Δφ is defined as the phase difference Δφ (t1) at the time point t1 (more generally, any time point between the two time points t1 and t2). By executing this process for each of a number of preset time points, a time-series change in phase difference in the pixel can be obtained.
位相画像は、各画素の各時点における位相差の値を画像として表現したものである。この画像化処理は、例えば、位相差の値を表示色や輝度で表現することで実現できる。このとき、時系列に沿って位相が増加したことを表す色(例えば赤)と、減少したことを表す色(例えば青)とを違えることができる。また、位相の変化量の大きさを表示色の濃さで表現することもできる。このような表現方法を採用することで、血流の向きや大きさを色や濃度で提示することが可能となる。以上の処理を各画素について実行することにより位相画像が形成される。 The phase image represents the value of the phase difference at each time point of each pixel as an image. This imaging process can be realized, for example, by expressing the value of the phase difference with the display color or brightness. At this time, a color indicating that the phase has increased along the time series (for example, red) can be different from a color indicating that the phase has decreased (for example, blue). Also, the magnitude of the phase change amount can be expressed by the darkness of the display color. By adopting such an expression method, the direction and size of the blood flow can be presented in color and density. A phase image is formed by executing the above processing for each pixel.
なお、位相差の時系列変化は、上記の時間間隔Δtを十分に小さくして位相の相関を確保することにより得られる。このとき、測定光の走査において断層像の分解能に相当する時間未満の値に時間間隔Δtを設定したオーバーサンプリングが実行される。 The time-series change of the phase difference is obtained by ensuring the phase correlation by sufficiently reducing the time interval Δt. At this time, oversampling in which the time interval Δt is set to a value less than the time corresponding to the resolution of the tomographic image in the scanning of the measurement light is executed.
血流情報生成部44は、例えば、血管領域特定処理と、傾斜角度算出処理と、血流情報生成処理とを実行することができる。血流情報生成処理は、例えば、血流速度算出処理と、血管径算出処理と、血流量算出処理とを含んでよい。 The blood flow information generation unit 44 can execute, for example, a blood vessel region specifying process, an inclination angle calculation process, and a blood flow information generation process. The blood flow information generation process may include, for example, a blood flow velocity calculation process, a blood vessel diameter calculation process, and a blood flow volume calculation process.
血管領域特定処理において、血流情報生成部44は、注目血管に対応する断層像中の血管領域を特定する。更に、血流情報生成部44は、注目血管に対応する位相画像中の血管領域を特定する。血管領域の特定は、各画像の画素値を解析することにより行われる(例えば閾値処理)。断層像中の血管領域と、断層像と位相画像とのレジストレーション結果とに基づいて、位相画像中の血管領域を特定するようにしてもよい。 In the blood vessel region specifying process, the blood flow information generating unit 44 specifies a blood vessel region in the tomographic image corresponding to the blood vessel of interest. Furthermore, the blood flow information generation unit 44 specifies a blood vessel region in the phase image corresponding to the blood vessel of interest. The blood vessel region is specified by analyzing the pixel value of each image (for example, threshold processing). The blood vessel region in the phase image may be specified based on the blood vessel region in the tomographic image and the registration result of the tomographic image and the phase image.
傾斜角度算出処理において、血流情報生成部44は、補助的走査により取得されたデータに基づいて、注目断面における注目血管の傾斜角度を算出する。例えば、血流情報生成部44は、断面間距離と血管領域の特定結果とに基づいて、注目断面における注目血管の傾斜角度を算出することができる。この処理は、血管角度分布取得部42が実行する処理(図4参照)と同様である。なお、血管角度分布取得部42により取得された傾斜角度をOCT血流計測に用いる場合には、傾斜角度算出処理を実行する必要はない。 In the tilt angle calculation process, the blood flow information generation unit 44 calculates the tilt angle of the target blood vessel in the target cross section based on the data acquired by the auxiliary scanning. For example, the blood flow information generation unit 44 can calculate the inclination angle of the blood vessel of interest in the cross section of interest based on the distance between cross sections and the result of specifying the blood vessel region. This process is the same as the process (see FIG. 4) executed by the blood vessel angle distribution acquisition unit 42. In addition, when using the inclination angle acquired by the blood vessel angle distribution acquisition part 42 for OCT blood flow measurement, it is not necessary to perform an inclination angle calculation process.
血流情報生成処理において、血流情報生成部44は、本走査(ドップラーOCT)により取得されたデータ(位相画像)と、傾斜角度算出処理により算出された血管の傾斜角度(又は、血管角度分布取得部42により求められた傾斜角度など)とに基づいて、注目血管に関する血流情報を生成する。前述のように、典型的な例の血流情報生成処理は、血流速度算出処理と、血管径算出処理と、血流量算出処理とを含む。 In the blood flow information generation process, the blood flow information generation unit 44 uses the data (phase image) acquired by the main scanning (Doppler OCT) and the blood vessel inclination angle (or blood vessel angle distribution) calculated by the inclination angle calculation process. Blood flow information related to the target blood vessel is generated on the basis of the inclination angle obtained by the acquisition unit 42). As described above, a typical example of blood flow information generation processing includes blood flow velocity calculation processing, blood vessel diameter calculation processing, and blood flow volume calculation processing.
血流情報生成部44は、位相画像として得られる位相差の時系列変化に基づいて、注目血管内を流れる血液の注目断面における血流速度を算出することができる。本処理により算出される値は、或る時点における血流速度でもよいし、血流速度の時系列変化(血流速度変化情報)でもよい。前者の場合、例えば心電図の所定の時相(例えばR波の時相)における血流速度を選択的に取得することが可能である。また、後者における時間の範囲は、注目断面を走査した時間の全体又は任意の一部である。 The blood flow information generation unit 44 can calculate the blood flow velocity in the target cross section of the blood flowing in the target blood vessel based on the time-series change of the phase difference obtained as the phase image. The value calculated by this processing may be a blood flow velocity at a certain point in time, or a time-series change in blood flow velocity (blood flow velocity change information). In the former case, for example, it is possible to selectively acquire the blood flow velocity in a predetermined time phase of the electrocardiogram (for example, the time phase of the R wave). In addition, the time range in the latter is the entire time or arbitrary part of the time when the cross section of interest is scanned.
血流速度変化情報が得られた場合、血流情報生成部44は、当該時間の範囲における血流速度の統計値を算出することができる。この統計値としては、平均値、標準偏差、分散、中央値、最大値、最小値、極大値、極小値などがある。また、血流速度の値についてのヒストグラムを作成することもできる。 When the blood flow velocity change information is obtained, the blood flow information generation unit 44 can calculate a statistical value of the blood flow velocity in the time range. The statistical values include an average value, standard deviation, variance, median value, maximum value, minimum value, maximum value, minimum value, and the like. It is also possible to create a histogram for blood flow velocity values.
血流情報生成部44は、前述のようにドップラーOCTの手法を用いて血流速度を算出することができる。血流速度の算出には、例えば次の関係式が用いられる。 The blood flow information generation unit 44 can calculate the blood flow velocity using the Doppler OCT method as described above. For example, the following relational expression is used for calculating the blood flow velocity.
Δf:測定光の散乱光が受けるドップラーシフト
n:媒質(血液)の屈折率
v:媒質の流速(血流速度)
θ:測定光の入射方向と媒質の流れの方向とが成す角度(傾斜角度)
λ:測定光の中心波長
Δf: Doppler shift received by scattered light of measurement light n: Refractive index of medium (blood) v: Flow velocity of medium (blood flow velocity)
θ: Angle (inclination angle) formed by the incident direction of the measurement light and the direction of flow of the medium
λ: Center wavelength of measurement light
典型的な例において、媒質の屈折力nと測定光の中心波長λはそれぞれ既知であり、ドップラーシフトΔfは位相差の時系列変化から得られ、傾斜角度θは傾斜角度算出処理又は血管角度分布から得られる。血流情報生成部44は、これらの値を上記関係式に代入することにより、血流速度vを算出することができる。 In a typical example, the refractive power n of the medium and the center wavelength λ of the measurement light are known, the Doppler shift Δf is obtained from the time-series change of the phase difference, and the inclination angle θ is the inclination angle calculation process or blood vessel angle distribution. Obtained from. The blood flow information generation unit 44 can calculate the blood flow velocity v by substituting these values into the relational expression.
血管径算出処理において、血流情報生成部44は、注目断面における注目血管の径を算出する。この算出方法の例として、眼底の正面画像を用いる第1の算出方法と、断層像を用いる第2の算出方法がある。 In the blood vessel diameter calculation process, the blood flow information generation unit 44 calculates the diameter of the target blood vessel in the target cross section. As an example of this calculation method, there are a first calculation method using a front image of the fundus and a second calculation method using a tomographic image.
第1の算出方法が適用される場合、注目断面の位置を含む眼底の部位の撮影が予め行われる。この眼底撮影は、例えば正面画像取得部60により行われる。或いは、過去に取得されて保存された眼底の正面画像を読み出してもよい。 When the first calculation method is applied, the fundus region including the position of the cross section of interest is imaged in advance. This fundus photographing is performed by the front image acquisition unit 60, for example. Alternatively, a front image of the fundus acquired and saved in the past may be read.
血流情報生成部44は、撮影画角(撮影倍率)、ワーキングディスタンス、眼球光学系の情報など、画像上のスケールと実空間でのスケールとの関係を決定する各種ファクターに基づいて、眼底の正面画像におけるスケールを設定する。このスケールは実空間における長さを表す。具体例として、このスケールは、隣接する画素の間隔と、実空間におけるスケールとを対応付けたものである(例えば画素の間隔=10μm)。なお、上記ファクターの様々な値と、実空間でのスケールとの関係を予め算出し、この関係をテーブル形式やグラフ形式で表現した情報を記憶しておくことも可能である。この場合、上記ファクターに対応するスケールが選択的に適用される。 The blood flow information generation unit 44 is based on various factors that determine the relationship between the scale on the image and the scale in the real space, such as the shooting angle of view (shooting magnification), working distance, and information on the eyeball optical system. Set the scale in the front image. This scale represents the length in real space. As a specific example, this scale associates an interval between adjacent pixels with a scale in real space (for example, an interval between pixels = 10 μm). It is also possible to calculate in advance the relationship between various values of the above factor and the scale in the real space, and store information expressing this relationship in a table format or a graph format. In this case, a scale corresponding to the factor is selectively applied.
血流情報生成部44は、このスケールと血管領域に含まれる画素とに基づいて、注目断面における注目血管の径、つまり血管領域の径を算出する。具体例として、血流情報生成部44は、血管領域の様々な方向の径の最大値や平均値を求めることができる。或いは、血流情報生成部44は、血管領域の輪郭を円近似又は楕円近似し、その円又は楕円の径を求めることができる。なお、血管径が決まれば血管領域の面積を(実質的に)決定することができるので、血管径を求める代わりに当該面積を算出するようにしてもよい。 The blood flow information generation unit 44 calculates the diameter of the blood vessel of interest in the cross section of interest, that is, the diameter of the blood vessel region, based on the scale and the pixels included in the blood vessel region. As a specific example, the blood flow information generation unit 44 can obtain a maximum value or an average value of diameters in various directions of the blood vessel region. Alternatively, the blood flow information generation unit 44 can approximate the outline of the blood vessel region in a circle or an ellipse and obtain the diameter of the circle or ellipse. Since the area of the blood vessel region can be (substantially) determined once the blood vessel diameter is determined, the area may be calculated instead of obtaining the blood vessel diameter.
第2の算出方法について説明する。第2の算出方法では、注目断面における眼底の断層像が用いられる。この断層像は、本走査に基づく断層像でもよいし、これとは別に取得されたものでもよい。この断層像におけるスケールは、測定光の走査態様に応じて決定される。注目断面の長さは、ワーキングディスタンス、眼球光学系の情報など、画像上のスケールと実空間でのスケールとの関係を決定する各種ファクターに基づいて決定される。血流情報生成部44は、例えば、注目断面の長さに基づいて隣接する画素の間隔を求め、第1の算出方法と同様にして注目断面における注目血管の径を算出することができる。 A second calculation method will be described. In the second calculation method, a tomographic image of the fundus at the cross section of interest is used. This tomographic image may be a tomographic image based on the main scanning, or may be obtained separately. The scale in this tomographic image is determined according to the scanning mode of the measurement light. The length of the cross section of interest is determined based on various factors that determine the relationship between the scale on the image and the scale in the real space, such as working distance and information on the eyeball optical system. For example, the blood flow information generation unit 44 can obtain an interval between adjacent pixels based on the length of the cross section of interest, and can calculate the diameter of the blood vessel of interest in the cross section of interest in the same manner as the first calculation method.
血流量算出処理において、血流情報生成部44は、血流速度の算出結果と血管径の算出結果とに基づいて、注目血管内を流れる血液の流量を算出する。この処理の一例を以下に説明する。 In the blood flow calculation process, the blood flow information generation unit 44 calculates the flow rate of blood flowing in the target blood vessel based on the blood flow velocity calculation result and the blood vessel diameter calculation result. An example of this process will be described below.
血管内における血流がハーゲン・ポアズイユ流(Hagen−Poiseuille flow)と仮定する。また、血管径をwとし、血流速度の最大値をVmとする。この場合、血流量Qは次の関係式で表される。 It is assumed that the blood flow in the blood vessel is a Hagen-Poiseille flow. Further, the blood vessel diameter is set as w, and the maximum blood flow velocity is set as Vm. In this case, the blood flow rate Q is expressed by the following relational expression.
血流情報生成部44は、血管径算出処理により得られた血管径wと、血流速度算出処理により得られた血流速度における最大値Vmとを上記関係式に代入することにより、血流量Qを算出することができる。 The blood flow information generation unit 44 substitutes the blood vessel diameter w obtained by the blood vessel diameter calculation processing and the maximum value Vm in the blood flow velocity obtained by the blood flow velocity calculation processing into the above relational expression. Q can be calculated.
〈操作部50〉
操作部50は、眼科撮影装置1に対してユーザが指示を入力するために使用される。操作部50は、眼科装置やコンピュータに用いられる公知の操作デバイスを含んでよい。例えば、操作部50は、マウス、タッチパッド、トラックボール、キーボード、ペンタブレット、操作パネル、ジョイスティック、ボタン、スイッチ等を含んでよい。また、操作部50は、タッチパネルを含んでよい。この場合、制御部10は、眼科撮影装置1を操作するためのGUIをタッチパネルに表示することができる。
<Operation unit 50>
The operation unit 50 is used for a user to input an instruction to the ophthalmologic photographing apparatus 1. The operation unit 50 may include a known operation device used for an ophthalmologic apparatus or a computer. For example, the operation unit 50 may include a mouse, a touch pad, a trackball, a keyboard, a pen tablet, an operation panel, a joystick, a button, a switch, and the like. The operation unit 50 may include a touch panel. In this case, the control unit 10 can display a GUI for operating the ophthalmologic photographing apparatus 1 on the touch panel.
〈正面画像取得部60〉
正面画像取得部60は、眼底の正面画像を取得する。正面画像を取得するための処理は任意である。第1の例において、正面画像取得部60は、眼底を撮影するための構成を含んでよい。例えば、正面画像取得部60は、眼底カメラの光学系、SLOの光学系などを含んでよい。
<Front image acquisition unit 60>
The front image acquisition unit 60 acquires a front image of the fundus. The process for acquiring the front image is arbitrary. In the first example, the front image acquisition unit 60 may include a configuration for photographing the fundus. For example, the front image acquisition unit 60 may include a fundus camera optical system, an SLO optical system, and the like.
第2の例において、正面画像取得部60は、当該被検眼の眼底の正面画像を外部装置から取得するための構成を含んでよい。例えば、正面画像取得部60は、LAN、インターネット、専用線等の通信回線を介してデータの送受信を行うための通信デバイスを含んでよい。この場合、正面画像取得部60は、例えば電子カルテシステムや画像アーカイビングシステムに格納されている当該被検眼の眼底の正面画像を、患者IDやDICOMタグ等を検索クエリとして取得することができる。 In the second example, the front image acquisition unit 60 may include a configuration for acquiring a front image of the fundus of the subject eye from an external device. For example, the front image acquisition unit 60 may include a communication device for transmitting and receiving data via a communication line such as a LAN, the Internet, or a dedicated line. In this case, the front image acquisition unit 60 can acquire a front image of the fundus of the eye to be examined stored in, for example, an electronic medical record system or an image archiving system, using a patient ID, a DICOM tag, or the like as a search query.
第3の例において、正面画像取得部60は、OCTによって正面画像を形成するプロセッサを含んでよい。OCT正面画像としては、Cモード画像、プロジェクション画像、シャドウグラムなどがある。 In the third example, the front image acquisition unit 60 may include a processor that forms a front image by OCT. Examples of the OCT front image include a C-mode image, a projection image, and a shadowgram.
血管強調画像の形成に用いられた3次元データセットをレンダリングすることによって正面画像が形成される場合、共通の3次元データセット(つまり共通の3次元座標系)を介して血管強調画像と正面画像とをレジストレーションすることが可能である。一般に、血管強調画像と正面画像との間のレジストレーションは、例えば、双方の画像から特徴部位(視神経乳頭、黄斑部、血管、病変部、レーザ瘢痕等)を検出する処理と、双方の特徴部位を基準として双方の画像を位置合わせする処理とを通じて行うことができる。 When the front image is formed by rendering the three-dimensional data set used to form the blood vessel emphasized image, the blood vessel emphasized image and the front image are transmitted via a common three-dimensional data set (that is, a common three-dimensional coordinate system) Can be registered. In general, registration between a blood vessel-enhanced image and a front image includes, for example, processing for detecting a characteristic part (optic nerve head, macular part, blood vessel, lesion, laser scar, etc.) from both images, and both characteristic parts. Can be performed through the process of aligning both images with reference to.
〈動作〉
例示的な眼科撮影装置が実行可能な動作の幾つかの例を説明する。
<Operation>
Several examples of operations that can be performed by the exemplary ophthalmic imaging apparatus will be described.
〈第1動作例〉
第1動作例では、OCT血管造影を用いて得られた血管角度分布に基づき設定された計測位置においてOCT血流計測を行う。本例において実行される処理の流れを図5に示す。なお、患者ID等の入力、被検眼に対する光学系のアライメント、光学系のフォーカス調整、OCT光路長調整、固視位置の調整、OCTスキャン範囲の設定などの準備的処理は、既になされているものとする(他の動作例や他の実施形態においても同様であるとする)。
<First operation example>
In the first operation example, OCT blood flow measurement is performed at a measurement position set based on a blood vessel angle distribution obtained using OCT angiography. FIG. 5 shows a flow of processing executed in this example. Preliminary processing such as input of patient ID, alignment of the optical system with respect to the subject's eye, focus adjustment of the optical system, OCT optical path length adjustment, fixation position adjustment, OCT scan range setting, etc. has already been performed. (The same applies to other operation examples and other embodiments).
(S1:眼底OCTにより3次元データセットを収集する)
OCT血管造影のために、データ収集部30は、収集制御部11による制御の下、OCTを用いて被検眼の眼底の3次元データセットを収集する。収集された3次元データセットは、データ処理部40に送られる。
(S1: Collect 3D data set by fundus OCT)
For OCT angiography, the data collection unit 30 collects a three-dimensional data set of the fundus of the subject's eye using OCT under the control of the collection control unit 11. The collected three-dimensional data set is sent to the data processing unit 40.
(S2:眼底の血管強調画像を形成する)
画像形成部41は、ステップS1で収集された3次元データセットに基づいて、3次元血管強調画像を形成する。
(S2: forming a blood vessel emphasized image of the fundus)
The image forming unit 41 forms a three-dimensional blood vessel emphasized image based on the three-dimensional data set collected in step S1.
(S3:血管角度分布を求める)
血管角度分布取得部42は、ステップS2で形成された3次元血管強調画像に基づいて血管角度分布を求める。求められた血管角度分布は、例えば、記憶部20に格納される。
(S3: Obtain blood vessel angle distribution)
The blood vessel angle distribution acquisition unit 42 obtains the blood vessel angle distribution based on the three-dimensional blood vessel enhancement image formed in step S2. The obtained blood vessel angle distribution is stored in the storage unit 20, for example.
(S4:計測位置を設定する)
計測位置設定部43は、ステップS3で求められた血管角度分布に基づいて計測位置を設定する。このとき、例えば、評価処理部431が、ステップS3で求められた血管角度分布に基づき、眼底の1以上の位置について、OCT血流計測の対象部位としての適性を評価する。計測位置設定部43は、この評価の結果を利用して計測位置の設定を行うことができる。
(S4: Set the measurement position)
The measurement position setting unit 43 sets a measurement position based on the blood vessel angle distribution obtained in step S3. At this time, for example, the evaluation processing unit 431 evaluates the suitability of the one or more positions of the fundus as the target site for OCT blood flow measurement based on the blood vessel angle distribution obtained in step S3. The measurement position setting unit 43 can set the measurement position using the result of the evaluation.
(S5:OCT血流計測を行う)
眼科撮影装置1は、ステップS4で設定された計測位置においてOCT血流計測を実行する。
(S5: Perform OCT blood flow measurement)
The ophthalmologic imaging apparatus 1 performs OCT blood flow measurement at the measurement position set in step S4.
このとき、収集制御部11は、データ収集部30に含まれる光源や光スキャナを制御する。収集制御部11による制御の下、データ収集部30は、ステップS4で設定された計測位置において血管に交差する第1断面の繰り返し走査を少なくとも実行することにより第1データを収集する。これに加え、データ収集部30は、この血管に交差する1以上の補助的断面を走査することにより第2データを収集することができる。 At this time, the collection control unit 11 controls a light source and an optical scanner included in the data collection unit 30. Under the control of the collection control unit 11, the data collection unit 30 collects the first data by executing at least the first cross-sectional scan intersecting the blood vessel at the measurement position set in step S4. In addition, the data collection unit 30 can collect the second data by scanning one or more auxiliary cross sections that intersect the blood vessel.
血流情報生成部44は、データ収集部30により収集された第1データと、第1断面におけるこの血管の傾斜角度とに基づいて、この血管に関する血流情報を生成する。第2データの収集が行われた場合、血流情報生成部44は、この第2データに基づいて、第1断面におけるこの血管の傾斜角度を求める。第2データの収集が行われなかった場合、例えば、血管角度分布に表された傾斜角度(計測位置における傾斜角度、計測位置の近傍における傾斜角度等)が利用される。 The blood flow information generation unit 44 generates blood flow information related to the blood vessel based on the first data collected by the data collection unit 30 and the inclination angle of the blood vessel in the first cross section. When the second data is collected, the blood flow information generation unit 44 obtains the inclination angle of the blood vessel in the first cross section based on the second data. When the second data is not collected, for example, an inclination angle (an inclination angle at the measurement position, an inclination angle near the measurement position, etc.) represented in the blood vessel angle distribution is used.
制御部10は、生成された血流情報を表示デバイス2に表示することや、記憶部20に保存することや、外部装置に送信することができる。また、OCT血流計測において得られた情報(断層像、位相画像等)、及び/又は、OCT血管造影において得られた画像(3次元データセット、血管強調画像等)についても同様に、表示、保存、送信等を行うことが可能である。 The control unit 10 can display the generated blood flow information on the display device 2, save it in the storage unit 20, and transmit it to an external device. Similarly, information obtained in OCT blood flow measurement (tomographic image, phase image, etc.) and / or image obtained in OCT angiography (three-dimensional data set, blood vessel enhancement image, etc.) are also displayed, Storage, transmission, etc. can be performed.
〈第2動作例〉
第2動作例では、計測位置を表す画像(計測位置画像)を眼底の正面画像に重ねて表示することにより、計測位置をユーザに認識させる。本例において実行される処理の流れを図6に示す。
<Second operation example>
In the second operation example, an image representing the measurement position (measurement position image) is displayed on the fundus front image so as to be recognized by the user. The flow of processing executed in this example is shown in FIG.
(S11〜S14)
ステップS11、S12、S13及びS14は、それぞれ、第1動作例のステップS1、S2、S3及びS4と同様にして実行される。
(S11-S14)
Steps S11, S12, S13, and S14 are respectively performed in the same manner as steps S1, S2, S3, and S4 of the first operation example.
(S15:眼底の正面画像を取得する)
正面画像取得部60は、眼底の正面画像を取得する。例えば、正面画像取得部60は、ステップS14の後に眼底を撮影する。この眼底撮影は、例えば赤外光を用いた撮影である。典型的には、任意のタイミングで取得が開始された赤外観察画像(動画像)の最新のフレームが正面画像として用いられる。なお、正面画像取得部60は、電子カルテシステム等にアクセスすることにより、又は、ステップS11で収集された3次元データセットをレンダリングすることにより、眼底の正面画像を取得することも可能である。なお、正面画像の取得処理を行うタイミングは任意であってよい。
(S15: Acquire a front image of the fundus)
The front image acquisition unit 60 acquires a front image of the fundus. For example, the front image acquisition unit 60 captures the fundus after step S14. This fundus imaging is, for example, imaging using infrared light. Typically, the latest frame of an infrared observation image (moving image) that has been acquired at an arbitrary timing is used as the front image. The front image acquisition unit 60 can also acquire a front image of the fundus by accessing an electronic medical record system or the like, or by rendering the three-dimensional data set collected in step S11. The timing for performing the front image acquisition process may be arbitrary.
(S16:計測位置に対応する正面画像中の位置を特定する)
データ処理部40(及び/又は表示制御部12等)は、ステップS15で取得された正面画像において、ステップS14で設定された計測位置に対応する位置を特定する。この処理は、例えば次のようにして実行することができる。
(S16: The position in the front image corresponding to the measurement position is specified)
The data processing unit 40 (and / or the display control unit 12 or the like) specifies a position corresponding to the measurement position set in step S14 in the front image acquired in step S15. This process can be executed as follows, for example.
まず、データ処理部40は、ステップS11で取得された3次元データセットのプロジェクション画像を作成する。この処理は、3次元データセットの画素をAスキャン方向(深さ方向、奥行き方向)に積算する演算を含む。プロジェクション画像は、眼底の形態を表す正面画像である。 First, the data processing unit 40 creates a projection image of the three-dimensional data set acquired in step S11. This process includes an operation of integrating the pixels of the three-dimensional data set in the A scan direction (depth direction, depth direction). The projection image is a front image representing the form of the fundus.
次に、データ処理部40は、このプロジェクション画像と、ステップS15で取得された正面画像との間のレジストレーションを行う。それにより、プロジェクション画像中の位置と正面画像中の位置とが対応付けられる。 Next, the data processing unit 40 performs registration between the projection image and the front image acquired in step S15. Thereby, the position in the projection image is associated with the position in the front image.
ここで、ステップS14で設定された計測位置は3次元データセットを利用して設定され、且つ、プロジェクション画像も3次元データセットから作成されたものである。よって、3次元データセットに定義された3次元座標系とレジストレーション結果とを介して、この計測位置に対応する正面画像中の位置を特定することができる。 Here, the measurement position set in step S14 is set using a three-dimensional data set, and a projection image is also created from the three-dimensional data set. Therefore, the position in the front image corresponding to this measurement position can be specified through the three-dimensional coordinate system defined in the three-dimensional data set and the registration result.
なお、計測画像に対応する正面画像中の位置を特定するための処理は本例に限定されない。例えば、ステップS12で形成された血管強調画像とステップS15で取得された正面画像とのレジストレーションを行うことによって、同様の処理結果を得ることが可能である。 In addition, the process for specifying the position in the front image corresponding to the measurement image is not limited to this example. For example, a similar processing result can be obtained by performing registration between the blood vessel emphasized image formed in step S12 and the front image acquired in step S15.
(S17:計測位置画像を正面画像に重ねて表示する)
表示制御部12は、ステップS15で取得された正面画像を表示デバイス2に表示するとともに、ステップS16で特定された位置を表す画像(計測位置画像)をこの正面画像にオーバーレイ表示する。
(S17: The measurement position image is displayed superimposed on the front image)
The display control unit 12 displays the front image acquired in step S15 on the display device 2, and displays an image representing the position specified in step S16 (measurement position image) as an overlay display on the front image.
計測位置画像の形態は任意である。例えば、計測位置画像は、所定の形状、所定のサイズ、所定の色を有する画像である。計測位置画像は、例えば、第1断面の位置を示す画像を含んでよい。また、計測位置画像は、第2断面の位置を示す画像を含んでよい。また、計測位置画像は、第1断面(及び第2断面)を含む領域を表す画像を含んでよい。また、計測位置画像は、OCT血流計測の対称となる血管(注目血管)を示す画像を含んでよい。なお、計測位置画像はこれらに限定されるものではない。正面画像と計測位置画像の表示態様については、その例を後述する。 The form of the measurement position image is arbitrary. For example, the measurement position image is an image having a predetermined shape, a predetermined size, and a predetermined color. The measurement position image may include an image indicating the position of the first cross section, for example. Further, the measurement position image may include an image indicating the position of the second cross section. Further, the measurement position image may include an image representing a region including the first cross section (and the second cross section). Further, the measurement position image may include an image showing a blood vessel (attention blood vessel) that is symmetrical with OCT blood flow measurement. The measurement position image is not limited to these. An example of the display mode of the front image and the measurement position image will be described later.
(S18:OCT血流計測を行う)
眼科撮影装置1は、ステップS14で設定された計測位置(つまり、ステップS17で正面画像上に表示された計測位置画像が示す位置)においてOCT血流計測を実行する。OCT血流計測は、第1動作例のステップS5と同様にして実行される。
(S18: OCT blood flow measurement is performed)
The ophthalmologic imaging apparatus 1 performs OCT blood flow measurement at the measurement position set in step S14 (that is, the position indicated by the measurement position image displayed on the front image in step S17). OCT blood flow measurement is performed in the same manner as in step S5 of the first operation example.
ステップS17における表示態様の例を図7に示す。本例では、例えば眼底カメラにより取得された正面画像Gに、第1断面の位置を示す計測位置画像と第2断面の位置を示す計測位置画像とがオーバーレイ表示される。 An example of the display mode in step S17 is shown in FIG. In this example, for example, a measurement position image indicating the position of the first cross section and a measurement position image indicating the position of the second cross section are displayed in an overlay on the front image G acquired by the fundus camera.
第1断面の位置を示す計測位置画像は、注目血管Cに交差する線状画像D1を含む。また、第2断面の位置を示す計測位置画像は、線状画像D1の近傍において注目血管Cに交差する2つの線状画像D2及びD3を含む。線状画像D2は、線状画像D1に対して注目血管Cの上流側(又は下流側)に位置し、線状画像D3は、線状画像D1に対して注目血管の下流側(又は上流側)に位置する。 The measurement position image indicating the position of the first cross section includes a linear image D1 that intersects the target blood vessel C. Further, the measurement position image indicating the position of the second cross section includes two linear images D2 and D3 that intersect the target blood vessel C in the vicinity of the linear image D1. The linear image D2 is located upstream (or downstream) of the blood vessel C of interest with respect to the linear image D1, and the linear image D3 is downstream (or upstream) of the blood vessel of interest with respect to the linear image D1. ).
これら3つの線状画像D1、D2及びD3により、ユーザは、眼底のどの血管(注目血管C)に対してOCT血流計測が行われるか把握することができ、また、この注目血管Cのどの位置においてOCT血流計測が行われるか把握することができる。 With these three linear images D1, D2 and D3, the user can grasp which blood vessel (attention blood vessel C) in the fundus is subjected to OCT blood flow measurement, and which of the attention blood vessels C Whether OCT blood flow measurement is performed at the position can be grasped.
また、3つの線状画像D1、D2及びD3は、全て同じ色で表示されてもよいし、2以上の色で表示されてもよい。例えば、第1断面の位置を示す線状画像D1を第1色(例えば赤色)で表示し、2つの第2断面の位置を示す線状画像D2及びD3を第2色(例えば青色)で表示することにより、第1断面と第2断面とを識別可能に提示することが可能である。 The three linear images D1, D2, and D3 may all be displayed in the same color, or may be displayed in two or more colors. For example, the linear image D1 indicating the position of the first cross section is displayed in a first color (for example, red), and the linear images D2 and D3 indicating the positions of two second cross sections are displayed in the second color (for example, blue). By doing so, it is possible to present the first cross section and the second cross section in an identifiable manner.
〈第3動作例〉
第3動作例では、計測モードの一例を説明する。本例の計測モードは、ユーザ又は眼科撮影装置1等が指定した血管(注目血管)のOCT血流計測を行うときに使用される(注目血管モード)。なお、計測モードの他の例については後述する。本例において実行される処理の流れを図8に示す。
<Third operation example>
In the third operation example, an example of a measurement mode will be described. The measurement mode of this example is used when OCT blood flow measurement is performed on a blood vessel (attention blood vessel) designated by the user or the ophthalmologic imaging apparatus 1 (attention blood vessel mode). Other examples of the measurement mode will be described later. The flow of processing executed in this example is shown in FIG.
(S21:注目血管を指定する)
本例では、まず、注目血管が指定される。注目血管の指定は、手動又は自動で実行される。
(S21: Designate the target blood vessel)
In this example, first, a target blood vessel is designated. The designation of the target blood vessel is executed manually or automatically.
手動で注目血管を指定する場合、例えば、表示制御部12が、被検眼の眼底の正面画像を表示デバイス2に表示する。典型的には、表示制御部12は、正面画像取得部60が、眼底を撮影することにより取得した正面画像、又は、電子カルテシステム等にアクセスすることにより取得した正面画像を、表示デバイス2に表示する。ユーザは、操作部50を用いることにより、表示デバイス2に表示された正面画像中の所望の血管を指定する。この指定操作は、例えば、マウスによるクリック操作、指によるタッチ操作である。制御部10は、例えば、この正面画像と、ユーザにより指定された位置(注目血管の位置情報)とを記憶部20に格納する。 When manually specifying the target blood vessel, for example, the display control unit 12 displays a front image of the fundus of the eye to be examined on the display device 2. Typically, the display control unit 12 displays the front image acquired by the front image acquisition unit 60 by capturing the fundus or the front image acquired by accessing an electronic medical record system or the like on the display device 2. indicate. The user designates a desired blood vessel in the front image displayed on the display device 2 by using the operation unit 50. This designation operation is, for example, a click operation with a mouse or a touch operation with a finger. For example, the control unit 10 stores the front image and the position designated by the user (position information of the target blood vessel) in the storage unit 20.
自動で注目血管を指定する場合、例えば、制御部10は、電子カルテシステム等にアクセスして、被検眼の眼底の所定の血管を示す情報を取得する。一例として、制御部10は、過去にOCT血流計測が行われた血管を示す情報を取得する。また、所定のファクター(診断名等)に応じてOCT血流計測の対象となる血管が決められている場合、制御部10は、電子カルテシステム等にアクセスして被検眼の診断名等を取得し、この診断名等に対応する注目血管を選択する。制御部10は、自動で指定された注目血管を示す情報を記憶部20に格納する。 When the target blood vessel is automatically designated, for example, the control unit 10 accesses an electronic medical chart system or the like, and acquires information indicating a predetermined blood vessel in the fundus of the eye to be examined. As an example, the control unit 10 acquires information indicating a blood vessel in which OCT blood flow measurement has been performed in the past. In addition, when a blood vessel to be subjected to OCT blood flow measurement is determined according to a predetermined factor (diagnostic name, etc.), the control unit 10 accesses an electronic medical record system and obtains a diagnostic name, etc. of the eye to be examined. Then, the target blood vessel corresponding to the diagnosis name or the like is selected. The control unit 10 stores information indicating the automatically designated blood vessel in the storage unit 20.
自動で注目血管を指定する場合の他の例として、データ処理部40は、被検眼の眼底の画像(正面画像、OCT画像等)を解析することにより注目血管を指定することができる。この解析処理は、例えば、血管の形態(蛇行、太さ等)を標準値と比較する処理を含む。制御部10は、データ処理部40により指定された注目血管を示す情報(及び上記画像)を記憶部20に格納する。 As another example of automatically specifying the target blood vessel, the data processing unit 40 can specify the target blood vessel by analyzing the fundus image (front image, OCT image, etc.) of the eye to be examined. This analysis process includes, for example, a process of comparing a blood vessel form (meandering, thickness, etc.) with a standard value. The control unit 10 stores information (and the image) indicating the target blood vessel designated by the data processing unit 40 in the storage unit 20.
(S22:眼底OCTにより、注目血管を含む領域の3次元データセットを収集する)
正面画像取得部60は、被検眼の眼底を撮影することにより正面画像を取得する。データ処理部40等は、この正面画像と、ステップS21で記憶部20に格納された画像(正面画像、OCT画像等)とのレジストレーションを行うことにより、注目血管に対応する正面画像中の領域を特定することができる。ステップS21で記憶部20に画像が格納されなかった場合には、例えば、データ処理部40等が、眼底の解剖学的形態(向き、組織の配置等)や、ステップS21で指定された位置に基づいて、注目血管に対応する正面画像中の領域を特定することができる。
(S22: A three-dimensional data set of a region including the blood vessel of interest is collected by fundus OCT)
The front image acquisition unit 60 acquires a front image by photographing the fundus of the eye to be examined. The data processing unit 40 or the like performs registration between the front image and the image (front image, OCT image, etc.) stored in the storage unit 20 in step S21, so that a region in the front image corresponding to the target blood vessel is obtained. Can be specified. If no image is stored in the storage unit 20 in step S21, for example, the data processing unit 40 or the like is placed in the anatomical form (direction, tissue arrangement, etc.) of the fundus or the position specified in step S21. Based on this, it is possible to specify a region in the front image corresponding to the blood vessel of interest.
注目血管に対応する正面画像中の領域を含む領域のOCT血管造影を行うために、データ収集部30は、収集制御部11による制御の下、OCTを用いて被検眼の眼底の3次元データセットを収集する。収集された3次元データセットは、データ処理部40に送られる。 In order to perform OCT angiography of the region including the region in the front image corresponding to the target blood vessel, the data collection unit 30 uses the OCT to control a three-dimensional data set of the fundus of the eye to be examined under the control of the collection control unit 11. To collect. The collected three-dimensional data set is sent to the data processing unit 40.
(S23〜S26)
ステップS23、S24、S25及びS26は、それぞれ、第1動作例のステップS2、S3、S4及びS5と同様にして実行される。
(S23-S26)
Steps S23, S24, S25 and S26 are respectively performed in the same manner as steps S2, S3, S4 and S5 of the first operation example.
つまり、画像形成部41は、ステップS22で走査された領域の血管強調画像を形成する。血管角度分布取得部42は、この血管強調画像に基づいて、注目血管の1以上の位置における傾斜角度(血管角度分布)を求める。計測位置設定部43は、この血管角度分布に基づいて、注目血管における計測位置を設定する。 That is, the image forming unit 41 forms a blood vessel emphasized image of the area scanned in step S22. The blood vessel angle distribution acquisition unit 42 obtains an inclination angle (blood vessel angle distribution) at one or more positions of the target blood vessel based on the blood vessel emphasized image. The measurement position setting unit 43 sets a measurement position in the target blood vessel based on this blood vessel angle distribution.
このとき、計測位置設定部43は、血管角度分布に表された複数の位置のいずれかを計測位置として設定することができる。典型的には、評価処理部431により得られた評価結果に基づいて、複数の位置のうちのいずれかを選択することができる。計測位置の設定方法はこれには限定されず、例えば、計測位置設定部43は、血管角度分布に表された複数の位置のいずれかの近傍位置を計測位置として設定することや、2つの位置の間の位置を計測位置として設定することも可能である。 At this time, the measurement position setting unit 43 can set one of a plurality of positions represented in the blood vessel angle distribution as the measurement position. Typically, based on the evaluation result obtained by the evaluation processing unit 431, one of a plurality of positions can be selected. The measurement position setting method is not limited to this. For example, the measurement position setting unit 43 sets a position near one of a plurality of positions represented in the blood vessel angle distribution as a measurement position, or two positions. It is also possible to set a position in between as a measurement position.
そして、収集制御部11、データ収集部30、血流情報生成部44等により、注目血管のOCT血流計測が行われる。 Then, the OCT blood flow measurement of the blood vessel of interest is performed by the collection control unit 11, the data collection unit 30, the blood flow information generation unit 44, and the like.
〈第4動作例〉
第4動作例では、第3動作例と異なる注目血管モードを説明する。第3動作例では、設定された注目血管を含む領域に対してOCT血管造影を行っているのに対し、第4動作例では、比較的広範囲に対するOCT血管造影により得られた情報から注目血管を指定する。本例において実行される処理の流れを図9に示す。
<Fourth operation example>
In the fourth operation example, an attention vessel mode different from the third operation example will be described. In the third operation example, OCT angiography is performed on a region including the set target blood vessel, whereas in the fourth operation example, the target blood vessel is extracted from information obtained by OCT angiography over a relatively wide area. specify. The flow of processing executed in this example is shown in FIG.
(S31:眼底OCTにより3次元データセットを収集する)
ステップS31は、第1動作例のステップS1と同様にして実行される。
(S31: Collect a three-dimensional data set by fundus OCT)
Step S31 is executed in the same manner as step S1 of the first operation example.
(S32:注目血管を指定する)
手動又は自動で注目血管が指定される。
(S32: Designate the target blood vessel)
The target blood vessel is designated manually or automatically.
手動で注目血管を指定する場合、例えば、表示制御部12が、ステップS31で収集された3次元データセットのプロジェクション画像を表示デバイス2に表示する。ユーザは、操作部50を用いることにより、表示デバイス2に表示されたプロジェクション画像中の所望の血管を指定する。なお、正面画像取得部60により取得された正面画像や、ステップS31で収集された3次元データセットに基づく血管強調画像に対して注目血管を指定するようにしてもよい。このような処理は、第3動作例のS21と同様にして実行することができる。自動で注目血管を指定する場合についても、第3動作例のS21と同様にして実行することが可能である。 When manually specifying the target blood vessel, for example, the display control unit 12 displays the projection image of the three-dimensional data set collected in step S31 on the display device 2. The user designates a desired blood vessel in the projection image displayed on the display device 2 by using the operation unit 50. Note that the target blood vessel may be specified for the front image acquired by the front image acquisition unit 60 or the blood vessel emphasized image based on the three-dimensional data set collected in step S31. Such a process can be executed in the same manner as S21 in the third operation example. The case of automatically specifying the target blood vessel can also be executed in the same manner as S21 in the third operation example.
(S33〜S36)
ステップS33、S34、S35及びS36は、それぞれ、第3動作例のステップS23、S24、S25及びS26と同様にして実行される。
(S33-S36)
Steps S33, S34, S35 and S36 are respectively performed in the same manner as steps S23, S24, S25 and S26 of the third operation example.
〈眼科撮影装置の第2実施形態〉
眼科撮影装置の他の例示的な実施形態を説明する。本実施形態では、前述した注目血管モードと異なる計測モードについて説明する。本実施形態の計測モードは、眼底における全血流を推定するために用いられる(全血流モード)。
<Second Embodiment of Ophthalmic Imaging Device>
Another exemplary embodiment of the ophthalmic imaging apparatus will be described. In the present embodiment, a measurement mode that is different from the noted blood vessel mode described above will be described. The measurement mode of the present embodiment is used to estimate the total blood flow in the fundus (total blood flow mode).
全血流を推定するには、動脈と静脈とを判別する必要がある。なぜなら、この判別を行わないと、眼底に流入する血流と眼底から流出する血流とを重複してカウントしてしまうからである。本実施形態に係る眼科撮影装置の構成例を図10に示す。 In order to estimate the total blood flow, it is necessary to distinguish between an artery and a vein. This is because if this determination is not performed, the blood flow flowing into the fundus and the blood flow flowing out from the fundus are counted redundantly. A configuration example of the ophthalmologic photographing apparatus according to the present embodiment is shown in FIG.
眼科撮影装置1Aは、データ処理部40に分類処理部45が設けられている点において、第1実施形態の眼科撮影装置1と異なる。第1実施形態と同様の要素には同じ符号を付す。特に言及しない限り、眼科撮影装置1Aの要素は、第1実施形態と同様の構成を備え、同様の動作を行う。 The ophthalmologic photographing apparatus 1A is different from the ophthalmic photographing apparatus 1 of the first embodiment in that a classification processing unit 45 is provided in the data processing unit 40. Elements similar to those in the first embodiment are denoted by the same reference numerals. Unless otherwise stated, the elements of the ophthalmologic photographing apparatus 1A have the same configuration as the first embodiment and perform the same operation.
分類処理部45は、画像形成部41により形成された血管強調画像に描出されている複数の血管を動脈と静脈とに分類する。ここで、「分類」とは、所定の基準にしたがって複数の対象を2以上の種別(カテゴリ)に区分する処理だけでなく、所定の基準にしたがって複数の対象から1以上の種別を抽出する処理や、所定の基準にしたがって複数の対象のうち1以上の種別に該当する対象を特定する処理も含むものとする。 The classification processing unit 45 classifies the plurality of blood vessels depicted in the blood vessel emphasized image formed by the image forming unit 41 into an artery and a vein. Here, “classification” is not only a process of dividing a plurality of objects into two or more types (categories) according to a predetermined standard, but a process of extracting one or more types from a plurality of objects according to a predetermined standard In addition, processing including specifying a target corresponding to one or more types among a plurality of targets according to a predetermined standard is also included.
よって、分類処理部45は、例えば、血管強調画像に描出されている複数の血管を動脈カテゴリと静脈カテゴリとに区分する処理、複数の血管のうちから動脈(静脈)に該当する血管を抽出する処理、複数の血管のうち動脈(静脈)に該当する血管を特定する処理のうちの少なくとも1つを実行可能であってよい。なお、全ての血管を分類の対象とする必要はない。例えば、既定閾値以上の径を有する血管のみを分類処理の対象とすることができる。 Therefore, for example, the classification processing unit 45 extracts a blood vessel corresponding to an artery (vein) from the plurality of blood vessels, a process of classifying a plurality of blood vessels depicted in the blood vessel emphasized image into an arterial category and a vein category. It may be possible to execute at least one of processing and processing for specifying a blood vessel corresponding to an artery (vein) among a plurality of blood vessels. Note that not all blood vessels need to be classified. For example, only blood vessels having a diameter greater than or equal to a predetermined threshold can be targeted for classification processing.
分類処理部45が実行する処理の例を説明する。分類処理部45は、例えば、正面画像取得部60により取得された眼底の正面画像に描出されている複数の血管の少なくとも一部のそれぞれについて、その血管が動脈であるか静脈であるか判別する。この判別は、例えば、正面画像の画素値、血管の交叉状態、血柱反射などに基づいて行うことができる(特開2007−319403号公報等を参照)。分類処理部45は、例えば、この正面画像と血管強調画像とのレジストレーションを行うことにより、正面画像を用いた分類結果を血管強調画像に反映する。これにより、血管強調画像に描出されている複数の血管を動脈群と静脈群とに分類することができる。 An example of processing executed by the classification processing unit 45 will be described. For example, the classification processing unit 45 determines, for each of at least some of the plurality of blood vessels depicted in the front image of the fundus acquired by the front image acquisition unit 60, whether the blood vessel is an artery or a vein. . This determination can be made based on, for example, the pixel value of the front image, the crossing state of the blood vessels, the blood column reflection, and the like (see JP 2007-319403 A). The classification processing unit 45 reflects the classification result using the front image on the blood vessel emphasized image by performing registration between the front image and the blood vessel emphasized image, for example. Thereby, it is possible to classify the plurality of blood vessels depicted in the blood vessel emphasized image into an artery group and a vein group.
他の例において、分類処理部45は、血管強調画像から得られる血管分布と位相画像とに基づいて、動脈/静脈の判別を行うこともできる。具体的には、分類処理部45は、まず、血管強調画像に基づいて、視神経乳頭から所定位置までの血管の経路を求めることができる。次に、分類処理部45は、この位相画像に基づいて、当該位置における血管の血流方向を求めることができる。そして、分類処理部45は、血管強調画像から求められた経路と、位相画像から求められた血流方向とに基づいて、この血管が動脈か静脈か判別することができる。それにより、動脈に分類された血管群(動脈群)、及び/又は、静脈に分類された血管群(静脈群)が得られる。なお、血管強調画像と位相画像とは同じ3次元データセットから作成された画像であるから、これらの間のレジストレーションは不要である。 In another example, the classification processing unit 45 can also determine the artery / vein based on the blood vessel distribution and the phase image obtained from the blood vessel enhancement image. Specifically, the classification processing unit 45 can first obtain the blood vessel path from the optic disc to a predetermined position based on the blood vessel enhancement image. Next, the classification processing unit 45 can obtain the blood flow direction of the blood vessel at the position based on the phase image. Then, the classification processing unit 45 can determine whether the blood vessel is an artery or a vein based on the route obtained from the blood vessel enhancement image and the blood flow direction obtained from the phase image. Thereby, a blood vessel group (arterial group) classified into an artery and / or a blood vessel group (vein group) classified into a vein are obtained. Since the blood vessel emphasized image and the phase image are images created from the same three-dimensional data set, registration between them is not necessary.
本実施形態に係る眼科撮影装置1Aが実行可能な動作の例を説明する。本例において実行される処理の流れを図11に示す。 An example of operations that can be executed by the ophthalmologic photographing apparatus 1A according to the present embodiment will be described. The flow of processing executed in this example is shown in FIG.
(S41〜S43)
ステップS41、S42及びS43は、それぞれ、第1動作例のステップS1、S2及びS3と同様にして実行される。
(S41-S43)
Steps S41, S42, and S43 are respectively performed in the same manner as steps S1, S2, and S3 of the first operation example.
(S44:複数の眼底血管を動脈/静脈に分類する)
分類処理部45は、ステップS42で形成された血管強調画像に描出されている複数の眼底血管を動脈と静脈とに分類する。本例では、動脈群の抽出を行うとする。前述したように、本ステップS44では、例えば、正面画像取得部60により任意のタイミングで取得された眼底の正面画像を参照することができる。
(S44: classify a plurality of fundus blood vessels into arteries / veins)
The classification processing unit 45 classifies the plurality of fundus blood vessels depicted in the blood vessel emphasized image formed in step S42 into an artery and a vein. In this example, it is assumed that an arterial group is extracted. As described above, in this step S44, for example, the front image of the fundus acquired by the front image acquisition unit 60 at an arbitrary timing can be referred to.
(S45:各動脈(各動脈)の計測位置を設定する)
計測位置設定部43は、ステップS44で抽出された動脈群に含まれる血管のそれぞれの計測位置を設定する。この処理は、第1動作例のステップS4と同様の処理を、この動脈群に含まれる血管のそれぞれに適用することにより実行される。
(S45: The measurement position of each artery (each artery) is set)
The measurement position setting unit 43 sets the measurement positions of the blood vessels included in the artery group extracted in step S44. This process is executed by applying the same process as step S4 of the first operation example to each of the blood vessels included in this artery group.
(S46:動脈群(静脈群)のOCT血流計測を行って総血流量を求める)
眼科撮影装置1は、ステップS45で設定された計測位置のそれぞれにおいてOCT血流計測を実行する。各計測位置におけるOCT血流計測は、第1動作例のステップS5と同様にして実行される。
(S46: OCT blood flow measurement of the arterial group (vein group) is performed to determine the total blood flow)
The ophthalmologic imaging apparatus 1 performs OCT blood flow measurement at each of the measurement positions set in step S45. OCT blood flow measurement at each measurement position is performed in the same manner as in step S5 of the first operation example.
本ステップS46の処理の例を説明する。まず、制御部10(又はデータ処理部40等)は、ステップS45で設定された複数の計測位置に対して順序を割り当てる。例えば、所定方向(上方、下方、鼻側、耳側等)を基準として時計回り又は反時計回りに順序を割り当てることや、所定部位(視神経乳頭等)に近い計測位置から順に順序を割り当てることや、血管の形態(太さ等)に応じて順序を割り当てることが可能である。 An example of the process in step S46 will be described. First, the control unit 10 (or the data processing unit 40 or the like) assigns an order to the plurality of measurement positions set in step S45. For example, the order is assigned clockwise or counterclockwise with reference to a predetermined direction (upward, downward, nose side, ear side, etc.), or the order is assigned in order from a measurement position close to a predetermined part (optic nerve head, etc.) It is possible to assign the order according to the shape (thickness etc.) of the blood vessel.
次に、制御部10(又はデータ処理部40等)は、ステップS45で設定された複数の計測位置のそれぞれに基づいて、第1断面(及び第2断面)を設定する。それにより、動脈群に含まれる血管のそれぞれに対して1つずつ第1断面が設定される。 Next, the control unit 10 (or the data processing unit 40 or the like) sets the first cross section (and the second cross section) based on each of the plurality of measurement positions set in step S45. Thereby, one first cross section is set for each of the blood vessels included in the artery group.
収集制御部11による制御の下、データ収集部30は、動脈群について設定された複数の第1断面を、上記の順序にしたがって順次に繰り返し走査するように制御する。ここで、複数の第1断面に対する繰り返し走査の方式は、最終的に全ての第1断面が所定回数ずつ走査される方式であればよい。データ収集部30により収集されたデータは血流情報生成部44に送られる。第2断面も設定された場合には、その走査も実行される。 Under the control of the collection control unit 11, the data collection unit 30 controls the plurality of first cross sections set for the arterial group to sequentially and repeatedly scan in accordance with the above order. Here, the repeated scanning method for the plurality of first cross sections may be a method in which all the first cross sections are finally scanned a predetermined number of times. The data collected by the data collection unit 30 is sent to the blood flow information generation unit 44. If the second cross section is also set, the scanning is also executed.
血流情報生成部44は、動脈群に含まれる複数の血管に対応する複数の第1断面のそれぞれについて、この第1断面の繰り返し走査により収集された第1データと、対応する計測位置における傾斜角度とに基づいて、この血管における血流量を算出する。この処理は、第1実施形態と同様に実行される。それにより、動脈群に含まれる複数の血管のそれぞれの血流量が得られる。 The blood flow information generation unit 44, for each of a plurality of first cross sections corresponding to a plurality of blood vessels included in the artery group, the first data collected by repeated scanning of the first cross section, and the inclination at the corresponding measurement position Based on the angle, the blood flow in this blood vessel is calculated. This process is executed in the same manner as in the first embodiment. Thereby, each blood flow volume of the some blood vessel contained in an artery group is obtained.
血流情報生成部44は、動脈群に含まれる複数の血管(つまり、計測位置設定部43により設定された複数の計測位置)について算出された複数の血流量に基づいて総血流量を算出する。この算出処理は、例えば、複数の血管に対応する複数の血流量の和を算出する処理を含んでよい。 The blood flow information generation unit 44 calculates a total blood flow based on a plurality of blood flows calculated for a plurality of blood vessels (that is, a plurality of measurement positions set by the measurement position setting unit 43) included in the artery group. . This calculation process may include, for example, a process of calculating the sum of a plurality of blood flows corresponding to a plurality of blood vessels.
血流情報生成部44は、複数の血流量のいずれかの値を所定のファクターに基づいて補正する処理や、総血流量の値を所定のファクターに基づいて補正する処理を実行してもよい。例えば、血管の形態(太さ、蛇行状態等)や位置に応じて血流量の値を補正することができる。また、既定閾値未満の径を有する血管が演算から除外された場合、これにより除外された血流量を付加するための補正を行ってもよい。 The blood flow information generation unit 44 may execute a process of correcting any value of the plurality of blood flows based on a predetermined factor or a process of correcting the value of the total blood flow based on a predetermined factor. . For example, the value of the blood flow rate can be corrected according to the shape (thickness, meandering state, etc.) and position of the blood vessel. Further, when a blood vessel having a diameter less than the predetermined threshold is excluded from the calculation, a correction for adding the excluded blood flow may be performed.
他の例において、血流情報生成部44は、動脈に関する全血流量と、静脈に関する全血流量とを求め、これらに基づく統計値を算出することができる。或いは、血流情報生成部44は、OCT血流計測を複数回行って複数の全血流量を求め、これらに基づく統計値を算出することができる。 In another example, the blood flow information generation unit 44 obtains the total blood flow related to the artery and the total blood flow related to the vein, and can calculate a statistical value based on these. Alternatively, the blood flow information generation unit 44 can perform OCT blood flow measurement a plurality of times to obtain a plurality of total blood flow amounts and calculate a statistical value based on these.
〈眼科撮影装置の第3実施形態〉
眼科撮影装置の他の例示的な実施形態を説明する。本実施形態では、被検眼の瞳孔の大きさを検出して角度条件情報を補正することによって、それぞれの被検眼に応じた傾斜角度の評価及び計測位置の設定を実現する。このような眼科撮影装置の構成例を図12に示す。
<Third embodiment of an ophthalmologic photographing apparatus>
Another exemplary embodiment of the ophthalmic imaging apparatus will be described. In the present embodiment, the evaluation of the inclination angle and the setting of the measurement position according to each eye to be examined are realized by detecting the size of the pupil of the eye to be examined and correcting the angle condition information. A configuration example of such an ophthalmologic photographing apparatus is shown in FIG.
眼科撮影装置1Bは、データ処理部40に瞳孔サイズ情報取得部46が設けられている点において、第1実施形態の眼科撮影装置1と異なる。第1実施形態と同様の要素には同じ符号を付す。特に言及しない限り、眼科撮影装置1Bの要素は、第1実施形態と同様の構成を備え、同様の動作を行う。 The ophthalmologic photographing apparatus 1B is different from the ophthalmic photographing apparatus 1 of the first embodiment in that a pupil size information acquiring unit 46 is provided in the data processing unit 40. Elements similar to those in the first embodiment are denoted by the same reference numerals. Unless otherwise stated, the elements of the ophthalmologic photographing apparatus 1B have the same configuration as the first embodiment and perform the same operation.
瞳孔サイズ情報取得部46は、被検眼の瞳孔のサイズを表す瞳孔サイズ情報を取得する。瞳孔サイズは、例えば、瞳孔の径若しくは面積、又は、瞳孔の近似円(又は近似楕円)の径又は面積として表される。 The pupil size information acquisition unit 46 acquires pupil size information indicating the size of the pupil of the eye to be examined. The pupil size is expressed as, for example, the diameter or area of the pupil or the diameter or area of the approximate circle (or approximate ellipse) of the pupil.
瞳孔サイズ情報取得部46は、例えば、被検眼の前眼部像を解析することにより瞳孔サイズ情報を取得することができる。この場合の例として、正面画像取得部60は、被検眼の前眼部の正面画像(前眼部像)を取得する。前眼部像は、例えば、眼底カメラ、スリットランプ顕微鏡等により取得される。また、前眼部OCTにより収集された3次元データセットに基づくプロジェクション画像又はシャドウグラムを前眼部像として用いることも可能である。瞳孔サイズ情報取得部46は、例えば、前眼部像の画素値に基づき瞳孔領域を特定し、この瞳孔領域の輪郭を円近似又は楕円近似し、その円又は楕円の径を求めることができる。なお、瞳孔径が決まれば瞳孔領域の面積を(実質的に)決定することができるので、瞳孔径の代わりに瞳孔面積を用いることができる。 The pupil size information acquisition unit 46 can acquire the pupil size information by analyzing, for example, an anterior segment image of the eye to be examined. As an example in this case, the front image acquisition unit 60 acquires a front image (anterior eye image) of the anterior eye part of the eye to be examined. The anterior segment image is acquired by, for example, a fundus camera, a slit lamp microscope, or the like. It is also possible to use a projection image or shadowgram based on a three-dimensional data set collected by the anterior segment OCT as the anterior segment image. For example, the pupil size information acquisition unit 46 can specify a pupil region based on the pixel value of the anterior segment image, approximate the contour of the pupil region to a circle or an ellipse, and obtain the diameter of the circle or ellipse. If the pupil diameter is determined, the area of the pupil region can be (substantially) determined, so that the pupil area can be used instead of the pupil diameter.
他の例において、瞳孔サイズ情報取得部46は、外部装置(電子カルテシステム等)から通信回線を介して被検眼の瞳孔サイズ情報を取得するための通信デバイスを含んでいてよい。 In another example, the pupil size information acquisition unit 46 may include a communication device for acquiring pupil size information of the eye to be examined from an external device (such as an electronic medical record system) via a communication line.
評価処理部431は、瞳孔サイズ情報取得部46により取得された瞳孔サイズ情報に基づいて、角度条件情報に含まれる1以上の角度条件のうちの少なくとも1つを変更する。図2に示す角度条件情報21aにおいては、図3等に示すように測定光をシフトすることによって傾斜角度を好適範囲「75〜80度」に補正することが可能なMランクの角度条件と、当該補正が不可能なNランクの角度条件とが変更される。 The evaluation processing unit 431 changes at least one of the one or more angle conditions included in the angle condition information based on the pupil size information acquired by the pupil size information acquisition unit 46. In the angle condition information 21a shown in FIG. 2, an M-rank angle condition that can correct the tilt angle to a suitable range “75 to 80 degrees” by shifting the measurement light as shown in FIG. The N-rank angle condition that cannot be corrected is changed.
角度条件を変更する処理においては、前述した関係式Δθ=arctan(d/T)が参照される。ここで、図3に示すように、Δθは、測定経路LS0と測定経路LS1とが眼底において成す角度であり、dは、測定経路LS0に対する測定経路LS1のシフト距離であり、Tは、被検眼内における測定光路LS0の長さである。瞳孔サイズは測定経路のシフト距離dの制約条件であり、瞳孔が大きいほどシフト距離dを大きくすることができる。典型的には、瞳孔径の半分の値(つまり瞳孔の半径)をシフト距離dの最大値に設定することができる。 In the process of changing the angle condition, the relational expression Δθ = arctan (d / T) described above is referred to. Here, as shown in FIG. 3, Δθ is an angle formed by the measurement path LS0 and the measurement path LS1 at the fundus, d is a shift distance of the measurement path LS1 with respect to the measurement path LS0, and T is the eye to be examined. This is the length of the measurement optical path LS0. The pupil size is a limiting condition for the shift distance d of the measurement path. The larger the pupil, the larger the shift distance d. Typically, a half value of the pupil diameter (that is, the pupil radius) can be set to the maximum value of the shift distance d.
本実施形態の動作例を説明する。本例において実行される処理の流れを図13に示す。これは、第1実施形態の第1動作例に角度条件情報の補正を付加した場合の例であるが、その他の動作例又は他の実施形態に角度条件情報の補正を付加する場合についても同様である。 An operation example of this embodiment will be described. The flow of processing executed in this example is shown in FIG. This is an example in which correction of angle condition information is added to the first operation example of the first embodiment, but the same applies to correction of angle condition information in other operation examples or other embodiments. It is.
(S51:瞳孔サイズ情報を取得する)
まず、瞳孔サイズ情報取得部46等により、被検眼の瞳孔サイズ情報が取得される。
(S51: Acquire pupil size information)
First, pupil size information of the eye to be examined is acquired by the pupil size information acquisition unit 46 and the like.
(S52:角度条件情報を変更する)
評価処理部431は、ステップS51において取得された瞳孔サイズ情報に基づいて、角度条件情報(21a)に含まれる1以上の角度条件のうちの少なくとも1つを変更する。
(S52: Change angle condition information)
The evaluation processing unit 431 changes at least one of the one or more angle conditions included in the angle condition information (21a) based on the pupil size information acquired in step S51.
なお、瞳孔サイズ情報が示す値によっては、角度条件情報の変更を行わなくてよい場合がある。例えば、所定範囲の瞳孔サイズについて角度条件情報が作成された場合において、ステップS51で得られた瞳孔サイズ情報が示す値が所定範囲に含まれるときには、角度条件情報を変更する必要はない。 Depending on the value indicated by the pupil size information, the angle condition information may not be changed. For example, when the angle condition information is created for a predetermined range of pupil sizes, it is not necessary to change the angle condition information when the value indicated by the pupil size information obtained in step S51 is included in the predetermined range.
(S53〜S55)
ステップS53、S54及びS55は、それぞれ、第1動作例のステップS1、S2及びS3と同様にして実行される。
(S53-S55)
Steps S53, S54, and S55 are executed in the same manner as steps S1, S2, and S3 of the first operation example, respectively.
(S56:変更された角度条件情報を参照して計測位置を設定する)
評価処理部431は、ステップS52で変更された角度条件情報と、ステップS55で求められた血管角度分布とに基づいて、血管の傾斜角度の評価を行う。計測位置設定部43は、評価処理部431により得られた評価結果に基づいて計測位置を設定する。この処理は、第1実施形態と同様にして実行される。
(S56: The measurement position is set with reference to the changed angle condition information)
The evaluation processing unit 431 evaluates the inclination angle of the blood vessel based on the angle condition information changed in step S52 and the blood vessel angle distribution obtained in step S55. The measurement position setting unit 43 sets the measurement position based on the evaluation result obtained by the evaluation processing unit 431. This process is executed in the same manner as in the first embodiment.
(S57:OCT血流計測を行う)
眼科撮影装置1Bは、第1動作例のステップS5と同様にして、ステップS56で設定された計測位置におけるOCT血流計測を実行する。
(S57: OCT blood flow measurement is performed)
The ophthalmologic imaging apparatus 1B performs OCT blood flow measurement at the measurement position set in step S56 in the same manner as in step S5 of the first operation example.
〈眼科撮影装置の第4実施形態〉
眼科撮影装置の他の例示的な実施形態を説明する。本実施形態では、散瞳剤が適用されていない状態における被検眼の瞳孔の大きさから散瞳剤適用時の瞳孔径を推定して角度条件情報を補正する。それにより、散瞳剤の適用を仮定した評価のシミュレーションが可能となる。このような眼科撮影装置の構成例を図14に示す。
<Fourth Embodiment of Ophthalmic Imaging Device>
Another exemplary embodiment of the ophthalmic imaging apparatus will be described. In the present embodiment, the angle condition information is corrected by estimating the pupil diameter when the mydriatic agent is applied from the size of the pupil of the eye to be examined in a state where the mydriatic agent is not applied. As a result, it is possible to simulate evaluation assuming application of a mydriatic agent. An example of the configuration of such an ophthalmologic photographing apparatus is shown in FIG.
眼科撮影装置1Cは、データ処理部40に瞳孔サイズ推定部47が設けられている点において、第3実施形態の眼科撮影装置1Bと異なる。第3実施形態と同様の要素には同じ符号を付す。特に言及しない限り、眼科撮影装置1Cの要素は、第1実施形態又は第3実施形態と同様の構成を備え、同様の動作を行う。 The ophthalmologic photographing apparatus 1C is different from the ophthalmic photographing apparatus 1B of the third embodiment in that a pupil size estimating unit 47 is provided in the data processing unit 40. Elements similar to those in the third embodiment are denoted by the same reference numerals. Unless otherwise stated, the elements of the ophthalmologic photographing apparatus 1C have the same configuration as the first embodiment or the third embodiment and perform the same operation.
前述したように、瞳孔サイズ情報取得部46は、被検眼の瞳孔のサイズを表す瞳孔サイズ情報を取得する。本実施形態では、散瞳剤が適用されていない状態(つまり散瞳していない状態)の瞳孔サイズが取得される。例えば、散瞳剤が適用されていない状態の被検眼の前眼部を撮影することにより得られた前眼部像を解析することにより、散瞳剤が適用されていない状態の瞳孔サイズ情報を取得することができる。また、そのような瞳孔サイズ情報を、外部装置(電子カルテシステム等)から通信回線を介して取得してもよい。 As described above, the pupil size information acquisition unit 46 acquires pupil size information indicating the size of the pupil of the eye to be examined. In the present embodiment, the pupil size in a state where a mydriatic agent is not applied (that is, a state without a mydriasis) is acquired. For example, by analyzing the anterior segment image obtained by photographing the anterior segment of the subject's eye in a state where no mydriatic agent is applied, the pupil size information in the state where the mydriatic agent is not applied is analyzed. Can be acquired. Further, such pupil size information may be acquired from an external device (such as an electronic medical record system) via a communication line.
瞳孔サイズ推定部47は、瞳孔サイズ情報取得部46により取得された瞳孔サイズ情報に基づいて、散瞳剤が適用された状態における被検眼の瞳孔のサイズを推定する。この推定は、例えば、次のいずれかを参照して行われる:散瞳剤による瞳孔サイズの変化量の標準値(臨床的に得られた統計値等);被検眼に対して過去に散瞳剤を適用したときの瞳孔サイズの変化量。 The pupil size estimation unit 47 estimates the size of the pupil of the eye to be examined in a state where the mydriatic agent is applied based on the pupil size information acquired by the pupil size information acquisition unit 46. This estimation is performed, for example, with reference to any of the following: a standard value of the amount of change in pupil size caused by a mydriatic (such as clinically obtained statistical values); The amount of change in pupil size when the agent is applied.
このような参照情報を、2種類以上の散瞳剤のそれぞれについて準備することができる。また、非散瞳時の瞳孔サイズの値に応じて、参照情報を段階的に準備することができる。また、診断名(確定診断名、疑い診断名等)、投与薬剤、病歴、薬剤歴、年齢、性別等の任意のファクターに応じて、複数の参照情報を準備することができる。このようなファクターに関する情報は、例えば、電子カルテシステム等から取得される。 Such reference information can be prepared for each of two or more types of mydriatics. Also, reference information can be prepared in stages according to the value of the pupil size at the time of non-mydriatic. Also, a plurality of reference information can be prepared according to arbitrary factors such as a diagnosis name (a definite diagnosis name, a suspected diagnosis name, etc.), a drug to be administered, a medical history, a drug history, an age, and a sex. Information regarding such factors is obtained from, for example, an electronic medical record system.
評価処理部431は、瞳孔サイズ推定部47により推定された瞳孔サイズに基づいて、角度条件情報に含まれる1以上の角度条件のうちの少なくとも1つを変更する。角度条件の変更は、第3実施形態と同様にして実行される。 The evaluation processing unit 431 changes at least one of the one or more angle conditions included in the angle condition information based on the pupil size estimated by the pupil size estimation unit 47. The change of the angle condition is executed in the same manner as in the third embodiment.
本実施形態の動作例を説明する。本例において実行される処理の流れを図15に示す。これは、第3実施形態の動作例に瞳孔サイズの推定を付加した場合の例であるが、その他の動作例又は他の実施形態に瞳孔サイズの推定を付加する場合も同様である。 An operation example of this embodiment will be described. The flow of processing executed in this example is shown in FIG. This is an example in which the estimation of the pupil size is added to the operation example of the third embodiment, but the same applies to the case where the estimation of the pupil size is added to the other operation examples or other embodiments.
(S61:瞳孔サイズ情報を取得する)
まず、瞳孔サイズ情報取得部46等により、被検眼の瞳孔サイズ情報が取得される。
(S61: Acquire pupil size information)
First, pupil size information of the eye to be examined is acquired by the pupil size information acquisition unit 46 and the like.
(S62:散瞳時の瞳孔サイズを推定する)
瞳孔サイズ推定部47は、ステップS61において取得された瞳孔サイズ情報(及び前述の参照情報)に基づいて、散瞳時における被検眼の瞳孔サイズを推定する。
(S62: Estimate pupil size at the time of mydriasis)
The pupil size estimation unit 47 estimates the pupil size of the eye to be inspected at the time of mydriasis based on the pupil size information (and the aforementioned reference information) acquired in step S61.
(S63:角度条件情報を変更する)
評価処理部431は、ステップS62において推定された瞳孔サイズに基づいて、角度条件情報(21a)に含まれる1以上の角度条件のうちの少なくとも1つを変更する。なお、瞳孔サイズの推定値が示す値によっては、角度条件情報の変更を行わなくてよい。
(S63: Change angle condition information)
The evaluation processing unit 431 changes at least one of the one or more angle conditions included in the angle condition information (21a) based on the pupil size estimated in step S62. The angle condition information may not be changed depending on the value indicated by the estimated pupil size.
(S64〜S66)
ステップS64、S65及びS66は、それぞれ、第1動作例のステップS1、S2及びS3と同様にして実行される。
(S64-S66)
Steps S64, S65, and S66 are respectively performed in the same manner as steps S1, S2, and S3 of the first operation example.
(S67:変更された角度条件情報を参照して計測位置を設定する)
評価処理部431は、ステップS63で変更された角度条件情報と、ステップS66で求められた血管角度分布とに基づいて、血管の傾斜角度の評価を行う。計測位置設定部43は、評価処理部431により得られた評価結果に基づいて計測位置を設定する。この処理は、第1実施形態と同様にして実行される。
(S67: The measurement position is set with reference to the changed angle condition information)
The evaluation processing unit 431 evaluates the inclination angle of the blood vessel based on the angle condition information changed in step S63 and the blood vessel angle distribution obtained in step S66. The measurement position setting unit 43 sets the measurement position based on the evaluation result obtained by the evaluation processing unit 431. This process is executed in the same manner as in the first embodiment.
(S68:OCT血流計測を行う)
眼科撮影装置1Bは、第1動作例のステップS5と同様にして、ステップS67で設定された計測位置におけるOCT血流計測を実行する。
(S68: OCT blood flow measurement is performed)
The ophthalmologic imaging apparatus 1B performs OCT blood flow measurement at the measurement position set in step S67 in the same manner as in step S5 of the first operation example.
〈作用・効果〉
例示的な眼科撮影装置の作用及び効果について説明する。
<Action and effect>
The operation and effect of an exemplary ophthalmologic photographing apparatus will be described.
例示的な眼科撮影装置(1、1A、1B、1C)は、データ収集部(30)と、血管強調画像形成部(画像形成部41)と、血管角度分布取得部(42)と、計測位置設定部(43)と、収集制御部(11)と、血流情報生成部(44)とを備える。 An exemplary ophthalmic imaging apparatus (1, 1A, 1B, 1C) includes a data collection unit (30), a blood vessel enhancement image formation unit (image formation unit 41), a blood vessel angle distribution acquisition unit (42), and a measurement position. A setting unit (43), a collection control unit (11), and a blood flow information generation unit (44) are provided.
データ収集部は、OCTを用いて被検眼の眼底の3次元データセットを収集することができる。血管強調画像形成部は、この3次元データセットに基づいて血管強調画像を形成することができる。血管角度分布取得部は、この血管強調画像に基づいて、眼底の1以上の位置における血管の傾斜角度を表す血管角度分布を求めることができる。計測位置設定部は、この血管角度分布に基づいて、OCT血流計測の対象となる計測位置を設定することができる。収集制御部は、この計測位置において血管に交差する第1断面を繰り返し走査するようにデータ収集部を制御することができる。血流情報生成部は、第1断面の繰り返し走査により収集された第1データと、この計測位置における血管の傾斜角度とに基づいて、この血管における血流状態を表す血流情報を生成することができる。 The data collection unit can collect a three-dimensional data set of the fundus of the eye to be examined using OCT. The blood vessel enhanced image forming unit can form a blood vessel enhanced image based on the three-dimensional data set. The blood vessel angle distribution acquisition unit can obtain a blood vessel angle distribution representing the inclination angle of the blood vessel at one or more positions of the fundus based on the blood vessel emphasized image. The measurement position setting unit can set a measurement position to be subjected to OCT blood flow measurement based on the blood vessel angle distribution. The acquisition control unit can control the data acquisition unit to repeatedly scan the first cross section intersecting the blood vessel at the measurement position. The blood flow information generation unit generates blood flow information representing a blood flow state in the blood vessel based on the first data collected by repeated scanning of the first cross section and the inclination angle of the blood vessel at the measurement position. Can do.
実施形態において、収集制御部は、計測位置設定部により設定された計測位置の近傍においてこの血管に交差する1以上の第2断面を走査するようにデータ収集部を制御することができる。血流情報生成部は、第2断面の走査により収集された第2データに基づいてこの計測位置におけるこの血管の傾斜角度を算出することができる。更に、血流情報生成部は、算出された傾斜角度と第1データとに基づいて血流情報を生成することができる。 In the embodiment, the collection control unit can control the data collection unit to scan one or more second cross sections that intersect the blood vessel in the vicinity of the measurement position set by the measurement position setting unit. The blood flow information generation unit can calculate the inclination angle of the blood vessel at the measurement position based on the second data collected by scanning the second cross section. Furthermore, the blood flow information generation unit can generate blood flow information based on the calculated inclination angle and the first data.
例示的な眼科撮影装置(1、1A、1B、1C)は、正面画像取得部(60)と、表示制御部(12)とを備えていてよい。正面画像取得部は、眼底の正面画像(観察画像、撮影画像等)を取得することができる。表示制御部は、計測位置設定部により設定された計測位置を表す計測位置画像を、正面画像取得部により取得された正面画像に重ねて表示手段(表示デバイス2)に表示させることができる。 The exemplary ophthalmologic photographing apparatus (1, 1A, 1B, 1C) may include a front image acquisition unit (60) and a display control unit (12). The front image acquisition unit can acquire a front image (an observation image, a captured image, etc.) of the fundus. The display control unit can cause the display means (display device 2) to display the measurement position image representing the measurement position set by the measurement position setting unit on the front image acquired by the front image acquisition unit.
実施形態において、眼科撮影装置は、1以上の計測モードにしたがって動作するように構成されてよい。計測モードの例として、特定血管の計測位置を探索して血流計測を行う注目血管モードがある。注目血管モードを実現するための例示的な眼科撮影装置(1)において、眼底の血管が予め指定されたとき、血管角度分布取得部は、この血管の複数の位置における傾斜角度を表す血管角度分布を求めることができる。更に、計測位置設定部は、この血管角度分布に基づいて、この血管の計測位置を設定することができる。 In an embodiment, the ophthalmologic imaging apparatus may be configured to operate according to one or more measurement modes. As an example of the measurement mode, there is a target blood vessel mode in which blood flow measurement is performed by searching for a measurement position of a specific blood vessel. In the exemplary ophthalmologic imaging apparatus (1) for realizing the focused blood vessel mode, when a blood vessel in the fundus is designated in advance, the blood vessel angle distribution acquisition unit displays the blood vessel angle distribution representing the inclination angles at a plurality of positions of the blood vessel. Can be requested. Furthermore, the measurement position setting unit can set the measurement position of the blood vessel based on the blood vessel angle distribution.
注目血管モードにおいて、計測位置設定部は、指定された血管について取得された血管角度分布に基づいて、この血管角度分布に表された複数の位置のいずれかを、この血管の計測位置として選択することができる。 In the focused blood vessel mode, the measurement position setting unit selects one of a plurality of positions represented in the blood vessel angle distribution as the measurement position of the blood vessel based on the blood vessel angle distribution acquired for the designated blood vessel. be able to.
計測モードの他の例として、眼底における全血流量を推定するための全血流モードがある。全血流モードを実現するための例示的な眼科撮影装置(1A)は、分類処理部(45)を備えていてよい。分類処理部は、血管強調画像に描出されている複数の血管を動脈と静脈とに分類することができる。計測位置設定部は、動脈に分類された血管群(動脈群)及び静脈に分類された血管群(静脈群)の少なくとも一方について、この血管群に含まれる血管のそれぞれの計測位置を設定することができる。 As another example of the measurement mode, there is a total blood flow mode for estimating the total blood flow in the fundus. The exemplary ophthalmologic imaging apparatus (1A) for realizing the whole blood flow mode may include a classification processing unit (45). The classification processing unit can classify a plurality of blood vessels depicted in the blood vessel enhancement image into an artery and a vein. The measurement position setting unit sets, for at least one of a blood vessel group classified as an artery (arterial group) and a blood vessel group classified as a vein (vein group), a measurement position of each blood vessel included in the blood vessel group. Can do.
全血流モードにおいて、収集制御部は、この血管群について設定された複数の計測位置に基づく複数の第1断面を順次に繰り返し走査するようにデータ収集部を制御することができる。血流情報生成部は、複数の第1断面のそれぞれについて、この第1断面の繰り返し走査により収集された第1データと、対応する計測位置における傾斜角度とに基づいて、対応する血管における血流量を算出することができる。更に、血流情報生成部は、この血管群について設定された複数の計測位置について算出された複数の血流量に基づいて総血流量(の推定値)を算出することができる。 In the whole blood flow mode, the collection control unit can control the data collection unit to sequentially and repeatedly scan a plurality of first cross sections based on a plurality of measurement positions set for the blood vessel group. The blood flow information generation unit, for each of the plurality of first cross sections, based on the first data collected by repeated scanning of the first cross section and the inclination angle at the corresponding measurement position, the blood flow volume in the corresponding blood vessel Can be calculated. Furthermore, the blood flow information generation unit can calculate a total blood flow (estimated value) based on a plurality of blood flows calculated for a plurality of measurement positions set for the blood vessel group.
実施形態において、計測位置設定部は、評価処理部(431)を含んでいてよい。評価処理部は、血管角度分布に表された1以上の位置のそれぞれにおける傾斜角度に基づいて、OCT血流計測の対象位置としての適性を評価することができる。計測位置設定部は、評価処理部により得られた評価結果に基づいて計測位置を設定することができる。 In the embodiment, the measurement position setting unit may include an evaluation processing unit (431). The evaluation processing unit can evaluate suitability as a target position for OCT blood flow measurement based on the inclination angle at each of one or more positions represented in the blood vessel angle distribution. The measurement position setting unit can set the measurement position based on the evaluation result obtained by the evaluation processing unit.
実施形態において、評価処理部は、血管角度分布に表された1以上の位置のそれぞれにおける傾斜角度と、1以上の角度条件を表す角度条件情報(21a)とを比較することにより、OCT血流計測の対象位置としての適性の評価を行うことができる。 In the embodiment, the evaluation processing unit compares the inclination angle at each of the one or more positions represented in the blood vessel angle distribution with the angle condition information (21a) representing the one or more angle conditions, thereby obtaining the OCT blood flow. It is possible to evaluate suitability as a measurement target position.
例示的な眼科撮影装置(1B、1C)は、瞳孔サイズ情報取得部(46)を備えていてよい。瞳孔サイズ情報取得部は、被検眼の瞳孔のサイズを表す瞳孔サイズ情報を取得することができる。評価処理部は、取得された瞳孔サイズ情報に基づいて、角度条件情報に表された1以上の角度条件の少なくとも1つを変更することができる。評価処理部は、1以上の角度条件が変更された角度条件情報を用いて、OCT血流計測の対象位置としての適性の評価を行うことができる。 The exemplary ophthalmologic imaging apparatus (1B, 1C) may include a pupil size information acquisition unit (46). The pupil size information acquisition unit can acquire pupil size information indicating the size of the pupil of the eye to be examined. The evaluation processing unit can change at least one of the one or more angle conditions represented in the angle condition information based on the acquired pupil size information. The evaluation processing unit can evaluate suitability as a target position for OCT blood flow measurement using angle condition information in which one or more angle conditions are changed.
例示的な眼科撮影装置(1C)は、瞳孔サイズ推定部(47)を備えていてよい。この場合、瞳孔サイズ情報取得部は、散瞳剤が適用されていない状態における被検眼の瞳孔のサイズを表す瞳孔サイズ情報を取得することができる。瞳孔サイズ推定部は、取得された瞳孔サイズ情報に基づいて、散瞳剤が適用された状態における被検眼の瞳孔のサイズを推定することができる。評価処理部は、瞳孔サイズ推定部により推定された瞳孔のサイズに基づいて、角度条件情報に表された1以上の角度条件の少なくとも1つを変更することができる。評価処理部は、1以上の角度条件が変更された角度条件情報を用いて、OCT血流計測の対象位置としての適性の評価を行うことができる。 The exemplary ophthalmologic imaging apparatus (1C) may include a pupil size estimation unit (47). In this case, the pupil size information acquisition unit can acquire pupil size information indicating the size of the pupil of the eye to be examined in a state where no mydriatic agent is applied. The pupil size estimation unit can estimate the size of the pupil of the eye to be examined in a state where the mydriatic agent is applied based on the acquired pupil size information. The evaluation processing unit can change at least one of the one or more angle conditions represented in the angle condition information based on the pupil size estimated by the pupil size estimation unit. The evaluation processing unit can evaluate suitability as a target position for OCT blood flow measurement using angle condition information in which one or more angle conditions are changed.
実施形態において、血管角度分布は、OCTにおけるAスキャン方向に対する血管の傾斜角度を求めることができる。 In the embodiment, the blood vessel angle distribution can determine the inclination angle of the blood vessel with respect to the A scan direction in OCT.
このような実施形態によれば、OCT血管造影により得られた(3次元)血管強調画像に基づいて血管角度分布を自動で求め、この血管角度分布に基づいてOCT血流計測のための計測位置を自動で設定し、この計測位置におけるOCT血流計測を行うことができる。したがって、血管の向きが好適な位置を探索してOCT血流計測を自動で行うことが可能である。よって、OCT血流計測において検者や被検者に掛かる負担を軽減することができる。 According to such an embodiment, a blood vessel angle distribution is automatically obtained based on a (three-dimensional) blood vessel enhancement image obtained by OCT angiography, and a measurement position for OCT blood flow measurement is based on the blood vessel angle distribution. Is automatically set, and OCT blood flow measurement at this measurement position can be performed. Therefore, it is possible to automatically perform OCT blood flow measurement by searching for a position where the direction of the blood vessel is suitable. Therefore, the burden placed on the examiner or the subject in OCT blood flow measurement can be reduced.
実施形態の作用及び効果はこれらに限定されず、実施形態として説明されたそれぞれの事項が提供する作用及び効果や、複数の事項の組み合わせが提供する作用及び効果も考慮されるべきである。また、所望の作用及び/又は効果を得るために、又は他の目的のために、前述したいずれかの実施形態、他の実施形態、公知技術等を任意に組み合わせることが可能である。 The operations and effects of the embodiments are not limited to these, and the operations and effects provided by the respective items described as the embodiments and the operations and effects provided by a combination of a plurality of items should be considered. In addition, any of the above-described embodiments, other embodiments, known techniques, and the like can be arbitrarily combined in order to obtain a desired action and / or effect, or for other purposes.
以上に説明した構成は、この発明を好適に実施するための一例に過ぎない。よって、この発明の要旨の範囲内における任意の変形(省略、置換、付加等)を適宜に施すことが可能である。 The configuration described above is merely an example for favorably implementing the present invention. Therefore, arbitrary modifications (omitted, replacement, addition, etc.) within the scope of the present invention can be made as appropriate.
1、1A、1B、1C 眼科撮影装置
2 表示デバイス
10 制御部
11 収集制御部
12 表示制御部
20 記憶部
21 条件情報
21a 角度条件情報
30 データ収集部
40 データ処理部
41 画像形成部
42 血管角度分布取得部
43 計測位置設定部
431 評価処理部
44 血流情報生成部
45 分類処理部
46 瞳孔サイズ情報取得部
47 瞳孔サイズ推定部
50 操作部
60 正面画像取得部
1, 1A, 1B, 1C Ophthalmologic imaging apparatus 2 Display device 10 Control unit 11 Collection control unit 12 Display control unit 20 Storage unit 21 Condition information 21a Angle condition information 30 Data collection unit 40 Data processing unit 41 Image forming unit 42 Blood vessel angle distribution Acquisition unit 43 Measurement position setting unit 431 Evaluation processing unit 44 Blood flow information generation unit 45 Classification processing unit 46 Pupil size information acquisition unit 47 Pupil size estimation unit 50 Operation unit 60 Front image acquisition unit
Claims (12)
前記3次元データセットに基づいて血管強調画像を形成する血管強調画像形成部と、
前記血管強調画像に基づいて、前記眼底の1以上の位置における血管の傾斜角度を表す血管角度分布を求める血管角度分布取得部と、
前記血管角度分布に基づいて、OCT血流計測の対象となる計測位置を設定する計測位置設定部と、
前記計測位置において血管に交差する第1断面を繰り返し走査するように前記データ収集部を制御する収集制御部と、
前記第1断面の繰り返し走査により収集された第1データと、前記計測位置における当該血管の傾斜角度とに基づいて、当該血管における血流状態を表す血流情報を生成する血流情報生成部と
を備える眼科撮影装置。 A data collection unit that collects a three-dimensional data set of the fundus of the eye to be examined using optical coherence tomography (OCT);
A blood vessel emphasized image forming unit that forms a blood vessel emphasized image based on the three-dimensional data set;
A blood vessel angle distribution acquisition unit for obtaining a blood vessel angle distribution representing a blood vessel inclination angle at one or more positions of the fundus based on the blood vessel enhancement image;
Based on the blood vessel angle distribution, a measurement position setting unit that sets a measurement position to be subjected to OCT blood flow measurement;
A collection control unit that controls the data collection unit to repeatedly scan a first cross section that intersects a blood vessel at the measurement position;
A blood flow information generation unit configured to generate blood flow information representing a blood flow state in the blood vessel based on the first data collected by repeated scanning of the first cross section and the inclination angle of the blood vessel at the measurement position; An ophthalmologic photographing apparatus comprising:
前記血流情報生成部は、前記第2断面の走査により収集された第2データに基づいて前記計測位置における当該血管の傾斜角度を算出し、算出された前記傾斜角度と前記第1データとに基づいて前記血流情報を生成する
ことを特徴とする請求項1に記載の眼科撮影装置。 The collection control unit controls the data collection unit to scan one or more second cross sections intersecting the blood vessel in the vicinity of the measurement position;
The blood flow information generation unit calculates an inclination angle of the blood vessel at the measurement position based on second data collected by scanning the second cross section, and calculates the calculated inclination angle and the first data. The ophthalmic imaging apparatus according to claim 1, wherein the blood flow information is generated based on the information.
前記計測位置を表す計測位置画像を前記正面画像に重ねて表示手段に表示させる表示制御部と
を備える
ことを特徴とする請求項1又は2に記載の眼科撮影装置。 A front image acquisition unit for acquiring a front image of the fundus;
The ophthalmologic photographing apparatus according to claim 1, further comprising: a display control unit configured to display a measurement position image representing the measurement position on a display unit so as to overlap the front image.
前記計測位置設定部は、前記血管角度分布に基づいて当該血管の計測位置を設定する
ことを特徴とする請求項1〜3のいずれかに記載の眼科撮影装置。 The blood vessel angle distribution acquisition unit obtains a blood vessel angle distribution representing inclination angles at a plurality of positions of a blood vessel designated in advance,
The ophthalmic imaging apparatus according to claim 1, wherein the measurement position setting unit sets a measurement position of the blood vessel based on the blood vessel angle distribution.
ことを特徴とする請求項4に記載の眼科撮影装置。 The ophthalmic imaging apparatus according to claim 4, wherein the measurement position setting unit selects one of the plurality of positions as a measurement position of the blood vessel based on the blood vessel angle distribution.
前記計測位置設定部は、動脈に分類された血管群及び静脈に分類された血管群の少なくとも一方について、当該血管群に含まれる血管のそれぞれの計測位置を設定する
ことを特徴とする請求項1〜5のいずれかに記載の眼科撮影装置。 A classification processing unit that classifies a plurality of blood vessels depicted in the blood vessel emphasized image into arteries and veins,
The said measurement position setting part sets each measurement position of the blood vessel contained in the said blood vessel group about at least one of the blood vessel group classified into the artery and the blood vessel group classified into the vein. The ophthalmologic photographing apparatus according to any one of?
前記血流情報生成部は、
前記複数の第1断面のそれぞれについて、当該第1断面の繰り返し走査により収集された第1データと、当該計測位置における傾斜角度とに基づいて、当該血管における血流量を算出し、
前記複数の計測位置について算出された複数の血流量に基づいて総血流量を算出する
ことを特徴とする請求項6に記載の眼科撮影装置。 The collection control unit controls the data collection unit to sequentially and repeatedly scan a plurality of first cross sections based on a plurality of measurement positions set for the blood vessel group;
The blood flow information generation unit
For each of the plurality of first cross sections, based on the first data collected by repeated scanning of the first cross section and the inclination angle at the measurement position, the blood flow in the blood vessel is calculated,
The ophthalmologic imaging apparatus according to claim 6, wherein a total blood flow is calculated based on a plurality of blood flows calculated for the plurality of measurement positions.
前記1以上の位置のそれぞれにおける傾斜角度に基づいて、OCT血流計測の対象位置としての適性を評価する評価処理部を含み、
前記評価処理部により得られた評価結果に基づいて前記計測位置を設定する
ことを特徴とする請求項1〜7のいずれかに記載の眼科撮影装置。 The measurement position setting unit
An evaluation processing unit that evaluates suitability as a target position of OCT blood flow measurement based on an inclination angle at each of the one or more positions;
The ophthalmologic photographing apparatus according to claim 1, wherein the measurement position is set based on an evaluation result obtained by the evaluation processing unit.
ことを特徴とする請求項8に記載の眼科撮影装置。 The evaluation processing unit evaluates the suitability by comparing an inclination angle at each of the one or more positions with angle condition information representing one or more angle conditions. The ophthalmic imaging apparatus described.
前記評価処理部は、前記瞳孔サイズ情報に基づいて、前記1以上の角度条件の少なくとも1つを変更する
ことを特徴とする請求項9に記載の眼科撮影装置。 A pupil size information acquisition unit for acquiring pupil size information representing the size of the pupil of the eye to be examined;
The ophthalmologic photographing apparatus according to claim 9, wherein the evaluation processing unit changes at least one of the one or more angle conditions based on the pupil size information.
前記瞳孔サイズ情報に基づいて、散瞳剤が適用された状態における前記被検眼の瞳孔のサイズを推定する瞳孔サイズ推定部を備え、
前記評価処理部は、前記瞳孔サイズ推定部により推定された瞳孔のサイズに基づいて、前記1以上の角度条件の少なくとも1つを変更する
ことを特徴とする請求項10に記載の眼科撮影装置。 The pupil size information acquisition unit acquires pupil size information indicating the size of the pupil of the eye to be examined in a state where a mydriatic agent is not applied,
Based on the pupil size information, comprising a pupil size estimation unit that estimates the size of the pupil of the eye in a state in which a mydriatic is applied,
The ophthalmologic imaging apparatus according to claim 10, wherein the evaluation processing unit changes at least one of the one or more angle conditions based on a pupil size estimated by the pupil size estimation unit.
ことを特徴とする請求項1〜11のいずれかに記載の眼科撮影装置。 The ophthalmologic imaging apparatus according to any one of claims 1 to 11, wherein the blood vessel angle distribution obtains an inclination angle of a blood vessel with respect to an A scan direction in OCT.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016183607A JP6864450B2 (en) | 2016-09-21 | 2016-09-21 | Ophthalmologic imaging equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016183607A JP6864450B2 (en) | 2016-09-21 | 2016-09-21 | Ophthalmologic imaging equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018046959A true JP2018046959A (en) | 2018-03-29 |
JP6864450B2 JP6864450B2 (en) | 2021-04-28 |
Family
ID=61765653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016183607A Active JP6864450B2 (en) | 2016-09-21 | 2016-09-21 | Ophthalmologic imaging equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6864450B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019180693A (en) * | 2018-04-06 | 2019-10-24 | キヤノン株式会社 | Image processor, image processing method, and program |
JP2019208851A (en) * | 2018-06-04 | 2019-12-12 | 株式会社ニデック | Fundus image processing device and fundus image processing program |
WO2020138224A1 (en) * | 2018-12-28 | 2020-07-02 | 株式会社トプコン | Blood flow measurement device, control method therefor, program, and recording medium |
JP2020124380A (en) * | 2019-02-05 | 2020-08-20 | 株式会社トプコン | Ophthalmologic information processing apparatus, ophthalmologic apparatus, ophthalmologic information processing method, and program |
CN113384236A (en) * | 2021-07-15 | 2021-09-14 | 苏州微清医疗器械有限公司 | Method and device for optical coherence tomography of eye |
US12137978B2 (en) | 2018-12-28 | 2024-11-12 | Topcon Corporation | Blood flow measurement apparatus, method of controlling the same, and recording medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009165710A (en) * | 2008-01-17 | 2009-07-30 | Univ Of Tsukuba | Quantitative measuring instrument of fundus blood flow |
JP2015527178A (en) * | 2012-09-10 | 2015-09-17 | オレゴン ヘルス アンド サイエンス ユニバーシティ | Quantification of local circulation by OCT angiography |
JP2016106652A (en) * | 2014-12-02 | 2016-06-20 | 株式会社ニデック | Optical coherence tomography apparatus and control program for use in the same |
JP2016116595A (en) * | 2014-12-19 | 2016-06-30 | 国立大学法人旭川医科大学 | Blood flow measurement device |
US20160220112A1 (en) * | 2013-09-30 | 2016-08-04 | Carl Zeiss Meditec Ag | High temporal resolution doppler oct imaging of retinal blood flow |
-
2016
- 2016-09-21 JP JP2016183607A patent/JP6864450B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009165710A (en) * | 2008-01-17 | 2009-07-30 | Univ Of Tsukuba | Quantitative measuring instrument of fundus blood flow |
JP2015527178A (en) * | 2012-09-10 | 2015-09-17 | オレゴン ヘルス アンド サイエンス ユニバーシティ | Quantification of local circulation by OCT angiography |
US20160220112A1 (en) * | 2013-09-30 | 2016-08-04 | Carl Zeiss Meditec Ag | High temporal resolution doppler oct imaging of retinal blood flow |
JP2016106652A (en) * | 2014-12-02 | 2016-06-20 | 株式会社ニデック | Optical coherence tomography apparatus and control program for use in the same |
JP2016116595A (en) * | 2014-12-19 | 2016-06-30 | 国立大学法人旭川医科大学 | Blood flow measurement device |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019180693A (en) * | 2018-04-06 | 2019-10-24 | キヤノン株式会社 | Image processor, image processing method, and program |
JP7123606B2 (en) | 2018-04-06 | 2022-08-23 | キヤノン株式会社 | Image processing device, image processing method and program |
JP2019208851A (en) * | 2018-06-04 | 2019-12-12 | 株式会社ニデック | Fundus image processing device and fundus image processing program |
WO2020138224A1 (en) * | 2018-12-28 | 2020-07-02 | 株式会社トプコン | Blood flow measurement device, control method therefor, program, and recording medium |
JP2023038280A (en) * | 2018-12-28 | 2023-03-16 | 株式会社トプコン | Blood flow measurement device |
US12137978B2 (en) | 2018-12-28 | 2024-11-12 | Topcon Corporation | Blood flow measurement apparatus, method of controlling the same, and recording medium |
JP2020124380A (en) * | 2019-02-05 | 2020-08-20 | 株式会社トプコン | Ophthalmologic information processing apparatus, ophthalmologic apparatus, ophthalmologic information processing method, and program |
CN113384236A (en) * | 2021-07-15 | 2021-09-14 | 苏州微清医疗器械有限公司 | Method and device for optical coherence tomography of eye |
Also Published As
Publication number | Publication date |
---|---|
JP6864450B2 (en) | 2021-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11935241B2 (en) | Image processing apparatus, image processing method and computer-readable medium for improving image quality | |
US12039704B2 (en) | Image processing apparatus, image processing method and computer-readable medium | |
JP6864450B2 (en) | Ophthalmologic imaging equipment | |
JP7362403B2 (en) | Image processing device and image processing method | |
JP6815798B2 (en) | Ophthalmic imaging equipment and ophthalmic image processing equipment | |
JP7374615B2 (en) | Information processing device, information processing method and program | |
JP6892234B2 (en) | Ophthalmologic imaging equipment | |
JP2020103579A (en) | Image processing device, image processing method, and program | |
JP2019154718A (en) | Image processing apparatus, image processing method, and program | |
JP2020054812A (en) | Image processing device, image processing method and program | |
JP2020058615A (en) | Image processing device, learned model, image processing method, and program | |
JP7529861B2 (en) | Ophthalmological information processing device and system | |
JP2019154716A (en) | Image processing apparatus, image processing method, and program | |
JP7111874B2 (en) | ophthalmic imaging equipment | |
JP7191166B2 (en) | Ophthalmic photographing device and ophthalmic information processing device | |
JP7007125B2 (en) | Ophthalmology information processing equipment and ophthalmology imaging equipment | |
JP7297133B2 (en) | Ophthalmic information processing device and ophthalmic photographing device | |
JP2019042263A (en) | Ophthalmologic system, ophthalmologic imaging apparatus, and ophthalmologic information processing apparatus | |
JP2022127783A (en) | Blood flow analysis apparatus, ophthalmologic apparatus, blood flow analysis method, and program | |
JP2019154715A (en) | Image processing apparatus, image processing method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20161226 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200811 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201007 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210316 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210402 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6864450 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |