[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017220955A - 通信装置、通信方法、プログラム及び端末装置 - Google Patents

通信装置、通信方法、プログラム及び端末装置 Download PDF

Info

Publication number
JP2017220955A
JP2017220955A JP2017183433A JP2017183433A JP2017220955A JP 2017220955 A JP2017220955 A JP 2017220955A JP 2017183433 A JP2017183433 A JP 2017183433A JP 2017183433 A JP2017183433 A JP 2017183433A JP 2017220955 A JP2017220955 A JP 2017220955A
Authority
JP
Japan
Prior art keywords
configuration
link direction
direction configuration
terminal
subframe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017183433A
Other languages
English (en)
Other versions
JP6399178B2 (ja
Inventor
高野 裕昭
Hiroaki Takano
裕昭 高野
水澤 錦
Kin Mizusawa
錦 水澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of JP2017220955A publication Critical patent/JP2017220955A/ja
Application granted granted Critical
Publication of JP6399178B2 publication Critical patent/JP6399178B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】UL−DLトラフィック比の変動に対して端末装置のリンク方向コンフィギュレーションをより迅速に追随させること。【解決手段】無線通信ネットワーク上で時分割複信(TDD)方式に従って端末装置により行われる通信を制御する通信装置は、複数のサブフレームを含むフレームの各々について、第1及び第2の端末グループのために第1及び第2のリンク方向コンフィギュレーションを設定し、第1の周期で第1の端末グループに属する端末装置へ第1のリンク方向コンフィギュレーションを、より短い第2の周期で第2の端末グループに属する端末装置へ第2のリンク方向コンフィギュレーションをシグナリングする。第2のリンク方向コンフィギュレーションは、第1のリンク方向コンフィギュレーションのDLサブフレームをDLサブフレームとして維持しつつ、ULサブフレームをDLサブフレームに置き換えることにより導かれる。【選択図】図19

Description

本開示は、通信装置、通信方法、プログラム及び端末装置に関する。
近年、LTE(Long Term Evolution)方式と呼ばれる高速なセルラ無線通信方式が実用化されている。LTE方式は、複信方式の違いに基づいて、FD−LTE方式及びTD−LTE方式に分類される。FD−LTE方式は複信方式として周波数分割複信(FDD;Frequency Division Duplex)を採用し、アップリンク及びダウンリンクが互いに異なる周波数帯上で運用される。TD−LTE方式は複信方式として時分割複信(TDD;Time Division Duplex)を採用し、アップリンク及びダウンリンクが同じ周波数帯上で運用される。FD−LTE方式及びTD−LTE方式の双方とも、それぞれ1msecの時間長を有する10個のサブフレームから(10msecの時間長を有する)1つの無線フレームが構成されるというフレームフォーマットを用いる。FD−LTE方式では、同じ周波数帯においてリンク方向が時間的に変化しないのに対し、TD−LTE方式では、サブフレーム単位でリンク方向が変化し得る。
TD−LTE方式において、各無線フレームについてのサブフレーム単位のリンク方向のセット(即ち、10個のサブフレームのリンク方向の組合せ)を、リンク方向コンフィギュレーション(あるいはUL−DLコンフィギュレーション)という。下記非特許文献1によれば、Configuration0からConfiguration6までの7種類のリンク方向コンフィギュレーションが定義されている。無線基地局(LTE方式におけるeNB)は、各無線フレームに設定されるリンク方向コンフィギュレーションを、SIB1(System Information Block Type 1)の中でブロードキャストすることにより、端末装置(LTE方式におけるUE)へシグナリングする。現在の標準仕様では、SIB1を用いて行われるリンク方向コンフィギュレーションの更新の周期は、640msecである。下記非特許文献2は、この周期を320msecに短縮することを提案している。
"3GPP TS 36.211 V10.0.0 (2010-12)", December 22, 2010 "Semi-static reconfiguration of TDD UL-DL configuration", R1-122266, 3GPP TSG RAN WG1 Meeting #69, Prague, Czech Republic, May 21-25, 2012
しかしながら、640msec又は320msecのシグナリング周期は、アップリンクトラフィックとダウンリンクトラフィックとの間の比率(UL−DLトラフィック比)の変動が激しくなってきている現代の無線通信環境において、十分とは言えない。リンク方向コンフィギュレーションの更新がUL−DLトラフィック比の変動に追いつかなければ、バッファ待機中の(buffered)トラフィック量が増加し、リソース効率の低下及びスループットの低下という問題が生じ得る。
従って、UL−DLトラフィック比の変動に対して端末装置のリンク方向コンフィギュレーションをより迅速に追随させることのできる仕組みが提供されることが望ましい。
本開示によれば、無線通信ネットワーク上で時分割複信方式に従って端末装置により行われる通信を制御する通信装置であって、複数のサブフレームを含むフレームの各々について、サブフレーム単位のリンク方向を表すリンク方向コンフィギュレーションを設定する、ように構成される回路を備え、前記回路は、第1の端末グループのために第1のリンク方向コンフィギュレーションを設定し、第2の端末グループのために第2のリンク方向コンフィギュレーションを設定し、第1の周期で前記第1の端末グループに属する端末装置へ前記第1のリンク方向コンフィギュレーションをシグナリングし、前記第1の周期よりも短い第2の周期で前記第2の端末グループに属する端末装置へ前記第2のリンク方向コンフィギュレーションをシグナリングする、ように構成され、前記第2の周期は、10ミリ秒の整数倍であり、前記回路は、前記第2のリンク方向コンフィギュレーションとして、前記第1のリンク方向コンフィギュレーションのダウンリンクサブフレームをダウンリンクサブフレームとして維持しつつ、前記第1のリンク方向コンフィギュレーションのアップリンクサブフレームをダウンリンクサブフレームに置き換えることにより導かれるコンフィギュレーションを設定する、ように構成される、通信装置が提供される。
また、本開示によれば、無線通信ネットワーク上で時分割複信方式に従って端末装置により行われる通信を制御する通信装置により実行される通信方法であって、前記通信装置は、複数のサブフレームを含むフレームの各々について、サブフレーム単位のリンク方向を表すリンク方向コンフィギュレーションを設定するように構成され、前記通信方法は、第1の端末グループのために第1のリンク方向コンフィギュレーションを設定することと、第2の端末グループのために第2のリンク方向コンフィギュレーションを設定することと、第1の周期で前記第1の端末グループに属する端末装置へ前記第1のリンク方向コンフィギュレーションをシグナリングすることと、前記第1の周期よりも短い第2の周期で前記第2の端末グループに属する端末装置へ前記第2のリンク方向コンフィギュレーションをシグナリングすることと、を含み、前記第2の周期は、10ミリ秒の整数倍であり、前記第2のリンク方向コンフィギュレーションとして、前記第1のリンク方向コンフィギュレーションのダウンリンクサブフレームをダウンリンクサブフレームとして維持しつつ、前記第1のリンク方向コンフィギュレーションのアップリンクサブフレームをダウンリンクサブフレームに置き換えることにより導かれるコンフィギュレーションが設定される、通信方法が提供される。
また、本開示によれば、無線通信ネットワーク上で時分割複信方式に従って端末装置により行われる通信を制御する通信装置のコンピュータに、複数のサブフレームを含むフレームの各々について、サブフレーム単位のリンク方向を表すリンク方向コンフィギュレーションを設定させるプログラムであって、前記プログラムは、第1の端末グループのために第1のリンク方向コンフィギュレーションを設定することと、第2の端末グループのために第2のリンク方向コンフィギュレーションを設定することと、第1の周期で前記第1の端末グループに属する端末装置へ前記第1のリンク方向コンフィギュレーションをシグナリングすることと、前記第1の周期よりも短い第2の周期で前記第2の端末グループに属する端末装置へ前記第2のリンク方向コンフィギュレーションをシグナリングすることと、を前記コンピュータに行わせ、前記第2の周期は、10ミリ秒の整数倍であり、前記第2のリンク方向コンフィギュレーションとして、前記第1のリンク方向コンフィギュレーションのダウンリンクサブフレームをダウンリンクサブフレームとして維持しつつ、前記第1のリンク方向コンフィギュレーションのアップリンクサブフレームをダウンリンクサブフレームに置き換えることにより導かれるコンフィギュレーションが設定される、プログラムが提供される。
また、本開示によれば、無線通信ネットワーク上で時分割複信方式に従って基地局と通信する端末装置であって、前記基地局からシグナリングされるリンク方向コンフィギュレーションに従い、複数のサブフレームを含むフレームの各々について、サブフレーム単位のリンク方向を設定する、ように構成される回路を備え、前記回路は、第1の端末グループのために設定される第1のリンク方向コンフィギュレーションのシグナリング周期よりも短いシグナリング周期で、前記端末装置が属する第2の端末グループのために設定される第2のリンク方向コンフィギュレーションのシグナリングを受信する、ように構成され、前記第2のリンク方向コンフィギュレーションのシグナリング周期は、10ミリ秒の整数倍であり、前記第2のリンク方向コンフィギュレーションは、前記第1のリンク方向コンフィギュレーションのダウンリンクサブフレームをダウンリンクサブフレームとして維持しつつ、前記第1のリンク方向コンフィギュレーションのアップリンクサブフレームをダウンリンクサブフレームに置き換えることにより導かれる、端末装置が提供される。
本開示に係る技術によれば、UL−DLトラフィック比の変動に対して端末装置のリンク方向コンフィギュレーションをより迅速に追随させることができる。
TD−LTEにおけるリンク方向コンフィギュレーションの一例について説明するための説明図である。 TD−LTEにおいて設定可能なリンク方向コンフィギュレーションの一覧を示す説明図である。 バッファステータスに応じたリンク方向コンフィギュレーションの設定について説明するための第1の説明図である。 バッファステータスに応じたリンク方向コンフィギュレーションの設定について説明するための第2の説明図である。 新たなメッセージを用いたリンク方向コンフィギュレーションのシグナリングについて説明するための説明図である。 CRS(Cell-specific Reference Symbol)を含むサブフレームの第1の例を示す説明図である。 CRSを含むサブフレームの第2の例を示す説明図である。 リンク方向の相違の影響を解決するための第1の手法について説明するための説明図である。 第1の手法におけるレガシー用及びダイナミックTDD用コンフィギュレーションの組合せについて説明するための説明図である。 第1の手法において設定されるリンク方向コンフィギュレーションの一例について時間軸に沿って説明するための説明図である。 リンク方向の相違の影響を解決するための第2の手法について説明するための説明図である。 第2の手法におけるレガシー用及びダイナミックTDD用コンフィギュレーションの組合せについて説明するための説明図である。 第2の手法において設定されるリンク方向コンフィギュレーションの一例について時間軸に沿って説明するための説明図である。 ダイナミックコンフィギュレーションメッセージが送信される制御情報領域の一例について説明するための説明図である。 レガシー端末が関与する制御シグナリングについてのリンク方向の相違の影響の第1の例について説明するための説明図である。 レガシー端末が関与する制御シグナリングについてのリンク方向の相違の影響の第2の例について説明するための説明図である。 レガシー端末が関与する制御シグナリングについてのリンク方向の相違の影響の第3の例について説明するための説明図である。 一実施形態に係る通信制御システムの構成の一例を示す説明図である。 レガシー端末の構成の一例を示すブロック図である。 一実施形態に係るダイナミックTDD端末の構成の一例を示すブロック図である。 一実施形態に係る通信制御装置の構成の一例を示すブロック図である。 第1の手法における設定モード間の遷移の一例を示す状態遷移図である。 第2の手法における設定モード間の遷移の一例を示す状態遷移図である。 ダイナミックTDD端末により実行される通信処理の流れの一例を示すフローチャートである。 第1の手法に従って実行される通信制御処理の流れの一例を示すフローチャートの第1の部分である。 第1の手法に従って実行される通信制御処理の流れの一例を示すフローチャートの第2の部分である。 第2の手法に従って実行される通信制御処理の流れの一例を示すフローチャートの第1の部分である。 第2の手法に従って実行される通信制御処理の流れの一例を示すフローチャートの第2の部分である。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
また、以下の順序で説明を行う。
1.概要
1−1.リンク方向コンフィギュレーションの設定
1−2.リンク方向コンフィギュレーションのシグナリング
1−3.基本的な原理
2.通信制御システムの構成
2−1.システムの概要
2−2.レガシー端末の構成例
2−3.ダイナミックTDD端末の構成例
2−4.通信制御装置の構成例
2−5.設定モードの遷移
3.処理の流れの例
3−1.端末側の処理
3−2.ネットワーク側の処理
4.まとめ
<1.概要>
[1−1.リンク方向コンフィギュレーションの設定]
図1は、TD−LTEにおけるリンク方向コンフィギュレーションの一例について説明するための説明図である。図1を参照すると、LTE方式において採用される無線フレームのフレームフォーマットが示されている。1つの無線フレーム(radio frame)は、10個のサブフレーム(#0〜#9)を含む。各サブフレームの時間長は1msecであり、1つの無線フレームの時間長は10msecである。リンク方向は、サブフレーム単位で設定される。図1の例において、「D」とラベリングされたサブフレームのリンク方向はダウンリンクであり、当該サブフレームをダウンリンクサブフレームという。「U」とラベリングされたサブフレームのリンク方向はアップリンクであり、当該サブフレームをアップリンクサブフレームという。「S」とラベリングされたサブフレームは、TD−LTEに特有のスペシャルサブフレームである。図1に例示したように、基地局(eNB)から送信されるダウンリンク信号は、遅延dTと共に端末装置(UE)へ到達する。端末装置は、基地局へ到達するアップリンク信号の遅延dTを考慮に入れて、基地局のアップリンクサブフレームのタイミングよりも先行してアップリンク信号を送信する。スペシャルサブフレームは、ダウンリンクサブフレームからアップリンクサブフレームへの切替えのタイミングで挿入され、端末装置でのダウンリンク信号の受信及びアップリンク信号の送信のタイミングが重ならないようにする緩衝期間としての役割を有する。スペシャルサブフレームは、UEによりダウンリンク信号が受信されるダウンリンクパイロットタイムスロットと、ガード期間(Guard Period)と、UEによりアップリンク信号が送信されるアップリンクパイロットタイムスロットとを含む。なお、スペシャルサブフレームにおいても基地局から端末装置へダウンリンクデータは送信され得る。その意味において、スペシャルサブフレームはダウンリンクサブフレームの一種であると見なすこともできる。
図2は、上記非特許文献1において定義されている、TD−LTEにおいて設定可能な7種類のリンク方向コンフィギュレーションの一覧を示している。図2から理解されるように、0番目のサブフレーム(#0)及び5番目のサブフレーム(#5)は、いずれのコンフィギュレーションにおいてもダウンリンクサブフレームに設定される。1番目のサブフレーム(#1)は、いずれのコンフィギュレーションにおいてもスペシャルサブフレームに設定される。2番目のサブフレーム(#2)は、いずれのコンフィギュレーションにおいてもアップリンクサブフレームに設定される。残りのサブフレームの設定は、コンフィギュレーションごとに異なる。
図2の右端には、アップリンクサブフレームの数とダウリンクサブフレームの数との構成比(UL−DL構成比)が示されている。Configuration0において、アップリンクサブフレームの数は6個、ダウンリンクサブフレームの数は2個であり、UL−DL構成比は6:2である。Configuration1において、アップリンクサブフレームの数は4個、ダウンリンクサブフレームの数は4個であり、UL−DL構成比は4:4である。Configuration2において、アップリンクサブフレームの数は2個、ダウンリンクサブフレームの数は6個であり、UL−DL構成比は2:6である。Configuration3において、アップリンクサブフレームの数は3個、ダウンリンクサブフレームの数は6個であり、UL−DL構成比は3:6である。Configuration4において、アップリンクサブフレームの数は2個、ダウンリンクサブフレームの数は7個であり、UL−DL構成比は2:7である。Configuration5において、アップリンクサブフレームの数は1個、ダウンリンクサブフレームの数は8個であり、UL−DL構成比は1:8である。Configuration6において、アップリンクサブフレームの数は5個、ダウンリンクサブフレームの数は3個であり、UL−DL構成比は5:3である。
TD−LTE方式に従って動作する無線通信システムは、7種類のリンク方向コンフィギュレーションのうちのいずれを用いるべきかを、UL−DLトラフィック比に基づいて決定し得る。一般的に、アップリンク信号は、送信が許可される前に、端末装置のアップリンクバッファによりバッファリングされる。一方、ダウンリンク信号は、送信がスケジューリングされる前に、コアネットワーク内のP−GW(PDN Gateway)によりバッファリングされる。バッファ待機中のトラフィック量がバッファ容量を超えると、バッファオーバフローが発生する。また、所定の期間を超えてバッファリングされたトラフィックは、タイムアウトとして破棄され得る。そこで、端末装置は、バッファ待機中のアップリンクトラフィック量を示すバッファステータスレポートを、周期的に基地局へ送信する。P−GWは、バッファ待機中のダウンリンクトラフィック量を示すバッファシグナリングを提供する。それにより、基地局又はその他の制御ノード内のスケジューラが、各セルについてのUL−DLトラフィック比を算出することができる。例えば、図3Aの例では、バッファ待機中のダウンリンクトラフィックよりも、バッファ待機中のアップリンクトラフィックの方が多い。この場合、アップリンク率の高いリンク方向コンフィギュレーションを設定することにより、バッファ待機中のアップリンクトラフィックを減少させることができる。一方、図3Bの例では、バッファ待機中のアップリンクトラフィックよりも、バッファ待機中のダウンリンクトラフィックの方が多い。この場合、ダウンリンク率の高いリンク方向コンフィギュレーションを設定することにより、バッファ待機中のダウンリンクトラフィックを減少させることができる。
[1−2.リンク方向コンフィギュレーションのシグナリング]
基地局又はその他の制御ノードにより設定されたリンク方向コンフィギュレーションは、基地局から端末装置へのSIB1を用いたブロードキャストによってシグナリングされる。現在の標準仕様におけるSIB1の更新の周期は、640msecである。上記非特許文献2によれば、SIB1を用いたリンク方向コンフィギュレーションの更新の周期は、320msecに短縮され得る。SIB1は、DL−SCH(Downlink Shared Channel)にマッピングされる様々なタイプのSIB(System Information Block)のうちの1つである。SIBを搬送するメッセージを、SI(System Information)メッセージという。SIメッセージの最短の送信周期は、80msecである。従って、SIメッセージでリンク方向コンフィギュレーションがシグナリングされる限り、リンク方向コンフィギュレーションの更新周期は最短で80msecである。
近年、無線通信のトラフィックは飛躍的に増加している。UL−DLトラフィック比は、頻繁に変動する。従って、既存の手法におけるリンク方向コンフィギュレーションのシグナリング周期は、UL−DLトラフィック比の変動に追随するために十分とは言えない。リンク方向コンフィギュレーションの更新がUL−DLトラフィック比の変動に追いつかなければ、バッファ待機中のトラフィック量が増加し、リソース効率の低下及びスループットの低下が引き起こされる。シグナリングオーバヘッドを考慮しないとすると、1つの無線フレームの時間長が10msecであることから、リンク方向コンフィギュレーションの理想的な更新の周期は、10msecである。但し、リンク方向コンフィギュレーションのシグナリングの仕組みを既存の手法から全く変更すれば、既存の端末装置がリンク方向コンフィギュレーションを取得できず動作不能に陥ってしまう。そこで、本開示に係る技術では、以下に説明するような新たな仕組みによって、既存の端末装置へのインパクトを最小化しつつ、UL−DLトラフィック比の変動に対するリンク方向コンフィギュレーションの迅速な追随を可能とする。
[1−3.基本的な原理]
(1)新たなシグナリングメッセージ
本開示に係る技術では、既存の手法よりも短い周期でリンク方向コンフィギュレーションを端末装置へシグナリングするためのSIメッセージとは異なる新たなメッセージが導入される。導入される当該新たなメッセージを、本明細書では、ダイナミックコンフィギュレーションメッセージという。また、リンク方向コンフィギュレーションの設定のためにSIメッセージのみを受信する端末装置を、レガシー端末(レガシーUE)という。これに対し、ダイナミックコンフィギュレーションメッセージを受信する端末装置を、ダイナミックTDD端末(ダイナミックTDD UE)という。
図4は、ダイナミックコンフィギュレーションメッセージを用いたリンク方向コンフィギュレーションのシグナリングについて説明するための説明図である。
図4の上段には、レガシー端末が周期C1でSIB1を搬送するSIメッセージを周期的に受信する様子が示されている。SIB1は、その時点でレガシー端末のために設定されているリンク方向コンフィギュレーションの識別子(図2に例示したコンフィギュレーション番号0〜6のいずれか)を含む。このリンク方向コンフィギュレーションに従って、レガシー端末は、自らの無線通信回路のリンク方向をサブフレーム単位で設定する。SIメッセージのシグナリング周期C1は、例えば、320msecである。ここで、仮にSIメッセージの受信から20msec後の時点でUL−DLトラフィック比が大きく変動したとすると、次のSIメッセージの受信までの300msecの期間にわたって、設定されているリンク方向コンフィギュレーションとUL−DLトラフィック比との間のミスマッチが継続する。
図4の下段には、ダイナミックTDD端末が周期C2(<C1)でダイナミックコンフィギュレーションメッセージを周期的に受信する様子が示されている。ダイナミックコンフィギュレーションメッセージは、その時点でダイナミックTDD端末のために設定されているリンク方向コンフィギュレーションの識別子(図2に例示したコンフィギュレーション番号0〜6のいずれか)を含む。このリンク方向コンフィギュレーションに従って、ダイナミックTDD端末は、自らの無線通信回路のリンク方向をサブフレーム単位で設定する。ダイナミックコンフィギュレーションメッセージのシグナリング周期C2は、10msecの整数倍であってよい。例えば、シグナリング周期C2=40msecであれば、リンク方向コンフィギュレーションとUL−DLトラフィック比との間のミスマッチが継続する期間は、最悪のケースでも40msecである。
図4から理解されるように、本開示に係る技術において、基地局は、SIメッセージを用いてレガシー端末へ第1のリンク方向コンフィギュレーションをシグナリングし、ダイナミックコンフィギュレーションメッセージを用いてダイナミックTDD端末へ第2のリンク方向コンフィギュレーションをシグナリングする。本明細書において、周期C1で更新され得る第1のリンク方向コンフィギュレーションを、レガシー用コンフィギュレーションという。また、周期C2で更新され得る第2のリンク方向コンフィギュレーションを、ダイナミックTDD用コンフィギュレーションという。基地局は、これら2つのコンフィギュレーションをシグナリングするものの、実際には、後に説明するようにダイナミックTDD用コンフィギュレーションに従って動作する。
ダイナミックTDD用コンフィギュレーションがレガシー用コンフィギュレーションよりも短い周期で更新される結果として、これら2つのコンフィギュレーションの間にリンク方向の相違が発生する。2つのコンフィギュレーションの間のリンク方向の相違は、レガシー端末の同期動作、並びにレガシー端末が関与するACK/NACK及びアップリンク許可のタイミングに影響を与える可能性がある。
(2)レガシー端末の同期動作への影響
一般的に、端末装置の同期動作は、初期同期及び同期トラッキングを含む。初期同期は、端末装置の動作タイミングが基地局の動作タイミングに全く同期していない状態からの同期を指す。初期同期は、端末装置がPSS(Primary Synchronization Signal)及びSSS(Secondary Synchronization Signal)をサーチすることにより行われる。端末装置は、初期同期を通じて、接続先のセルのセルIDを取得し、無線フレームの大まかなタイミングを知る。同期トラッキングは、初期同期が完了した後、同期精度を向上するために実行される。同期トラッキングは、端末装置がCRS(Cell-specific Reference Symbol)を受信することにより行われる。CRSは、図5Aに例示されるように、原則として、各ダウンリンクサブフレームのPDCCH(Physical Downlink Control Channel)及びPDSCH(Physical Downlink Shared Channel)に分散的に挿入される。端末装置は、アイドルモード(RRC_Idle)及びアクティブモード(RRC_Connected)の双方において、自らを宛て先とするデータが存在するかに関わらず、これらダウンリンクサブフレームのCRSを受信することにより、動作タイミングの同期を維持する。なお、ダウンリンクサブフレームがMBSFN(MBMS Single Frequency Network)サブフレームに設定されると、当該ダウンリンクサブフレームのPDSCHは、MBMS(Multimedia Broadcast Multicast Services)信号のブロードキャスト又はマルチキャストのためにのみ使用される。図5Bに例示されるように、MBSFNサブフレームのPDSCHには、CRSは挿入されない。
ここで、例えば、レガシー用コンフィギュレーションとしてConfiguration2、ダイナミックTDD用コンフィギュレーションとしてConfiguration4が設定されたものとする(図2参照)。基地局はダイナミックTDD用コンフィギュレーションに従って動作するため、3番目のサブフレーム(#3)のリンク方向はアップリンクであり、7番目のサブフレーム(#7)のリンク方向はダウンリンクである。しかし、レガシー端末は、レガシー用コンフィギュレーションに従って、3番目のサブフレームのリンク方向はダウンリンク、7番目のサブフレームのリンク方向はアップリンクであると認識する。そして、レガシー端末は、3番目のサブフレームにおいて同期トラッキングのためにCRSの受信を試みる。しかし、基地局は実際にはアップリンクサブフレームである当該サブフレームにおいてCRSを送信しない。結果として、レガシー端末の同期トラッキングの精度が低下するリスクが生じる。なお、7番目のサブフレームでは、基地局はCRSを送信するものの、レガシー端末は当該CRSを受信しない。しかし、一部のCRSが受信されないとしても、レガシー端末の同期トラッキングの精度は低下しないため、7番目のサブフレームのリンク方向の相違の影響は小さい。
新たなダイナミックコンフィギュレーションメッセージの導入によって生じ得る上述したレガシー端末の同期動作への影響は、以下に説明する第1の手法又は第2の手法によって解決され得る。
(2−a)第1の手法
第1の手法では、レガシー用コンフィギュレーションとして、アップリンク率のより高いコンフィギュレーションが設定される。そして、ダイナミックTDD用コンフィギュレーションとして、レガシー用コンフィギュレーションのアップリンクサブフレームをダウンリンクサブフレームに置き換えることにより導かれるコンフィギュレーションが設定される。スペシャルサブフレームもまた、ダウンリンクサブフレームに置き換えられてよい。
図6は、リンク方向の相違の影響を解決するための第1の手法について説明するための説明図である。図6の上段には、レガシー用コンフィギュレーションとして設定され得るConfiguration0が示されている。Configuration0の0番目及び5番目のサブフレームはダウンリンクサブフレーム、1番目及び6番目のサブフレームはスペシャルサブフレーム、2番目〜4番目及び7番目〜9番目のサブフレームはアップリンクサブフレームである。CRSは、0番目及び5番目のサブフレームにおいて基地局から送信される。ダイナミックTDD用コンフィギュレーションもまた、Configuration0であってよい。但し、Configuration0のUL−DL構成比がUL−DLトラフィック比に適合しない場合には、ダイナミックTDD用コンフィギュレーションは、Configuration0のアップリンクサブフレーム(及びスペシャルサブフレーム)の1つ以上をダウンリンクサブフレームに置き換えることにより導かれるいずれかのリンク方向コンフィギュレーションに更新される。図6の下段の例では、ダイナミックTDD用コンフィギュレーションは、Configuration3に設定されている。Configuration3において、Configuration0の6番目のサブフレーム(スペシャルサブフレーム)並びに7番目及〜9番目のサブフレーム(アップリンクサブフレーム)は、ダウンリンクサブフレームに置き換えられている。
図6の例において、レガシー端末がCRSを受信する0番目及び5番目のサブフレームでは、Configuration3に従って実際に基地局からCRSが送信される。従って、レガシー端末は、これらCRSを受信することにより正常に同期トラッキングを実行することができる。
一方、図6の例において、レガシー端末が例えば7番目のサブフレームでアップリンク信号を送信すると、7番目のサブフレームは実際にはダウンリンクサブフレームであるため、送信されたアップリンク信号は基地局により受信されない。むしろ、当該アップリンク信号が(他の端末装置により受信される)ダウンリンク信号に有害な干渉を与える可能性がある。そこで、第1の手法において、スケジューラは、ダイナミックTDD用コンフィギュレーションにおいてダウンリンクサブフレームへの置き換えが行われたサブフレームについて、レガシー端末のアップリンク送信を許可(grant)しない。それにより、レガシー端末による無駄なアップリンク信号の送信を回避し、干渉を予防することができる。
図7のマトリクスは、第1の手法におけるレガシー用コンフィギュレーション及びダイナミックTDD用コンフィギュレーションの選択可能な組合せを示している。マトリクスの横軸はレガシー用コンフィギュレーション、縦軸はダイナミックTDD用コンフィギュレーションにそれぞれ対応する。図中で“N”とラベリングされた組合せは、第1の手法において選択されない組合せである。例えば、レガシー用コンフィギュレーションがConfiguration0であれば、ダイナミックTDD用コンフィギュレーションとして7種類の全てのリンク方向コンフィギュレーションが選択可能である。レガシー用コンフィギュレーションがConfiguration1であれば、ダイナミックTDD用コンフィギュレーションとしてConfiguration1、2、4及び5が選択可能である。レガシー用コンフィギュレーションがConfiguration2であれば、ダイナミックTDD用コンフィギュレーションとしてConfiguration2及び5が選択可能である。レガシー用コンフィギュレーションがConfiguration3であれば、ダイナミックTDD用コンフィギュレーションとしてConfiguration3、4及び5が選択可能である。レガシー用コンフィギュレーションがConfiguration4であれば、ダイナミックTDD用コンフィギュレーションとしてConfiguration4及び5が選択可能である。レガシー用コンフィギュレーションがConfiguration5であれば、ダイナミックTDD用コンフィギュレーションとしてConfiguration5のみが選択可能である。レガシー用コンフィギュレーションがConfiguration6であれば、ダイナミックTDD用コンフィギュレーションとしてConfiguration1、2、3、4、5及び6が選択可能である。図中で“N”とラベリングされた組合せはいずれも、レガシー用コンフィギュレーションではダウンシンクサブフレームであって、ダイナミックTDD用コンフィギュレーションではアップリンクサブフレームであるサブフレームが存在する組合せである。そのような組合せの選択が禁止されることにより、レガシー端末がCRSの受信を試行した際にCRSではない信号を誤って受信してしまうことを防止することができる。
図8は、第1の手法において設定されるリンク方向コンフィギュレーションの一例について時間軸に沿って説明するための説明図である。
時刻T11において、レガシー端末は、SIメッセージM01を受信し、SIメッセージM01において指定されたConfiguration0を自らの無線通信回路に設定する。ここで設定されたレガシー端末のリンク方向コンフィギュレーションは、次のSIメッセージM02が受信される時刻T14まで維持される。一方、ダイナミックTDD端末は、時刻T11において、ダイナミックコンフィギュレーションメッセージM11を受信し、メッセージM11において指定されたConfiguration0を自らの無線通信回路に設定する。その後、ダイナミックTDD端末は、時刻T12において、ダイナミックコンフィギュレーションメッセージM12を受信し、メッセージM12において指定されたConfiguration1を自らの無線通信回路に設定する。ここで設定されたダイナミックTDD端末のリンク方向コンフィギュレーションは、次のダイナミックコンフィギュレーションメッセージM13が受信される時刻T13まで維持される。Configuration1において、Configuration0の4番目及び9番目のアップリンクサブフレームがダウンリンクサブフレームに置き換えられている。従って、時刻T12から時刻T13までの期間において、4番目及び9番目のサブフレームでのレガシー端末のアップリンク送信は許可されない。時刻T13において、ダイナミックTDD端末は、ダイナミックコンフィギュレーションメッセージM13を受信し、メッセージM13において指定されたConfiguration6を自らの無線通信回路に設定する。ここで設定されたダイナミックTDD端末のリンク方向コンフィギュレーションは、次のダイナミックコンフィギュレーションメッセージが受信される時刻まで維持される。Configuration6において、Configuration0の9番目のアップリンクサブフレームがダウンリンクサブフレームに置き換えられている。従って、ダイナミックTDD用コンフィギュレーションとしてConfiguration6が設定されている期間において、9番目のサブフレームでのレガシー端末のアップリンク送信は許可されない。
続いて、時刻T14において、レガシー端末は、SIメッセージM02を受信し、SIメッセージM02において指定されたConfiguration3を自らの無線通信回路に設定する。ここで設定されたレガシー端末のリンク方向コンフィギュレーションは、次のSIメッセージが受信される時刻T17まで維持される。一方、ダイナミックTDD端末は、時刻T14において、ダイナミックコンフィギュレーションメッセージM16を受信し、メッセージM16において指定されたConfiguration3を自らの無線通信回路に設定する。その後、ダイナミックTDD端末は、時刻T15において、ダイナミックコンフィギュレーションメッセージM17を受信し、メッセージM17において指定されたConfiguration4を自らの無線通信回路に設定する。ここで設定されたダイナミックTDD端末のリンク方向コンフィギュレーションは、次のダイナミックコンフィギュレーションメッセージM18が受信される時刻T16まで維持される。Configuration4において、Configuration3の4番目のアップリンクサブフレームがダウンリンクサブフレームに置き換えられている。従って、時刻T15から時刻T16までの期間において、4番目のサブフレームでのレガシー端末のアップリンク送信は許可されない。時刻T16において、ダイナミックTDD端末は、ダイナミックコンフィギュレーションメッセージM18を受信し、メッセージM18において指定されたConfiguration5を自らの無線通信回路に設定する。ここで設定されたダイナミックTDD端末のリンク方向コンフィギュレーションは、次のダイナミックコンフィギュレーションメッセージが受信される時刻まで維持される。Configuration5において、Configuration3の3番目及び4番目のアップリンクサブフレームがダウンリンクサブフレームに置き換えられている。従って、ダイナミックTDD用コンフィギュレーションとしてConfiguration5が設定されている期間において、3番目及び4番目のサブフレームでのレガシー端末のアップリンク送信は許可されない。
(2−b)第2の手法
第2の手法では、レガシー用コンフィギュレーションとして、ダウンリンク率のより高いコンフィギュレーションが設定される。また、レガシー用コンフィギュレーションのダウンリンクサブフレームの少なくとも1つがMBSFNサブフレームに設定される。そして、ダイナミックTDD用コンフィギュレーションとして、レガシー用コンフィギュレーションのMBSFNサブフレームに設定されたダウンリンクサブフレームをアップリンクサブフレームに置き換えることにより導かれるコンフィギュレーションが設定される。一部のMBSFNサブフレームは、スペシャルサブフレームに置き換えられてよい。
図9は、リンク方向の相違の影響を解決するための第2の手法について説明するための説明図である。図9の上段には、レガシー用コンフィギュレーションとして設定され得るConfiguration5が示されている。Configuration5の0番目及び3番目〜9番目のサブフレームはダウンリンクサブフレーム、1番目のサブフレームはスペシャルサブフレーム、2番目のサブフレームはアップリンクサブフレームである。但し、一例として、3番目、4番目、6番目〜9番目のダウンリンクサブフレームは、MBSFNサブフレームに設定される。CRSは、0番目及び5番目のサブフレームにおいて基地局から送信される。ダイナミックTDD用コンフィギュレーションもまた、Configuration5であってよい。但し、Configuration5のUL−DL構成比がUL−DLトラフィック比に適合しない場合には、ダイナミックTDD用コンフィギュレーションは、Configuration5のMBSFNサブフレーム(及びスペシャルサブフレーム)の1つ以上をアップリンクサブフレームに置き換えることにより導かれるいずれかのリンク方向コンフィギュレーションに更新される。図9の下段の例では、ダイナミックTDD用コンフィギュレーションは、Configuration6に設定されている。Configuration6において、Configuration5の3番目、4番目、7番目及び8番目のサブフレーム(MBSFNサブフレーム)は、アップリンクサブフレームに置き換えられている。Configuration5の6番目のサブフレーム(MBSFNサブフレーム)は、スペシャルサブフレームに置き換えられている。
図9の例において、レガシー端末がCRSを受信する0番目及び5番目のサブフレームでは、Configuration6に従って実際に基地局からCRSが送信される。従って、レガシー端末は、これらCRSを受信することにより正常に同期トラッキングを実行することができる。
図10のマトリクスは、第2の手法におけるレガシー用コンフィギュレーション及びダイナミックTDD用コンフィギュレーションの選択可能な組合せを示している。マトリクスの横軸はレガシー用コンフィギュレーション、縦軸はダイナミックTDD用コンフィギュレーションにそれぞれ対応する。図中で“N”とラベリングされた組合せは、第2の手法において選択されない組合せである。例えば、レガシー用コンフィギュレーションがConfiguration0であれば、ダイナミックTDD用コンフィギュレーションとしてConfiguration0のみが選択可能である。レガシー用コンフィギュレーションがConfiguration1であれば、ダイナミックTDD用コンフィギュレーションとしてConfiguration0、1及び6が選択可能である。レガシー用コンフィギュレーションがConfiguration2であれば、ダイナミックTDD用コンフィギュレーションとしてConfiguration0、1、2及び6が選択可能である。レガシー用コンフィギュレーションがConfiguration3であれば、ダイナミックTDD用コンフィギュレーションとしてConfiguration0、3及び6が選択可能である。レガシー用コンフィギュレーションがConfiguration4であれば、ダイナミックTDD用コンフィギュレーションとしてConfiguration0、1、3、4及び6が選択可能である。レガシー用コンフィギュレーションがConfiguration5であれば、ダイナミックTDD用コンフィギュレーションとして7種類の全てのリンク方向コンフィギュレーションが選択可能である。レガシー用コンフィギュレーションがConfiguration6であれば、ダイナミックTDD用コンフィギュレーションとしてConfiguration0及び6が選択可能である。
図11は、第2の手法において設定されるリンク方向コンフィギュレーションの一例について時間軸に沿って説明するための説明図である。
時刻T21において、レガシー端末は、SIメッセージM21を受信し、SIメッセージM21において指定されたConfiguration5を自らの無線通信回路に設定する。ここで設定されたレガシー端末のリンク方向コンフィギュレーションは、次のSIメッセージM22が受信される時刻T24まで維持される。一方、ダイナミックTDD端末は、時刻T21において、ダイナミックコンフィギュレーションメッセージM31を受信し、メッセージM31において指定されたConfiguration2を自らの無線通信回路に設定する。その後、ダイナミックTDD端末は、時刻T22において、ダイナミックコンフィギュレーションメッセージM32を受信し、メッセージM32において指定されたConfiguration4を自らの無線通信回路に設定する。ここで設定されたダイナミックTDD端末のリンク方向コンフィギュレーションは、次のダイナミックコンフィギュレーションメッセージM33が受信される時刻T23まで維持される。時刻T23において、ダイナミックTDD端末は、ダイナミックコンフィギュレーションメッセージM33を受信し、メッセージM33において指定されたConfiguration5を自らの無線通信回路に設定する。ここで設定されたダイナミックTDD端末のリンク方向コンフィギュレーションは、次のダイナミックコンフィギュレーションメッセージが受信される時刻まで維持される。
続いて、時刻T24において、レガシー端末は、SIメッセージM22を受信し、SIメッセージM22において指定されたConfiguration1を自らの無線通信回路に設定する。ここで設定されたレガシー端末のリンク方向コンフィギュレーションは、次のSIメッセージが受信される時刻T27まで維持される。一方、ダイナミックTDD端末は、時刻T24において、ダイナミックコンフィギュレーションメッセージM36を受信し、メッセージM36において指定されたConfiguration1を自らの無線通信回路に設定する。その後、ダイナミックTDD端末は、時刻T25において、ダイナミックコンフィギュレーションメッセージM37を受信し、メッセージM37において指定されたConfiguration0を自らの無線通信回路に設定する。ここで設定されたダイナミックTDD端末のリンク方向コンフィギュレーションは、次のダイナミックコンフィギュレーションメッセージが受信される時刻まで維持される。
上述した第1の手法又は第2の手法によれば、ダイナミックコンフィギュレーションメッセージの導入がレガシー端末の同期動作へ有害な影響を与えることを回避することができる。また、ダイナミックコンフィギュレーションメッセージはSIメッセージよりも短い周期で送信され得るため、ダイナミックTDD端末のリンク方向コンフィギュレーションの設定を、UL−DLトラフィック比の変動に対してより迅速に追随させることができる。
図12は、ダイナミックコンフィギュレーションメッセージが送信される制御情報領域の一例について説明するための説明図である。図12を参照すると、各無線フレームの0番目のサブフレーム及び5番目のサブフレームの概略的なフォーマットが示されている。5番目のサブフレームのPDSCHの帯域中央には、SIB1が設けられている。ダイナミックコンフィギュレーションメッセージは、例えば、0番目又は5番目のサブフレームのPDSCHの帯域内に設けられるE−PDCCH(Enhanced-Physical Downlink Control Channel)上で送信されてよい。その代わりに、ダイナミックコンフィギュレーションメッセージは、PDCCH内に新たに定義される制御情報領域上で送信されてもよい。E−PDCCH又はPDCCH内にダイナミックコンフィギュレーションメッセージを送信するための新たな制御情報領域を定義することにより、最短で10msecの周期でリンク方向コンフィギュレーションをシグナリングすることが可能となる。
なお、シグナリングの頻度の増加は、シグナリングオーバヘッドの増加をもたらす。即ち、リンク方向コンフィギュレーションの更新の即応性とシグナリングオーバヘッドとは、スループットの観点でトレードオフの関係にある。従って、ダイナミックTDD用コンフィギュレーションのシグナリング周期は、例えばスループットを最適化するようにシステムごとに適応的に設定されてもよい。また、適応的に設定される当該シグナリング周期をダイナミックTDD端末へ通知するためのシグナリングが行われてもよい。
(3)レガシー端末が送信するACK/NACKへの影響
確認応答(ACK)及び否定応答(NACK)は、データ送信の信頼性を確保するための仕組みであるHARQ(ハイブリッド自動再送要求:Hybrid Automatic Repeat Request)のベースとなる基本的な制御シグナリングである。ダウンリンク送信のタイミングとACK/NACKのタイミングとのオフセットが、3GPP TS36.213のテーブル10.1.3.1−1において、リンク方向コンフィギュレーションごとに定義されている(表1参照)。
Figure 2017220955
表1は、ダウンリンク送信と、当該ダウンリンク送信に関連付けられるACK/NACKとの間のタイミングのオフセットを、サブフレーム数を単位として示している。ACK/NACKの送信タイミングについて、図13も参照しながら説明する。図13の上段には、Configuration0が設定された連続する2つの無線フレームF11及びF12が示されている。無線フレームF11及びF12において、ダウンリンク送信は、0番目、1番目、5番目及び6番目のサブフレームにおいて発生し得る。表1のConfiguration0の行を参照すると、0番目のサブフレームでのダウンリンク送信に対するACK/NACKは、オフセット4を示す4番目のサブフレームで送信され得る。1番目のサブフレームでのダウンリンク送信に対するACK/NACKは、オフセット6を示す7番目のサブフレームで送信され得る。5番目のサブフレームでのダウンリンク送信に対するACK/NACKは、オフセット4を示す9番目のサブフレームで送信され得る。6番目のサブフレームでのダウンリンク送信に対するACK/NACKは、オフセット6を示す(次の無線フレームの)2番目のサブフレームで送信され得る。こうしたタイミングの対応関係が、図13では点線の矢印で示されている。無線通信に関与する装置は、表1のような仕様化されたテーブルを予め記憶し、ダウンリンク送信に対するACK/NACKの送信タイミングを、当該テーブルを参照することにより決定し得る。
しかし、ダイナミックTDD用コンフィギュレーションとレガシー用コンフィギュレーションとが異なる場合、これら2つのコンフィギュレーションの間でリンク方向の異なるサブフレームが存在する。図13の例では、下段において、ダイナミックTDD用コンフィギュレーションとしてConfiguration5が設定されている。レガシー用コンフィギュレーションはConfiguration0であるものとする。この場合、3番目、4番目、7番目、8番目及び9番目のサブフレームでリンク方向が相違する。基地局は、実際にはダイナミックTDD用コンフィギュレーションに従って動作するため、レガシー端末が仮にダウンリンク送信に対するACK/NACKを4番目、7番目又は9番目のサブフレームで送信したとしても、当該ACK/NACKは基地局により受信されない。ACK/NACKがロスすると、基地局は、対応するダウンリンク送信が正常に行われていたとしてもそのことを認識できず、送信済みのデータを再送し得る。それにより、無線リソースが無駄に消費され、システムのスループットは低下し得る。
そこで、一実施形態において、レガシー端末へのダウンリンク送信は、関連付けられるACK/NACK送信のためのサブフレームにおいてリンク方向の相違が発生しないサブフレームにのみスケジューリングされる。ダウンリンク送信に関連付けられるACK/NACK送信のためのサブフレームは、表1のレガシー用コンフィギュレーションのエントリにより示される。当該サブフレームにおいてリンク方向の相違が発生するか否かは、レガシー用コンフィギュレーションにおける当該サブフレームのリンク方向から判定することができる。当該サブフレームがレガシー用コンフィギュレーションにおいてアップリンクサブフレームに指定されていれば、リンク方向の衝突は発生しない。そうでなければ、リンク方向の衝突が発生する。ここで、図2を参照すると、2番目のサブフレームは、いずれのコンフィギュレーションにおいてもアップリンクサブフレームである。そこで、例えば、レガシー用コンフィギュレーションがConfiguration0である場合、基地局は、レガシー端末へのダウンリンク送信を6番目のサブフレームにスケジューリングする(他のダウンリンクサブフレームにはスケジューリングしない)。それにより、ダイナミックTDD用コンフィギュレーションに関わらず、レガシー端末からの当該ダウンリンク送信に対するACK/NACKを2番目のサブフレームで確実に受信することが可能となる。
(4)レガシー端末へ送信されるACK/NACKへの影響
アップリンク送信のタイミングと基地局からのACK/NACKのタイミングとのオフセットは、3GPP TS36.213のテーブル9.1.2−1において、リンク方向コンフィギュレーションごとに定義されている(表2参照)。
Figure 2017220955
表2は、アップリンク送信と、当該アップリンク送信に関連付けられるACK/NACKとの間のタイミングのオフセットを、サブフレーム数を単位として示している。ACK/NACKの送信タイミングについて、図14も参照しながら説明する。図14の上段には、Configuration0が設定された連続する2つの無線フレームF21及びF22が示されている。無線フレームF21及びF22において、アップリンク送信は、2番目、3番目、4番目、7番目、8番目及び9番目のサブフレームにおいて発生し得る。表2のConfiguration0の行を参照すると、2番目のサブフレームでのアップリンク送信に対するACK/NACKは、オフセット4だけ後の6番目のサブフレームで送信され得る。3番目のサブフレームでのアップリンク送信に対するACK/NACKは、オフセット7だけ後の(次の無線フレームの)0番目のサブフレームで送信され得る。4番目のサブフレームでのアップリンク送信に対するACK/NACKは、オフセット6だけ後の(次の無線フレームの)0番目のサブフレームで送信され得る。7番目のサブフレームでのアップリンク送信に対するACK/NACKは、オフセット4だけ後の(次の無線フレームの)1番目のサブフレームで送信され得る。8番目のサブフレームでのアップリンク送信に対するACK/NACKは、オフセット7だけ後の(次の無線フレームの)5番目のサブフレームで送信され得る。9番目のサブフレームでのアップリンク送信に対するACK/NACKは、オフセット6だけ後の(次の無線フレームの)5番目のサブフレームで送信され得る。こうしたタイミングの対応関係が、図14では点線の矢印で示されている。無線通信に関与する装置は、表2のような仕様化されたテーブルを予め記憶し、アップリンク送信に対するACK/NACKの送信タイミングを、当該テーブルを参照することにより決定し得る。
しかし、ダイナミックTDD用コンフィギュレーションとレガシー用コンフィギュレーションとが異なる場合、これら2つのコンフィギュレーションの間でリンク方向の異なるサブフレームが存在する。図14の例では、下段において、ダイナミックTDD用コンフィギュレーションとしてConfiguration2が設定されている。レガシー用コンフィギュレーションはConfiguration0であるものとする。この場合、3番目、4番目、8番目及び9番目のサブフレームでリンク方向が相違する。基地局がダイナミックTDD用コンフィギュレーションに従って動作する場合、基地局は、2番目及び7番目のサブフレームでのアップリンク送信に対するACK/NACKを、それぞれ8番目のサブフレーム及び(次の無線フレームの)3番目のサブフレームで送信する。しかし、レガシー用コンフィギュレーションであるConfiguration0において、3番目及び8番目のサブフレームはアップリンクサブフレームに指定されているため、レガシー端末は、これらACK/NACKを受信しない。ACK/NACKがロスすると、レガシー端末は、対応するアップリンク送信が正常に行われていたとしてもそのことを認識できず、送信済みのデータを再送し得る。それにより、無線リソースが無駄に消費され、システムのスループットは低下し得る。
そこで、一実施形態において、レガシー端末からのアップリンク送信に対してACK/NACKを送信するためのサブフレームは、表2のレガシー用コンフィギュレーションについてのエントリを参照することにより決定される。かかる基準によれば、図14の例において、基地局は、2番目及び7番目のサブフレームでのアップリンク送信に対するACK/NACKを、それぞれ6番目のサブフレーム及び(次の無線フレームの)1番目のサブフレームで送信する。1番目及び6番目のサブフレームは、レガシー用コンフィギュレーション及びダイナミックTDD用コンフィギュレーションの双方において、ダウンリンクサブフレームである。そのため、レガシー端末は、これらACK/NACKを正常に受信することができる。
(5)レガシー端末へ送信されるUL許可への影響
UL許可(Uplink Grant)は、アップリンク送信がスケジューリングされたことを端末装置へ通知するための制御シグナリングである。アップリンク送信とUL許可との間のタイミングのオフセットは、3GPP TS36.213のテーブル8−2において、リンク方向コンフィギュレーションごとに定義されている(表3参照)。
Figure 2017220955
表3は、アップリンク送信と、当該アップリンク送信に関連付けられるUL許可との間のタイミングのオフセットを、サブフレーム数を単位として示している。UL許可の送信タイミングについて、図15も参照しながら説明する。図15の上段には、Configuration0が設定された連続する2つの無線フレームF31及びF32が示されている。無線フレームF31及びF32において、アップリンク送信は、2番目、3番目、4番目、7番目、8番目及び9番目のサブフレームにおいて発生し得る。表3のConfiguration0の行を参照すると、2番目のサブフレームでのアップリンク送信についてのUL許可は、オフセット6を示す(前の無線フレームの)6番目のサブフレームで送信され得る。3番目のサブフレームでのアップリンク送信についてのUL許可は、オフセット7を示す(前の無線フレームの)6番目のサブフレームで送信され得る。4番目のサブフレームでのアップリンク送信についてのUL許可は、オフセット4を示す0番目のサブフレームで送信され得る。7番目のサブフレームでのアップリンク送信についてのUL許可は、オフセット6を示す1番目のサブフレームで送信され得る。8番目のサブフレームでのアップリンク送信についてのUL許可は、オフセット7を示す1番目のサブフレームで送信され得る。9番目のサブフレームでのアップリンク送信についてのUL許可は、オフセット4を示す5番目のサブフレームで送信され得る。こうしたタイミングの対応関係が、図15では点線の矢印で示されている。無線通信に関与する装置は、表3のような仕様化されたテーブルを予め記憶し、アップリンク送信についてのUL許可の送信タイミングを、当該テーブルを参照することにより決定し得る。
しかし、ダイナミックTDD用コンフィギュレーションとレガシー用コンフィギュレーションとが異なる場合、これら2つのコンフィギュレーションの間でリンク方向の異なるサブフレームが存在する。図15の例では、下段において、ダイナミックTDD用コンフィギュレーションとしてConfiguration2が設定されている。レガシー用コンフィギュレーションはConfiguration0であるものとする。この場合、3番目、4番目、8番目及び9番目のサブフレームでリンク方向が相違する。基地局がダイナミックTDD用コンフィギュレーションに従って動作する場合、基地局は、2番目及び7番目のサブフレームでのアップリンク送信についてのUL許可を、それぞれ(前の無線フレームの)8番目のサブフレーム及び3番目のサブフレームで送信する。しかし、レガシー用コンフィギュレーションであるConfiguration0において、3番目及び8番目のサブフレームはアップリンクサブフレームに指定されているため、レガシー端末は、これらUL許可を受信しない。UL許可が受信されなければ、レガシー端末はアップリンク送信を実行しないため、アップリンクトラフィックが滞る。
そこで、一実施形態において、レガシー端末からのアップリンク送信に対応するアップリンク許可を送信するためのサブフレームは、表3のレガシー用コンフィギュレーションについてのエントリを参照することにより決定される。例えば、かかる基準によれば、図15の例において、基地局は、2番目及び7番目のサブフレームでのアップリンク送信についてのUL許可を、それぞれ(前の無線フレームの)6番目のサブフレーム及び1番目のサブフレームで送信する。1番目及び6番目のサブフレームは、レガシー用コンフィギュレーション及びダイナミックTDD用コンフィギュレーションの双方において、ダウンリンクサブフレームである。そのため、レガシー端末は、これらUL許可を正常に受信することができる。
<2.通信制御システムの構成>
[2−1.システムの概要]
図16は、本開示に係る技術が実装される一実施形態に係る通信制御システム1の構成の一例を示す説明図である。図16を参照すると、通信制御システム1は、基地局100を含む。基地局(eNB)100は、セル102の内部に位置するレガシー端末10及びダイナミックTDD端末30へ、TD−LTE方式に従って無線通信サービスを提供する。基地局100は、典型的にはEPC(Evolved Packet Core)として実現されるコアネットワーク104と接続される。コアネットワーク104は、例えば、MME(Mobility Management Entity)、S−GW(Serving Gateway)及びP−GWなどの様々な制御ノードを含む。
レガシー端末10は、レガシー用コンフィギュレーションに従って動作する端末装置である。ダイナミックTDD端末30は、ダイナミックTDD用コンフィギュレーションに従って動作することの可能な端末装置である。ダイナミックTDD端末30は、追加的に、レガシー用コンフィギュレーションに従って動作することも可能であってよい。1つ以上のレガシー端末10のためにレガシー用コンフィギュレーションを設定し、及び1つ以上のダイナミックTDD端末30のためにダイナミックTDD用コンフィギュレーションを設定する制御機能は、基地局100、又は基地局100を介してこれら端末装置と通信するいずれかの制御ノードに配置され得る。以下の説明では、一例として、基地局100が当該制御機能を有するものとする。
[2−2.レガシー端末の構成例]
図17は、レガシー端末10の構成の一例を示すブロック図である。図17を参照すると、レガシー端末10は、無線通信部11、信号処理部12、制御部13及びメモリ14を備える。
(1)無線通信部
無線通信部11は、レガシー端末10が基地局100との間で無線信号を送受信するための通信インタフェースである。無線通信部11は、1つ以上のアンテナ(図示せず)及びRF(Radio Frequency)回路を有する。無線通信部11は、基地局100から送信されるダウンリンク信号を受信し、受信信号の増幅、周波数変換及びAD(Analogue-to-Digital)変換を行う。また、無線通信部11は、送信信号のDA(Digital-to-Analogue)変換、周波数変換及び増幅を行い、アップリンク信号を基地局100へ送信する。
無線通信部11により受信されるダウンリンク信号は、ダウンリンクデータ信号及びダウンリンクシグナリングを含む。ダウンリンクシグナリングは、レガシー用コンフィギュレーションをレガシー端末10へ通知するSIメッセージ、アップリンク送信に対するACK/NACK及びUL許可を含む。また、無線通信部11により送信されるアップリンク信号は、アップリンクデータ信号及びアップリンクシグナリングを含む。アップリンクシグナリングは、バッファ待機中のアップリンクデータ信号のトラフィック量を示すバッファステータスレポート、及びダウンリンク送信に対するACK/NACKを含む。
(2)信号処理部
信号処理部12は、無線通信部11から入力される受信信号の等化、復調及び復号、並びに無線通信部11へ出力される送信信号の符号化及び変調を行うための信号処理回路を有する。信号処理部12は、例えば、上位レイヤの処理を実現するプロセッサ(図示せず)と接続される。そして、信号処理部12は、復調及び復号した受信信号に含まれるデータを上位レイヤへ出力する。また、信号処理部12は、上位レイヤから入力されるデータを含む送信信号を符号化及び変調する。
(3)制御部
制御部13は、レガシー端末10による無線通信をTD−LTE方式に従って制御する。例えば、制御部13は、無線通信部11により受信されるSIメッセージにおいて指定されるレガシー用コンフィギュレーションに従って、サブフレーム単位のリンク方向を無線通信部11及び信号処理部12に設定する。また、制御部13は、無線通信部11により受信されるダウンリンク割当てに従って無線通信部11にダウンリンク信号を受信させ、受信が成功した場合にはACKを、受信が失敗した場合にはNACKを無線通信部11に返送させる。また、制御部13は、無線通信部11により受信されるアップリンク許可に従って無線通信部11にアップリンク信号を送信させ、当該アップリンク送信に対するACK又はNACKを無線通信部11に受信させる。制御部13は、これら制御シグナリング(即ち、ダウンリンク送信に対するACK/NACK、アップリンク送信に対するACK/NACK、及びUL許可)の送受信のタイミングを、メモリ14に記憶されるテーブル(上述した表1、表2及び表3)内のレガシー用コンフィギュレーションについてのエントリを参照することにより決定し得る。また、制御部13は、MBSFNサブフレームに設定されていないダウンリンクサブフレームにおいて、無線通信部11にCRSを受信させ、同期トラッキングを実行させる。また、制御部13は、バッファ待機中のアップリンクデータ信号のトラフィック量を示すバッファステータスレポートを周期的に生成し、生成したバッファステータスレポートを無線通信部11から基地局100へ送信する。
(4)メモリ
メモリ14は、制御部13がレガシー端末10による無線通信を制御するために使用するデータ及びプログラムを記憶する記憶媒体である。例えば、メモリ14は、現在設定されているレガシー用コンフィギュレーションの識別子を記憶する。また、メモリ14は、ダウンリンク送信のタイミングと対応するACK/NACKのタイミングとを関連付ける第1のテーブル(表1)、アップリンク送信のタイミングと対応するACK/NACKのタイミングとを関連付ける第2のテーブル(表2)、及びアップリンク送信のタイミングと対応するUL許可のタイミングとを関連付ける第3のテーブル(表3)を予め記憶する。
[2−3.ダイナミックTDD端末の構成例]
図18は、ダイナミックTDD端末30の構成の一例を示すブロック図である。図18を参照すると、ダイナミックTDD端末30は、無線通信部31、信号処理部32、制御部33及びメモリ34を備える。
(1)無線通信部
無線通信部31は、ダイナミックTDD端末30が基地局100との間で無線信号を送受信するための通信インタフェースである。無線通信部31は、1つ以上のアンテナ(図示せず)及びRF回路を有する。無線通信部31は、基地局100から送信されるダウンリンク信号を受信し、受信信号の増幅、周波数変換及びAD変換を行う。また、無線通信部31は、送信信号のDA変換、周波数変換及び増幅を行い、アップリンク信号を基地局100へ送信する。
無線通信部31により受信されるダウンリンク信号は、ダウンリンクデータ信号及びダウンリンクシグナリングを含む。ダウンリンクシグナリングは、ダイナミックTDD用コンフィギュレーションをダイナミックTDD端末30へ通知するダイナミックコンフィギュレーションメッセージ、アップリンク送信に対するACK/NACK及びUL許可を含む。また、無線通信部31により送信されるアップリンク信号は、アップリンクデータ信号及びアップリンクシグナリングを含む。アップリンクシグナリングは、バッファ待機中のアップリンクデータ信号のトラフィック量を示すバッファステータスレポート、及びダウンリンク送信に対するACK/NACKを含む。
(2)信号処理部
信号処理部32は、無線通信部31から入力される受信信号の等化、復調及び復号、並びに無線通信部31へ出力される送信信号の符号化及び変調を行うための信号処理回路を有する。信号処理部32は、例えば、上位レイヤの処理を実現するプロセッサ(図示せず)と接続される。そして、信号処理部32は、復調及び復号した受信信号に含まれるデータを上位レイヤへ出力する。また、信号処理部32は、上位レイヤから入力されるデータを含む送信信号を符号化及び変調する。
(3)制御部
制御部33は、ダイナミックTDD端末30による無線通信をTD−LTE方式に従って制御する。例えば、制御部33は、SIBとは異なる制御情報領域内で送信されるダイナミックコンフィギュレーションメッセージを、無線通信部31により受信させる。当該ダイナミックコンフィギュレーションメッセージは、SIメッセージのシグナリング周期よりも短い周期で、基地局100からシグナリングされる。そして、制御部33は、ダイナミックコンフィギュレーションメッセージにおいて指定されるダイナミックTDD用コンフィギュレーションに従って、サブフレーム単位のリンク方向を無線通信部31及び信号処理部32に設定する。また、制御部33は、無線通信部31により受信されるダウンリンク割当てに従って無線通信部31にダウンリンク信号を受信させ、受信が成功した場合にはACKを、受信が失敗した場合にはNACKを無線通信部31に返送させる。また、制御部33は、無線通信部31により受信されるアップリンク許可に従って無線通信部31にアップリンク信号を送信させ、当該アップリンク送信に対するACK又はNACKを無線通信部31に受信させる。制御部33は、これら制御シグナリング(即ち、ダウンリンク送信に対するACK/NACK、アップリンク送信に対するACK/NACK、及びUL許可)の送受信のタイミングを、メモリ34に記憶されるテーブル(上述した表1、表2及び表3)内のダイナミックTDD用コンフィギュレーションについてのエントリを参照することにより決定し得る。また、制御部33は、ダウンリンクサブフレームにおいて、無線通信部31にCRSを受信させ、同期トラッキングを実行させる。また、制御部33は、バッファ待機中のアップリンクデータ信号のトラフィック量を示すバッファステータスレポートを周期的に生成し、生成したバッファステータスレポートを無線通信部31から基地局100へ送信する。
(4)メモリ
メモリ34は、制御部33がダイナミックTDD端末30による無線通信を制御するために使用するデータ及びプログラムを記憶する記憶媒体である。例えば、メモリ34は、現在設定されているダイナミックTDD用コンフィギュレーションの識別子を記憶する。また、メモリ34は、ダウンリンク送信のタイミングと対応するACK/NACKのタイミングとを関連付ける第1のテーブル(表1)、アップリンク送信のタイミングと対応するACK/NACKのタイミングとを関連付ける第2のテーブル(表2)、及びアップリンク送信のタイミングと対応するUL許可のタイミングとを関連付ける第3のテーブル(表3)を予め記憶する。
(5)デュアルモードのサポート
なお、ダイナミックTDD端末30は、レガシー端末10と同様にレガシー用コンフィギュレーションに従ってリンク方向を設定する第1の動作モード、及びより短い周期でダイナミックTDDコンフィギュレーションに従ってリンク方向を設定する第2の動作モードの双方で動作可能であってもよい。例えば、ダイナミックTDD端末30は、アイドルモード(RRC_Idle)において低い頻度でSIメッセージを受信(即ち、第1の動作モード)し、アクティブモード(RRC_Connected)において高い頻度でダイナミックコンフィギュレーションメッセージを受信(即ち、第2の動作モード)してもよい。それにより、アイドルモードでの消費電力が上昇することを回避することができる。また、ダイナミックTDD端末30は、アクティブモードにおいて、基地局100から指示された期間においてのみダイナミックコンフィギュレーションメッセージを受信してもよい。
[2−4.通信制御装置の構成例]
本実施形態において、基地局100は、時分割複信(TDD)方式に従って1つ以上の端末装置により行われる無線通信を制御する通信制御装置としての役割を有する。図19は、基地局100の構成の一例を示すブロック図である。図19を参照すると、基地局100は、無線通信部110、信号処理部120、インタフェース部130、設定部140、シグナリング制御部150、スケジューリング部160及び記憶部170を備える。
(1)無線通信部
無線通信部110は、基地局100が1つ以上の端末装置との間で無線信号を送受信するための通信インタフェースである。無線通信部110は、1つ以上のアンテナ(図示せず)及びRF回路を有する。無線通信部110は、端末装置から送信されるアップリンク信号を受信し、受信信号の増幅、周波数変換及びAD変換を行う。また、無線通信部110は、送信信号のDA変換、周波数変換及び増幅を行い、ダウンリンク信号を端末装置へ送信する。無線通信部110のリンク方向は、設定部140により設定されるダイナミックTDD用コンフィギュレーションに従って、サブフレーム単位で変化する。
無線通信部110により受信されるアップリンク信号は、アップリンクデータ信号及びアップリンクシグナリングを含む。アップリンクシグナリングは、各端末装置からのバッファステータスレポート、及びダウンリンク送信に対するACK/NACKを含む。また、無線通信部110により送信されるダウンリンク信号は、ダウンリンクデータ信号及びダウンリンクシグナリングを含む。ダウンリンクシグナリングは、レガシー用コンフィギュレーションを通知するためのSIメッセージ、ダイナミックTDD用コンフィギュレーションを通知するためのダイナミックコンフィギュレーションメッセージ、アップリンク送信に対するACK/NACK、及びUL許可を含む。
(2)信号処理部
信号処理部120は、無線通信部110から入力される受信信号の等化、復調及び復号、並びに無線通信部110へ出力される送信信号の符号化及び変調を行うための信号処理回路を有する。信号処理部120は、復調及び復号した受信信号に含まれるデータを、インタフェース部130へ出力する。また、信号処理部120は、インタフェース部130から入力されるデータを含む送信信号を符号化及び変調する。
(3)インタフェース部
インタフェース部130は、基地局100が他の基地局との間で通信するためのX2インタフェース、及び基地局100がコアネットワーク104内の制御ノードとの間で通信するためのS1インタフェースなどの通信インタフェース群を含む。インタフェース部130の各通信インタフェースは、有線通信インタフェースであってもよく、又は無線通信インタフェースであってもよい。インタフェース部130は、例えば、P−GWからバッファシグナリングを受信する。当該バッファシグナリングは、端末装置ごとのバッファ待機中のダウンリンクデータ信号のトラフィック量を示す。インタフェース部130は、受信したバッファシグナリングを設定部140へ出力する。
(4)設定部
設定部140は、複数のサブフレームを含む無線フレームの各々について、サブフレーム単位のリンク方向を表すリンク方向コンフィギュレーションを設定する。より具体的には、設定部140は、1つ以上のレガシー端末10を含む第1の端末グループのために、レガシー用コンフィギュレーションを設定する。また、設定部140は、1つ以上のダイナミックTDD端末30を含む第2の端末グループのために、ダイナミックTDD用コンフィギュレーションを設定する。設定部140は、UL−DLトラフィック比に基づいて、各無線フレームに設定すべきレガシー用コンフィギュレーション及びダイナミックTDD用コンフィギュレーションを選択してよい。例えば、設定部140は、より多くのアップリンクトラフィックがバッファ待機中であれば、アップリンク率のより高いリンク方向コンフィギュレーションを選択し得る。同様に、設定部140は、より多くのダウンリンクトラフィックがバッファ待機中であれば、ダウンリンク率の高いリンク方向コンフィギュレーションを選択し得る。
本実施形態において、設定部140は、セミスタティックモード及びダイナミックモードという2種類の設定モードをサポートする。セミスタティックモードにおいて、設定部140は、レガシー用コンフィギュレーションと同じリンク方向コンフィギュレーションを、ダイナミックTDD用コンフィギュレーションとして設定する。ダイナミックモードにおいて、設定部140は、レガシー用コンフィギュレーションとは異なるリンク方向コンフィギュレーションを、ダイナミックTDD用コンフィギュレーションとして設定し得る(互いに同じリンク方向コンフィギュレーションの設定も可能である)。セミスタティックモードとダイナミックモードとの間の遷移は、レガシー端末10からのバッファステータスレポート又はP−GWからのバッファシグナリングによりトリガされ得る。そのようなモード遷移の一例について、後に詳細に説明する。
ダイナミックモードにおいて、設定部140は、典型的には、第1の端末グループのために設定したレガシー用コンフィギュレーションに基づいて限定されるコンフィギュレーションのセットから、無線通信部110及び信号処理部120に設定すべきダイナミックTDD用コンフィギュレーションを選択する。
例えば、第1の手法において、設定部140は、まず、レガシー用コンフィギュレーションとして、アップリンク率のより高いリンク方向コンフィギュレーションを設定する。そして、設定部140は、ダイナミックTDD用コンフィギュレーションとして、レガシー用コンフィギュレーションのアップリンクサブフレームをダウンリンクサブフレームに置き換えることにより導かれるリンク方向コンフィギュレーションを設定する。
また、例えば、第2の手法において、設定部140は、まず、レガシー用コンフィギュレーションとして、ダウンリンク率のより高いリンク方向コンフィギュレーションを設定する。また、設定部140は、設定したレガシー用コンフィギュレーションのダウンリンクサブフレームの少なくとも1つをMBSFNサブフレームに設定する。そして、設定部140は、ダイナミックTDD用コンフィギュレーションとして、レガシー用コンフィギュレーションのMBSFNサブフレームをアップリンクサブフレームに置き換えることにより導かれるリンク方向コンフィギュレーションを設定する。
(5)シグナリング制御部
シグナリング制御部150は、設定部140により設定されるリンク方向コンフィギュレーションを、各端末装置へシグナリングする。より具体的には、シグナリング制御部150は、シグナリング周期C1で、SIメッセージをブロードキャストすることにより、レガシー用コンフィギュレーションをレガシー端末10へシグナリングする。また、シグナリング制御部150は、シグナリング周期C1よりも短いシグナリング周期C2で、ダイナミックコンフィギュレーションメッセージを送信することにより、ダイナミックTDD用コンフィギュレーションをダイナミックTDD端末30へシグナリングする。リンク方向コンフィギュレーションが更新されないタイミングでは、SIメッセージ又はダイナミックコンフィギュレーションメッセージの送信は、スキップされてよい。
また、シグナリング制御部150は、無線通信部110からのCRS(Cell-specific Reference Symbol)の送信も制御する。より具体的には、シグナリング制御部150は、ダイナミックTDD用コンフィギュレーションに従って設定されるダウンリンクサブフレームのPDCCH及びPDSCH上で、無線通信部110からCRSを送信させる。
また、シグナリング制御部150は、UL−DLトラフィック比が所定の条件を満たす場合に、上述した第1の動作モード及び第2の動作モードの双方で動作可能なダイナミックTDD端末30(デュアルモード端末)に、第2の動作モード(ダイナミックコンフィギュレーションメッセージを受信するモード)への切替えを指示してもよい。ここでの所定の条件とは、例えば、UL−DLトラフィック比の変動の大きさ又は速さが閾値を上回ることなどであってよい。
(6)スケジューリング部
スケジューリング部160は、基地局100から各端末装置へのダウンリンク信号の送信及び各端末装置から基地局100へのアップリンク信号の送信をスケジューリングする。スケジューリング部160は、スケジューリングの結果を示すスケジューリング情報を生成する。シグナリング制御部150は、スケジューリング部160により生成されるスケジューリング情報(ダウンリンク割当て及びアップリンク許可)を、無線通信部110を介して各端末装置へ送信する。
第1の手法が採用される場合、スケジューリング部160は、ダイナミックTDD用コンフィギュレーションにおいてアップリンクサブフレームからダウンリンクサブフレームに置き換えられているサブフレームについて、レガシー端末10のアップリンク送信を許可しない。それにより、レガシー端末10からのアップリンク信号が有害な干渉を生じさせることを予防することができる。
また、スケジューリング部160は、レガシー端末へのダウンリンク送信を、当該ダウンリンク送信に関連付けられるACK/NACK送信のためのサブフレームにおいてリンク方向の相違が発生しないサブフレームにのみスケジューリングし得る。ダウンリンク送信に関連付けられるACK/NACK送信のためのサブフレームは、記憶部170により記憶される第1のテーブル(表1)内のレガシー用コンフィギュレーションのエントリにより示される。上述したように、当該サブフレームにおいてリンク方向の相違が発生するか否かは、レガシー用コンフィギュレーションにおける当該サブフレームのリンク方向から判定することができる。また、スケジューリング部160は、レガシー端末のアップリンク送信に対してACK/NACKを送信するためのサブフレームを、記憶部170により記憶される第2のテーブル(表2)内のレガシー用コンフィギュレーションについてのエントリを参照することにより決定し得る。また、スケジューリング部160は、レガシー端末のアップリンク送信についてのUL許可を送信するためのサブフレームを、記憶部170により記憶される第3のテーブル(表3)内のレガシー用コンフィギュレーションについてのエントリを参照することにより決定し得る。
(7)記憶部
記憶部170は、基地局100がセル102における無線通信を制御するために使用するデータ及びプログラムを記憶する記憶媒体である。例えば、記憶部170は、基地局100により選択可能なコンフィギュレーション候補のセットを予め記憶する。また、記憶部170は、設定部140により設定されるレガシー用コンフィギュレーション及びダイナミックTDD用コンフィギュレーションの識別子を記憶する。また、記憶部170は、ダウンリンク送信のタイミングと対応するACK/NACKのタイミングとを関連付ける第1のテーブル(表1)、アップリンク送信のタイミングと対応するACK/NACKのタイミングとを関連付ける第2のテーブル(表2)、及びアップリンク送信のタイミングと対応するUL許可のタイミングとを関連付ける第3のテーブル(表3)を予め記憶する。
[2−5.設定モードの遷移]
(1)第1の手法
図20は、第1の手法における設定モード間の遷移の一例を示す状態遷移図である。図20を参照すると、セミスタティックモードに属する第1の状態ST1及び第2の状態ST2、並びにダイナミックモードに属する第3の状態ST3が示されている。
状態ST1は、セミスタティックモードにおける基本的な状態である。状態ST1において、短い周期でのダイナミックTDD用コンフィギュレーションの更新は行われない。レガシー用コンフィギュレーション及びダイナミックTDD用コンフィギュレーションは共に、ダウンリンク率のより高いリンク方向コンフィギュレーション(例えば、Configuration5)に設定される。
状態ST2は、セミスタティックモードとダイナミックモードとの間の遷移の際に一時的に出現する状態である。状態ST2において、レガシー用コンフィギュレーション及びダイナミックTDD用コンフィギュレーションは共に、アップリンク率のより高いリンク方向コンフィギュレーション(例えば、Configuration0)に設定される。
状態ST3は、ダイナミックモードにおける基本的な状態である。状態ST3において、短い周期でのダイナミックTDD用コンフィギュレーションの更新が行われる。レガシー用コンフィギュレーションは、状態ST2と同様、アップリンク率のより高いリンク方向コンフィギュレーションに設定される。ダイナミックTDD用コンフィギュレーションは、レガシー用コンフィギュレーションとは異なってよい。状態ST3において、設定部140は、ダイナミックTDD用コンフィギュレーションのUL−DL構成比がUL−DLトラフィック比に追随するように、ダイナミックTDD用コンフィギュレーションを適応的に変化させる。
設定部140は、例えば、ダイナミックモードでの動作中(即ち、状態ST3)にP−GWにおいてレガシー端末10のためにバッファリングされているダウンリンクトラフィック量が第1の閾値を上回ると、セミスタティックモードへ遷移する。この場合、設定モードの状態は、状態ST3から状態ST2を経て状態ST1へ遷移する。レガシー端末10のためのダウンリンクトラフィックは、状態ST1においてダウンリンク率のより高いリンク方向コンフィギュレーションが設定されることにより、バッファから解放される。そして、設定部140は、セミスタティックモードでの動作中(即ち、状態ST1)にP−GWにおいてレガシー端末10のためにバッファリングされているダウンリンクトラフィック量が第2の閾値を下回ると、ダイナミックモードへ遷移する。この場合、設定モードの状態は、状態ST1から状態ST2を経て状態ST3へ遷移する。このように設定モードがダイナミックモードへ復帰することにより、ダイナミックTDD端末30のリンク方向コンフィギュレーションをUL−DLトラフィック比の変動に対してより迅速に追随させることが再び可能となる。
(2)第2の手法
図21は、第2の手法における設定モード間の遷移の一例を示す状態遷移図である。図21を参照すると、セミスタティックモードに属する第1の状態ST1及び第2の状態ST2、並びにダイナミックモードに属する第3の状態ST3が示されている。
状態ST1は、セミスタティックモードにおける基本的な状態である。状態ST1において、短い周期でのダイナミックTDD用コンフィギュレーションの更新は行われない。設定部140は、レガシー用コンフィギュレーションを、UL−DLトラフィック比に追随するように適応的に変化させる。ダイナミックTDD用コンフィギュレーションは、レガシー用コンフィギュレーションに等しい。
状態ST2は、セミスタティックモードとダイナミックモードとの間の遷移の際に一時的に出現する状態である。状態ST2において、レガシー用コンフィギュレーション及びダイナミックTDD用コンフィギュレーションは共に、ダウンリンク率のより高いリンク方向コンフィギュレーション(例えば、Configuration5)に設定される。
状態ST3は、ダイナミックモードにおける基本的な状態である。状態ST3において、短い周期でのダイナミックTDD用コンフィギュレーションの更新が行われる。レガシー用コンフィギュレーションは、状態ST2と同様、ダウンリンク率のより高いリンク方向コンフィギュレーションに設定される。少なくとも1つのダウンリンクサブフレームは、MBSFNサブフレームに設定される。ダイナミックTDD用コンフィギュレーションは、レガシー用コンフィギュレーションとは異なってよい。状態ST3において、設定部140は、ダイナミックTDD用コンフィギュレーションのUL−DL構成比がUL−DLトラフィック比に追随するように、ダイナミックTDD用コンフィギュレーションを適応的に変化させる。
設定部140は、例えば、ダイナミックモードでの動作中(即ち、状態ST3)に、レガシー端末10のためにバッファ待機中のダウンリンクトラフィック量又はアップリンクトラフィック量が第1の閾値を上回ると、セミスタティックモードへ遷移する。この場合、設定モードの状態は、状態ST3から状態ST2を経て状態ST1へ遷移する。状態ST1において、レガシー端末10のためにバッファ待機中のトラフィックは、バッファから解放される。そして、設定部140は、セミスタティックモードでの動作中(即ち、状態ST1)に、レガシー端末10のためにバッファ待機中のトラフィック量が第2の閾値を下回ると、ダイナミックモードへ遷移する。この場合、設定モードの状態は、状態ST1から状態ST2を経て状態ST3へ遷移する。このように設定モードがダイナミックモードへ復帰することにより、ダイナミックTDD端末30のリンク方向コンフィギュレーションをUL−DLトラフィック比の変動に対してより迅速に追随させることが再び可能となる。
<3.処理の流れの例>
[3−1.端末側の処理]
図22は、ダイナミックTDD端末30により実行される通信処理の流れの一例を示すフローチャートである。なお、ここでは、ダイナミックTDD端末30は、上述したデュアルモード端末であるものとする。
図22の通信処理は、まず、ダイナミックTDD端末30が第1の動作モード及び第2の動作モードのいずれで動作中であるかに応じて分岐する(ステップS10)。ダイナミックTDD端末30が第1の動作モードで動作中であれば、処理はステップS15へ進む。一方、ダイナミックTDD端末30が第2の動作モードで動作中であれば、処理はステップS25へ進む。
第1の動作モードにおいて、制御部33は、第1のシグナリング周期で無線通信部31にSIメッセージを受信させる(ステップS15)。そして、無線通信部31によりSIメッセージが受信されると、制御部33は、SIメッセージにより指定されたリンク方向コンフィギュレーション(即ち、レガシー用コンフィギュレーション)を、無線通信部31及び信号処理部32に設定する(ステップS20)。
一方、第2の動作モードにおいて、制御部33は、より短い第2のシグナリング周期で無線通信部31にダイナミックコンフィギュレーションメッセージを受信させる(ステップS25)。そして、無線通信部31によりダイナミックコンフィギュレーションメッセージが受信されると、制御部33は、ダイナミックコンフィギュレーションメッセージにより指定されたリンク方向コンフィギュレーション(即ち、ダイナミックTDD用コンフィギュレーション)を、無線通信部31及び信号処理部32に設定する(ステップS30)。
また、制御部33は、無線通信部31により受信されるスケジューリング情報に従って、ダウンリンクデータ信号を無線通信部31に受信させ、又はアップリンクデータ信号を無線通信部31から送信させる(ステップS35)。また、無線通信部31は、バッファ待機中のアップリンクトラフィック量を示すバッファステータスレポートを基地局100へ送信する(ステップs40)。
次に、制御部33は、基地局100から動作モードの切替えが指示されたか否かを判定する(ステップS45)。ここで、動作モードの切替えが指示された場合には、制御部33は、現在の動作モードを他の動作モードへ切り替える(ステップS50)。そして、図22の通信処理は、ステップS10へ戻る。
[3−2.ネットワーク側の処理]
(1)第1の手法
図23A及び図23Bは、第1の手法に従って基地局100により実行される通信制御処理の流れの一例を示すフローチャートである。
図23Aを参照すると、通信制御処理は、まず、基地局100がセミスタティックモード及びダイナミックモードのいずれで動作中であるかに応じて分岐する(ステップS110)。基地局100がセミスタティックモードで動作中であれば、処理はステップS115へ進む。一方、基地局100がダイナミックモードで動作中であれば、処理は図23BのステップS155へ進む。
ステップS115において、設定部140は、ダイナミックモードへの遷移条件が満たされるか否かを判定する(ステップS115)。ここで、ダイナミックモードへの遷移条件が満たされない場合には、セミスタティックモードが維持され、処理はステップS120へ進む。一方、ダイナミックモードへの遷移条件が満たされる場合には、処理はステップS130へ進む。
ステップS120では、設定部140は、UL−DLトラフィック比に応じて、レガシー用コンフィギュレーション及びダイナミックTDD用コンフィギュレーションを設定する(ステップS120)。通常は、ダウンリンク率の高い共通のリンク方向コンフィギュレーションが選択され得る。次に、シグナリング制御部150は、設定したリンク方向コンフィギュレーションを、レガシー端末10及びダイナミックTDD端末30へシグナリングする(ステップS125)。ステップS120及びステップS125の処理は、640msec又は320msecに相当し得るシグナリング周期C1で行われる。
ステップS130では、設定部140は、レガシー用コンフィギュレーション及びダイナミックTDD用コンフィギュレーションを、アップリンク率の高いリンク方向コンフィギュレーションに設定する(ステップS130)。次に、シグナリング制御部150は、設定したリンク方向コンフィギュレーションを、レガシー端末10及びダイナミックTDD端末30へシグナリングする(ステップS135)。そして、設定モードはダイナミックモードへ遷移し、処理は図23BのステップS160へ進む(ステップS140)。
図23Bを参照すると、ステップS155において、設定部140は、セミスタティックモードへの遷移条件が満たされるか否かを判定する(ステップS155)。ここで、セミスタティックモードへの遷移条件が満たされない場合には、ダイナミックモードが維持され、処理はステップS160へ進む。一方、セミスタティックモードへの遷移条件が満たされる場合には、処理はステップS170へ進む。
ステップS160では、設定部140は、UL−DLトラフィック比に応じて、ダイナミックTDD用コンフィギュレーションを設定する(ステップS160)。レガシー用コンフィギュレーションは、更新されなくてよい。次に、シグナリング制御部150は、設定したダイナミックTDD用コンフィギュレーションを、ダイナミックTDD端末30へシグナリングする(ステップS165)。ステップS160及びステップS165の処理は、10msecの整数倍に相当し得るシグナリング周期C2で行われる。
ステップS170では、設定部140は、ダイナミックTDD用コンフィギュレーションを、レガシー用コンフィギュレーションと同じリンク方向コンフィギュレーションに設定する(ステップS170)。次に、シグナリング制御部150は、設定したダイナミックTDD用コンフィギュレーションを、ダイナミックTDD端末30へシグナリングする(ステップS175)。そして、設定モードはセミスタティックモードへ遷移し、処理は図23AのステップS120へ進む(ステップS180)。
(2)第2の手法
図24A及び図24Bは、第2の手法に従って基地局100により実行される通信制御処理の流れの一例を示すフローチャートである。
図24Aを参照すると、通信制御処理は、まず、基地局100がセミスタティックモード及びダイナミックモードのいずれで動作中であるかに応じて分岐する(ステップS210)。基地局100がセミスタティックモードで動作中であれば、処理はステップS215へ進む。一方、基地局100がダイナミックモードで動作中であれば、処理は図24BのステップS255へ進む。
ステップS215において、設定部140は、ダイナミックモードへの遷移条件が満たされるか否かを判定する(ステップS215)。ここで、ダイナミックモードへの遷移条件が満たされない場合には、セミスタティックモードが維持され、処理はステップS220へ進む。一方、ダイナミックモードへの遷移条件が満たされる場合には、処理はステップS230へ進む。
ステップS220では、設定部140は、UL−DLトラフィック比に応じて、レガシー用コンフィギュレーション及びダイナミックTDD用コンフィギュレーションを設定する(ステップS220)。次に、シグナリング制御部150は、設定したリンク方向コンフィギュレーションを、レガシー端末10及びダイナミックTDD端末30へシグナリングする(ステップS225)。ステップS220及びステップS225の処理は、640msec又は320msecに相当し得るシグナリング周期C1で行われる。
ステップS230では、設定部140は、レガシー用コンフィギュレーション及びダイナミックTDD用コンフィギュレーションを、ダウンリンク率の高いリンク方向コンフィギュレーションに設定する(ステップS230)。次に、設定部140は、少なくとも1つのダウンリンクサブフレームをMBSFNサブフレームに設定する(ステップS235)。次に、シグナリング制御部150は、設定したリンク方向コンフィギュレーションを、レガシー端末10及びダイナミックTDD端末30へシグナリングする(ステップS240)。そして、設定モードはダイナミックモードへ遷移し、処理は図24BのステップS260へ進む(ステップS245)。
図24Bを参照すると、ステップS255において、設定部140は、セミスタティックモードへの遷移条件が満たされるか否かを判定する(ステップS255)。ここで、セミスタティックモードへの遷移条件が満たされない場合には、ダイナミックモードが維持され、処理はステップS260へ進む。一方、セミスタティックモードへの遷移条件が満たされる場合には、処理はステップS270へ進む。
ステップS260では、設定部140は、UL−DLトラフィック比に応じて、ダイナミックTDD用コンフィギュレーションを設定する(ステップS260)。レガシー用コンフィギュレーションは、更新されなくてよい。次に、シグナリング制御部150は、設定したダイナミックTDD用コンフィギュレーションを、ダイナミックTDD端末30へシグナリングする(ステップS265)。ステップS260及びステップS265の処理は、10msecの整数倍に相当し得るシグナリング周期C2で行われる。
ステップS270では、設定部140は、ダイナミックTDD用コンフィギュレーションを、レガシー用コンフィギュレーションと同じリンク方向コンフィギュレーションに設定する(ステップS270)。次に、設定部140は、MBSFNサブフレームの設定を解除する(ステップS275)。次に、シグナリング制御部150は、設定したダイナミックTDD用コンフィギュレーションを、ダイナミックTDD端末30へシグナリングする(ステップS280)。そして、設定モードはセミスタティックモードへ遷移し、処理は図24AのステップS220へ進む(ステップS285)。
<4.まとめ>
ここまで、図1〜図24Bを用いて、本開示に係る技術の実施形態について詳細に説明した。上述した実施形態によれば、レガシー端末のために第1のリンク方向コンフィギュレーション(レガシー用コンフィギュレーション)が設定され、ダイナミックTDD端末のために第2のリンク方向コンフィギュレーション(ダイナミックTDD用コンフィギュレーション)が設定される。第1のリンク方向コンフィギュレーションは、SIB内でレガシー端末へシグナリングされる。第2のリンク方向コンフィギュレーションは、第1のリンク方向コンフィギュレーションのシグナリング周期よりも短い周期で、ダイナミックTDD端末へシグナリングされる。従って、ダイナミックTDD端末のリンク方向コンフィギュレーションを、既存の仕組みよりも迅速に、UL−DLトラフィック比の変動に追随させることが可能となる。それにより、UL−DLトラフィック比の変動が激しい無線通信環境においても、バッファ待機中のトラフィック量の増加に起因するリソース効率の低下及びスループットの低下を回避し又は緩和することができる。
また、上述した実施形態によれば、設定されているレガシー用コンフィギュレーションに基づいて限定されるコンフィギュレーションのセットから、ダイナミックTDD用コンフィギュレーションは選択され得る。それにより、リンク方向コンフィギュレーションの相違に起因してレガシー端末においてCRSを用いた同期トラッキングの精度が低下することを回避することができる。
また、上述した実施形態によれば、レガシー端末のためにバッファリングされているトラフィック量がダイナミックモードにおいて所定の閾値を上回った場合に、レガシー用コンフィギュレーションとは異なるダイナミックTDD用コンフィギュレーションの設定が一時的に停止される。それにより、バッファ待機中のレガシー端末のためのトラフィックを解消することができる。トラフィックが解消されると、リンク方向コンフィギュレーションの設定モードは、ダイナミックモードに復帰する。それにより、レガシー端末の適切なバッファ制御を保証しつつ、UL−DLトラフィック比の変動に対するダイナミックTDD端末のリンク方向コンフィギュレーションの迅速な追随を促進することができる。
また、上述した実施形態によれば、レガシー端末から送信され若しくはレガシー端末へ送信されるACK/NACKのタイミング、又はレガシー端末へ送信されるUL許可のタイミングが、2つのコンフィギュレーションの間のリンク方向の相違の影響を受けないように制御され得る。従って、リンク方向の相違に起因してACK/NACK又はUL許可がロスしてしまうことが回避されるため、通信リソースを効率的に使用することができる。
なお、本明細書において説明したいくつかの特徴(例えば、レガシー用コンフィギュレーションに基づくダイナミックTDD用コンフィギュレーションの候補の限定、ダイナミックモードとセミスタティックモードとの間の遷移、UL−DLトラフィック比に基づくデュアルモード端末の動作モードの切替えなど)は、SIB(SIB1又は他のタイプのSIB)を用いたダイナミックTDD用コンフィギュレーションのシグナリングと組み合わされてもよい。
また、マクロセルと比較すると、セルごとの端末数のより少ないスモールセル(ナノセル、ピコセル、フェムトセルを含む)では、UL−DLトラフィック比の変動は一層顕著である。従って、本開示に係る技術は、マクロセルにおける無線通信の制御において有益であることに加えて、スモールセルにおける無線通信の制御において一層効果的である。
本明細書において説明した各装置による一連の制御処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。ソフトウェアを構成するプログラムは、例えば、各装置の内部又は外部に設けられる記憶媒体(非一時的な媒体:non-transitory media)に予め格納される。そして、各プログラムは、例えば、実行時にRAM(Random Access Memory)に読み込まれ、CPU(Central Processing Unit)などのプロセッサにより実行される。
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
なお、以下のような構成も本開示の技術的範囲に属する。
(1)
時分割複信(TDD)方式に従って1つ以上の端末装置により行われる無線通信を制御する通信制御装置であって、
複数のサブフレームを含むフレームの各々について、サブフレーム単位のリンク方向を表すリンク方向コンフィギュレーションを設定する設定部と、
前記設定部により設定される前記リンク方向コンフィギュレーションを各端末装置へシグナリングする制御部と、
を備え、
前記設定部は、第1の端末グループのために第1のリンク方向コンフィギュレーションを設定し、第2の端末グループのために第2のリンク方向コンフィギュレーションを設定し、
前記制御部は、第1の周期で、前記第1の端末グループに属する端末装置へ前記第1のリンク方向コンフィギュレーションをシグナリングし、前記第1の周期よりも短い第2の周期で、前記第2の端末グループに属する端末装置へ前記第2のリンク方向コンフィギュレーションをシグナリングする、
通信制御装置。
(2)
前記制御部は、SIB(System Information Block)内で前記第1のリンク方向コンフィギュレーションをシグナリングし、前記SIBよりも短い更新周期を有する制御情報領域内で前記第2のリンク方向コンフィギュレーションをシグナリングする、前記(1)に記載の画像処理装置。
(3)
前記設定部は、設定されている前記第1のリンク方向コンフィギュレーションに基づいて限定されるコンフィギュレーションのセットから、設定すべき前記第2のリンク方向コンフィギュレーションを選択する、前記(2)に記載の通信制御装置。
(4)
前記設定部は、
前記第1のリンク方向コンフィギュレーションとして、アップリンク率のより高いコンフィギュレーションを設定し、
前記第2のリンク方向コンフィギュレーションとして、前記第1のリンク方向コンフィギュレーションのアップリンクサブフレームをダウンリンクサブフレームに置き換えることにより導かれるコンフィギュレーションを設定する、
前記(3)に記載の通信制御装置。
(5)
前記通信制御装置は、
前記第2のリンク方向コンフィギュレーションにおいて前記ダウンリンクサブフレームに置き換えられている前記アップリンクサブフレームについて、前記第1の端末グループに属する端末装置のアップリンク送信を許可しないスケジューリング部、
をさらに備える、前記(4)に記載の通信制御装置。
(6)
前記スケジューリング部は、前記第1の端末グループに属する端末装置へのダウンリンク送信を、当該ダウンリンク送信に関連付けられるACK/NACK送信のためのサブフレームが前記第2のリンク方向コンフィギュレーションにおいて前記アップリンクサブフレームとして指定されているサブフレームにのみスケジューリングする、前記(5)に記載の通信制御装置。
(7)
前記通信制御装置は、コンフィギュレーション候補ごとにアップリンク送信のタイミングと対応するアップリンク許可の送信タイミングとを関連付けるテーブルを記憶する記憶部、をさらに備え、
前記スケジューリング部は、前記第1の端末グループに属する端末装置のアップリンク送信に対応する前記アップリンク許可を送信するためのサブフレームを、前記テーブル内の前記第1のリンク方向コンフィギュレーションについてのエントリを参照することにより決定する、
前記(5)又は前記(6)に記載の通信制御装置。
(8)
前記通信制御装置は、コンフィギュレーション候補ごとにアップリンク送信のタイミングと対応するACK/NACKの送信タイミングとを関連付けるテーブルを記憶する記憶部、をさらに備え、
前記スケジューリング部は、前記第1の端末グループに属する端末装置のアップリンク送信に対して前記ACK/NACKを送信するためのサブフレームを、前記テーブル内の前記第1のリンク方向コンフィギュレーションについてのエントリを参照することにより決定する、
前記(5)又は前記(6)に記載の通信制御装置。
(9)
前記設定部は、
前記第1のリンク方向コンフィギュレーションとしてダウンリンク率のより高いコンフィギュレーションを設定すると共に、当該第1のリンク方向コンフィギュレーションのダウンリンクサブフレームの少なくとも1つをMBSFN(MBMS Single Frequency Network)サブフレームに設定し、
前記第2のリンク方向コンフィギュレーションとして、前記第1のリンク方向コンフィギュレーションの前記MBSFNサブフレームをアップリンクサブフレームに置き換えることにより導かれるコンフィギュレーションを設定する、
前記(3)に記載の通信制御装置。
(10)
前記設定部は、
前記第1のリンク方向コンフィギュレーションとは異なる前記第2のリンク方向コンフィギュレーションが設定可能であるダイナミックモード、及び前記第1のリンク方向コンフィギュレーションと同じ前記第2のリンク方向コンフィギュレーションが設定されるセミスタティックモードの双方で動作可能であり、
前記ダイナミックモードでの動作中に前記第1の端末グループのためにバッファリングされているトラフィック量が第1の閾値を上回ると、前記セミスタティックモードへ遷移する、
前記(3)〜(7)のいずれか1項に記載の通信制御装置。
(11)
前記設定部は、前記セミスタティックモードでの動作中に前記第1の端末グループのためにバッファリングされているトラフィック量が第2の閾値を下回ると、前記ダイナミックモードへ遷移する、前記(10)に記載の通信制御装置。
(12)
前記設定部は、アップリンクトラフィックとダウンリンクトラフィックとの間のトラフィック量の比に基づいて、各フレームに設定すべき前記第1のリンク方向コンフィギュレーション及び前記第2のリンク方向コンフィギュレーションを選択する、前記(1)〜(11)のいずれか1項に記載の通信制御装置。
(13)
前記第2の端末グループに属する端末装置は、前記第1の周期でリンク方向コンフィギュレーションが更新される第1の動作モード及び前記第2の周期でリンク方向コンフィギュレーションが更新される第2の動作モードの双方で動作可能であり、
前記制御部は、前記トラフィック量の比が所定の条件を満たす場合に、前記第2の端末グループに属する端末装置へ前記第2の動作モードへの切替えを指示する、
前記(12)に記載の通信制御装置。
(14)
前記通信制御装置は、基地局であり、
前記基地局は、前記第2のリンク方向コンフィギュレーションに従って無線信号を送信し及び受信する無線通信部、をさらに備える、
前記(1)〜(13)のいずれか1項に記載の通信制御装置。
(15)
前記通信制御装置は、基地局を介して前記1つ以上の端末装置と通信する制御ノードである、前記(1)〜(13)のいずれか1項に記載の通信制御装置。
(16)
時分割複信(TDD)方式に従って1つ以上の端末装置により行われる無線通信を、通信制御装置において制御するための通信制御方法であって、
複数のサブフレームを含むフレームの各々について、サブフレーム単位のリンク方向を表す第1のリンク方向コンフィギュレーション及び第2のリンク方向コンフィギュレーションを設定することと、
第1の周期で、前記第1のリンク方向コンフィギュレーションを第1の端末グループに属する端末装置へシグナリングすることと、
前記第1の周期よりも短い第2の周期で、前記第2のリンク方向コンフィギュレーションを第2の端末グループに属する端末装置へシグナリングすることと、
を含む通信制御方法。
(17)
時分割複信(TDD)方式に従って1つ以上の端末装置により行われる無線通信を制御する通信制御装置のコンピュータを、
複数のサブフレームを含むフレームの各々について、サブフレーム単位のリンク方向を表すリンク方向コンフィギュレーションを設定する設定部と、
前記設定部により設定される前記リンク方向コンフィギュレーションを各端末装置へシグナリングする制御部と、
として機能させるためのプログラムであって、
前記設定部は、第1の端末グループのために第1のリンク方向コンフィギュレーションを設定し、第2の端末グループのために第2のリンク方向コンフィギュレーションを設定し、
前記制御部は、第1の周期で、前記第1の端末グループに属する端末装置へ前記第1のリンク方向コンフィギュレーションをシグナリングし、前記第1の周期よりも短い第2の周期で、前記第2の端末グループに属する端末装置へ前記第2のリンク方向コンフィギュレーションをシグナリングする、
プログラム。
(18)
時分割複信(TDD)方式で基地局と通信する無線通信部と、
前記基地局からシグナリングされるリンク方向コンフィギュレーションに従い、複数のサブフレームを含むフレームの各々について、サブフレーム単位のリンク方向を設定する制御部と、
を備える端末装置であって、
前記制御部は、第1の端末グループのために設定される第1のリンク方向コンフィギュレーションのシグナリング周期よりも短いシグナリング周期で、前記端末装置が属する第2の端末グループのために設定される第2のリンク方向コンフィギュレーションのシグナリングを前記無線通信部に受信させる、
端末装置。
(19)
時分割複信(TDD)方式に従って無線通信する1つ以上の端末装置と、
前記1つ以上の端末装置により行われる前記無線通信を制御する通信制御装置と、
を含む通信制御システムであって、
前記通信制御装置は、
複数のサブフレームを含むフレームの各々について、サブフレーム単位のリンク方向を表すリンク方向コンフィギュレーションを設定する設定部と、
前記設定部により設定される前記リンク方向コンフィギュレーションを各端末装置へシグナリングする制御部と、
を備え、
前記設定部は、第1の端末グループのために第1のリンク方向コンフィギュレーションを設定し、第2の端末グループのために第2のリンク方向コンフィギュレーションを設定し、
前記制御部は、第1の周期で、前記第1の端末グループに属する端末装置へ前記第1のリンク方向コンフィギュレーションをシグナリングし、前記第1の周期よりも短い第2の周期で、前記第2の端末グループに属する端末装置へ前記第2のリンク方向コンフィギュレーションをシグナリングする、
通信制御システム。
1 通信制御システム
10 端末装置(第1の端末グループ:レガシー端末)
30 端末装置(第2の端末グループ:ダイナミックTDD端末)
31 無線通信部
33 制御部
100 通信制御装置
110 無線通信部
140 設定部
150 シグナリング制御部
160 スケジューリング部
170 記憶部

Claims (17)

  1. 無線通信ネットワーク上で時分割複信方式に従って端末装置により行われる通信を制御する通信装置であって、
    複数のサブフレームを含むフレームの各々について、サブフレーム単位のリンク方向を表すリンク方向コンフィギュレーションを設定する、ように構成される回路を備え、
    前記回路は、
    第1の端末グループのために第1のリンク方向コンフィギュレーションを設定し、第2の端末グループのために第2のリンク方向コンフィギュレーションを設定し、
    第1の周期で前記第1の端末グループに属する端末装置へ前記第1のリンク方向コンフィギュレーションをシグナリングし、
    前記第1の周期よりも短い第2の周期で前記第2の端末グループに属する端末装置へ前記第2のリンク方向コンフィギュレーションをシグナリングする、
    ように構成され、
    前記第2の周期は、10ミリ秒の整数倍であり、
    前記回路は、前記第2のリンク方向コンフィギュレーションとして、前記第1のリンク方向コンフィギュレーションのダウンリンクサブフレームをダウンリンクサブフレームとして維持しつつ、前記第1のリンク方向コンフィギュレーションのアップリンクサブフレームをダウンリンクサブフレームに置き換えることにより導かれるコンフィギュレーションを設定する、ように構成される、
    通信装置。
  2. 前記第2の周期は、40ミリ秒である、請求項1に記載の通信装置。
  3. 前記回路は、前記第1のリンク方向コンフィギュレーションとして、アップリンク率のより高いコンフィギュレーションを設定する、ように構成される、請求項1に記載の通信装置。
  4. 前記回路は、前記第2のリンク方向コンフィギュレーションにおいて前記ダウンリンクサブフレームに置き換えられている前記アップリンクサブフレームについて、前記第1の端末グループに属する端末装置にアップリンク送信を許可しない、ように構成される、請求項3に記載の通信装置。
  5. 前記回路は、前記第1の端末グループに属する端末装置へのダウンリンク送信を、当該ダウンリンク送信に関連付けられるACK/NACK送信のためのサブフレームが前記第2のリンク方向コンフィギュレーションにおいて前記アップリンクサブフレームとして指定されているサブフレームにのみスケジューリングする、ように構成される、請求項4に記載の通信装置。
  6. 前記回路は、
    コンフィギュレーション候補ごとにアップリンク送信のタイミングと対応するアップリンク許可の送信タイミングとを関連付けるテーブルを記憶し、
    前記第1の端末グループに属する端末装置のアップリンク送信に対応する前記アップリンク許可を送信するためのサブフレームを、前記テーブル内の前記第1のリンク方向コンフィギュレーションについてのエントリを参照することにより決定する、
    ように構成される、請求項4に記載の通信装置。
  7. 前記回路は、
    コンフィギュレーション候補ごとにアップリンク送信のタイミングと対応するACK/NACKの送信タイミングとを関連付けるテーブルを記憶し、
    前記第1の端末グループに属する端末装置のアップリンク送信に対して前記ACK/NACKを送信するためのサブフレームを、前記テーブル内の前記第1のリンク方向コンフィギュレーションについてのエントリを参照することにより決定する、
    ように構成される、請求項4に記載の通信装置。
  8. 前記回路は、
    前記第1のリンク方向コンフィギュレーションとしてダウンリンク率のより高いコンフィギュレーションを設定すると共に、当該第1のリンク方向コンフィギュレーションのダウンリンクサブフレームの少なくとも1つをMBSFN(MBMS Single Frequency Network)サブフレームに設定し、
    前記第2のリンク方向コンフィギュレーションとして、前記第1のリンク方向コンフィギュレーションの前記MBSFNサブフレームをアップリンクサブフレームに置き換えることにより導かれるコンフィギュレーションを設定する、
    ように構成される、請求項1に記載の通信装置。
  9. 前記回路は、
    前記第1のリンク方向コンフィギュレーションとは異なる前記第2のリンク方向コンフィギュレーションが設定可能であるダイナミックモード、及び前記第1のリンク方向コンフィギュレーションと同じ前記第2のリンク方向コンフィギュレーションが設定されるセミスタティックモードの双方で動作可能であり、
    前記ダイナミックモードでの動作中に前記第1の端末グループのためにバッファリングされているトラフィック量が第1の閾値を上回ると、前記セミスタティックモードへ遷移する、
    ように構成される、請求項1に記載の通信装置。
  10. 前記回路は、前記セミスタティックモードでの動作中に前記第1の端末グループのためにバッファリングされているトラフィック量が第2の閾値を下回ると、前記ダイナミックモードへ遷移する、ように構成される、請求項9に記載の通信装置。
  11. 前記回路は、アップリンクトラフィックとダウンリンクトラフィックとの間のトラフィック量の比に基づいて、各フレームに設定すべき前記第1のリンク方向コンフィギュレーション及び前記第2のリンク方向コンフィギュレーションを選択する、ように構成される、請求項1に記載の通信装置。
  12. 前記第2の端末グループに属する端末装置は、前記第1の周期でリンク方向コンフィギュレーションが更新される第1の動作モード及び前記第2の周期でリンク方向コンフィギュレーションが更新される第2の動作モードの双方で動作可能であり、
    前記回路は、前記トラフィック量の比が所定の条件を満たす場合に、前記第2の端末グループに属する端末装置へ前記第2の動作モードへの切替えを指示する、ように構成される、
    請求項11に記載の通信装置。
  13. 前記通信装置は、基地局であり、
    前記基地局は、前記第2のリンク方向コンフィギュレーションに従って無線信号を送信し及び受信する、ように構成される、
    請求項1に記載の通信装置。
  14. 前記通信装置は、基地局を介して前記1つ以上の端末装置と通信する制御ノードである、請求項1に記載の通信装置。
  15. 無線通信ネットワーク上で時分割複信方式に従って端末装置により行われる通信を制御する通信装置により実行される通信方法であって、
    前記通信装置は、複数のサブフレームを含むフレームの各々について、サブフレーム単位のリンク方向を表すリンク方向コンフィギュレーションを設定するように構成され、
    前記通信方法は、
    第1の端末グループのために第1のリンク方向コンフィギュレーションを設定することと、
    第2の端末グループのために第2のリンク方向コンフィギュレーションを設定することと、
    第1の周期で前記第1の端末グループに属する端末装置へ前記第1のリンク方向コンフィギュレーションをシグナリングすることと、
    前記第1の周期よりも短い第2の周期で前記第2の端末グループに属する端末装置へ前記第2のリンク方向コンフィギュレーションをシグナリングすることと、
    を含み、
    前記第2の周期は、10ミリ秒の整数倍であり、
    前記第2のリンク方向コンフィギュレーションとして、前記第1のリンク方向コンフィギュレーションのダウンリンクサブフレームをダウンリンクサブフレームとして維持しつつ、前記第1のリンク方向コンフィギュレーションのアップリンクサブフレームをダウンリンクサブフレームに置き換えることにより導かれるコンフィギュレーションが設定される、
    通信方法。
  16. 無線通信ネットワーク上で時分割複信方式に従って端末装置により行われる通信を制御する通信装置のコンピュータに、複数のサブフレームを含むフレームの各々について、サブフレーム単位のリンク方向を表すリンク方向コンフィギュレーションを設定させるプログラムであって、
    前記プログラムは、
    第1の端末グループのために第1のリンク方向コンフィギュレーションを設定することと、
    第2の端末グループのために第2のリンク方向コンフィギュレーションを設定することと、
    第1の周期で前記第1の端末グループに属する端末装置へ前記第1のリンク方向コンフィギュレーションをシグナリングすることと、
    前記第1の周期よりも短い第2の周期で前記第2の端末グループに属する端末装置へ前記第2のリンク方向コンフィギュレーションをシグナリングすることと、
    を前記コンピュータに行わせ、
    前記第2の周期は、10ミリ秒の整数倍であり、
    前記第2のリンク方向コンフィギュレーションとして、前記第1のリンク方向コンフィギュレーションのダウンリンクサブフレームをダウンリンクサブフレームとして維持しつつ、前記第1のリンク方向コンフィギュレーションのアップリンクサブフレームをダウンリンクサブフレームに置き換えることにより導かれるコンフィギュレーションが設定される、
    プログラム。
  17. 無線通信ネットワーク上で時分割複信方式に従って基地局と通信する端末装置であって、
    前記基地局からシグナリングされるリンク方向コンフィギュレーションに従い、複数のサブフレームを含むフレームの各々について、サブフレーム単位のリンク方向を設定する、ように構成される回路を備え、
    前記回路は、第1の端末グループのために設定される第1のリンク方向コンフィギュレーションのシグナリング周期よりも短いシグナリング周期で、前記端末装置が属する第2の端末グループのために設定される第2のリンク方向コンフィギュレーションのシグナリングを受信する、ように構成され、
    前記第2のリンク方向コンフィギュレーションのシグナリング周期は、10ミリ秒の整数倍であり、
    前記第2のリンク方向コンフィギュレーションは、前記第1のリンク方向コンフィギュレーションのダウンリンクサブフレームをダウンリンクサブフレームとして維持しつつ、前記第1のリンク方向コンフィギュレーションのアップリンクサブフレームをダウンリンクサブフレームに置き換えることにより導かれる、
    端末装置。
JP2017183433A 2012-07-05 2017-09-25 通信装置、通信方法、プログラム及び端末装置 Active JP6399178B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012151239 2012-07-05
JP2012151239 2012-07-05
JP2012242544 2012-11-02
JP2012242544 2012-11-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014523641A Division JP6217634B2 (ja) 2012-07-05 2013-05-22 通信制御装置、通信制御方法、プログラム、端末装置及び通信制御システム

Publications (2)

Publication Number Publication Date
JP2017220955A true JP2017220955A (ja) 2017-12-14
JP6399178B2 JP6399178B2 (ja) 2018-10-03

Family

ID=49881755

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014523641A Expired - Fee Related JP6217634B2 (ja) 2012-07-05 2013-05-22 通信制御装置、通信制御方法、プログラム、端末装置及び通信制御システム
JP2017183433A Active JP6399178B2 (ja) 2012-07-05 2017-09-25 通信装置、通信方法、プログラム及び端末装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014523641A Expired - Fee Related JP6217634B2 (ja) 2012-07-05 2013-05-22 通信制御装置、通信制御方法、プログラム、端末装置及び通信制御システム

Country Status (5)

Country Link
US (3) US9825751B2 (ja)
EP (2) EP3618556A1 (ja)
JP (2) JP6217634B2 (ja)
CN (1) CN104396331B (ja)
WO (1) WO2014006994A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5796448B2 (ja) 2011-10-07 2015-10-21 ソニー株式会社 無線通信装置及び無線通信方法、並びに無線通信システム
JP5979228B2 (ja) 2012-05-10 2016-08-24 ソニー株式会社 通信制御装置、通信制御方法及び端末装置
BR112014029919A2 (pt) 2012-06-05 2018-04-17 Sony Corp aparelho e método de controle de comunicação, estação base, e, aparelho de terminal.
WO2014002587A1 (ja) 2012-06-27 2014-01-03 ソニー株式会社 通信制御装置、通信制御方法及び通信装置
EP2869621B1 (en) 2012-06-27 2017-03-15 Sony Corporation Communication control device, communication control method and communication device
EP3618556A1 (en) 2012-07-05 2020-03-04 Sony Corporation Communication control device, communication control method, program, terminal device, and communication control system
US9538548B2 (en) 2012-08-13 2017-01-03 Sony Corporation Communication control apparatus, terminal apparatus, and communication control method
JP6179517B2 (ja) 2012-08-31 2017-08-16 ソニー株式会社 通信制御装置、端末装置、通信制御方法、プログラム及び通信制御システム
CN105187083B (zh) * 2013-05-30 2017-08-11 华为技术有限公司 射频收发装置、终端及方法
CN104348602B (zh) * 2013-08-09 2019-06-18 北京三星通信技术研究有限公司 一种混合双工通信方法、基站及终端
EP3155783B1 (en) * 2014-06-12 2019-09-18 LG Electronics Inc. Method and apparatus for performing blind detection in wireless communication system
US11115174B2 (en) * 2014-07-01 2021-09-07 Ntt Docomo, Inc. Base station, user terminal, radio communication system, and communication control method
US10448391B2 (en) * 2014-11-24 2019-10-15 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for transmission and reception of time-frequency resources
WO2016133247A1 (ko) * 2015-02-16 2016-08-25 엘지전자(주) 무선 통신 시스템에서 상향링크 자원 할당 방법 및 이를 위한 장치
US10999886B2 (en) * 2015-08-10 2021-05-04 Qualcomm Incorporated Techniques for harmonization between CRS and DM-RS based transmission modes in unlicensed spectrum
WO2017081800A1 (ja) * 2015-11-12 2017-05-18 富士通株式会社 端末装置、基地局装置、無線通信システム及び無線通信方法
US10772087B2 (en) 2015-11-14 2020-09-08 Qualcomm Incorporated Physical layer signaling techniques in wireless communications systems
CN107041003B (zh) 2016-02-03 2020-04-10 电信科学技术研究院 一种上下行传输资源分配方法及装置
CN107343317B (zh) * 2016-04-29 2022-12-30 华为技术有限公司 一种子帧配置方法和装置
EP3443792B1 (en) * 2016-05-13 2020-11-04 Sony Corporation Communications device, infrastructure equipment, wireless communications network and methods
WO2018147789A1 (en) * 2017-02-13 2018-08-16 Telefonaktiebolaget Lm Ericsson (Publ) System and method for distributed coordination of duplex directions in a nr system
US11083005B2 (en) * 2019-07-11 2021-08-03 Rohde & Schwarz Gmbh & Co. Kg Method for reporting scheduling decisions by a communication tester

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125769A1 (ja) * 2009-04-28 2010-11-04 三菱電機株式会社 移動体通信システム

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065523A2 (en) 2006-11-30 2008-06-05 Nokia Corporation Apparatus, method and computer program product providing lcr-tdd compatible frame structure
WO2009108768A1 (en) * 2008-02-28 2009-09-03 Interdigital Patent Holdings, Inc. Method and apparatus for lte system information update in connected mode
JP5230794B2 (ja) 2008-03-24 2013-07-10 ゼットティーイー (ユーエスエー) インコーポレイテッド Lte/tddシステムにおけるダウンリンク/アップリンク割り付け比率の動的調整およびシグナリング方法
US8542617B2 (en) * 2008-06-02 2013-09-24 Apple Inc. Adaptive operational full-duplex and half-duplex FDD modes in wireless networks
CN102204154B (zh) * 2008-10-31 2014-05-21 诺基亚公司 在基于分组的无线通信系统中用于时分双工操作的子帧调度的动态分配
CN101754268B (zh) * 2008-12-04 2012-08-15 中国移动通信集团公司 用户上行数据调度方法及用户设备
BRPI1015270A2 (pt) 2009-04-28 2017-09-26 Zte Usa Inc método e sistema para ajuste dinâmico de taxa de alocação de enlace de descida/ enlace de subida em sistemas lte/tdd
JP2011071704A (ja) 2009-09-25 2011-04-07 Sony Corp 無線通信装置、無線通信システム、および無線通信方法
JP5656384B2 (ja) 2009-10-07 2015-01-21 ソニー株式会社 無線通信装置、信号強度出力方法及び無線通信システム
JP2011096090A (ja) 2009-10-30 2011-05-12 Sony Corp 無線通信装置、ホスト機器への応答方法、及びプログラム
JP2011211619A (ja) 2010-03-30 2011-10-20 Sony Corp 通信制御装置、端末装置、無線通信システム、無線通信方法およびプログラム
WO2011127993A1 (en) * 2010-04-15 2011-10-20 Telefonaktiebolaget L M Ericsson (Publ) Numbering of automatic repeat request processes
CN102064879B (zh) * 2010-11-30 2014-05-07 大唐移动通信设备有限公司 一种时分双工通信的方法、系统和设备
ES2624277T3 (es) 2010-12-20 2017-07-13 Telefonaktiebolaget Lm Ericsson (Publ) Métodos y nodos para ajustar valores de parámetros del sistema usados en un sistema de comunicación inalámbrica
CN102026209B (zh) * 2010-12-21 2014-04-16 大唐移动通信设备有限公司 一种传输信息和配置子帧的方法、系统及设备
CN103493556B (zh) * 2011-02-21 2020-02-14 安华高科技股份有限公司 用于时分双工的动态上行链路/下行链路配置
EP2503727A1 (en) * 2011-03-23 2012-09-26 Panasonic Corporation Search space for uplink grant in a carrier-aggregated mobile communication system
WO2012142761A1 (en) * 2011-04-21 2012-10-26 Renesas Mobile Corporation Error prevention in dynamic uplink/downlink configuration change for time division duplex
US20140112254A1 (en) * 2011-06-17 2014-04-24 Telefonaktiebolaget L M Ericsson (Publ) Methods and nodes for random access
US9137804B2 (en) * 2011-06-21 2015-09-15 Mediatek Inc. Systems and methods for different TDD configurations in carrier aggregation
JP2013034149A (ja) 2011-08-03 2013-02-14 Sony Corp 端末装置、通信制御装置、無線通信システム及び通信制御方法
CN105142187B (zh) * 2011-09-30 2019-03-26 华为技术有限公司 传输资源配置方法及相关设备和通信系统
JP5796448B2 (ja) 2011-10-07 2015-10-21 ソニー株式会社 無線通信装置及び無線通信方法、並びに無線通信システム
JP5892176B2 (ja) 2011-12-07 2016-03-23 ソニー株式会社 無線基地局、無線基地局の通信制御方法及びコンピュータプログラム
US8953478B2 (en) * 2012-01-27 2015-02-10 Intel Corporation Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
US9602251B2 (en) * 2012-01-27 2017-03-21 Sharp Kabushiki Kaisha Devices for reconfiguring uplink and downlink allocations in time domain duplexing wireless systems
US8848591B2 (en) * 2012-02-27 2014-09-30 Futurewei Technologies, Inc. System and method for message acknowledgment feedback for device-to-device communication overlaid on a cellular network
WO2013141770A1 (en) * 2012-03-22 2013-09-26 Telefonaktiebolaget L M Ericsson (Publ) Dynamic configuration of subframes in a radio communications system
US9143984B2 (en) * 2012-04-13 2015-09-22 Intel Corporation Mapping of enhanced physical downlink control channels in a wireless communication network
US20130294359A1 (en) 2012-05-02 2013-11-07 Industrial Technology Research Institute Method of Handling Resource Allocation in TDD System and Related Communication Device
JP5979228B2 (ja) 2012-05-10 2016-08-24 ソニー株式会社 通信制御装置、通信制御方法及び端末装置
US9385856B2 (en) * 2012-05-10 2016-07-05 Samsung Electronics Co., Ltd Method and apparatus for transmitting and receiving frame configuration information in TDD wireless communication system
ES2885524T3 (es) * 2012-05-11 2021-12-14 Nokia Solutions & Networks Oy Procedimiento para la mitigación de la interferencia del enlace ascendente-enlace descendente en una red heterogénea
US9014064B2 (en) * 2012-05-11 2015-04-21 Intel Corporation Scheduling and hybrid automatic repeat request (HARQ) timing indication for an uplink-downlink (UL-DL) reconfiguration
US9185620B2 (en) * 2012-05-30 2015-11-10 Intel Corporation Adaptive UL-DL configurations in a TDD heterogeneous network
RU2014148133A (ru) 2012-06-05 2016-06-20 Сони Корпорейшн Устройство управления связью, оконечное устройство и способ управления связью
BR112014029919A2 (pt) 2012-06-05 2018-04-17 Sony Corp aparelho e método de controle de comunicação, estação base, e, aparelho de terminal.
WO2014002587A1 (ja) 2012-06-27 2014-01-03 ソニー株式会社 通信制御装置、通信制御方法及び通信装置
EP2869621B1 (en) 2012-06-27 2017-03-15 Sony Corporation Communication control device, communication control method and communication device
EP3618556A1 (en) 2012-07-05 2020-03-04 Sony Corporation Communication control device, communication control method, program, terminal device, and communication control system
US9538548B2 (en) 2012-08-13 2017-01-03 Sony Corporation Communication control apparatus, terminal apparatus, and communication control method
US9167449B2 (en) 2013-08-08 2015-10-20 Blackberry Limited Dynamic cell clustering

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125769A1 (ja) * 2009-04-28 2010-11-04 三菱電機株式会社 移動体通信システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "TP for TR36.828 section 7", 3GPP TSG RAN WG1 MEETING #69 R1-122948, JPN6013028246, 25 May 2012 (2012-05-25), pages 7, ISSN: 0003852502 *
RENESAS MOBILE EUROPE LTD.: "Discussion on Enhancements for Dynamic TDD UL-DL Configuration[online]", 3GPP TSG-RAN WG1#69 R1-122363, JPN6018030200, 21 May 2012 (2012-05-21), ISSN: 0003852503 *

Also Published As

Publication number Publication date
CN104396331B (zh) 2018-12-04
EP2871900B1 (en) 2019-11-27
JP6399178B2 (ja) 2018-10-03
US20150156006A1 (en) 2015-06-04
EP3618556A1 (en) 2020-03-04
US20180062822A1 (en) 2018-03-01
CN104396331A (zh) 2015-03-04
WO2014006994A1 (ja) 2014-01-09
EP2871900A1 (en) 2015-05-13
US20160080135A1 (en) 2016-03-17
EP2871900A4 (en) 2016-02-17
JP6217634B2 (ja) 2017-10-25
US9621328B2 (en) 2017-04-11
US9825751B2 (en) 2017-11-21
JPWO2014006994A1 (ja) 2016-06-02

Similar Documents

Publication Publication Date Title
JP6399178B2 (ja) 通信装置、通信方法、プログラム及び端末装置
JP6421863B2 (ja) 通信装置、方法、及び非一時的コンピュータ可読媒体
JP2019198100A (ja) 基地局及び方法
US20160309306A1 (en) Communication control method and user terminal
US9515790B2 (en) Method for reducing inter-cell interference in cooperative multi-cell wireless communication system, and apparatus for same
JP2022515874A (ja) シングルdciマルチスロットスケジューリングのためのharqハンドリング
JP6416424B2 (ja) 基地局、プロセッサ、及び通信方法
KR20180092978A (ko) 분산된 비스케줄링된 송신들을 위한 네트워크 지원
US20180077746A1 (en) Method, carried out by terminal, for transmitting psbch in wireless communication system and terminal utilizing the method
JP6571107B2 (ja) 無線通信システムにおいて端末間直接通信のための同期信号伝送方法及びそのための装置
EP3913833A1 (en) Feedback method and apparatus
WO2024029425A1 (ja) 基地局および通信システム
JP2013059005A (ja) 基地局及び無線通信方法
CN114765842A (zh) 处理实体下链路控制通道的检测的通信装置
JP2013059006A (ja) 基地局及び無線通信方法
JP2012134906A (ja) 無線通信システムおよびその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180820

R151 Written notification of patent or utility model registration

Ref document number: 6399178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151