JP2017502247A - Air conditioner system and control method of air conditioner system - Google Patents
Air conditioner system and control method of air conditioner system Download PDFInfo
- Publication number
- JP2017502247A JP2017502247A JP2016542927A JP2016542927A JP2017502247A JP 2017502247 A JP2017502247 A JP 2017502247A JP 2016542927 A JP2016542927 A JP 2016542927A JP 2016542927 A JP2016542927 A JP 2016542927A JP 2017502247 A JP2017502247 A JP 2017502247A
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- air conditioner
- conditioner system
- compressor
- variable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 11
- 239000007788 liquid Substances 0.000 claims abstract description 46
- 238000006073 displacement reaction Methods 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims 1
- 239000003507 refrigerant Substances 0.000 abstract description 12
- 238000004378 air conditioning Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
- F25B41/24—Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/24—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/02—Compression machines, plants or systems with non-reversible cycle with compressor of reciprocating-piston type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/07—Details of compressors or related parts
- F25B2400/074—Details of compressors or related parts with multiple cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/026—Compressor control by controlling unloaders
- F25B2600/0261—Compressor control by controlling unloaders external to the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2519—On-off valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21151—Temperatures of a compressor or the drive means therefor at the suction side of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21152—Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Air Conditioning Control Device (AREA)
Abstract
上部気筒吸気口と、下部気筒吸気口と、排気口とを有する2気筒容量可変圧縮機(30)を備えるエアコンシステムである。該エアコンシステムは、一端が2気筒容量可変圧縮機(30)の排気口に連結されるとともに、他端が、逆止弁(50)と2気筒容量可変圧縮機の下部気筒吸気口とにそれぞれ連結される第1の電磁弁(71)をさらに備え、逆止弁(50)は、一方の端が第1の電磁弁(71)に連結され、他方の端が気液分離器の内腔に連結される。エアコンシステムは、2気筒容量可変圧縮機の下部気筒吸気口から気液分離器の入り口までを連結する管道内に設けられる第2の電磁弁(72)をさらに備える。下部気筒吸気口から気液分離器の入り口までに電気弁を有する液排出バイパス管道を増設することにより、気液分離器へ下部気筒吸気側の高圧冷媒を圧力をリリーフさせることができ、これにより、単気筒動作から2気筒動作への切り換え時のシステムの安定性を最適化する。エアコンシステムの制御方法をさらに開示する。【選択図】図2An air conditioner system including a two-cylinder variable capacity compressor (30) having an upper cylinder intake port, a lower cylinder intake port, and an exhaust port. The air conditioner system has one end connected to the exhaust port of the two-cylinder variable variable compressor (30) and the other end connected to the check valve (50) and the lower cylinder intake port of the two-cylinder variable variable compressor, respectively. The first solenoid valve (71) to be connected is further provided, and the check valve (50) has one end connected to the first solenoid valve (71) and the other end to the lumen of the gas-liquid separator. Connected to The air conditioner system further includes a second electromagnetic valve (72) provided in a pipe line connecting the lower cylinder intake port of the two-cylinder capacity variable compressor to the inlet of the gas-liquid separator. By adding a liquid discharge bypass line with an electric valve from the lower cylinder inlet to the gas-liquid separator inlet, the pressure of the high-pressure refrigerant on the lower cylinder intake side can be relieved to the gas-liquid separator. Optimize the stability of the system when switching from single cylinder operation to two cylinder operation. A method for controlling an air conditioner system is further disclosed. [Selection] Figure 2
Description
本発明はエアコン分野に関し、具体的には、エアコンシステム及びエアコンシステムの制御方法に関する。 The present invention relates to the field of air conditioners, and specifically to an air conditioner system and a method for controlling an air conditioner system.
従来のエアコンシステムの一種として、図1に示すように、凝縮器10、蒸発器20、容量可変周波数可変圧縮機30、スロットル部品40、四方弁60、電磁弁70、逆止弁50を備え、容量可変周波数可変圧縮機30は逆止弁50と電磁弁70との動作に基づく切り換えを行うものである。電磁弁70が開かれる場合、排気側の高圧冷媒が圧縮機の下部気筒吸気口に流通し、下部気筒吸気端に高圧を形成させ、容量可変周波数可変圧縮機30の単気筒動作を達成する。電磁弁70が閉じられる場合、気液分離器における低圧冷媒が下部気筒吸気口に流通し、下部気筒吸気口に低圧を形成させ、容量可変周波数可変圧縮機が2気筒動作に切り換わる。 As a type of conventional air conditioner system, as shown in FIG. 1, a condenser 10, an evaporator 20, a variable capacity variable frequency compressor 30, a throttle component 40, a four-way valve 60, an electromagnetic valve 70, and a check valve 50 are provided. The capacity variable frequency variable compressor 30 performs switching based on the operation of the check valve 50 and the electromagnetic valve 70. When the solenoid valve 70 is opened, the high-pressure refrigerant on the exhaust side flows to the lower cylinder intake port of the compressor, and a high pressure is formed at the lower cylinder intake end, so that the single cylinder operation of the variable capacity variable frequency compressor 30 is achieved. When the electromagnetic valve 70 is closed, the low-pressure refrigerant in the gas-liquid separator flows to the lower cylinder intake port, a low pressure is formed in the lower cylinder intake port, and the variable capacity variable frequency compressor is switched to the two-cylinder operation.
上述した従来技術には、以下の不足点がある。
(1)単気筒動作から2気筒又は多気筒動作への切り換え時に、電磁弁が閉じられるが、下部気筒吸気口から電磁弁までの連結管が依然として高圧状態であり、圧力差があるため、逆止弁が締め切られており、気液分離器の低圧冷媒が下部気筒に流通しにくく、単気筒動作から2気筒動作への切り換え時にシステムの不安定を招きやすい。
(2)単気筒動作時に、圧縮機の下部気筒から電磁弁までの連結管が高圧側であるが、冷媒は静止状態にあるため、環境温度への熱交換につれ降温し、長くすると、冷媒が液相に凝縮されやすく、この場合、2気筒動作に切り換えれば、液相冷媒が下部気筒へ流れ、下部気筒に液撃をもたらし、圧縮機を損ずることになる。
(3)上記(1)における問題を解決するために、下部気筒吸気口と電磁弁との連結管にキャピラリチューブを増設して気液分離器の入り口に連結させれば、単気筒動作から2気筒動作への切り換え時に、下部気筒吸気口における高圧冷媒がキャピラリチューブを介して気液分離器の入り口に減圧され、下部気筒吸気口に低圧冷媒が形成され、切り換えが容易になされるが、キャピラリチューブを長期流通するため、循環する冷媒が減少し、熱損失をもたらす。
The prior art described above has the following shortcomings.
(1) When switching from single-cylinder operation to two-cylinder operation or multi-cylinder operation, the solenoid valve is closed, but the connecting pipe from the lower cylinder intake port to the solenoid valve is still in a high pressure state and there is a pressure difference. Since the stop valve is closed, the low-pressure refrigerant of the gas-liquid separator does not easily flow to the lower cylinder, and the system is likely to be unstable when switching from single cylinder operation to two cylinder operation.
(2) At the time of single cylinder operation, the connecting pipe from the lower cylinder of the compressor to the solenoid valve is on the high pressure side, but the refrigerant is in a stationary state, so the temperature drops as the heat exchanges to the ambient temperature. In this case, if the operation is switched to the two-cylinder operation, the liquid-phase refrigerant flows into the lower cylinder, causing a liquid hammer to the lower cylinder and damaging the compressor.
(3) In order to solve the problem in the above (1), if a capillary tube is added to the connecting pipe between the lower cylinder intake port and the solenoid valve and connected to the inlet of the gas-liquid separator, the operation from the single cylinder operation can be improved. When switching to cylinder operation, the high-pressure refrigerant in the lower cylinder inlet is depressurized at the inlet of the gas-liquid separator via the capillary tube, and low-pressure refrigerant is formed in the lower cylinder inlet. Since the tubes circulate for a long time, the circulating refrigerant is reduced, resulting in heat loss.
本発明は、従来技術におけるエアコンシステムが、圧縮機の単気筒動作から2気筒動作への切り換え中に切り換え失敗が発生しやすい問題を解決するためのエアコンシステム及びエアコンシステムの制御方法を提供することをその目的とする。 The present invention provides an air conditioner system and a control method for the air conditioner system for solving the problem that the air conditioner system in the prior art is likely to cause a switching failure during the switching from the single cylinder operation to the two cylinder operation of the compressor. Is the purpose.
上記目的を達成するために、本発明の一態様によれば、上部気筒吸気口と、下部気筒吸気口と、排気口とを有する2気筒容量可変圧縮機を備え、一端が2気筒容量可変圧縮機の排気口に連結され、他端が、逆止弁と2気筒容量可変圧縮機の下部気筒吸気口とにそれぞれ連結される第1の電磁弁を、さらに備え、前記逆止弁の一方の端が第1の電磁弁に連結され、他方の端が気液分離器の内腔に連結されるエアコンシステムであって、2気筒容量可変圧縮機の下部気筒吸気口から気液分離器の入り口までを連結する管道内に設けられる第2の電磁弁、をさらに備えるエアコンシステムが提供される。 In order to achieve the above object, according to one aspect of the present invention, a two-cylinder variable displacement compressor having an upper cylinder intake port, a lower cylinder intake port, and an exhaust port is provided. A first solenoid valve connected to the exhaust port of the machine and having the other end connected to the check valve and the lower cylinder intake port of the two-cylinder capacity variable compressor, respectively, An air conditioner system having one end connected to the first solenoid valve and the other end connected to the lumen of the gas-liquid separator, the inlet of the gas-liquid separator from the lower cylinder inlet of the two-cylinder capacity variable compressor There is provided an air conditioner system further including a second electromagnetic valve provided in a pipe line connecting the above.
さらに、第2の電磁弁に直列配置されるキャピラリチューブをさらに備える。
さらに、下部気筒吸気口の管道内に設けられる温度センサをさらに備える。
さらに、排気口の管道内に設けられる高圧センサをさらに備える。
Furthermore, a capillary tube arranged in series with the second electromagnetic valve is further provided.
Further, a temperature sensor provided in the pipe line of the lower cylinder intake port is further provided.
Furthermore, a high-pressure sensor provided in the duct of the exhaust port is further provided.
本発明の他の一態様によれば、上記エアコンシステムに応用されるエアコンシステムの制御方法であって、2気筒容量可変圧縮機が単気筒動作状態にありながら2気筒動作状態への切り換えが必要となる場合、2気筒容量可変圧縮機の下部気筒吸気口から気液分離器の入り口までの管道を連通するステップ10、を含むエアコンシステムの制御方法が提供される。 According to another aspect of the present invention, there is provided a control method for an air conditioner system applied to the air conditioner system, wherein the two-cylinder capacity variable compressor needs to be switched to a two-cylinder operation state while the single-cylinder variable compressor is in a single cylinder operation state. In this case, there is provided a control method for an air conditioner system including a step 10 for communicating a pipeline from a lower cylinder inlet of a two-cylinder variable capacity compressor to an inlet of a gas-liquid separator.
さらに、ステップ10において、第2の電磁弁により、2気筒容量可変圧縮機の下部気筒吸気口から気液分離器の入り口までを連通する管道を開き、時間tsを経過してから第1の電磁弁を閉じる。 Further, in step 10, the second electromagnetic valve opens a conduit that communicates from the lower cylinder inlet of the two-cylinder variable capacity compressor to the inlet of the gas-liquid separator, and after the passage of time ts, the first electromagnetic Close the valve.
さらに、2気筒容量可変圧縮機の単気筒動作状態が時間t1を超えた後、t2時間が経過するたびに、2気筒容量可変圧縮機の下部気筒吸気口の温度T下と2気筒容量可変圧縮機の排気口の温度T高とを比較し、T下≦T高であれば、第2の電磁弁を開いてからt3時間継続後に閉じるステップ20をさらに含む。 Furthermore, 2 after the single-cylinder operating state of the cylinder variable displacement compressor has exceeded the time t1, each time the elapsed time t2, a temperature T of the lower cylinder intake ports of the two-cylinder variable displacement compressor and 2-cylinder variable displacement compressor comparing the aircraft of outlet temperature T high, if T under ≦ T high, further comprising 20 to open and close the second electromagnetic valve after continued t3 hours.
さらに、ステップ10における時間tsが、室外環境温度TWに関わっており、TW≧A℃の場合、ts=t5になり、B℃≦TW<A℃の場合、ts=t6になり、TW<B℃の場合、ts=t7になる(t5、t6、t7は、予め設定された時間定数であり、A、Bは予め設定された温度定数である)。 Further, the time ts in step 10 is related to the outdoor environment temperature TW. When TW ≧ A ° C., ts = t 5, and when B ° C ≦ TW <A ° C., ts = t 6 and TW <B In the case of ° C., ts = t7 (t5, t6, and t7 are preset time constants, and A and B are preset temperature constants).
さらに、ステップ10は、第1の電磁弁を閉じてからt4時間後に、第2の電磁弁を閉じることをさらに含む。 Furthermore, step 10 further includes closing the second solenoid valve t4 hours after closing the first solenoid valve.
本発明の技術案を応用して、2気筒容量可変圧縮機の下部気筒吸気口から気液分離器の入り口までを連結するように電気弁を有する液排出バイパス管道を増設し、液排出バイパスを介して下部気筒吸気側の高圧冷媒を気液分離器に減圧させることにより、単気筒動作から2気筒動作への切り換え時のシステムの安定性を最適化する。 By applying the technical solution of the present invention, a liquid discharge bypass pipe having an electric valve is connected so as to connect the lower cylinder intake port of the two-cylinder capacity variable compressor to the inlet of the gas-liquid separator. In this way, the high-pressure refrigerant on the lower cylinder intake side is decompressed by the gas-liquid separator, thereby optimizing the stability of the system when switching from single cylinder operation to two cylinder operation.
本願の一部を構成する図面は、本発明をさらに理解させるためのものであり、また、本発明における模式的実施例及びその説明は本発明を説明するものであり、本発明を不当に限定するものではない。図面において、
なお、衝突しない限り、本願の実施例及び実施例中の構成要件を組み合わせることができる。以下、図面を参照しつつ実施例を結合して本発明を詳しく説明する。 In addition, as long as it does not collide, the component in the Example of this application and an Example can be combined. Hereinafter, the present invention will be described in detail with reference to the drawings and embodiments.
図2を参照して、本発明は、従来技術に踏まえ、2気筒容量可変圧縮機の下部気筒吸気口から気液分離器の入り口までを連結し、キャピラリチューブと第2の電磁弁72とを主として含む液排出バイパス管道を増設するとともに、2気筒容量可変圧縮機の排気側に高圧センサ100を増設して凝縮温度T高を測定し、下部気筒吸気口に温度センサ90を測定工具として増設して下部気筒吸気口の温度T下を検出する。特定の場合に液排出バイパス管道における第2の電磁弁72を開き、圧力のリリーフ及び液排出するように動作させる。下部気筒吸気口は液溜まり状態である場合、自動測定により、2気筒容量可変圧縮機30の下部気筒から第1の電磁弁71までの連結管における液相冷媒を気液分離器へ排出させることができる。単気筒動作から2気筒動作への切り換え時に、液排出バイパスを介して気液分離器へ下部気筒吸気側の高圧冷媒を圧力をリリーフし、単気筒動作から2気筒動作への切り換えを達成し、動作の切り換え時のシステムの安定性を高める。 Referring to FIG. 2, in accordance with the prior art, the present invention connects a lower cylinder intake port of a two-cylinder variable capacity compressor to an inlet of a gas-liquid separator, and connects a capillary tube and a second electromagnetic valve 72. while adding the liquid discharge bypass pipe road comprising mainly by adding a high-pressure sensor 100 measures the condensation temperature T higher on the exhaust side of the second cylinder variable displacement compressor, and additional temperature sensor 90 as a measuring tool to the lower cylinder intake port detecting the temperature T of a lower cylinder inlet Te. In certain cases, the second solenoid valve 72 in the liquid discharge bypass line is opened and operated to relieve pressure and discharge liquid. When the lower cylinder intake port is in a liquid pool state, the liquid phase refrigerant in the connecting pipe from the lower cylinder of the two-cylinder variable capacity compressor 30 to the first electromagnetic valve 71 is discharged to the gas-liquid separator by automatic measurement. Can do. When switching from single-cylinder operation to two-cylinder operation, the pressure of the high-pressure refrigerant on the lower cylinder intake side is relieved to the gas-liquid separator via the liquid discharge bypass to achieve switching from single-cylinder operation to two-cylinder operation. Increase system stability when switching operations.
図2に示すように、本発明に係わるエアコンシステムは、2気筒容量可変圧縮機30と、気液分離器とを備え、2気筒容量可変圧縮機30からは、上部気筒吸気口と、下部気筒吸気口と、排気口という三つの分岐が引き出される。2気筒容量可変圧縮機30と、第1の熱交換器10と、スロットルアセンブル40と、第2の熱交換器20とがループに連結される。エアコンシステムは、四方弁60と、第1の電磁弁71と、逆止弁50とをさらに備える。第1の熱交換器10と第2の熱交換器20とが四方弁60を介して2気筒容量可変圧縮機30に選択的に連通され、第1の電磁弁71は、一端が2気筒容量可変圧縮機30の排気口に連結されるとともに、他端が逆止弁50と下部気筒吸気口とにそれぞれ連結され、逆止弁50は、一方の端が第1の電磁弁71から下部気筒吸気口への管道に連結されるとともに、他方の端が気液分離器の内腔に連結され、また、逆止弁50における流動可能方向として、気液分離器から下部気筒吸気口へと流動する。本発明によれば、第2の電磁弁72及びそれに直列連結されるキャピラリチューブからなる分岐は、圧縮機における下部気筒吸気口の管道と気液分離器における気液分離器の入り口の管道との間に連結されるように増設される。 As shown in FIG. 2, the air conditioner system according to the present invention includes a two-cylinder variable capacity compressor 30 and a gas-liquid separator, and the two-cylinder variable capacity compressor 30 includes an upper cylinder inlet, a lower cylinder, and the like. Three branches are drawn out: the inlet and the outlet. The two-cylinder variable capacity compressor 30, the first heat exchanger 10, the throttle assembly 40, and the second heat exchanger 20 are connected in a loop. The air conditioner system further includes a four-way valve 60, a first electromagnetic valve 71, and a check valve 50. The first heat exchanger 10 and the second heat exchanger 20 are selectively communicated with the two-cylinder variable capacity compressor 30 via the four-way valve 60, and one end of the first electromagnetic valve 71 has a two-cylinder capacity. The other end is connected to the exhaust port of the variable compressor 30 and the other end is connected to the check valve 50 and the lower cylinder intake port. One end of the check valve 50 is connected to the lower cylinder from the first electromagnetic valve 71. The other end is connected to the lumen of the gas-liquid separator, and the flow from the gas-liquid separator to the lower cylinder inlet is set as a flowable direction in the check valve 50. To do. According to the present invention, the branch consisting of the second solenoid valve 72 and a capillary tube connected in series with the second solenoid valve 72 is formed between the conduit of the lower cylinder inlet in the compressor and the conduit of the inlet of the gas-liquid separator in the gas-liquid separator. It will be expanded to be connected between them.
液排出バイパス管道におけるキャピラリチューブは、液排出の流量を制御する機能を担う。太すぎて短すぎるキャピラリチューブの場合、過大な流量になり、下部気筒における圧力低下を招き、圧力不足に起因して、単気筒動作を継続できずに2気筒動作に切り換わる。細すぎて長すぎるキャピラリチューブの場合、過小な流量になり、過低な液排出速度を招き、液排出動作を所定時間内に完成することができない。それゆえ、液排出バイパス管道には適当なキャピラリチューブが必要となる。 The capillary tube in the liquid discharge bypass conduit has a function of controlling the flow rate of liquid discharge. In the case of a capillary tube that is too thick and too short, the flow rate becomes excessive, causing a pressure drop in the lower cylinder, and due to insufficient pressure, the single cylinder operation cannot be continued and the operation is switched to the two cylinder operation. In the case of a capillary tube that is too thin and too long, the flow rate becomes too low, resulting in an excessively low liquid discharge speed, and the liquid discharge operation cannot be completed within a predetermined time. Therefore, an appropriate capillary tube is required for the liquid discharge bypass conduit.
図3を参照して、本発明に係わるエアコンシステムの制御方法は、以下のステップ(1)を〜(3)含む。 With reference to FIG. 3, the control method of the air-conditioning system according to the present invention includes the following steps (1) to (3).
(1)2気筒容量可変圧縮機30が単気筒動作の場合、2気筒容量可変圧縮機30の単気筒動作時間がt1時間を超えた後、t2時間が経過するたびに、T下とT高とを比較し、T下≦T高であれば、エアコン・システムにおける下部吸気口管道に液体が溜まっていると判定され、第2の電磁弁72を開いてからt3時間継続後に閉じることにより、間隔をあけた液排出作用を達成する。
(2)2気筒容量可変圧縮機30は単気筒動作にありながら2気筒動作へ切り換えが必要となる場合、第2の電磁弁72を開いてからts時間後に第1の電磁弁71を閉じたり、第1の電磁弁71を閉じてからt4時間後に第2の電磁弁72を閉じたりすることで、圧力のリリーフする作用を達成する。
(3)室外環境温度TWによって、液溜まり状況が異なるため、ステップ(2)における時間tsは、室外環境温度に関わっており、例を挙げると、以下のようである(A、Bは、予め設定された温度定数であり、実験によって決められることができる)。
a)TW≧A℃の場合、ts=t5になる。
b)B℃≦TW<A℃の場合、ts=t6になる。
c)TW<B℃の場合、ts=t7になる。(上述したt1、t2、t3、t4、t5、t6、t7は、予め設定された時間であり、実験によって決められることができる。)
(1) When the two-cylinder variable capacity compressor 30 is in a single cylinder operation, every time t2 time elapses after the single cylinder operation time of the two-cylinder capacity variable compressor 30 exceeds t1 time, T lower and T high If T lower ≤ T high , it is determined that liquid is accumulated in the lower intake pipe in the air conditioner system, and the second solenoid valve 72 is opened and then closed after t3 hours, Achieves liquid draining action at intervals.
(2) When the two-cylinder capacity variable compressor 30 needs to be switched to the two-cylinder operation even in the single-cylinder operation, the first electromagnetic valve 71 is closed after ts time after the second electromagnetic valve 72 is opened. The action of pressure relief is achieved by closing the second electromagnetic valve 72 after t4 hours from closing the first electromagnetic valve 71.
(3) Since the liquid pool state varies depending on the outdoor environment temperature TW, the time ts in step (2) is related to the outdoor environment temperature. For example, the time ts is as follows. Set temperature constant, which can be determined by experiment).
a) When TW ≧ A ° C., ts = t5.
b) When B ° C. ≦ TW <A ° C., ts = t6.
c) When TW <B ° C., ts = t7. (The above-described t1, t2, t3, t4, t5, t6, and t7 are preset times and can be determined by experiment.)
本発明は、気液分離器付きの2気筒又は2気筒以上の周波数可変圧縮機に容量可変技術を結合してシステムの冷却/加熱量の調節範囲を大きくする。第2の電磁弁及びキャピラリチューブからなるバイパス分岐は、主として、第1の電磁弁を閉じる必要がある場合、第2の電磁弁を開いて下部気筒吸気口と第1の電磁弁との間の管道における圧力を低圧と一致させるように減圧させ、これにより、圧縮機を、第1の電磁弁を閉じてからすぐ2気筒に切り換えることを保証する機能を担う。エアコン・システムが単気筒動作の場合、圧縮機の下部吸気口のパイプ温度センサで測定された温度及び高圧センサで測定された高圧温度によって、下部吸気口に液体が溜まっているか否かを判定することができ、液体が溜まっていると判定されれば、第2の電磁弁をしばらく開き、これにより、圧縮機の単気筒による長期動作の後、2気筒への切り換え時の液撃の発生を防止するよう作用できる。 The present invention increases the cooling / heating amount adjustment range of the system by combining variable capacity technology with a frequency variable compressor having two or more cylinders with a gas-liquid separator. The bypass branch consisting of the second solenoid valve and the capillary tube mainly opens the second solenoid valve between the lower cylinder intake port and the first solenoid valve when the first solenoid valve needs to be closed. The pressure in the conduit is reduced to match the low pressure, thereby ensuring that the compressor is switched to two cylinders immediately after closing the first solenoid valve. When the air-conditioner system is in single-cylinder operation, it is determined whether or not liquid is accumulated in the lower intake port based on the temperature measured by the pipe temperature sensor at the lower intake port of the compressor and the high pressure temperature measured by the high pressure sensor. If it is determined that the liquid has accumulated, the second solenoid valve is opened for a while, so that after a long period of operation by a single cylinder of the compressor, a liquid hammer is generated when switching to two cylinders. Can act to prevent.
以上は、本発明の好適な実施例に過ぎず、本発明を限定することは意図していない。当業者であれば、本発明に様々な変更や変形が可能である。本発明の思想や原則内の如何なる修正、均等の置き換え、改良なども、本発明の保護範囲内に含まれるべきである。 The above are only preferred embodiments of the present invention and are not intended to limit the present invention. A person skilled in the art can make various changes and modifications to the present invention. Any modifications, equivalent replacements, improvements, etc. within the spirit and principle of the present invention should be included in the protection scope of the present invention.
Claims (9)
前記2気筒容量可変圧縮機(30)の下部気筒吸気口から気液分離器の入り口までを連結する管道内に設けられる第2の電磁弁(72)、をさらに備えることを特徴とするエアコンシステム。 A two-cylinder variable displacement compressor (30) having an upper cylinder intake port, a lower cylinder intake port, and an exhaust port is provided, with one end connected to the exhaust port of the two-cylinder variable variable compressor (30) and the other end. Further comprising a first solenoid valve (71) connected to the check valve (50) and the lower cylinder intake port of the two-cylinder variable displacement compressor (30), respectively, and the check valve (50) An air conditioner system having one end connected to the first solenoid valve (71) and the other end connected to the lumen of the gas-liquid separator,
An air conditioner system further comprising: a second electromagnetic valve (72) provided in a pipe connecting the lower cylinder intake port of the two-cylinder variable capacity compressor (30) to the inlet of the gas-liquid separator. .
2気筒容量可変圧縮機(30)が単気筒動作状態にありながら2気筒動作状態への切り換えが必要となる場合、前記2気筒容量可変圧縮機(30)の下部気筒吸気口から気液分離器の入り口までの管道を連通するステップ10、を含むことを特徴とするエアコンシステムの制御方法。 A control method of an air conditioner system applied to the air conditioner system according to any one of claims 1 to 4,
When it is necessary to switch to the two-cylinder operation state while the two-cylinder capacity variable compressor (30) is in the single-cylinder operation state, the gas-liquid separator is supplied from the lower cylinder intake port of the two-cylinder capacity variable compressor (30). A control method for an air conditioner system, comprising a step 10 of communicating a pipe line to the entrance of the air conditioner.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310728551.5 | 2013-12-24 | ||
CN201310728551.5A CN104729130B (en) | 2013-12-24 | 2013-12-24 | Air conditioning system and control method thereof |
PCT/CN2014/088670 WO2015096539A1 (en) | 2013-12-24 | 2014-10-15 | Air-conditioning system and method for controlling same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017502247A true JP2017502247A (en) | 2017-01-19 |
JP6498677B2 JP6498677B2 (en) | 2019-04-10 |
Family
ID=53453275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016542927A Active JP6498677B2 (en) | 2013-12-24 | 2014-10-15 | Air conditioner system and control method of air conditioner system |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3091311B1 (en) |
JP (1) | JP6498677B2 (en) |
CN (1) | CN104729130B (en) |
ES (1) | ES2717515T3 (en) |
TR (1) | TR201905512T4 (en) |
WO (1) | WO2015096539A1 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105485991B (en) * | 2016-01-04 | 2018-07-24 | 珠海格力电器股份有限公司 | Variable-capacity compressor system, control method and air conditioner |
CN105650925B (en) * | 2016-01-14 | 2018-03-30 | 安徽美芝精密制造有限公司 | refrigeration system and its control method |
ITUB20160682A1 (en) * | 2016-03-01 | 2017-09-01 | Evolving Living Innovation Center Elic S R L | HEAT PUMP EQUIPMENT FOR REPLACEMENT OF AIR IN HOME PREMISES AND ITS OPERATING METHOD |
CN105627615B (en) * | 2016-03-03 | 2018-11-27 | 广东美的制冷设备有限公司 | The control method of air-conditioning system and air-conditioning system |
CN105698456B (en) * | 2016-03-21 | 2018-02-13 | 珠海格力电器股份有限公司 | Variable capacity compressor system control method |
CN106152342B (en) * | 2016-07-04 | 2020-12-04 | 珠海格力电器股份有限公司 | Variable-displacement-ratio two-stage compression air conditioning system and control method thereof |
CN106595138A (en) * | 2016-10-17 | 2017-04-26 | 珠海格力电器股份有限公司 | Air conditioning system and method for reducing liquid storage of gas-liquid separator |
CN106403373A (en) * | 2016-10-19 | 2017-02-15 | 珠海格力电器股份有限公司 | Heat pump system, control method and refrigerating unit |
CN106440443B (en) * | 2016-11-25 | 2022-04-12 | 广州华凌制冷设备有限公司 | Air conditioning system suitable for high-temperature refrigeration and control method |
WO2018179014A1 (en) * | 2017-03-28 | 2018-10-04 | Evolving Living Innovation Center E.L.I.C. S.r.l. | Heat pump apparatus for changing air within domestic spaces and respective mode of operation |
CN107014038B (en) * | 2017-04-13 | 2020-12-29 | 青岛海尔空调器有限总公司 | Air conditioner and control method |
WO2019000868A1 (en) * | 2017-06-30 | 2019-01-03 | 广东美的制冷设备有限公司 | Air conditioning system and control method for air conditioning system |
WO2019000869A1 (en) * | 2017-06-30 | 2019-01-03 | 广东美的制冷设备有限公司 | Air conditioning system and air conditioning system control method |
CN107388650B (en) * | 2017-07-26 | 2019-07-26 | 珠海格力电器股份有限公司 | Air conditioning system and gas-liquid separator accumulated liquid control method |
CN108317787A (en) * | 2017-12-25 | 2018-07-24 | 珠海格力电器股份有限公司 | Air conditioning system of compressor, control method of air conditioning system, storage medium and processor |
CN108131859B (en) * | 2017-12-25 | 2023-08-29 | 珠海格力电器股份有限公司 | Air conditioning system of variable capacity compressor, control method of air conditioning system, storage medium and processor |
CN108981233A (en) * | 2018-07-25 | 2018-12-11 | 珠海格力电器股份有限公司 | Variable-capacity compression assembly and variable-capacity air conditioning system |
CN110319008A (en) * | 2019-08-08 | 2019-10-11 | 珠海格力电器股份有限公司 | Compressor with two-stage exhaust function and air conditioning system |
CN111594443B (en) * | 2020-05-12 | 2024-05-14 | 珠海凌达压缩机有限公司 | Compressor assembly, air conditioning system comprising same and control method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6388297A (en) * | 1986-09-30 | 1988-04-19 | Mitsubishi Electric Corp | Multi-cylinder rotary compressor |
JP2005344683A (en) * | 2004-06-07 | 2005-12-15 | Toshiba Kyaria Kk | Hermetic compressor |
EP1806475A1 (en) * | 2006-01-09 | 2007-07-11 | Samsung Electronics Co., Ltd. | Rotary compressor |
JP2008057395A (en) * | 2006-08-30 | 2008-03-13 | Toshiba Kyaria Kk | Hermetic rotary compressor and refrigeration cycle device |
US20110138848A1 (en) * | 2008-08-22 | 2011-06-16 | Sang-Myung Byun | Variable capacity type rotary compressor, cooling apparatus having the same, and method for driving the same |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4447859B2 (en) * | 2003-06-20 | 2010-04-07 | 東芝キヤリア株式会社 | Rotary hermetic compressor and refrigeration cycle apparatus |
JP4247077B2 (en) * | 2003-09-02 | 2009-04-02 | 東芝キヤリア株式会社 | Air conditioner |
JP2006022723A (en) * | 2004-07-08 | 2006-01-26 | Sanyo Electric Co Ltd | Compression system and refrigerating apparatus using the same |
JP4769811B2 (en) * | 2005-08-25 | 2011-09-07 | 東芝キヤリア株式会社 | Hermetic compressor and refrigeration cycle apparatus |
CN201772685U (en) * | 2010-05-24 | 2011-03-23 | 上海日立电器有限公司 | Two-stage rotor type compressor and heat pump circulating system with variable-capacity defrosting |
CN202303713U (en) * | 2011-09-15 | 2012-07-04 | 宁波奥克斯空调有限公司 | Double-cylinder variable-displacement heat pump air conditioner system |
JP2013076377A (en) * | 2011-09-30 | 2013-04-25 | Toshiba Corp | Control device of hermetic compressor |
CN203687474U (en) * | 2013-12-24 | 2014-07-02 | 珠海格力电器股份有限公司 | Air conditioning system |
CN104061723B (en) * | 2014-06-09 | 2016-05-04 | 珠海格力电器股份有限公司 | Air conditioning system |
-
2013
- 2013-12-24 CN CN201310728551.5A patent/CN104729130B/en active Active
-
2014
- 2014-10-15 WO PCT/CN2014/088670 patent/WO2015096539A1/en active Application Filing
- 2014-10-15 TR TR2019/05512T patent/TR201905512T4/en unknown
- 2014-10-15 JP JP2016542927A patent/JP6498677B2/en active Active
- 2014-10-15 ES ES14875380T patent/ES2717515T3/en active Active
- 2014-10-15 EP EP14875380.9A patent/EP3091311B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6388297A (en) * | 1986-09-30 | 1988-04-19 | Mitsubishi Electric Corp | Multi-cylinder rotary compressor |
JP2005344683A (en) * | 2004-06-07 | 2005-12-15 | Toshiba Kyaria Kk | Hermetic compressor |
EP1806475A1 (en) * | 2006-01-09 | 2007-07-11 | Samsung Electronics Co., Ltd. | Rotary compressor |
JP2008057395A (en) * | 2006-08-30 | 2008-03-13 | Toshiba Kyaria Kk | Hermetic rotary compressor and refrigeration cycle device |
US20110138848A1 (en) * | 2008-08-22 | 2011-06-16 | Sang-Myung Byun | Variable capacity type rotary compressor, cooling apparatus having the same, and method for driving the same |
Also Published As
Publication number | Publication date |
---|---|
JP6498677B2 (en) | 2019-04-10 |
WO2015096539A1 (en) | 2015-07-02 |
EP3091311B1 (en) | 2019-02-27 |
EP3091311A4 (en) | 2017-09-20 |
EP3091311A1 (en) | 2016-11-09 |
ES2717515T3 (en) | 2019-06-21 |
CN104729130A (en) | 2015-06-24 |
TR201905512T4 (en) | 2019-05-21 |
CN104729130B (en) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6498677B2 (en) | Air conditioner system and control method of air conditioner system | |
EP3101369B1 (en) | Heat recovery variable-frequency multi-split heat pump system and control method thereof | |
CN103486692B (en) | The method of load self-adapting variable-frequency multi-connection type heat pump and control compressor frequency | |
CN104949210B (en) | The control method of air-conditioning system, air conditioner and air-conditioning system | |
KR101706865B1 (en) | Air conditioning system | |
EP3534082B1 (en) | Air conditioner | |
US11927376B2 (en) | Refrigeration cycle apparatus | |
US11519640B2 (en) | Air conditioner | |
CN104729163A (en) | Air conditioning system and defrosting control method thereof | |
CN105546861B (en) | heat pump system | |
CN107084547B (en) | Air conditioning system and control method for air conditioning system | |
KR20170098138A (en) | Air conditioner and controlling method thereof | |
CN110319542B (en) | Unloading start-stop control method of large-displacement variable-frequency multi-split system | |
JP2015048969A (en) | Heat pump device | |
CN111043723A (en) | Air conditioner and control method thereof | |
US10168060B2 (en) | Air-conditioning apparatus | |
JP2016142453A (en) | Air conditioner | |
KR101504003B1 (en) | Heat pump type air conditioner | |
JP2017101844A (en) | Air conditioner | |
CN105066528B (en) | air conditioning system, air conditioner and air conditioner control method | |
TWI803677B (en) | Refrigeration system | |
KR100748982B1 (en) | Air conditioner and Control method of the same | |
CN220287825U (en) | Refrigerant system and air conditioner | |
CN110220324B (en) | Four-way valve and air conditioning system | |
KR20190033950A (en) | Heat Pump System For Vehicle, And Operating Method Thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171002 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180814 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180821 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190313 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6498677 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |