JP2017226877A - Manufacturing method of three-dimensional shaped object - Google Patents
Manufacturing method of three-dimensional shaped object Download PDFInfo
- Publication number
- JP2017226877A JP2017226877A JP2016123783A JP2016123783A JP2017226877A JP 2017226877 A JP2017226877 A JP 2017226877A JP 2016123783 A JP2016123783 A JP 2016123783A JP 2016123783 A JP2016123783 A JP 2016123783A JP 2017226877 A JP2017226877 A JP 2017226877A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- layer
- light beam
- dissimilar
- solidified layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/16—Both compacting and sintering in successive or repeated steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、三次元形状造形物の製造方法に関する。より詳細には、本発明は、粉末層への光ビーム照射によって固化層を形成する三次元形状造形物の製造方法に関する。 The present invention relates to a method for manufacturing a three-dimensional shaped object. In more detail, this invention relates to the manufacturing method of the three-dimensional shaped molded article which forms a solidified layer by light beam irradiation to a powder layer.
光ビームを粉末材料に照射することを通じて三次元形状造形物を製造する方法(一般的には「粉末床溶融結合法」と称される)は、従来より知られている。かかる方法は、以下の工程(i)および(ii)に基づいて粉末層および固化層を交互に繰り返して積層させることで三次元形状造形物を製造する。
(i)粉末層の所定箇所に光ビームを照射し、かかる所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程。
(ii)得られた固化層の上に新たな粉末層を形成し、同様に光ビームを照射して更なる固化層を形成する工程。
A method for producing a three-dimensional shaped object by irradiating a powder material with a light beam (generally referred to as “powder bed fusion bonding method”) has been conventionally known. In this method, a three-dimensional shaped object is manufactured by alternately and repeatedly laminating a powder layer and a solidified layer based on the following steps (i) and (ii).
(I) A step of irradiating a predetermined portion of the powder layer with a light beam and sintering or melting and solidifying the powder at the predetermined portion to form a solidified layer.
(Ii) A step of forming a new powder layer on the obtained solidified layer and similarly irradiating a light beam to form a further solidified layer.
このような製造技術に従えば、複雑な三次元形状造形物を短時間で製造することが可能となる。粉末材料として無機質の金属粉末を用いる場合、得られる三次元形状造形物を金型として使用することができる。一方、粉末材料として有機質の樹脂粉末を用いる場合、得られる三次元形状造形物を各種モデルとして使用することができる。 According to such a manufacturing technique, it becomes possible to manufacture a complicated three-dimensional shaped object in a short time. When an inorganic metal powder is used as the powder material, the obtained three-dimensional shaped object can be used as a mold. On the other hand, when organic resin powder is used as the powder material, the obtained three-dimensional shaped object can be used as various models.
粉末材料として金属粉末を用い、それによって得られる三次元形状造形物を金型として使用する場合を例にとる。図8に示すように、まず、スキージング・ブレード23を動かして造形プレート21上に所定厚みの粉末層22を形成する(図8(a)参照)。次いで、粉末層22の所定箇所に光ビームLを照射して粉末層22から固化層24を形成する(図8(b)参照)。引き続いて、得られた固化層の上に新たな粉末層を形成して再度光ビームを照射して新たな固化層を形成する。このようにして粉末層形成と固化層形成とを交互に繰り返し実施すると固化層24が積層することになり(図8(c)参照)、最終的には積層化した固化層24から成る三次元形状造形物を得ることができる。最下層として形成される固化層24は造形プレート21と結合した状態になるので、三次元形状造形物と造形プレート21とは一体化物を成すことになり、その一体化物を金型として使用できる。 The case where metal powder is used as the powder material and the three-dimensional shaped object obtained thereby is used as a mold is taken as an example. As shown in FIG. 8, first, the squeezing blade 23 is moved to form a powder layer 22 having a predetermined thickness on the modeling plate 21 (see FIG. 8A). Next, a light beam L is applied to a predetermined portion of the powder layer 22 to form a solidified layer 24 from the powder layer 22 (see FIG. 8B). Subsequently, a new powder layer is formed on the obtained solidified layer and irradiated with a light beam again to form a new solidified layer. When the powder layer formation and the solidified layer formation are alternately performed in this manner, the solidified layer 24 is laminated (see FIG. 8C), and finally, a three-dimensional structure composed of the laminated solidified layer 24 is formed. A shaped object can be obtained. Since the solidified layer 24 formed as the lowermost layer is coupled to the modeling plate 21, the three-dimensional modeled object and the modeling plate 21 form an integrated object, and the integrated object can be used as a mold.
ここで、本願発明者らは以下事項を見出した。具体的には、金型として使用される三次元形状造形物が例えばガス抜き孔を内部に有して成る場合、当該孔が空隙を成していることに起因して当該孔が存在する領域の構造強度は相対的に弱くなり得る。そのため、三次元形状造形物の使用条件によっては、当該孔を起点としてクラックの発生が助長される虞があり得る。つまり、最終的に得られる三次元形状造形物は、その使用条件に好適に適合したものではない虞があり得る。 Here, the present inventors have found the following matters. Specifically, when a three-dimensional shaped object used as a mold has, for example, a vent hole inside, an area where the hole exists due to the hole forming a void. The structural strength of can be relatively weak. Therefore, depending on the use conditions of the three-dimensional shaped object, there is a possibility that the generation of cracks may be promoted starting from the hole. That is, there is a possibility that the finally obtained three-dimensional shaped object is not suitably adapted to the use conditions.
本発明は、かかる事情に鑑みて為されたものである。すなわち、本発明の主たる目的は、使用条件により好適に適合する三次元形状造形物を得ることが可能な粉末床溶融結合法を提供することである。 The present invention has been made in view of such circumstances. That is, a main object of the present invention is to provide a powder bed fusion bonding method capable of obtaining a three-dimensional shaped article that is more suitable for use conditions.
上記目的を達成するために、本発明では、
(i)粉末層の所定箇所に光ビームを照射して所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
(ii)得られた固化層の上に新たな粉末層を形成し、新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
により粉末層および固化層を交互に繰り返して積層させることで三次元形状造形物を製造する方法であって、
三次元形状造形物の製造を行うための積層領域に粉末と異なる種類の異種粉末を供給し、光ビームによって異種粉末と固化層および粉末層の少なくとも一方とから合金部を形成する、三次元形状造形物の製造方法が提供される。
In order to achieve the above object, in the present invention,
(I) irradiating a predetermined portion of the powder layer with a light beam to sinter or melt and solidify the powder at the predetermined portion to form a solidified layer; and (ii) a new powder layer on the obtained solidified layer. Forming a three-dimensional shaped object by alternately and repeatedly laminating a powder layer and a solidified layer in a step of forming a further solidified layer by irradiating a predetermined portion of a new powder layer with a light beam Because
A three-dimensional shape in which a different type of powder different from the powder is supplied to a lamination region for manufacturing a three-dimensional shaped object, and an alloy part is formed from the different type powder and at least one of a solidified layer and a powder layer by a light beam. A method for manufacturing a shaped article is provided.
本発明の製造方法では、使用条件に好適に適合した三次元形状造形物を得ることが可能である。 In the manufacturing method of the present invention, it is possible to obtain a three-dimensional shaped object that is suitably adapted to the use conditions.
以下では、図面を参照して本発明の一実施形態をより詳細に説明する。図面における各種要素の形態および寸法は、あくまでも例示にすぎず、実際の形態および寸法を反映するものではない。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. The forms and dimensions of the various elements in the drawings are merely examples, and do not reflect actual forms and dimensions.
本明細書において「粉末層」とは、例えば「金属粉末から成る金属粉末層」を意味している。また「粉末層の所定箇所」とは、製造される三次元形状造形物の領域を実質的に指している。従って、かかる所定箇所に存在する粉末に対して光ビームを照射することによって、その粉末が焼結又は溶融固化して三次元形状造形物を構成することになる。 In the present specification, the “powder layer” means, for example, a “metal powder layer made of metal powder”. The “predetermined portion of the powder layer” substantially refers to the region of the three-dimensional shaped object to be manufactured. Therefore, by irradiating the powder existing at the predetermined location with a light beam, the powder is sintered or melted and solidified to form a three-dimensional shaped object.
また、本明細書で直接的または間接的に説明される“上下”の方向は、例えば造形プレートと三次元形状造形物との位置関係に基づいている。具体的には、造形プレートを基準にして三次元形状造形物が製造される側を「上方向」とし、その反対側を「下方向」としている。 Further, the “up and down” direction described directly or indirectly in the present specification is based on, for example, the positional relationship between the modeling plate and the three-dimensional shaped object. Specifically, the side on which the three-dimensional shaped object is manufactured with reference to the modeling plate is defined as “upward”, and the opposite side is defined as “downward”.
[粉末床溶融結合法]
まず、本発明の製造方法の前提となる粉末床溶融結合法について説明する。特に粉末床溶融結合法において三次元形状造形物の切削処理を付加的に行う光造形複合加工を例として挙げる。図8は、光造形複合加工のプロセス態様を模式的に示しており、図9および図10は、粉末床溶融結合法と切削処理とを実施できる光造形複合加工機の主たる構成および動作のフローチャートをそれぞれ示している。
[Powder bed fusion bonding method]
First, the powder bed fusion bonding method which is the premise of the production method of the present invention will be described. In particular, an optical modeling combined processing that additionally performs a cutting process of a three-dimensional shaped object in the powder bed fusion bonding method will be given as an example. FIG. 8 schematically shows a process mode of stereolithography combined processing, and FIGS. 9 and 10 are flowcharts of the main configuration and operation of the stereolithography combined processing machine capable of performing the powder bed fusion bonding method and the cutting process. Respectively.
光造形複合加工機1は、図9に示すように、粉末層形成手段2、光ビーム照射手段3および切削手段4を備えている。 As shown in FIG. 9, the stereolithography combined processing machine 1 includes a powder layer forming unit 2, a light beam irradiation unit 3, and a cutting unit 4.
粉末層形成手段2は、金属粉末を所定厚みで敷くことによって粉末層を形成するための手段である。光ビーム照射手段3は、粉末層の所定箇所に光ビームLを照射するための手段である。切削手段4は、積層化した固化層の表面、すなわち、三次元形状造形物の表面を削るための手段である。 The powder layer forming means 2 is means for forming a powder layer by spreading metal powder with a predetermined thickness. The light beam irradiation means 3 is a means for irradiating a predetermined portion of the powder layer with the light beam L. The cutting means 4 is means for cutting the surface of the laminated solidified layer, that is, the surface of the three-dimensional shaped object.
粉末層形成手段2は、図8に示すように、粉末テーブル25、スキージング・ブレード23、造形テーブル20および造形プレート21を主に有して成る。粉末テーブル25は、外周が壁26で囲まれた粉末材料タンク28内にて上下に昇降できるテーブルである。スキージング・ブレード23は、粉末テーブル25上の粉末19を造形テーブル20上へと供して粉末層22を得るべく水平方向に移動できるブレードである。造形テーブル20は、外周が壁27で囲まれた造形タンク29内にて上下に昇降できるテーブルである。そして、造形プレート21は、造形テーブル20上に配され、三次元形状造形物の土台となるプレートである。 As shown in FIG. 8, the powder layer forming unit 2 mainly includes a powder table 25, a squeezing blade 23, a modeling table 20, and a modeling plate 21. The powder table 25 is a table that can be moved up and down in a powder material tank 28 whose outer periphery is surrounded by a wall 26. The squeezing blade 23 is a blade that can move in the horizontal direction to obtain the powder layer 22 by supplying the powder 19 on the powder table 25 onto the modeling table 20. The modeling table 20 is a table that can be moved up and down in a modeling tank 29 whose outer periphery is surrounded by a wall 27. The modeling plate 21 is a plate that is arranged on the modeling table 20 and serves as a base for a three-dimensional modeled object.
光ビーム照射手段3は、図9に示すように、光ビーム発振器30およびガルバノミラー31を主に有して成る。光ビーム発振器30は、光ビームLを発する機器である。ガルバノミラー31は、発せられた光ビームLを粉末層22にスキャニングする手段、すなわち、光ビームLの走査手段である。 As shown in FIG. 9, the light beam irradiation means 3 mainly includes a light beam oscillator 30 and a galvanometer mirror 31. The light beam oscillator 30 is a device that emits a light beam L. The galvanometer mirror 31 is means for scanning the emitted light beam L into the powder layer 22, that is, scanning means for the light beam L.
切削手段4は、図9に示すように、エンドミル40および駆動機構41を主に有して成る。エンドミル40は、積層化した固化層の表面、すなわち、三次元形状造形物の表面を削るための切削工具である。駆動機構41は、エンドミル40を所望の切削すべき箇所へと移動させる手段である。 As shown in FIG. 9, the cutting means 4 mainly includes an end mill 40 and a drive mechanism 41. The end mill 40 is a cutting tool for cutting the surface of the laminated solidified layer, that is, the surface of the three-dimensional shaped object. The drive mechanism 41 is means for moving the end mill 40 to a desired location to be cut.
光造形複合加工機1の動作について詳述する。光造形複合加工機1の動作は、図10のフローチャートに示すように、粉末層形成ステップ(S1)、固化層形成ステップ(S2)および切削ステップ(S3)から構成されている。粉末層形成ステップ(S1)は、粉末層22を形成するためのステップである。かかる粉末層形成ステップ(S1)では、まず造形テーブル20をΔt下げ(S11)、造形プレート21の上面と造形タンク29の上端面とのレベル差がΔtとなるようにする。次いで、粉末テーブル25をΔt上げた後、図8(a)に示すようにスキージング・ブレード23を粉末材料タンク28から造形タンク29に向かって水平方向に移動させる。これによって、粉末テーブル25に配されていた粉末19を造形プレート21上へと移送させることができ(S12)、粉末層22の形成が行われる(S13)。粉末層22を形成するための粉末材料としては、例えば「平均粒径5μm〜100μm程度の金属粉末」を挙げることができる。粉末層22が形成されたら、固化層形成ステップ(S2)へと移行する。固化層形成ステップ(S2)は、光ビーム照射によって固化層24を形成するステップである。かかる固化層形成ステップ(S2)においては、光ビーム発振器30から光ビームLを発し(S21)、ガルバノミラー31によって粉末層22上の所定箇所へと光ビームLをスキャニングする(S22)。これによって、粉末層22の所定箇所の粉末を焼結又は溶融固化させ、図8(b)に示すように固化層24を形成する(S23)。光ビームLとしては、炭酸ガスレーザ、Nd:YAGレーザ、ファイバレーザまたは紫外線などを用いてよい。 The operation of the optical modeling complex machine 1 will be described in detail. As shown in the flowchart of FIG. 10, the operation of the optical modeling complex machine 1 includes a powder layer forming step (S1), a solidified layer forming step (S2), and a cutting step (S3). The powder layer forming step (S1) is a step for forming the powder layer 22. In the powder layer forming step (S1), first, the modeling table 20 is lowered by Δt (S11) so that the level difference between the upper surface of the modeling plate 21 and the upper end surface of the modeling tank 29 becomes Δt. Next, after raising the powder table 25 by Δt, the squeezing blade 23 is moved in the horizontal direction from the powder material tank 28 toward the modeling tank 29 as shown in FIG. Thereby, the powder 19 arranged on the powder table 25 can be transferred onto the modeling plate 21 (S12), and the powder layer 22 is formed (S13). Examples of the powder material for forming the powder layer 22 include “metal powder having an average particle diameter of about 5 μm to 100 μm”. When the powder layer 22 is formed, the process proceeds to a solidified layer forming step (S2). The solidified layer forming step (S2) is a step of forming the solidified layer 24 by light beam irradiation. In the solidified layer forming step (S2), the light beam L is emitted from the light beam oscillator 30 (S21), and the light beam L is scanned to a predetermined location on the powder layer 22 by the galvano mirror 31 (S22). As a result, the powder at a predetermined location of the powder layer 22 is sintered or melted and solidified to form the solidified layer 24 as shown in FIG. 8B (S23). As the light beam L, a carbon dioxide laser, an Nd: YAG laser, a fiber laser, an ultraviolet ray, or the like may be used.
粉末層形成ステップ(S1)および固化層形成ステップ(S2)は、交互に繰り返して実施する。これにより、図8(c)に示すように複数の固化層24が積層化する。 The powder layer forming step (S1) and the solidified layer forming step (S2) are alternately repeated. As a result, a plurality of solidified layers 24 are laminated as shown in FIG.
積層化した固化層24が所定厚みに達すると(S24)、切削ステップ(S3)へと移行する。切削ステップ(S3)は、積層化した固化層24の表面、すなわち、三次元形状造形物の表面を削るためのステップである。エンドミル40(図8(c)および図9参照)を駆動させることによって切削ステップが開始される(S31)。例えば、エンドミル40が3mmの有効刃長さを有する場合、三次元形状造形物の高さ方向に沿って3mmの切削処理を行うことができるので、Δtが0.05mmであれば60層分の固化層24が積層した時点でエンドミル40を駆動させる。具体的には駆動機構41によってエンドミル40を移動させながら、積層化した固化層24の表面を切削処理に付すことになる(S32)。このような切削ステップ(S3)の最終では、所望の三次元形状造形物が得られているか否かを判断する(S33)。所望の三次元形状造形物が依然得られていない場合では、粉末層形成ステップ(S1)へと戻る。以降、粉末層形成ステップ(S1)〜切削ステップ(S3)を繰り返し実施して更なる固化層の積層化および切削処理を実施することによって、最終的に所望の三次元形状造形物が得られる。 When the laminated solidified layer 24 reaches a predetermined thickness (S24), the process proceeds to the cutting step (S3). The cutting step (S3) is a step for cutting the surface of the laminated solidified layer 24, that is, the surface of the three-dimensional shaped object. A cutting step is started by driving the end mill 40 (see FIG. 8C and FIG. 9) (S31). For example, when the end mill 40 has an effective blade length of 3 mm, a cutting process of 3 mm can be performed along the height direction of the three-dimensional shaped object. When the solidified layer 24 is laminated, the end mill 40 is driven. Specifically, the surface of the laminated solidified layer 24 is subjected to a cutting process while moving the end mill 40 by the drive mechanism 41 (S32). At the end of such a cutting step (S3), it is determined whether or not a desired three-dimensional shaped object has been obtained (S33). When the desired three-dimensional shaped object is not yet obtained, the process returns to the powder layer forming step (S1). Thereafter, by repeatedly performing the powder layer forming step (S1) to the cutting step (S3) to further laminate the solidified layer and perform the cutting process, a desired three-dimensional shaped object is finally obtained.
[本発明の製造方法]
本発明は、上述の粉末床溶融結合法の中でも、固化層の形成態様に特徴を有している。
[Production method of the present invention]
The present invention has a feature in the formation mode of the solidified layer among the above-described powder bed fusion bonding methods.
具体的には、本発明では、図1に示すように三次元形状造形物100の製造を行うための積層領域5に異種粉末19’を供給し、光ビームLによって異種粉末19’と固化層24および粉末層22の少なくとも一方とから合金部50を形成する。 Specifically, in the present invention, as shown in FIG. 1, the dissimilar powder 19 ′ and the solidified layer are supplied by the light beam L by supplying the dissimilar powder 19 ′ to the laminated region 5 for manufacturing the three-dimensional shaped object 100. The alloy part 50 is formed from at least one of 24 and the powder layer 22.
ここでいう「積層領域5」とは、粉末層22および固化層24を交互に繰り返して積層させる領域を実質的に指す。ここでいう「異種粉末19’」とは、三次元形状造形物100を製造するための主たる材料として用いる粉末19とは種類の異なる粉末を指す。ここでいう「三次元形状造形物100を製造するための主たる材料として用いる粉末19」は、例えばFe系粉末等であってよい。一方、ここでいう「異種粉末19’」は、Ti、C、Co、Cr、Cu、Nb、Ni、W、およびZnから成る群から選択される少なくとも1種の材料から成ってよい。また、ここでいう「合金部50」とは、広義には2種以上の金属元素から構成されるもの、又は金属元素および非金属元素から構成されるものを指す。ここでいう「合金部50」とは、狭義には、2種以上の金属成分が溶融して新たに合金化されたもの、又は金属成分および非金属成分が溶融して新たに合金化されたものを指す。なお、ここでいう「合金部50」は、結晶レベルで2種以上の金属成分が独立した状態を保持したもの、又は金属成分および非金属成分が独立した状態を保持したものも含んでよい。 The “lamination region 5” here substantially refers to a region where the powder layer 22 and the solidified layer 24 are alternately and repeatedly laminated. As used herein, the “different powder 19 ′” refers to a different type of powder from the powder 19 used as a main material for producing the three-dimensional shaped object 100. The “powder 19 used as a main material for manufacturing the three-dimensional shaped object 100” herein may be, for example, an Fe-based powder. On the other hand, the “foreign powder 19 ′” herein may be made of at least one material selected from the group consisting of Ti, C, Co, Cr, Cu, Nb, Ni, W, and Zn. In addition, the “alloy portion 50” here refers to a component composed of two or more metal elements or a component composed of a metal element and a non-metal element in a broad sense. The “alloy part 50” here is, in a narrow sense, two or more kinds of metal components melted and newly alloyed, or a metal component and a nonmetal component are melted and newly alloyed. Refers to things. The “alloy portion 50” herein may include those in which two or more kinds of metal components are kept independent at the crystal level, or those in which a metal component and a non-metal component are kept independent.
本発明では、上述のように三次元形状造形物100の製造を行うための積層領域5において、光ビームLを用いて異種粉末19’と固化層24および粉末層22の少なくとも一方とから合金部50を形成する。すなわち、本発明では、合金部50を局所的に有して成る三次元形状造形物100を製造する。合金部50は、三次元形状造形物100を製造するための主たる粉末材料と異種粉末材料とから新たに合金化されたものであり得るため、主たる粉末材料から形成される固化層と比べて、異なる特性を供することができ得る。従って、最終的に得られる三次元形状造形物100の使用条件に応じて、三次元形状造形物100の所定領域のみに他の領域と比べて異なる特性を供することができ得る。異なる特性は、粉末19として例えばFe系粉末等が用いられる場合において、異種粉末19’に用いる材料の特性に起因して供され得る。例えば、異種粉末19’の材料として上記のCおよびW等の材料を用いると、合金部50に硬度向上の特性を供することができ得る。例えば、異種粉末19’の材料として上記のNiおよびCr等の材料を用いると、合金部50に耐食性向上の特性を供することができ得る。例えば、異種粉末19’の材料として上記のNi、ZnおよびNb等の材料を用いると、合金部50に靱性向上の特性を供することができ得る。例えば、異種粉末19’の材料として上記のCu等の材料を用いると、合金部50に熱伝導性向上の特性を供することができ得る。例えば、異種粉末19’の材料として上記のNi等の材料を用いると、合金部50に線膨張率低減の特性を供することができ得る。以上の事からも、本発明では、最終的に得られる三次元形状造形物100の使用条件に応じて、三次元形状造形物100の所定領域のみに他の領域と比べて異なる特性を供することができ得るため、それに起因して使用条件に好適に適合した三次元形状造形物100を得ることが可能である。なお、本発明では、予め合金化させた合金粉末を、粉末層を形成するための材料として用いていないことを確認的に付言しておく。端的に言うと、本発明では、「合金化」が、三次元形状造形物の製造前に実施されておらず、三次元形状造形物の製造中に実施されていることを確認的に付言しておく。 In the present invention, in the laminated region 5 for manufacturing the three-dimensional shaped object 100 as described above, the alloy part is formed from the different powder 19 ′ and at least one of the solidified layer 24 and the powder layer 22 using the light beam L. 50 is formed. That is, in the present invention, the three-dimensional shaped article 100 having the alloy part 50 locally is manufactured. Since the alloy part 50 can be newly alloyed from the main powder material and the dissimilar powder material for producing the three-dimensional shaped object 100, compared with the solidified layer formed from the main powder material, Different characteristics may be provided. Therefore, depending on the use conditions of the finally obtained three-dimensional structure 100, only a predetermined region of the three-dimensional structure 100 can be provided with different characteristics compared to other regions. Different characteristics can be provided due to the characteristics of the material used for the dissimilar powder 19 ′ when, for example, an Fe-based powder or the like is used as the powder 19. For example, when the above-described materials such as C and W are used as the material of the different kind of powder 19 ′, it is possible to provide the alloy part 50 with a property of improving hardness. For example, when the above-described materials such as Ni and Cr are used as the material of the dissimilar powder 19 ′, it is possible to provide the alloy part 50 with a characteristic of improving corrosion resistance. For example, when the above-described materials such as Ni, Zn, and Nb are used as the material of the dissimilar powder 19 ′, it is possible to provide the alloy part 50 with the property of improving toughness. For example, when the material such as Cu described above is used as the material of the different kind of powder 19 ′, it is possible to provide the alloy part 50 with a characteristic of improving thermal conductivity. For example, when the material such as Ni described above is used as the material of the different kind of powder 19 ′, the alloy portion 50 can be provided with a characteristic of reducing the linear expansion coefficient. Also from the above thing, in this invention, according to the use conditions of the finally obtained three-dimensional structure 100, only a predetermined region of the three-dimensional structure 100 is provided with different characteristics compared to other regions. Therefore, it is possible to obtain the three-dimensional shaped article 100 that is suitably adapted to the use conditions. In the present invention, it is confirmed that the alloy powder prealloyed is not used as a material for forming the powder layer. In short, the present invention confirms that “alloying” is not carried out before the production of the three-dimensional shaped object, and is carried out during the production of the three-dimensional shaped object. Keep it.
本発明では、下記態様に従い合金部を形成してよい。 In the present invention, the alloy part may be formed according to the following embodiment.
一態様では、積層領域において、異種粉末19’を固化層24の表面24aに設け、当該表面24aに設けた異種粉末19’と、異種粉末19’の直下に位置する固化層24とから合金部50を形成してよい(図2参照)。 In one aspect, in the laminated region, the dissimilar powder 19 ′ is provided on the surface 24a of the solidified layer 24, and the alloy part is formed from the dissimilar powder 19 ′ provided on the surface 24a and the solidified layer 24 positioned immediately below the dissimilar powder 19 ′. 50 may be formed (see FIG. 2).
具体的には、図2(a)および図2(b)に示すように既に形成した固化層24の表面24a、例えば固化層24の上面に異種粉末19’を設ける。異種粉末19’を設けた後、図2(b)および(c)に示すように異種粉末19’に光ビームLを照射する。この時、光ビームLの照射熱エネルギーによって、異種粉末19’に加えて異種粉末19’の直下に位置する固化層24の所定領域24bが溶融し得るように、異種粉末19’に光ビームLを照射する。異種粉末19’と固化層24の所定領域24bとが共に溶融すると、溶融状態であることに起因して異種粉末19’の成分と所定領域24bに含まれる金属成分(例えば鉄系成分)とを混合させることができ得る。そして、かかる混合部分が冷却すると、異種粉末19’の成分と所定領域24bに含まれる金属成分(例えば鉄系成分)とから合金化された合金部50を形成することができ得る。 Specifically, as shown in FIG. 2A and FIG. 2B, the dissimilar powder 19 ′ is provided on the surface 24 a of the solidified layer 24 already formed, for example, the upper surface of the solidified layer 24. After the dissimilar powder 19 ′ is provided, the dissimilar powder 19 ′ is irradiated with the light beam L as shown in FIGS. 2 (b) and 2 (c). At this time, the light beam L is applied to the different powder 19 ′ so that the predetermined region 24b of the solidified layer 24 located immediately below the different powder 19 ′ can be melted by the irradiation heat energy of the light beam L. Irradiate. When the dissimilar powder 19 ′ and the predetermined region 24b of the solidified layer 24 are melted together, the components of the dissimilar powder 19 ′ and the metal component (for example, iron-based component) contained in the predetermined region 24b are caused due to the molten state. Can be mixed. When the mixed portion is cooled, an alloy portion 50 alloyed from the components of the different powder 19 ′ and the metal components (for example, iron-based components) included in the predetermined region 24 b can be formed.
合金部50を形成した後、図2(d)に示すように新たな粉末層22を形成する。特に限定されるものではないが、例えば固化層24上に位置するように新たな粉末層22を形成する。新たな粉末層22を形成した後、当該新たな粉末層22に光ビームLを照射して、図2(e)に示すように新たな固化層24’を形成する。以上により、合金部50を有して成る三次元形状造形物100を最終的に製造することができ得る。 After forming the alloy portion 50, a new powder layer 22 is formed as shown in FIG. Although not particularly limited, for example, a new powder layer 22 is formed so as to be positioned on the solidified layer 24. After forming a new powder layer 22, the new powder layer 22 is irradiated with a light beam L to form a new solidified layer 24 'as shown in FIG. As described above, the three-dimensional shaped object 100 having the alloy part 50 can be finally manufactured.
なお、上記態様に限定されず、例えば、積層領域において、異種粉末19’を固化層24の表面24aに設け、当該表面24aに設けた異種粉末19’と、異種粉末19’の直上に位置する粉末層22および異種粉末19’の直下に位置する固化層24とから合金部50を形成してよい(図3参照)。 Note that the present invention is not limited to the above-described embodiment. For example, in the stacked region, the dissimilar powder 19 ′ is provided on the surface 24a of the solidified layer 24, and the dissimilar powder 19 ′ provided on the surface 24a is positioned immediately above the dissimilar powder 19 ′. The alloy part 50 may be formed from the powder layer 22 and the solidified layer 24 located immediately below the different powder 19 ′ (see FIG. 3).
具体的には、図3(a)および図3(b)に示すように既に形成した固化層24の表面24a、例えば固化層24の上面に異種粉末19’を設ける。異種粉末19’を設けた後、本態様では図3(c)に示すように異種粉末19’が設けられた固化層24上に新たな粉末層22を形成する。新たな粉末層22を形成した後、図3(c)および図3(d)に示すように新たな粉末層22に光ビームLを照射して、新たな固化層24’を形成する。この時、光ビームLの照射熱エネルギーによって、新たな粉末層22に加えて、新たな粉末層22の所定領域22bの直下に位置する異種粉末19’および当該異種粉末19’の直下に位置する固化層24の所定領域24bが溶融し得るように、新たな粉末層22に光ビームLを照射する。 Specifically, as shown in FIG. 3A and FIG. 3B, the dissimilar powder 19 ′ is provided on the surface 24 a of the solidified layer 24 already formed, for example, the upper surface of the solidified layer 24. After the dissimilar powder 19 'is provided, in this embodiment, a new powder layer 22 is formed on the solidified layer 24 provided with the dissimilar powder 19' as shown in FIG. After forming the new powder layer 22, the new powder layer 22 is irradiated with the light beam L as shown in FIGS. 3C and 3D to form a new solidified layer 24 '. At this time, in addition to the new powder layer 22, the different powder 19 ′ located immediately below the predetermined region 22 b of the new powder layer 22 and the lower powder 19 ′ are located by the irradiation heat energy of the light beam L. The new powder layer 22 is irradiated with the light beam L so that the predetermined region 24b of the solidified layer 24 can be melted.
より具体的には、新たな粉末層22から新たな固化層24’を形成する際に、新たな粉末層22に全体として同一の照射エネルギーで光ビームLを照射するのではなく、下方に異種粉末19’が存在する粉末層22の所定領域と、下方に異種粉末19’が存在しない粉末層22の所定領域とで、光ビームLの照射エネルギーを適宜変更してよい。この時、下方の異種粉末19’および異種粉末19’の直下に位置する固化層24の所定領域24bを溶融させる観点から、下方に異種粉末19’が存在する粉末層22の所定領域には、下方に異種粉末19’が存在しない粉末層22の所定領域よりも大きな照射エネルギーを有する光ビームLで照射してよい。異種粉末19’、新たな粉末層22の所定領域22b、および固化層24の所定領域24bが共に溶融すると、溶融状態であることに起因して異種粉末19’の成分、所定領域22bに含まれる金属成分(例えば鉄系成分)、および所定領域24bに含まれる金属成分(例えば鉄系成分)とを混合させることができ得る。そして、かかる混合部分が冷却すると、異種粉末19’の成分、所定領域22bに含まれる金属成分(例えば鉄系成分)、および所定領域24bに含まれる金属成分(例えば鉄系成分)から合金化された合金部50を形成することができ得る。以上により、合金部50を有して成る三次元形状造形物100を最終的に製造することができ得る。 More specifically, when forming a new solidified layer 24 ′ from the new powder layer 22, the new powder layer 22 is not irradiated with the light beam L with the same irradiation energy as a whole, but different from below. The irradiation energy of the light beam L may be appropriately changed between a predetermined region of the powder layer 22 where the powder 19 ′ is present and a predetermined region of the powder layer 22 where the dissimilar powder 19 ′ is not present below. At this time, from the viewpoint of melting the lower foreign powder 19 ′ and the predetermined region 24b of the solidified layer 24 located immediately below the different powder 19 ′, the predetermined region of the powder layer 22 where the different powder 19 ′ exists below is You may irradiate with the light beam L which has irradiation energy larger than the predetermined area | region of the powder layer 22 in which the dissimilar powder 19 'does not exist below. When the different powder 19 ′, the predetermined region 22 b of the new powder layer 22, and the predetermined region 24 b of the solidified layer 24 are melted together, the components of the different powder 19 ′ are included in the predetermined region 22 b due to the molten state. A metal component (for example, an iron-based component) and a metal component (for example, an iron-based component) included in the predetermined region 24b can be mixed. When the mixed portion is cooled, it is alloyed from the components of the different powder 19 ′, the metal component (for example, iron-based component) included in the predetermined region 22b, and the metal component (for example, iron-based component) included in the predetermined region 24b. The alloy part 50 can be formed. As described above, the three-dimensional shaped object 100 having the alloy part 50 can be finally manufactured.
一態様では、積層領域において、異種粉末19’を粉末層22の表面22aに設け、当該表面22aに設けた異種粉末19’と、異種粉末19’の直下に位置する粉末層22とから合金部50を形成してよい(図4参照)。 In one aspect, the dissimilar powder 19 ′ is provided on the surface 22 a of the powder layer 22 in the laminated region, and the alloy part is formed from the dissimilar powder 19 ′ provided on the surface 22 a and the powder layer 22 positioned immediately below the dissimilar powder 19 ′. 50 may be formed (see FIG. 4).
具体的には、図4(a)および図4(b)に示すように粉末層22の表面22a、例えば粉末層22の上面に異種粉末19’を設ける。異種粉末19’を設けた後、図4(b)および(c)に示すように表面に異種粉末19’が設けられた粉末層22に光ビームLを照射する。この時、光ビームLの照射熱エネルギーによって、異種粉末19’と異種粉末19’の直下に位置する粉末層22の所定領域22cが溶融し得るように、粉末層22に光ビームLを照射する。ここでいう「粉末層22の所定領域22c」とは、例えば図4(b)に示すように異種粉末19’の直下に位置する領域であって、かつ固化層24と異種粉末19’との間の実質的に全ての領域であってよい。異種粉末19’と、異種粉末19’の直下に位置する粉末層22の所定領域22cとが共に溶融すると、溶融状態であることに起因して異種粉末19’の成分と所定領域22cに含まれる金属成分(例えば鉄系成分)とを混合させることができ得る。そして、かかる混合部分が冷却すると、図4(d)に示すように異種粉末19’の成分と所定領域22cに含まれる金属成分(例えば鉄系成分)とから合金化された合金部50を形成することができ得る。以上により、合金部50を有して成る三次元形状造形物100を最終的に製造することができ得る。なお、本態様では、上述のように、合金部50を形成するために、異種粉末19’と、異種粉末19’の直下に位置する粉末層22の所定領域22cとが光ビームLにより溶融され得る。これにつき、粉末層22、具体的には粉末層22の所定領域22cは溶融固化前の状態であるため、光ビームLを照射した際に溶融する範囲は、溶融固化後の状態である固化層と比べて相対的に大きくなり得る。そのため、当該溶融する範囲が相対的に大きくなり得ることに起因して、上述の異種粉末19’を固化層24の表面24aに設ける態様(図2および図3参照)と比べて、合金部50の形成される範囲は大きく成り得る。 Specifically, as shown in FIG. 4A and FIG. 4B, the dissimilar powder 19 ′ is provided on the surface 22 a of the powder layer 22, for example, the upper surface of the powder layer 22. After the dissimilar powder 19 'is provided, the light beam L is irradiated to the powder layer 22 having the dissimilar powder 19' on the surface as shown in FIGS. 4 (b) and 4 (c). At this time, the powder layer 22 is irradiated with the light beam L such that the different heat powder 19 ′ and the predetermined region 22 c of the powder layer 22 positioned immediately below the different powder 19 ′ can be melted by the irradiation heat energy of the light beam L. . Here, the “predetermined region 22c of the powder layer 22” is a region located immediately below the dissimilar powder 19 ′ as shown in FIG. 4 (b), for example, and includes the solidified layer 24 and the dissimilar powder 19 ′. Substantially all areas in between. When the dissimilar powder 19 ′ and the predetermined region 22c of the powder layer 22 positioned immediately below the dissimilar powder 19 ′ are melted together, the dissimilar powder 19 ′ is included in the predetermined region 22c due to the molten state. A metal component (for example, an iron-based component) can be mixed. When the mixed portion is cooled, as shown in FIG. 4 (d), an alloy part 50 is formed which is alloyed from the component of the different powder 19 'and the metal component (for example, iron-based component) contained in the predetermined region 22c. You can get. As described above, the three-dimensional shaped object 100 having the alloy part 50 can be finally manufactured. In the present embodiment, as described above, the different powder 19 ′ and the predetermined region 22c of the powder layer 22 located immediately below the different powder 19 ′ are melted by the light beam L in order to form the alloy part 50. obtain. In this regard, since the powder layer 22, specifically, the predetermined region 22c of the powder layer 22, is in a state before being melted and solidified, the range to be melted when irradiated with the light beam L is the solidified layer that is in a state after being melted and solidified. Can be relatively large. Therefore, due to the fact that the melting range can be relatively large, the alloy portion 50 is compared with the embodiment (see FIGS. 2 and 3) in which the above-described different powder 19 ′ is provided on the surface 24a of the solidified layer 24. The formed range can be large.
また、一態様では、図5に示すように粉末層および固化層の積層を造形プレート21上で行い、当該積層に先立って、造形プレート21に異種粉末19’を供給して、光ビームLによって造形プレート21の表面21aに合金部50aを形成してよい。 In one embodiment, as shown in FIG. 5, the powder layer and the solidified layer are stacked on the modeling plate 21, and prior to the stacking, the dissimilar powder 19 ′ is supplied to the modeling plate 21, and the light beam L The alloy part 50 a may be formed on the surface 21 a of the modeling plate 21.
具体的には、図5(a)に示すように造形プレート21の表面21aのうち積層領域5に異種粉末19’を設ける。異種粉末19’を設けた後、異種粉末19’に光ビームLを照射する。この時、光ビームLの照射熱エネルギーによって、異種粉末19’に加えて異種粉末19’の直下に位置する造形プレート21の所定領域21bが溶融し得るように、異種粉末19’に光ビームLを照射する。異種粉末19’と造形プレート21の所定領域21bとが共に溶融すると、溶融状態であることに起因して異種粉末19’の成分と造形プレート21の所定領域21bに含まれる金属成分(例えば鉄系成分)とを混合させることができ得る。そして、図5(b)に示すようにかかる混合部分が冷却すると、異種粉末19’の成分と所定領域21bに含まれる金属成分(例えば鉄系成分)とから新たに合金化された合金部50aを形成することができ得る。合金部50aが形成され得ると、合金部50aは異種粉末19’の成分と所定領域21bに含まれる金属成分(例えば鉄系成分)とから構成され得るものであるため、所定領域21bが例えば鉄系金属成分のみから構成されている場合と比べて、異なる特性を供することができ得る。特に限定されるものではないが、例えば、異種粉末19’の材料として上記のNi、ZnおよびNb等の材料を用いると合金部50aに靱性向上の特性を供することができ得る。造形プレート21と固化層、すなわち三次元形状造形物との界面領域には残留応力が生じ、当該残留応力に起因して生じ得る“反り変形”によって、三次元形状造形物にクラックが発生し得る。これにつき、靱性を向上させる特性を有した合金部50aが形成されると、当該クラックの発生を好適に抑制することができ得る。 Specifically, as shown in FIG. 5A, the different type powder 19 ′ is provided in the laminated region 5 in the surface 21 a of the modeling plate 21. After the dissimilar powder 19 ′ is provided, the dissimilar powder 19 ′ is irradiated with the light beam L. At this time, the light beam L is applied to the dissimilar powder 19 ′ so that the predetermined region 21b of the modeling plate 21 positioned immediately below the dissimilar powder 19 ′ can be melted by the irradiation heat energy of the light beam L. Irradiate. When the dissimilar powder 19 ′ and the predetermined region 21b of the modeling plate 21 are melted together, the components of the dissimilar powder 19 ′ and the metal component (for example, iron-based material) included in the predetermined region 21b of the modeling plate 21 due to the molten state. Ingredients) can be mixed. When the mixed portion cools as shown in FIG. 5B, the alloy portion 50a newly alloyed from the component of the different powder 19 ′ and the metal component (for example, iron-based component) contained in the predetermined region 21b. Can be formed. When the alloy part 50a can be formed, the alloy part 50a can be composed of a component of the different powder 19 'and a metal component (for example, an iron-based component) contained in the predetermined region 21b. Compared with the case where it consists only of a system metal component, a different characteristic can be provided. Although not particularly limited, for example, when the above-described materials such as Ni, Zn, and Nb are used as the material of the dissimilar powder 19 ′, it is possible to provide the alloy portion 50 a with a property of improving toughness. Residual stress occurs in the interface region between the modeling plate 21 and the solidified layer, that is, the three-dimensional modeled object, and cracks may occur in the three-dimensional modeled object due to “warp deformation” that may occur due to the residual stress. . In this regard, when the alloy part 50a having the characteristic of improving toughness is formed, the occurrence of the crack can be suitably suppressed.
なお、これに限定されることなく、例えば、異種粉末19’の材料として上記のNi等の材料を用いて、合金部50aに線膨張率低減の特性を供してもよい。例えば、異種粉末19’の材料として、上記のNiおよびCr等の材料を用いて、合金部50aに耐食性向上の特性を供してもよい。また、例えば、異種粉末19’の材料として上記のCu等の材料を用いて、合金部50aに熱伝導性向上の特性を供してもよい。以上の事からも、造形プレート21の所定領域(例えば積層領域5)に他の領域と比べて異なる特性を供することができ得るため、それに起因して造形プレート21の積層領域5に固化層、すなわち三次元形状造形物を好適に形成することができ得る。 However, the present invention is not limited to this, and for example, the material of the different powder 19 ′ may be made of the above-described material such as Ni, and the alloy portion 50 a may be provided with a characteristic of reducing the linear expansion coefficient. For example, the above-described materials such as Ni and Cr may be used as the material of the dissimilar powder 19 'to provide the alloy part 50a with the characteristics of improving corrosion resistance. Further, for example, the above-described material such as Cu may be used as the material of the different powder 19 ′ to provide the alloy part 50 a with the property of improving thermal conductivity. Also from the above thing, since it can provide a different characteristic compared with another area | region in the predetermined area | region (for example, lamination | stacking area | region 5) of the shaping | molding plate 21, a solidified layer in the lamination | stacking area | region 5 of the shaping | molding plate 21 resulting from it. That is, a three-dimensional shaped object can be suitably formed.
なお、上述の合金部形成のために用いられる異種粉末については、下記方法により供給してよい。 In addition, about the different kind powder used for the above-mentioned alloy part formation, you may supply with the following method.
一態様では、図6に示すように異種粉末19’を、固化層24および粉末層22の少なくとも一方の表面に噴霧してよい。 In one embodiment, as shown in FIG. 6, the dissimilar powder 19 ′ may be sprayed on the surface of at least one of the solidified layer 24 and the powder layer 22.
特に限定されるものではないが、異種粉末19’を噴霧するための手段としては、例えばインクジェットが挙げられる。例えばインクジェット等を用いて異種粉末19’を噴霧すると、固化層24および粉末層22の少なくとも一方の表面の局所領域に異種粉末19’を好適に供することができ得る。これにより、最終的に得られる三次元形状造形物100の使用条件を考慮し、三次元形状造形物100の局所領域に合金部50を好適に形成することができ得る。従って、三次元形状造形物100の局所領域の特性を他の領域と比べて好適に変えることができ得るため、使用条件により好適に適合した三次元形状造形物100を得ることが可能となり得る。 Although not particularly limited, examples of the means for spraying the foreign powder 19 ′ include an ink jet. For example, when the different type powder 19 ′ is sprayed using an ink jet or the like, the different type powder 19 ′ can be suitably supplied to a local region on at least one surface of the solidified layer 24 and the powder layer 22. Thereby, the use condition of the finally obtained three-dimensional structure 100 can be taken into account, and the alloy part 50 can be suitably formed in the local region of the three-dimensional structure 100. Therefore, since the characteristics of the local region of the three-dimensional shaped object 100 can be suitably changed as compared with other areas, it can be possible to obtain the three-dimensional shaped object 100 that is suitably adapted to the use conditions.
また、一態様では、図7に示すように所定箇所に配置した異種粉末19’から成る部材90から異種粉末19’を分散させて、固化層24および粉末層22の少なくとも一方の表面に異種粉末19’を供してよい。 In one embodiment, as shown in FIG. 7, the different powder 19 ′ is dispersed from the member 90 made of the different powder 19 ′ arranged at a predetermined position, and the different powder is applied to at least one surface of the solidified layer 24 and the powder layer 22. 19 'may be provided.
具体的には、図7に示すようにチャンバー60に設けられた光透過窓70を介して進入する光ビームLを、所定箇所に配置した異種粉末19’から成る部材90に照射し、それによって部材90から異種粉末19’を分散させてよい。より具体的には、図7の下図(部分拡大図)に示すように、チャンバー60内に設けられた可動式覆い部材60aを固化層24又は粉末層22上にスライド移動させる。当該可動式覆い部材60aは、左右方向にスライド移動自在であり、かつ異種粉末19’から成る部材を内部に備えたものである。可動式覆い部材60aを固化層24又は粉末層22上にスライド移動させた後、可動式覆い部材60aに設けられた光透過窓70aを介して光ビームLを進入させる。そして、進入させた光ビームLを所定箇所に、例えば可動式覆い部材60aの側部に配置した異種粉末19’から成る部材90に照射し、それによって部材90から異種粉末19’を分散させてよい。なお、光ビームLの方向については、図7に示すミラー80により適宜変更させてよい。具体的には、ミラー80の設置方向を適宜変更することで、例えば粉末層22および異種粉末19’から成る部材が光ビームLによりそれぞれ照射されるように、光ビームLの方向を変更自在としてよい。 Specifically, as shown in FIG. 7, the light beam L entering through the light transmission window 70 provided in the chamber 60 is irradiated to the member 90 made of the different powder 19 ′ disposed at a predetermined position, thereby The dissimilar powder 19 ′ may be dispersed from the member 90. More specifically, as shown in the lower view (partially enlarged view) of FIG. 7, the movable covering member 60 a provided in the chamber 60 is slid onto the solidified layer 24 or the powder layer 22. The movable covering member 60a is slidable in the left-right direction, and has a member made of different kinds of powder 19 'inside. After the movable covering member 60a is slid onto the solidified layer 24 or the powder layer 22, the light beam L is caused to enter through the light transmission window 70a provided in the movable covering member 60a. Then, the incident light beam L is irradiated to a predetermined portion, for example, the member 90 made of the different powder 19 ′ disposed on the side of the movable covering member 60a, thereby dispersing the different powder 19 ′ from the member 90. Good. The direction of the light beam L may be changed as appropriate by the mirror 80 shown in FIG. Specifically, by changing the installation direction of the mirror 80 as appropriate, the direction of the light beam L can be changed so that, for example, the members made of the powder layer 22 and the dissimilar powder 19 ′ are irradiated with the light beam L, respectively. Good.
以上、本発明の一実施形態について説明してきたが、本発明の適用範囲のうちの典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。 As mentioned above, although one Embodiment of this invention was described, it has only illustrated the typical example of the application scope of this invention. Therefore, those skilled in the art will readily understand that the present invention is not limited thereto and various modifications can be made.
L 光ビーム
5 積層領域
19 粉末
19’ 異種粉末
21 造形プレート
21a 造形プレートの表面
22 粉末層
24 固化層
24a 固化層の表面
50 合金部
50a 合金部
100 三次元形状造形物
L Light beam 5 Laminated area 19 Powder 19 'Different powder 21 Molding plate
21a Surface of modeling plate 22 Powder layer 24 Solidified layer 24a Surface of solidified layer 50 Alloy part 50a Alloy part 100 Three-dimensional shaped object
Claims (6)
(ii)得られた固化層の上に新たな粉末層を形成し、該新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
により粉末層および固化層を交互に繰り返して積層させることで三次元形状造形物を製造する方法であって、
前記三次元形状造形物の製造を行うための積層領域に前記粉末と異なる種類の異種粉末を供給し、前記光ビームによって該異種粉末と前記固化層および前記粉末層の少なくとも一方とから合金部を形成する、三次元形状造形物の製造方法。 (I) a step of irradiating a predetermined portion of the powder layer with a light beam to sinter or melt solidify the powder at the predetermined portion to form a solidified layer; and (ii) a new powder on the obtained solidified layer A three-dimensional shaped object is produced by forming a layer and repeatedly laminating a powder layer and a solidified layer by a process of forming a further solidified layer by irradiating a predetermined portion of the new powder layer with a light beam. A way to
A different kind of powder different from the powder is supplied to a lamination region for manufacturing the three-dimensional shaped object, and an alloy part is formed from the different powder and at least one of the solidified layer and the powder layer by the light beam. A manufacturing method of a three-dimensional shaped object to be formed.
前記積層に先立って、前記造形プレートに前記異種粉末を供給して、前記光ビームによって前記造形プレートの表面に前記合金部を形成する、請求項1〜4のいずれかに記載の三次元形状造形物の製造方法。 Laminating the powder layer and the solidified layer on a modeling plate,
Prior to the lamination, the three-dimensional shape modeling according to any one of claims 1 to 4, wherein the dissimilar powder is supplied to the modeling plate, and the alloy part is formed on the surface of the modeling plate by the light beam. Manufacturing method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016123783A JP6726858B2 (en) | 2016-06-22 | 2016-06-22 | Method for manufacturing three-dimensional shaped object |
PCT/JP2017/021177 WO2017221712A1 (en) | 2016-06-22 | 2017-06-07 | Method for manufacturing three-dimensionally shaped object |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016123783A JP6726858B2 (en) | 2016-06-22 | 2016-06-22 | Method for manufacturing three-dimensional shaped object |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017226877A true JP2017226877A (en) | 2017-12-28 |
JP6726858B2 JP6726858B2 (en) | 2020-07-22 |
Family
ID=60783841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016123783A Expired - Fee Related JP6726858B2 (en) | 2016-06-22 | 2016-06-22 | Method for manufacturing three-dimensional shaped object |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6726858B2 (en) |
WO (1) | WO2017221712A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020041201A (en) * | 2018-09-13 | 2020-03-19 | 三菱重工業株式会社 | Laminate molding method of jointed product and joint member |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010215971A (en) * | 2009-03-17 | 2010-09-30 | Panasonic Electric Works Co Ltd | Method of producing three-dimensional shaped article and three-dimensional shaped article obtained from the same |
JP2015183288A (en) * | 2014-03-26 | 2015-10-22 | 日本電子株式会社 | Apparatus and method for molding three-dimensional laminate |
WO2015194678A1 (en) * | 2014-06-20 | 2015-12-23 | 株式会社フジミインコーポレーテッド | Powder material to be used in powder lamination shaping and powder lamination shaping method using same |
-
2016
- 2016-06-22 JP JP2016123783A patent/JP6726858B2/en not_active Expired - Fee Related
-
2017
- 2017-06-07 WO PCT/JP2017/021177 patent/WO2017221712A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010215971A (en) * | 2009-03-17 | 2010-09-30 | Panasonic Electric Works Co Ltd | Method of producing three-dimensional shaped article and three-dimensional shaped article obtained from the same |
JP2015183288A (en) * | 2014-03-26 | 2015-10-22 | 日本電子株式会社 | Apparatus and method for molding three-dimensional laminate |
WO2015194678A1 (en) * | 2014-06-20 | 2015-12-23 | 株式会社フジミインコーポレーテッド | Powder material to be used in powder lamination shaping and powder lamination shaping method using same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020041201A (en) * | 2018-09-13 | 2020-03-19 | 三菱重工業株式会社 | Laminate molding method of jointed product and joint member |
JP7079703B2 (en) | 2018-09-13 | 2022-06-02 | 三菱重工業株式会社 | Laminated molding method of joints and joint members |
Also Published As
Publication number | Publication date |
---|---|
JP6726858B2 (en) | 2020-07-22 |
WO2017221712A1 (en) | 2017-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5776004B2 (en) | Manufacturing method of three-dimensional shaped object and three-dimensional shaped object | |
KR101521481B1 (en) | Method for producing three-dimensionally shaped structure, and three-dimensionally shaped structure obtained by same | |
JP6443698B2 (en) | Manufacturing method of three-dimensional shaped object | |
JP5599957B2 (en) | Manufacturing method of three-dimensional shaped object | |
JP5539347B2 (en) | Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom | |
JP5213006B2 (en) | Manufacturing method of three-dimensional shaped object | |
JP5519766B2 (en) | Manufacturing method of three-dimensional shaped object and three-dimensional shaped object | |
KR102048693B1 (en) | Manufacturing method of three-dimensional shape sculpture | |
JP5302710B2 (en) | Manufacturing apparatus and manufacturing method of three-dimensional shaped object | |
JP6414588B2 (en) | Manufacturing method of three-dimensional shaped object | |
JP2017160485A (en) | Manufacturing method of three-dimensional shape molded object | |
JP6643643B2 (en) | Manufacturing method of three-dimensional shaped object | |
JP5612530B2 (en) | Manufacturing method of three-dimensional shaped object | |
JP6726858B2 (en) | Method for manufacturing three-dimensional shaped object | |
JP2012241261A (en) | Method for producing three-dimensionally shaped object | |
WO2018003798A1 (en) | Method for manufacturing three-dimensionally shaped molding | |
JP5016300B2 (en) | Manufacturing method of three-dimensional shaped object | |
WO2019151540A1 (en) | Method for manufacturing three-dimensional molded object | |
KR102277612B1 (en) | Manufacturing method of 3D shape sculpture | |
JP6643644B2 (en) | Manufacturing method of three-dimensional shaped object |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200306 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200610 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6726858 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |